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Abstract
The grazing impacts of two Acartia species (Acartia omorii and A. steueri) on size-fractionated phytoplankton biomass were 
measured in Jangmok Bay, Korea (34°59′37.8" N, 128°40′28.2'' E) from January to May 2015. Total chlorophyll (Chl-a) 
concentrations ranged from 0.66 to 5.18 µg L−1, and micro-phytoplankton (> 20 µm) comprised up to 66% (range, 10.5–
65.6%) of the total pigment. The total abundance of Acartia species ranged from 267 to 5931 ind. m−3, and these copepods 
accounted for 20.8 to 88.0% of the total copepod abundance. The ingestion rates of A. steueri (r2 = 0.904, P = 0.013) and A. 
omorii (r2 = 0.239, P = 0.046) showed a high correlation with micro-phytoplankton. The average grazing impact of Acartia 
species on phytoplankton biomass was approximately 6.8 ± 11.8% (range, 0.1–69.0%). Temperature–salinity (T–S) diagram 
analysis revealed distinct environmental preferences for each species; A. omorii preferred a broader temperature range of 6.2 
to 17.1 °C and a salinity range of 31.8 to 33.5, whereas A. steueri was more restricted, preferring temperatures between 6.5 
and 12.8 °C and a salinity range of 32.2 to 33.5. These findings not only contribute to our understanding of the ecological 
roles of these copepod species in marine ecosystems but also highlight the importance of continuous research regarding the 
mechanisms driving their coexistence and interaction with the coastal food web.
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Introduction

The role of food selectivity in controlling zooplankton commu-
nities in pelagic ecosystems has been well documented (Frost 
1972; Dahms and Qian 2005). Selectivity in feeding plays a 

crucial role in interspecies competition for food resources and 
influences adaptive strategies, making it an important trophic 
pathway for the transfer of energy and material from lower to 
higher trophic levels (Mauchline 1998; Bamstedt et al. 2000).

The impact of herbivorous zooplankton grazing on phy-
toplankton abundance and structure on has been a focus 
of research (Sterner 1989). Copepoda, in general, feed on 
phytoplankton of varying sizes and show selectivity in their 
feeding habits (Wilson 1973; Cowles 1979). These organ-
isms differentiate prey based on factors, such as size, quality, 
and chemical cues of the prey (Frost 1972; Huntley et al. 
1986; Cowles et al. 1988) on their own life cycle stages. 
Phytoplankton biomass and species composition are altered 
by their selective feeding (Bautista and Harris 1992; Edgar 
and Green 1994), which is a key mechanism related to the 
interspecies competition for food resources in pelagic food 
webs (Katechakis et al. 2004). The relationship between 
phytoplankton size and copepod feeding has been reported, 
with some studies suggesting a direct correlation between 
copepod body size and grazing effects (Harris 1982; Morales 
et al. 1991). However, the degree of selectivity that copepods 
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display in their natural environment with respect to the 
types, sizes, and qualities of available food is not yet fully 
understood (Huntley 1981; Jang et al. 2010).

High abundances of the planktonic Acartiidae are com-
monly found in coastal and estuarine areas in Korea, China, 
and Japan (Kang and Kang 1998; Park et al. 2015). Acar-
tia omorii and A. steueri are particularly abundant in the 
Jangmok Bay of Korea during the spring and winter seasons 
(Hwang et al. 2011). A. omorii adults prefer water tempera-
tures below 23 °C, and predominated from January to early 
July. However, A. steueri adults are mainly found during the 
relatively cooler months of January to May and November to 
December, with the population rising notably in December 
when water temperatures are below 10 °C. Acartia species 
are omnivores and also feed on phytoplankton of various 
sizes and species, with adults generally associated with phy-
toplankton of a specific size (Rollwagen-Bollens and Penry 
2003; Liu et al. 2010). Their seasonal abundance in coastal 
and estuarine areas can be attributed to niche separation for 
food (Ueda 1987; Choi et al. 2021).

The objective of this study was to investigate the feed-
ing selectivity of two species of the genus Acartia, which 
would elucidate the mechanisms that promote coexistence 
and diversity in marine ecosystems. Hence, the role of these 
species in relation to changes in phytoplankton biomass and 
size composition was examined, and the grazing effect was 

calculated by combining the estimated biomass of phyto-
plankton in different size fractions (micro, nano, and pico).

Materials and methods

The study was conducted between January and May 2015 
in Jangmok Bay (34°59′37.8" N, 128°40′28.2'' E) located in 
the northern part of the Geoje Island, South Sea of Korea. 
Sampling was conducted every 5 to 12 days at the research 
wharf (average depth, 8.5 m; maximum tidal range, 2.2 m) 
of the South Sea Research Institute of the Korea Institute of 
Ocean Science and Technology (KIOST) (Fig. 1).

The physical and biological features of the surface water 
were investigated. The water temperature (℃) and salinity 
were measured in situ using a YSI multimeter (model 63; 
Xylem Inc., Yellow Springs, OH, USA). Acartia species 
were collected by vertical hauling using a conical net (mesh 
size, 200 μm; mouth diameter, 45 cm). Specimens (Acartia 
omorii and A. steueri) were transferred to 20-L containers 
filled with surface water in a cooler and brought to the labo-
ratory promptly. Except for March 30 and April 7, when we 
found a few other Acartia species, A. omorii and A. steu-
eri made up almost all of the Acartia population. The other 
Acartia species we found on those two days were less than 
3% of the total Acartia population. Healthy copepods were 

Fig. 1   Location of the experi-
mental site in Jangmok Bay, 
Korea
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immediately isolated using a pipette with a wide opening 
by observing under a dissecting microscope (Zeiss Stemi 
SV11, Jena, Germany). Adult male and female copepods 
were sorted under a dissecting microscope and transferred 
to a 500-mL bottle containing seawater filtered through 
Whatman GF/F filters. Seven polycarbonate bottles (2.75 
L) were filled with seawater filtered through a 200-μm mesh 
to remove other copepods and large grazers (Fig. 2). Each 
experiment was conducted using three experimental bottles, 
each populated with a set number of copepods (Table 1), 
alongside three control bottles containing only seawater 
filtered through a 200-μm mesh to exclude copepods. An 
additional bottle was set aside to establish initial conditions 
for measurement of chlorophyll (Chl-a) concentration. When 
specimens of both A. omorii and A. steueri were present 
simultaneously, 10 polycarbonate bottles were used. Details 
regarding variations in the specific Acartia species and num-
ber of individuals during the study period are provided in 
Table 1. In addition, the mean prosome length (PL) of adult 
females was measured for 10 individuals from each spe-
cies. This incubation setup was housed in a custom-designed 
rotating incubation chamber, which ensured uniform condi-
tions by simulating natural water movement, thereby main-
taining the ecological validity of the study.

Seven polycarbonate bottles were filled to eliminate 
air bubbles. The incubation process was conducted over 
a 24-h period, during which surface water was continu-
ously pumped from sizable acrylic tanks, and the bottles 
containing the specimens were rotated to ensure consistent 

conditions throughout the incubation period. After 24 h, 
water samples were collected from the polycarbonate bot-
tles to measure Chl-a concentration and divided into three 
size categories (micro, nano, and pico) by size fractiona-
tion using 20-μm nylon mesh and 2-μm polycarbonate 
filter. To measure Chl-a concentration, 500-mL seawater 
from each bottle was filtered through a 47-mm Whatman 
GF/F filter. The filters were extracted with 90% acetone for 
24 h at − 20 ℃ and subsequently analyzed by fluorometry 
(10 AU Fluorometer, Turner Designs, CA, USA) (Parsons 
et al. 1984).

The individual ingestion rates for the three size catego-
ries of Chl-a in Acartia species were calculated as follows 
using Frost’s equation (Frost 1972):

where F is the clearance rate (mL copepod−1 day−1), and C 
is the mean concentration of prey (mL−1) during the 24-h 
incubation period.

The clearance rate was calculated as follows:

where V is the volume (mL) of the incubation bottle, Z is 
the number of Acartia individuals added to the incubation 
bottle, t is the incubation time, C0 is the initial concentration 
of Chl-a, and Cc and Ce are the concentrations of prey in 
the experimental bottles at the end of the incubation period.

(1)I = F × C

(2)
F
(

L copepod−1day−1
)

= [ln
(

C0∕Cc

)

- ln
(

C0∕Ce

)

] × V∕Zt

Fig. 2   Setup of incubation bottles for Acartia species grazing experiments



	 Marine Biology         (2024) 171:125   125   Page 4 of 14

The mean concentration of prey (L−1) was calculated 
using the following formula:

Grazing impact (%) was calculated as the percentage of the 
initial concentration of Chl-a consumed by Acartia species.

Linear regression was calculated to determine the rela-
tionship between ingestion rates in copepods and phyto-
plankton concentrations. All the statistical analyses were 
performed using the IBM SPSS Statistics for Windows, 
version 20 (IBM Corp., Armonk, NY, USA). The signifi-
cance level was set at P < 0.05.

Results

Environmental conditions

The water temperature in Jangmok Bay was 6.2–17.1 °C, with 
higher values in May (Table 2). The salinity of the water was 
31.8–33.5, with the lowest values observed in May (Table 2). 
The total Chl-a concentration varied from 0.66 to 5.18 µg L−1, 
with the highest concentration in May and the lowest in March 
(Table 2). Micro-phytoplankton (> 20 μm) made up an average 
of 38.5 ± 16.5% of total Chl-a (range, 10.5–65.6%). Nano-phy-
toplankton (2–20 μm) accounted for an average of 34.1 ± 8.7% 
of total Chl-a (range, 15.6%–45.8%), with the highest percent-
age observed during March–April. The average contribution of 
pico-phytoplankton (< 2 μm) was 27.5 ± 14.8% of total Chl-a 
(range, 6.8% to 57.3%), with the highest concentration observed 
in April.

Occurrence of A. omorii and A. steueri

Acartiidae accounted for 20.8–88.0% of the total cope-
pod population (Fig. 3A) with adults belonging to the 
species Acartia omorii and A. steueri. The abundance of 

(3)C = C0

(

e
kt − 1∕k

t

)

Table 1   Number of individuals of Acartia species per incubation bot-
tle used in grazing experiments

Date Acartia steueri A. omorii

Female Male Female Male

Jan 06, 2015 Bottle 1 5 10 23 7
Bottle 2 5 10 24 6
Bottle 3 7 8 22 8

Jan 13, 2015 Bottle 1 27 3
Bottle 2 26 4
Bottle 3 28 2

Jan 21, 2015 Bottle 1 23 7
Bottle 2 22 8
Bottle 3 26 4

Jan 29, 2015 Bottle 1 21 9
Bottle 2 18 12
Bottle 3 18 12

Feb 05, 2015 Bottle 1 1 15 13 7
Bottle 2 2 14 13 7
Bottle 3 16 16 4

Feb 16, 2015 Bottle 1 29 6
Bottle 2 29 6
Bottle 3 29 6

Feb 23, 2015 Bottle 1 23 7
Bottle 2 23 7
Bottle 3 16 14

Mar 02, 2015 Bottle 1 3 27 21 9
Bottle 2 7 13 15 15
Bottle 3 8 12 16 14

Mar 09, 2015 Bottle 1 19 11
Bottle 2 19 11
Bottle 3 18 12

Mar 16, 2015 Bottle 1 17 13
Bottle 2 19 11
Bottle 3 22 8

Mar 24, 2015 Bottle 1 7 23
Bottle 2 4 26
Bottle 3 7 23

Mar 30, 2015 Bottle 1 26 4
Bottle 2 26 4
Bottle 3 15 15

Apr 07, 2015 Bottle 1 20 10
Bottle 2 15 15
Bottle 3 9 21

Apr 14, 2015 Bottle 1 6 6 15 15
Bottle 2 5 7 12 10
Bottle 3 5 7 16 14

Apr 20, 2015 Bottle 1 17 13
Bottle 2 20 10
Bottle 3 20 10

Apr 30, 2015 Bottle 1 6 24
Bottle 2 7 23
Bottle 3 8 22

Table 1   (continued)

Date Acartia steueri A. omorii

Female Male Female Male

May 06, 2015 Bottle 1 18 12
Bottle 2 18 12
Bottle 3 15 15

May 18, 2015 Bottle 1 15 15
Bottle 2 11 19
Bottle 3 15 15

May 28, 2015 Bottle 1 18 12
Bottle 2 16 14
Bottle 3 15 15
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Acartiidae was relatively high from January to February, 
contributing to more than an average of 60% of the total 
zooplankton, and it was low during mid-March to mid-
April, accounting for an average of 26.6 ± 4.6% of the 
total zooplankton. The abundance of Acartiidae exhib-
ited significant variability, ranging from 267 to 5931 
ind. m−3. High abundance of more than 5000 ind. m−3 
was recorded on January 21 (5931 ind. m−3), February 
23 (5931 ind. m−3), and March 2 (5033 ind. m−3). The 
abundance of A. omorii adults ranged from 0 to 5931 ind. 
m−3 (mean: 2374 ± 1667 ind. m−3), with maximum abun-
dance recorded in January and February (Fig. 3B). Except 
for a single occurrence at the end of March, A. omorii 
adults was consistently present throughout the study 
period. Conversely, the abundance of A. steueri adults 
ranged from 0 to 3733 ind. m−3 (mean: 463 ± 1027 ind. 
m−3), with a maximum abundance recorded for A. omorii 
adults, which appeared at its highest at the end of March. 
The temperature-salinity (T-S) diagram analysis indicated 
that A. omorii adults exhibit a broader tolerance range 
for both temperature and salinity (Fig. 4). In contrast, A. 
steueri adults demonstrated a more restricted pattern of 
occurrence, with higher abundances occurring particu-
larly at lower temperatures (below 10 °C). Furthermore, 
A. steueri adults showed a preference for salinity levels 
between 32.2 and 33.5. 

Ingestion and clearance rates

The maximum ingestion rate for total Chl-a was higher in 
A. steueri (396 ng Chl-a ind.−1 day−1) than that in A. omorii 
(170 ng Chl-a ind.−1 day−1) (Fig. 5). During the experiment, 
negative ingestion rates were observed once in A. steueri and 
three times in A. omorii during the measurement process. 
A. steueri showed positive ingestion rates of micro-phyto-
plankton (> 20 μm) throughout the experimental period, 
with the highest rate recorded in January 2015 (231 ng Chl-a 
ind.−1 day−1). The daily ingestion rate of A. omorii for micro-
phytoplankton was greater than − 40 ng Chl-a ind.−1 day−1 
in April, which was higher than the negative ingestion rate 
in other periods. The ingestion rate of nano-phytoplankton 
(2–20 μm) and pico-phytoplankton (< 2 μm) biomass was 
negative for A. steueri in all the experiments, except for that 
of those in January and April. This was lower than that of 
the total and micro-size phytoplankton. The ingestion rate 
for nano-phytoplankton (2–20 μm) and pico-phytoplankton 
(< 2 μm) biomass was more negative for A. omorii than for 
A. steueri.

A. omorii and A. steueri displayed higher clearance rates 
for total and micro-phytoplankton (> 20 μm) than those for 
nano-phytoplankton (2–20 μm) and pico-phytoplankton 
(< 2 μm) (Fig. 6). The clearance rate of total Chl-a con-
centration biomass ranged between − 0.64 and 3.21 mL 

Table 2   Short-term variations 
of environmental variables 
and Chl-a concentrations in 
Jangmok Bay from January to 
May 2015

Values in parentheses are percentages of Chl-a in three size fractions
Chl chlorophyll

Date Water tempera-
ture (°C)

Salinity Chl-a (µg L−1) (% of Chl-a)

Total  > 20 μm 2–20 μm  < 2 μm

Jan 06, 2015 7.6 33.1 2.99 1.96 (65.6) 0.47 (15.6) 0.57 (18.9)
Jan 13, 2015 7.1 33.2 4.25 2.63 (61.7) 1.13 (26.6) 0.50 (11.7)
Jan 21, 2015 6.2 32.9 1.22 0.49 (40.2) 0.31 (25.0) 0.43 (34.8)
Jan 29, 2015 7.4 33.1 1.19 0.36 (30.4) 0.38 (31.8) 0.45 (37.9)
Feb 05, 2015 6.5 33.3 1.20 0.34 (28.3) 0.53 (44.1) 0.33 (27.6)
Feb 16, 2015 6.6 33.4 1.29 0.14 (10.5) 0.58 (45.2) 0.57 (44.2)
Feb 23, 2015 7.2 33.4 0.91 0.43 (47.4) 0.21 (23.0) 0.27 (29.6)
Mar 02, 2015 7.0 33.5 0.66 0.31 (46.5) 0.16 (24.2) 0.19 (29.3)
Mar 09, 2015 7.8 33.2 1.04 0.45 (42.8) 0.40 (38.7) 0.19 (18.5)
Mar 16, 2015 9.2 33.4 0.98 0.39 (39.5) 0.40 (40.6) 0.20 (20.0)
Mar 24, 2015 9.7 33.3 1.80 0.85 (47.4) 0.82 (45.8) 0.12 (6.8)
Mar 30, 2015 11.6 33.3 1.03 0.49 (47.2) 0.37 (35.8) 0.17 (16.9)
Apr 07, 2015 11.1 32.8 1.97 0.21 (10.5) 0.64 (32.4) 1.12 (57.1)
Apr 14, 2015 12.8 32.2 2.76 0.36 (12.9) 0.82 (29.8) 1.58 (57.3)
Apr 20, 2015 12.6 32.8 3.18 1.38 (43.4) 1.02 (32.2) 0.77 (24.4)
Apr 30, 2015 16.4 32.5 2.85 1.27 (44.7) 1.13 (39.8) 0.44 (15.4)
May 06, 2015 15.2 32.6 5.18 2.87 (55.4) 1.63 (31.5) 0.68 (13.1)
May 18, 2015 17.1 31.8 4.45 1.85 (41.6) 1.91 (43.0) 0.68 (15.4)
May 28, 2015 16.9 32.6 1.96 0.29 (14.6) 0.83 (42.3) 0.85 (43.1)
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ind.−1 day−1 for A. omorii and between − 0.06 and 8.42 mL 
ind.−1 day−1 for A. steueri (Fig. 6). A. steueri had posi-
tive micro-phytoplankton clearance rates throughout the 
experiment, with the highest rate (10.88 mL ind.−1 day−1) 
observed in April 2015. A. omorii had its highest micro-
phytoplankton clearance rate (> 10 mL ind.−1 day−1) in 
March. A. steueri showed the highest nano- and pico-
phytoplankton clearance rates in January, i.e., 10.93 mL 
ind.−1  day−1 and 6.46  mL ind.−1  day−1, respectively. 
However, overall,  these rates were lower than the total 
and micro-phytoplankton clearance rates. The nano- and 
pico-phytoplankton clearance rates of A. omorii showed a 
similar pattern to the ingestion rate and were more nega-
tive than those of A. steueri.

Grazing impacts of Acartia species

The grazing impacts of Acartia species on phytoplankton var-
ied seasonally. In some months, the grazing impact was low, 
while in others it was high, with consumption of < 0.1–50.5% 
of the initial biomass of total phytoplankton (Fig. 7). The 
grazing impact of A. omorii on micro-phytoplankton was 
0.1–57.3%, with the highest impact in March. The grazing 
impact of A. steueri on micro-phytoplankton was 19.5–53.5%, 
with the highest impact in April. The grazing impact of both 
species on nano-phytoplankton (2–20 μm) and pico-phyto-
plankton (< 2 μm) was mostly negative, except in January and 
April. A. steueri had the highest impact on nano-phytoplankton 
(79.5%) in January.

Fig. 3   Relative contribution of 
Acartiidae (Acartia omorii and 
A. steueri) and total abun-
dance of Copepoda Calanoida 
observed in the experimen-
tal station during the study 
period (triangle shape, relative 
contribution; bar graph, total 
abundance) (A) and Acartiidae 
total abundance (B)
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Fig. 4   Temperature-salinity 
diagram showing preferences of 
Acartia omorii and A. steueri 

Fig. 5   Variations in rates of 
ingestion of various sized phy-
toplankton by Acartia species 
(Acartia omorii and A. steueri)
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Prosome length of Acartia species

The prosome length (PL) of Acartia omorii females 
ranged from 806.6 to 963.2  μm, with a mean of 
873.2 ± 45.6  μm, while A. steueri females exhibited 
PL ranged from 865.1 to 1132.1 μm, with a mean of 
1031.4 ± 72.7 μm (Fig. 8).

Discussion

The presence of congener species in overlapping ecologi-
cal niches can lead to competition for resources, such as 
habitat, life cycle, and food. This study analyzed the feeding 
selectivity of adult females of two Acartia species based on 
the size of their phytoplankton prey. Our results revealed 
that micro-phytoplankton (> 20 µm) was a significant food 
source for both A. omorii and A. steueri, yet their ingestion 
rates and grazing impacts differed markedly.

Furthermore, the distinct feeding preferences of A. omorii 
and A. steueri observed in our study highlight the broader 
dietary patterns within the Acartia genus. In Ilkwang Bay, 

A. omorii adopts a herbivorous diet, mainly feeding on phy-
toplankton, as evidenced by the correlation between its pro-
duction rate and Chl-a (Kang et al. 2007). However, this 
predominantly herbivorous tendency may not be a fixed trait 
for A. omorii across different environments. Acartia species, 
including A. steueri found in offshore waters, exhibit varied 
dietary behaviors in different ecological settings, ranging 
from omnivorous to carnivorous feeding patterns and also 
due to their developmental stages (Ara 2001; Kang and 
Kang 2005). This adaptability is crucial, particularly dur-
ing periods of food scarcity, when Acartia species are known 
to alter their feeding strategies. Studies have indicated that 
Acartia species show preferences for a variety of prey, often 
driven by prey availability and environmental conditions. 
For instance, the diet of A. tonsa is diverse and comprises 
diatoms, dinoflagellates, heterotrophic protists, and nano-
plankton, none of which is dominant prey (Kleppel and Haz-
zard 2000; Rollwagen-Bollens and Penry 2003). Not only 
when phytoplankton are scarce, Acartia species have been 
known to shift their diet to alternative prey, such as nauplii, 
ciliates, other calanoid stages, and heterotrophic dinoflagel-
lates (Tackx and Polk 1982; Atkinson 1996; Levinsen et al. 

Fig. 6   Variations in rates of 
clearance of various sized phy-
toplankton by Acartia species 
(Acartia omorii and A. steueri)
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2000; Calbet et al. 2007), or even to detritus derived from 
the macrophyte (Roman 1984). This flexibility in diet sug-
gests that Acartia species, including A. omorii and A. steueri, 

might adjust their feeding preferences based on environmen-
tal conditions and prey availability, which is crucial for their 
survival, especially in areas where food sources are variable.

Fig. 7   Variations in grazing 
pressure on various sized phyto-
plankton due to Acartia species 
(Acartia omorii and A. steueri)

Fig. 8   Mean values of prosome 
length (PL), for adult females 
of Acartia species (Acartia 
omorii and A. steueri). Data are 
presented as mean ± standard 
deviation
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In our experimental design, the use of in situ temperatures 
was important in reflecting the natural conditions experi-
enced by A. omorii and A. steueri in Jangmok Bay, thus 
ensuring the ecological validity of our findings. The dif-
ference in temperature preferences between Acartia species 
could significantly influence their feeding rates and behav-
iors (Durbin and Durbin 1992; Wlodarczyk et al. 1992). For 
instance, the metabolic and feeding efficiencies of A. omorii, 
which is dominant in cooler months, may differ from those 
of A. steueri, which thrives in relatively warmer conditions 
(Hwang et al. 2011). Previous studies showed that A. steueri 
appears throughout the year and reaches peak of abundance 
when water temperatures are above 20 °C in Ilkwang Bay, 
South Korea, and Sagami Bay, Japan (Jung et al. 2004; Kang 
and Kang 2005; Onoue et al. 2006). However, Hwang et al. 
(2011) found that in Jangmok Bay, A. steueri exhibits maxi-
mum densities at water temperatures below 10 °C and is 
absent when water temperatures exceed 20 °C. This diver-
gence could affect their prey selection, grazing pressure, and 
ultimately, their roles in the marine food web, suggesting 
a complex interplay between local environmental condi-
tions and species-specific adaptive strategies. Recognizing 
the crucial role of temperature in influencing the biologi-
cal processes of these species, we also acknowledge that a 
comprehensive ecological assessment necessitates consider-
ing a wider array of environmental variables. Beyond water 

temperature, factors such as salinity, light availability, and 
nutrient levels are essential in fully capturing the ecological 
dynamics experienced by these copepods.

The accurate measurement of zooplankton feeding and 
grazing rates is essential. Numerous methods have been 
developed to measure these rates, but none has been fully 
effective, and their uncritical use can lead to misinterpreta-
tion of results (Peters 1984; Mauchline 1998). The incu-
bation method used in this study has several limitations 
(crowding of grazers, algae growth due to excrement, and 
differences in turbulence) because of bottle effects (Roman 
and Rublee 1981; Sautour 1994). Nevertheless, it is a direct, 
convenient method to measure the impact of zooplankton 
feeding on various phytoplankton size categories (Paffen-
höfer 1988; Liu et al. 2005; Olson et al. 2006). Kiørboe and 
Møhlenberg (1985) showed that culture methods can reliably 
help estimate natural feeding rates despite potential bottle 
effects, which can impact the in situ feeding rates of plank-
tonic copepods. Thus, these methods are valuable for meas-
uring the feeding impact of zooplankton on natural prey.

Ingestion and clearance rates of Acartia species fall 
within the range showed in Table 3. These rates were calcu-
lated as ng Chl-a ind.−1 day−1 and mL ind.−1 day−1, respec-
tively. Although direct comparison with our study's meth-
odology is not possible, the original units used in each study 
are included in the legend of the table because different units 

Table 3   Comparison of ingestion rates and clearance rates of Acartia species between the present study and previous reports

Units measured by the authors
a cells ind. −1 d−1

b μg C ind. −1 d−1

Species Clearance rate Ingestion rate Developmental stage (sex) References
(mL ind. −1 day−1) (ng Chl-a ind. −1 day−1)

Acartia hudsonica 19.0–145.7 Adult (female) Wlodarczyk et al. (1992)
A. natalensis 6.2–23.5 Adult (none) Kibirige and Perisinotto (2003)
A. tonsa 24–109.9 Adult (female) Kiørboe and Tiselius (1987)
A. tonsa 1–106 16–476a Adult (both sexes) Stoecker and Egloff (1987)
A. hongi 3–62 2.2–29.0 Adult (female) Lee et al. (2012)
A. hongi 16.4–289.1 Adult (female) Yang et al. (2010)
A. pacifica 19 2.2–32.6 Adult (female) Lee et al. (2012)
A. clausi 0.4–1.3 Adult and Copepodite V (CV) 

stages (both sexes)
Pagano et al. (2003)

A. clausi 6.6–74 Adult (female) Broglio et al. (2001)
A. clausi 3.5–24 1400–60,500a Adult (female) Ayukai (1987)
A. clausi 27.7–52.5 Adult (female) Tiselius (1989)
A. steueri 20.3–77.0 17.7–309a Adult (female) Yamada et al. (2020)
A. grani 34–39 Adult (female) Isari et al. (2015)
A. grani 0.071–0.49 0.0015–0.030b Nauplii (none) Henriksen et al. (2007)
A. omorii 0.1–14.6 0.4–196.6 Adult (both sexes) Present study
A. steueri 0.25–26 0.0059–0.94b Nauplii (none) Natori and Toda (2018)
A. steueri 0.1–10.9 0.6–395.7 Adult (both sexes) Present study
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were used depending on the study. It is important to note that 
ingestion rates are influenced by various factors, including 
temperature, food size and density, body size and activity, 
and experimental methods (Meyer-Harms et al. 1999; Lev-
insen et al. 2000; Henriksen et al. 2007).

The present study showed that adults of A. omorii and A. 
steueri prefer phytoplankton larger than 20 μm, which is in 
line with other studies that have found similar food-size pref-
erences in copepod species (Batten et al. 2001; Rollwagen-
Bollens and Penry 2003; Gifford et al. 2007; Campbell et al. 
2009; Fileman et al. 2010). Copepods generally feed selec-
tively based on food size when food is abundant (Cowles 
1979). Particles sized lesser than 5 μm are too small to serve 
as a food source and thus not preferred by some copepod 
species (Landry 1981; Pagano et al. 2003; Campbell et al. 
2009). The present study demonstrated the limited utiliza-
tion of nano- and pico-phytoplankton by Acartia adults as 
food sources, which was indicated by consistently negative 
ingestion rates for these sizes, except in January. The prey 
selectivity of A. steueri was decreased for nano-phytoplank-
ton and that of both species was particularly poor for pico-
phytoplankton. In addition, the negative ingestion rate of 
A. omorii for micro-phytoplankton (> 20 μm) suggests that 
Acartia species may require different diets to maintain popu-
lations in Jangmok Bay. This aligns with the concept that 
copepod feeding preferences and strategies are not solely 
influenced by prey size but also a combination of factors, 
including prey density, nutritional quality, and behavior. 
Studies have shown that copepods, including Acartia spe-
cies, can adapt their diets based on environmental condi-
tions, often switching to alternative prey, such as ciliates and 
other microzooplankton when phytoplankton is scarce (Cal-
bet and Saiz 2005; Castellani et al. 2008). Yang et al. (2010) 
reported that A. hongi favors motile ciliates over similar-
sized diatoms, indicating a preference for prey with active 
motility. This suggests that factors beyond prey size, such as 
motility and nutritional content, influence copepod feeding 
choices. In addition, experiments, wherein mixed diets of 
similar-sized Tintinnopsis angustior and Thalassiosira sp. 
were provided, the high filtration rate and selective feeding 
on certain ciliates by A. hongi could not be solely explained 
by prey size but rather by a selective feeding mechanism 
favoring quality or motile prey. Therefore, particle size alone 
may not fully explain selective feeding by copepods.

It is important to note that the grazing effect of copepods, 
including Acartia species, can vary based on region, year, 
and season and plays a role in controlling the composition 
and dynamics of phytoplankton communities in marine eco-
systems (Gifford and Dagg 1988; Yang et al. 2010). The 
grazing pressure of the Acartia adults on total phytoplankton 
biomass in the present study was found to be 6.8 ± 11.8%, 
which is similar to that calculated in previous studies. This 
grazing pressure can equal or even exceed daily primary 

productivity, highlighting the significant role of Acartia spe-
cies in marine food webs. Their selective feeding on larger 
phytoplankton could have important implications for the 
structure and dynamics of plankton communities, potentially 
influencing energy transfer and nutrient cycling in coastal 
ecosystems.

The present study demonstrated the preference of A. 
omorii and A. steueri for phytoplankton larger than 20 μm, 
which is consistent with other studies that showed similar 
food-size preferences in copepod species (Liu and Dagg 
2003; Jang et al. 2010; Yoshida et al. 2012). A. steueri had 
significantly higher ingestion rates than A. omorii, and its 
ingestion rate was strongly correlated with food density in 
phytoplankton sized > 20 μm (r2 = 0.904, P = 0.013; Fig. 9). 
The results indicated that the high abundance of A. steueri 
in winter and spring can affect the biomass and composi-
tion of phytoplankton sized > 20 μm. Copepods feed more 
as their body size increases (Hansen et al. 1997). Paffen-
höfer (1970) found that the total body length of an adult 
female copepod is directly related to the amount of food 
available during rearing. Larger copepods have greater gut 
volume because they require greater amount of energy for 
the metabolism associated with increased body sizes (Tseng 
et al. 2008, 2009). The variation in ingestion rates between 
A. steueri and A. omorii is because of the difference in their 
body lengths. In this study, the mean prosome length of adult 
females A. omorii was 873.2 ± 45.6 μm (n = 10), while that 
of adult females A. steueri was 1031.4 ± 72.7 μm (n = 10). 
By integrating observations on sex ratios, particularly on 
April 14 when the ratio approached 1:1, we further enriched 
our understanding of these dynamics. This balanced sex 
ratio among adults offered a pivotal moment to dissect the 
impact of physiological differences between the sexes on 
feeding behavior, especially as A. steueri demonstrated peak 

Fig. 9   Correlation between ingestion rate and micro-phytoplankton 
(> 20 µm) biomass (Chl-a concentration) for adults of Acartia species 
(Acartia omorii and A. steueri)
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clearance rates and grazing pressures on micro-phytoplank-
ton during this period. The additional energy requirements 
for oogenesis in adult females, necessitating a higher intake 
than their male counterparts (Roncalli et al. 2020), likely 
influenced these observed feeding behaviors and grazing 
pressures. This finding highlights the importance of consid-
ering both the species and size of copepods when studying 
their role in the food chain and energy transfer in coastal 
ecosystems. Further research is needed to fully understand 
the mechanisms associated with the differences in feeding 
behavior and ingestion rates in the two species, taking in 
consideration the different life cycle stages, different ener-
getic needs of the two sexes, and in the same female sex in 
different ovogenesis periods (when producing diapause and 
subitaneous eggs).

Conclusions

In Jangmok Bay, the occurrence and abundance of A. omorii 
and A. steueri are closely linked to water temperature. T-S 
analysis indicated that A. omorii has a broader environmen-
tal tolerance, with a temperature range of 6.2 to 17.1 °C 
and a salinity spectrum of 31.8 to 33.5. However, A. steueri 
prefers a narrower temperature window of 6.5 to 12.8 °C 
and a salinity range of 32.2 to 33.5. This variation in tem-
perature preference is critical to understanding their patterns 
of coexistence and competition, especially for micro-phy-
toplankton (> 20 µm), which is a key food resource. Our 
observations demonstrate the challenges that both A. omorii 
and A. steueri might face regarding food availability, and 
adaptability to temperature variations when their habitats 
overlap. Furthermore, this study sheds light on the adaptive 
feeding strategies of these species, suggesting a complex 
interplay between dietary preferences and environmental 
conditions. The findings particularly highlight A. omorii’s 
potential for broader dietary flexibility of adults, which may 
be vital for its survival in environments with limited food 
sources. Additional research is required to explore alternate 
food sources for these copepods and understand the impact 
of changing phytoplankton communities on their feeding 
behaviors and interspecies competition. Such investigations 
are crucial for a deeper comprehension of their ecological 
roles and the broader implications for the health of coastal 
marine ecosystems.
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