
Vol.:(0123456789)

Marine Biology (2024) 171:65 
https://doi.org/10.1007/s00227-023-04383-1

ORIGINAL PAPER

Zinc isotope composition of enameloid, bone and muscle of gilt‑head 
seabreams (Sparus aurata) raised in pisciculture and their relation 
to diet

Jeremy McCormack1,2,3  · Klervia Jaouen4  · Nicolas Bourgon3,5  · Guy Sisma‑Ventura6 · Théo J. G. Tacail7  · 
Wolfgang Müller1,2  · Thomas Tütken7 

Received: 7 August 2023 / Accepted: 18 December 2023 / Published online: 1 February 2024 
© The Author(s) 2024

Abstract
The isotope ratios of zinc (66Zn/64Zn expressed as δ66Zn), a vital nutrient, increasingly demonstrate trophic discrimination 
among vertebrates, making δ66Zn a valuable dietary proxy for ecological, archaeological, and palaeontological studies. Given 
the novelty of the methodology, tissue-diet and tissue-tissue zinc isotope fractionation factors remain poorly understood and 
have so far only been studied in a few terrestrial mammals. Here, we investigate δ66Zn compositions of enameloid, bone, and 
white muscle of seven artificially-fed pisciculture gilt-head seabreams (Sparus aurata) from offshore Israel, in comparison 
to the Zn isotope composition of their diet. In addition, we also analysed δ66Zn values in the same tissues of wild-caught 
S. aurata, bluespotted seabream (Pagrus caeruleostictus) and grey triggerfish (Balistes capriscus) caught off the coast of 
Israel. We determine a tissue-diet δ66Zn offset for Sparus aurata of − 0.04 ± 0.09 ‰ (2SD) for bone, − 0.29 ± 0.06 ‰ (2SD) 
for enameloid, and − 0.45 ± 0.07 ‰ (2SD) for white muscle. Wild-caught fish have much higher among-individual δ66Zn 
variability with values distinct from the pisciculture S. aurata, documenting a much more isotopically heterogeneous diet 
consumed by the wild individuals. Still, tissue–tissue δ66Zn differences in wild-caught individuals are close to those observed 
in the pisciculture ones with progressively lower δ66Zn values in the order bone > enameloid > white muscle. Our results 
demonstrate predictable tissue-diet and tissue-tissue δ66Zn differences among fish hard and soft tissues and can be applied 
to identify the δ66Zn values of dietary input, thereby informing trophic (palaeo)ecological reconstructions.
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Introduction

Dietary zinc is a vital nutrient for animal health and has 
important functions in regulating gene expression and 
enzyme activity (Cousins 1998; Maret 2011; Maares and 
Haase 2020). Diets deficient in zinc can lead to high mor-
tality rates, low growth rates, and other deficiency symp-
toms in fish (Ogino and Yang 1978). As such, zinc is of 
particular interest as a nutrient, especially for commercially 
relevant fish species, with research focussing on dietary 
zinc uptake and requirements (Serra et al. 1996; Isani et al. 
2004; Nguyen et al. 2008), and bioaccumulation due to 
anthropogenic pollution (Clearwater et al. 2002; Reynders 
et al. 2008; Lozano-Bilbao et al. 2021). To our knowledge, 
however, zinc isotopes have not yet been used in vertebrate 
ecotoxicology or fisheries science context. Yet zinc isotope 
compositions (66Zn/64Zn), reported as δ66Zn value, vary sig-
nificantly within different tissues of mammals (Balter et al. 
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2010, 2013; Moynier et al. 2013; Mahan et al. 2018) and as 
such offer great potential to investigate in a tissue-specific 
approach Zn anthropogenic contamination, toxicity levels or 
dietary requirements in fish.

In addition, δ66Zn is increasingly used as a trophic level 
proxy in ecological, archaeological, and palaeontological 
studies (Jaouen et al. 2016a, 2016b, 2022; Bourgon et al. 
2020, 2021; McCormack et al. 2021, 2022b). Because zinc is 
supplied to marine fish tissues through the diet, and branchial 
uptake via gills is negligible (Bury et al. 2003; Ranaldi and 
Gagnon 2008), zinc isotope ratios in fish tissues, as with 
mammals, document dietary zinc uptake and trophic levels 
(McCormack et al. 2022b, 2023). Zinc isotopes, typically 
measured in the mineral phase of vertebrate osseous tissues 
(i.e., bioapatite) for ecological purposes, demonstrate 
progressively lower values with an increase in the animal’s 
trophic level (Jaouen et al. 2016a; McCormack et al. 2021). 
As such, zinc isotopes can be applied in a similar manner 
as the traditional trophic level tracer nitrogen isotopes 
(δ15N), which in contrast to δ66Zn, generally increases in 
δ15N values higher up the food chain. Zinc isotopes can 
be analysed in archaeological or palaeontological remains 
(mainly teeth, i.e., enamel/enameloid) in the absence of 
organic matter (i.e., collagen) preservation necessary for 
traditional δ15N analysis (Bourgon et al. 2020, 2021; Jaouen 
et al. 2022; McCormack et al. 2022b). Furthermore, zinc 
isotopes have a great potential to enable more robust and 
refined trophic analyses of extant and extinct animals when 
combined with δ15N than possible by analysing δ15N alone 
(McCormack et  al. 2021, 2022a, 2023; Leichliter et  al. 
2023). Accurately determining trophic levels is imperative 
for understanding foraging ecology, species interactions 
and effective management and conservation strategies 
(Horstmann-Dehn et al. 2012).

Despite the multi-disciplinary applicability of δ66Zn, 
its variability within and among tissues of an individual 
is still poorly understood. Only a few studies investigated 
tissue-diet fractionation factors, so far exclusively limited 
to terrestrial mammals, namely sheep, mice, and minipigs 
(Balter et al. 2010, 2013; Moynier et al. 2013; Mahan et al. 
2018). Understanding tissue-diet δ66Zn fractionation factors 
is of importance for ecotoxicology to monitor Zn pollution 
in vertebrates and species-specific diet-borne Zn toxicity, for 
fisheries to optimise dietary Zn uptake and bioavailability, 
and in ecology for investigating dietary shifts within an 
individual or population (e.g., during ontogeny, migration).

Here we investigate tissue-diet zinc isotope fractionation 
within pisciculture gilt-head seabreams (Sparus aurata), 
a common Mediterranean aquaculture species, kept on 
a controlled pellet diet in cages offshore Central Israel. 
We compare the δ66Zn values of the pellets to those of 
enameloid, bone and white muscle from seven S. aurata 
individuals of similar size and weight. Further, we take 

advantage of an ongoing marine life monitoring and 
protection program off the coast of Israel and compare tissue 
δ66Zn values among wild-caught S. aurata, bluespotted 
seabream (Pagrus caeruleostictus) and grey triggerfish 
(Balistes capriscus) individuals. These taxa were chosen 
as all three species are of commercial relevance in the 
Mediterranean, live in a coastal habitat and generally feed on 
similar trophic levels and prey items (Tancioni et al. 2003; 
Hamida et al. 2009; Taieb et al. 2013; Goldman et al. 2016). 
Finally, because these wild specimens were caught in the 
same region in which the pisciculture is located, we can 
directly compare tissue δ66Zn values and variability among 
wild and control-fed individuals.

Material and methods

Material

All specimens used in this study were collected legally 
and ethically, and most are housed in the Osteological 
Collection, Institute of Geosciences, Johannes Gutenberg-
University, Mainz, Germany. We analysed enameloid, 
jaw bone, and white muscle from seven Sparus aurata 
individuals, harvested for food consumption, from a 
pisciculture (Lev-Yam Aquaculture Ltd.) located 3  km 
offshore of Central Israel (Michmoret). The pisciculture 
has four 3600-m3 tension leg cages (TLCs, Refamed, Italy) 
floating approximately 19 m above the seafloor (water depth 
40 m) to which they are moored (Korzen et al. 2016). All S. 
aurata were harvested (June 2019) at body lengths of 250 to 
270 mm and weights of 350 to 500 g (Supplementary Data 
1). While the sizes of extruded pellets (Zemach Feedmill, 
Ltd, Israel) provided as diet along the fish life cycle varied, 
compositionally, the main pellet ingredients do not vary and 
there is no compositional variation at all for extruded pellets 
provided to fish > 40 g. The S. aurata were seeded into the 
open ocean cages at weights of 5 to 10 g were they remained 
until reaching commercial weights (350–500 g) between 12 
and 16 months. Based on studies considering S. aurata tooth 
replacement (Elgendy et al. 2016; Sisma-Ventura et al. 2018) 
and feeding studies examining Zn uptake into different fish 
tissues (Serra et al. 1996; Sun and Jeng 1998), we consider 
all here analysed tissues of the pisciculture S. aurata to be 
in equilibrium with the diet.

In addition to the pisciculture S. aurata individuals, 
we also analysed wild fish caught as part of an ongoing 
monitoring program (permit number 516192-4399), funded 
by the Israeli Ministry of Environmental Protection. These 
include two S. aurata caught in March of 2014 and 2017, 
one Pagrus caeruleostictus caught in March of 2017, four P. 
caeruleostictus and three Balistes capriscus caught in March 
of 2020, two P. caeruleostictus caught in May of 2022 and 
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three P. caeruleostictus caught in December of 2022, all 
from Haifa Bay, Israel. Details on the fish individuals used 
in this study (including catalogue numbers) are reported in 
Supplementary Data 1 with all δ66Zn values.

Tissue preparation

Fish specimens were dissected at the Israel Oceanographic 
& Limnological Research Institute, Haifa, Israel. White 
muscle tissue dissected from the dorsal musculature was 
rinsed with double distilled water, frozen, and lyophilised 
for 48 h. Freeze-dried samples were homogenised using a 
mortar and pestle, and then dried at 60 °C. Jaws were soaked 
in double distilled water for soft tissue removal. Four P. 
caeruleostictus and three B. capriscus jaws of individuals 
caught in March of 2020 were soaked in water from the main 
tap of the Israel Oceanographic & Limnological Research 
Institute Chemistry department (referred to, from here on, as 
tap water). In contrast to the jaws soaked in double distilled 
water, the jaw bones soaked in tap water have taken up Zn 
from the tap water; thus, these bone values are excluded 
from data interpretations (Supplementary Discussion 2).

Zinc isotope analysis

The here presented dataset also includes 13 enameloid and 
two bone δ66Zn values from 13 individuals already presented 
in McCormack et al. (2022b). Additional enameloid was 
sampled from different teeth for 11 of these 13 individuals 
to investigate within individual Zn isotope variability. 
In addition to the already published 15 δ66Zn values of 
McCormack et al. (2022b), this study comprises a total 
of 114 combined enameloid, bone, white muscle, and fish 
pellet δ66Zn values (Supplementary Data 1).

Prior to sampling tooth enameloid, dentine had been 
drilled out of the teeth, except in the 2022 caught wild P. 
caeruleostictus individuals, for which enameloid powder 
was drilled off the cleaned tooth cap. In both cases, 
enameloid drilling was done with a rotary tool equipped 
a diamond-tipped burr. Bone chunks were cut using a 
diamond-tipped cutting wheel. All enameloid caps, bone 
pieces, and muscle tissues were cleaned with ultrapure water 
(Milli-Q water) prior to digestion. The enamel and bone 
were dissolved in closed perfluoroalkoxy vials with 1 ml 1 M 
HCl on a hotplate for 1 h at 120 °C, then evaporated and 
re-dissolved in 1 ml 1.5 M HBr. White muscle tissue and fish 
pellets were mineralised by microwave digestion (10 min at 
100 °C, 10 min at 180 °C in a multiwave PRO microwave, 
Anton Paar) in 50 ml PTFE-TFM bombs filled with 6 ml 
concentrated  HNO3 at the department of Geography of the 
Johannes Gutenberg-University Mainz.

All pisciculture enameloid samples were prepared and 
measured for their Zn isotope compositions at the Max 

Planck Institute for Evolutionary Anthropology (MPI EVA). 
One set of bone and muscle (after microwave digestion) 
was prepared and measured at the MPI EVA, while the 
other was prepared and measured at the Frankfurt Isotope 
and Element Research Center (FIERCE) of the Goethe 
University Frankfurt, together with some of the wild P. 
caeruleostictus enameloid samples (Supplementary Data 
1). Column chromatography and isotope measurements 
were performed as described in McCormack et al. (2022b). 
Zinc purification was performed in two steps, following 
the ion exchange method adapted from Moynier et  al. 
(2006), described in Jaouen et al. (2016a), which included 
for each batch (13 samples) a chemistry blank and matrix-
matched reference standard (NIST SRM 1400, bone ash) to 
monitor contamination and Zn elution. One ml of AG-1 × 8 
resin (100–200 mesh) was placed in 10 ml hydrophobic 
interaction columns (Macro-Prep® Methyl HIC) cleaned 
twice with 5 ml 3%  HNO3 and 5 ml ultrapure water and 
then conditioned with 3  ml 1.5  M HBr. Following the 
sample loading, 2 ml HBr was added to elute the matrix, 
followed by Zn elution with 5 to 8 ml  HNO3. Following the 
second column step, the solution was evaporated overnight 
at 100 °C and re-dissolved in 1 ml 2 to 3%  HNO3 ready for 
plasma mass spectrometry.

Zinc isotopes were analysed using a Thermo Fisher 
Neptune Plus MC-ICP-MS at FIERCE and a Thermo Fisher 
Neptune MC-ICP-MS at MPI EVA. Instrumental mass bias 
is corrected by copper doping and standard bracketing after 
Maréchal et al. (1999). The reference material Zn Alfa Aesar-
MPI was used for standard bracketing. All δ66Zn values 
are expressed relative to the JMC Lyon standard material 
(mass-dependent Alfa Aesar-MPI offset of + 0.27 ‰ for 
δ66Zn (Jaouen et al. 2016a; McCoy-West et al. 2018)). Zn 
concentrations in the respective samples were estimated 
using a regression equation based on the Zn signal intensity 
(V) of three solutions with known Zn concentrations (150, 
300 and 600 ppb). The δ66Zn measurement uncertainties per 
analytical session were determined from standard replicate 
analyses and ranged between 0.03 and 0.05 ‰ (2SD). 
Samples were typically measured in duplicate with mean 
analytical repeatability of 0.03 ‰ (2SD, n = 104). Reference 
material NIST SRM 1400, prepared and analysed alongside 
the samples for each column chromatography batch, yielded 
inter-laboratory consistent δ66Zn values of + 0.94 ± 0.06 
‰ (2SD, n = 19) which compares favourably to mean 
values between + 0.92 to + 0.97 ‰ as reported elsewhere 
(Bourgon et  al. 2020; Jaouen et  al. 2020; Mahan et  al. 
2020; McCormack et al. 2021, 2023). Reference materials 
and samples show a typical Zn mass-dependent isotopic 
fractionation, i.e., the absence of interferences, as the δ66Zn 
vs. δ67Zn and δ66Zn vs. δ68Zn values fall onto lines with 
slopes close to the theoretic mass fractionation values of 
1.5 and 2, respectively (Supplementary Data 1). Column 



 Marine Biology (2024) 171:6565 Page 4 of 12

chemistry procedural blanks prepared alongside all samples 
document no relevant Zn contamination during sample 
dissolution and column chromatography as procedural 
blanks have average Zn signal intensities less than 0.1% 
compared to those from samples and in all cases less than 
1.6%.

Results and discussion

Pisciculture Sparus aurata tissue‑diet zinc isotope 
variability

All artificially pellet-fed pisciculture Sparus aurata indi-
viduals have homogenous mean δ66Zn values for bone 
(+ 0.24 ± 0.09 ‰ 2SD, n = 7), enameloid (0.00 ± 0.06 ‰ 
2SD, n = 7), and white muscle (− 0.16 ± 0.07 ‰ 2SD, n = 5; 
Table 1, Fig. 1). Pisciculture S. aurata zinc concentrations 
have tissue-specific ranges, decreasing from enameloid (545 
to 1862 µg/g) to bone (65 to 99 µg/g) to white muscle (26 
to 50 µg/g dry wt, Fig. 1b, Supplementary Discussion 1). 
The intra- and inter-individual tissue-specific δ66Zn standard 
deviations are within the range of the standard deviation 
for replicate analysis of NIST SRM 1400 (+ 0.94 ± 0.06 ‰ 
2SD, n = 19; Table 1, Fig. 1). The δ66Zn values of the 5 mm 
extruded pellets (Zemach Feedmill, Ltd, Israel) analysed 
from a single batch are also very homogenous with a mean 
of + 0.29 ± 0.02 ‰ (2SD, n = 6, Fig. 1a).

We assume that for the pisciculture Sparus aurata indi-
viduals, pellets are the main (and likely only) source of 
dietary zinc uptake, as these cages are floating too high 
above the seafloor for S. aurata individuals to reach their 
common benthic prey sources (Tancioni et al. 2003; Taieb 

et al. 2013). In addition, the fish were fed twice a day with 
pellets weighing up to 2% of the total biomass in each cage 
(Korzen et al. 2016), making it unlikely that any diet other 
than the pellets could have contributed significantly to the 
dietary Zn uptake. Therefore, we consider the average S. 
aurata δ66Zn offsets between pellets and specific tissues 
(Δ66Zntissue-diet = δ66Zntissue− δ66Zndiet) as tissue-diet dis-
crimination values. Mean tissue-diet δ66Zn discrimination 
for S. aurata are thus − 0.04 ± 0.09 ‰ (2SD, n = 7) for bone 
(Δ66Znbone-diet), − 0.29 ± 0.06 ‰ (2SD, n = 7) for enameloid 
(Δ66Znenameloid-diet), and − 0.45 ± 0.07 ‰ (2SD, n = 5) for 
white muscle (Δ66Znmuscle-diet) (Fig. 1a, Table 2).

Compared to previous feeding experiments on terres-
trial mammals (sheep and mice), tissue-diet fractionation 
factors for Sparus aurata are notably different and may 
not be directly comparable (Fig. 2). Mice bone δ66Zn val-
ues are higher than dietary values with mean Δ66Znbone-diet 
values of + 0.47 ± 0.26 ‰ (2SD, n = 16, (Moynier et al. 
2013)) and + 0.25 ± 0.12 ‰ (2SD, n = 4, (Balter et  al. 
2013)). While mice muscle δ66Zn values are also 66Zn 
depleted compared to their diet, the Δ66Znmuscle-diet values 
are higher compared to the pisciculture Sparus aurata, 
with mice Δ66Znmuscle-diet values of − 0.19 ± 0.61 ‰ (2SD, 
n = 5, (Moynier et al. 2013)) and − 0.14 ± 0.12 ‰ (2SD, 
n = 3, (Balter et al. 2013)). For sheep, Δ66Znbone-diet values 
and Δ66Znmuscle-diet values were reported to be similar to 
each other, + 0.17 ± 0.15 ‰ and + 0.18 ± 0.28 ‰, respec-
tively (2SD, n = 4, (Balter et al. 2010)). The reasons for 
the observed Δ66Zntissue-diet and Δ66Zntissue-tissue differences 
among previously reported feeding experiments and S. 
aurata remain ambiguous (Fig. 2). Besides potential phys-
iological factors, perhaps linked to taxonomy, digestive 
physiology, and potential differences in Zn bioavailability 

Table 1  Mean zinc isotope values and zinc concentrations with 2SD (per individual) of pisciculture Sparus aurata tissues for all seven individu-
als analysed

For enameloid samples, n indicates the number of teeth analysed, while n for bone and white muscle indicates the number of samples prepared 
individually via column chromatography and analysed in different laboratories. The lowermost row gives the mean of all individuals, and n 
indicates the total number of individuals for which tissue data is available. Individuals for which no muscle tissue was available are indicated 
(n.a.). Each pisciculture S. aurata tissue sample was analysed in duplicate with a mean δ66Zn 2SD of 0.02 ‰. See also Supplementary Data 1 
for more details

Individual Bone Enameloid White muscle

δ66Zn (‰ JMC 
Lyon ± 2SD)

[Zn] (µg/g ± 2SD) n δ66Zn (‰ JMC 
Lyon ± 2SD)

[Zn] (µg/g ± 2SD) n δ66Zn (‰ JMC 
Lyon ± 2SD)

[Zn] (µg/g ± 2SD) n

1  + 0.22 ± 0.11 93 ± 52 2 – 0.01 ± 0.04 1261 ± 889 2 – 0.20 ± 0.03 35 ± 9 2
2  + 0.26 ± 0.01 76 ± 4 2  + 0.04 ± 0.09 1010 ± 556 2 – 0.13 48 1
3  + 0.32 ± 0.05 85 ± 30 2 – 0.03 ± 0.04 787 ± 187 3 – 0.12 ± 0.00 39 ± 15 2
4  + 0.20 ± 0.02 65 ± 6 2  + 0.02 ± 0.04 1282 ± 779 4 n.a n.a 0
5  + 0.27 ± 0.03 83 ± 3 2  + 0.03 ± 0.13 825 ± 561 4 – 0.17 ± 0.04 27 ± 12 2
6  + 0.23 ± 0.13 73 ± 9 2 – 0.03 ± 0.05 698 ± 355 4 – 0.19 26 1
7  + 0.20 ± 0.03 98 ± 28 2 – 0.03 ± 0.09 1114 ± 463 3 n.a n.a 0
Mean ± 2SD  + 0.24 ± 0.09 82 ± 23 7 0.00 ± 0.06 997 ± 467 7 – 0.16 ± 0.07 35 ± 18 5
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of respective diets, differences might also relate to tissues 
not being in equilibrium with the diet. For example, the 
mice from Moynier et al. (2013) were euthanised at vari-
ous intervals after birth, whereas the sheep in Balter et al. 
(2010) are significantly larger animals and were kept on 
the experimental diet for a limited time period only. Zinc 
metabolic turnover rates, which are largely unknown, dif-
fer among tissues perhaps also due to physiological factors 
such as body size and growth rate, as is the case for other 
dietary proxies such as nitrogen and calcium (Skulan and 
DePaolo 1999; Trueman et al. 2005).

Although the here reported δ66Zn tissue-diet fractiona-
tion factors differ from those reported for mice and sheep 
(Balter et al. 2010, 2013; Moynier et al. 2013), the tissue-
tissue fractionation factors between bone and muscle of 
S. aurata and mice are similar. The pisciculture S. aurata 
δ66Zn muscle–bone fractionation factor (Δ66Znmuscle-bone) 
is − 0.42 ± 0.04 ‰ (2SD, n = 5, Figs. 1, 2), while mice 
Δ66Znmuscle-bone are − 0.62 ± 0.65 ‰ (2SD, n = 4, (Moynier 
et al. 2013)) and − 0.41 ± 0.15 ‰ (2SD, n = 3, (Balter et al. 
2013)). The consistently lower δ66Zn values in muscle com-
pared to bone may be tentatively explained by differences in 
the tissue-specific Zn coordination environment (Balter et al. 
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Fig. 1  Zinc isotope values (‰ JMC Lyon) in (a) and zinc concentra-
tions (µg/g) in (b) from fish pellets and enameloid, bone, and white 
muscle of pisciculture Sparus aurata. Mean pisciculture S. aurata 
δ66Zn values, and Zn concentrations are provided relative to the fish 
pellets with whiskers indicating 2SD and arrows and numbers depict-

ing mean relative isotopic differences (Δ66Zntissue-diet) and mean rela-
tive concentration differences. Maximum measurement uncertainty 
is given in a) in 2SD. Zinc concentration is plotted on a logarithmic 
scale

Table 2  Offsets between mean tissue and mean diet δ66Zn values (Δ66Zntissue-diet) and between mean tissues δ66Zn values (Δ66Zntissue-tissue) for 
each pisciculture Sparus aurata individual

All values are given in ‰ relative to JMC Lyon. Individuals for which no muscle tissue was available are indicated (n.a.)

Individual Δ66Znbone-diet Δ66Znenameloid-diet Δ66Znmuscle-diet Δ66Znenameloid-bone Δ66Znmuscle-bone Δ66Znmuscle-enameloid

1 – 0.07 – 0.29 – 0.49 – 0.23 – 0.42 – 0.16
2 – 0.03 – 0.25 – 0.42 – 0.22 – 0.39 – 0.14
3  + 0.03 – 0.32 – 0.41 – 0.35 – 0.44 – 0.08
4 – 0.09 – 0.27 – 0.18 n.a n.a
5 – 0.02 – 0.26 – 0.46 – 0.24 – 0.44 – 0.17
6 – 0.05 – 0.32 – 0.47 – 0.26 – 0.42 – 0.14
7 – 0.08 – 0.32 – 0.23 n.a n.a
Mean ± 2SD – 0.04 ± 0.09 – 0.29 ± 0.06 – 0.45 ± 0.07 – 0.24 ± 0.11 – 0.42 ± 0.04 – 0.14 ± 0.07
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2013; Moynier et al. 2013; Mahan et al. 2018). Heavier Zn 
preferentially binds to ligands with a stronger electronegativ-
ity (O > N > S) (Balter et al. 2013; Moynier et al. 2013; Fujii 
et al. 2014). In bioapatite, Zn is bonded to oxygen atoms 
of one hydroxyl (OH) and three phosphate groups  (PO4) 
(Tang et al. 2009), accordingly leading to an enrichment of 
heavy Zn. Conversely, Zn in muscle proteins binds to dif-
ferent amino acids, e.g., histidine in myosin (Ababou et al. 
2008), where Zn is bonded to N (Maret 2012), which leads 
to a depletion of heavy Zn. However, ab initio calculations 
considering Zn coordination in muscle proteins for different 
muscle types and taxa, beyond the scope of our paper, would 
be necessary to quantify these results.

To our knowledge, no enamel(oid)-diet δ66Zn 
fractionation factors have been previously reported. Yet, 
the pisciculture S. aurata enameloid-bone δ66Zn offset 
(Δ66Znenameloid-bone) of − 0.24 ± 0.11 ‰ (2SD, n = 7) is 
very similar to previously reported mean Δ66Znenamel-bone of 
− 0.2 ‰ in terrestrial mammals from Koobi Fora, Kenya 
(Jaouen et al. 2016a), the enamel-bone offset of − 0.18 
‰ in humans (Jaouen et al. 2017) and tooth enameloid-
osteodentine offset in divers elasmobranch species of − 0.21 
‰ (McCormack et  al. 2022b). Noteworthy, systematic 
isotopic offsets between enamel and bone/dentine were 
also observed for bioapatite carbonate–oxygen and –carbon 

(δ18O and δ13C, (Webb et al. 2014)) and calcium isotopes 
(δ44/40Ca, (Heuser et al. 2011)) across different species, 
despite different metabolic functions of these elements. We 
thus assume that the Δ66Znenamel(oid)-bone offset is related 
to differences in enamel(oid)–bone mineralisation and 
maturation and that this offset might be relatively consistent 
among vertebrates in spite of differences in enamel and 
enameloid mineralisation (Sasagawa et al. 2009; Kawasaki 
2013).

The lower body tissue δ66Zn values in pisciculture Sparus 
aurata compared to their diet are in good agreement with the 
decrease in bioapatite δ66Zn values within animals feeding at 
higher trophic levels (Jaouen et al. 2016a, 2016b; Bourgon 
et al. 2020, 2021; McCormack et al. 2021, 2022b). Indeed, 
S. aurata Δ66Znmuscle-diet values of − 0.45 ± 0.07 ‰ (2SD, 
n = 5) are very much in line with anticipated trophic level 
fractionation factors within the same tissue (e.g., enameloid) 
of a predator (or scavenger) and its prey. When assuming that 
tissue-tissue fractionation factors are constant among taxa 
and that muscle is the main digested tissue by a consumer, S. 
aurata Δ66Znmuscle-diet values suggest approximately 0.45 ‰ 
lower values within the same tissue of a predator compared 
to its prey. Previous trophic level δ66Zn spacing between 
predator and prey were reported to be between − 0.32 to 
− 0.38 ‰ (McCormack et al. 2021), − 0.40 to − 0.50 ‰ 
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(Jaouen et al. 2016a) and − 0.60 ‰ (Bourgon et al. 2020) 
well within the wider range of the S. aurata Δ66Znmuscle-diet 
values.

All here examined pisciculture Sparus aurata tissues 
are 66Zn depleted compared to their diet (Fig. 1). Yet, we 
cannot exclude the possibility of other tissues being enriched 
in 66Zn compared to the dietary intake. Notably, Moynier 
et al. (2013) documented a constant enrichment of 66Zn 
in faeces and urine of mice relative to their diet. Although 
this remains to be tested, fish excretions may demonstrate 
a similar 66Zn enrichment. Besides faecal and urinal, these 
may even include Zn excretion via the gills, as, even though 
low seawater zinc concentrations lead to negligible Zn 
uptake via the gills, the gills are a possible excretion route 
for excess dietary Zn in fish (Hardy et al. 1987). All or most 
tissues being 66Zn depleted relative to the diet is in line with 
the observed lower δ66Zn values higher up the food chain, 
even though the actual trophic level offset will depend on 
which tissues (and their respective proportion) are consumed 
and the differences in Zn concentration and isotope 
composition in each tissue. For example, the constantly 
higher δ66Zn values in bone-consuming carnivores such as 

hyenas compared to non-bone-consuming carnivores may be 
explained by the combined ingestion of higher δ66Zn bone 
and lower δ66Zn muscle-derived zinc (Jaouen et al. 2016a, 
2022; Bourgon et al. 2020, 2021).

Zinc isotope variability among wild fish

In contrast to the pisciculture individuals, wild-caught fish 
demonstrate a much larger Zn isotope variability among 
individuals (Fig. 3). For example, all enameloid δ66Zn values 
of the pisciculture S. aurata vary between − 0.05 and + 0.10 
‰ (mean of 0.00 ± 0.09 ‰ 2SD, n = 22), while wild Pagrus 
caeruleostictus enameloid varies between − 0.01 and + 0.44 
‰ (mean of + 0.20 ± 0.27 ‰ 2SD, n = 12). Wild-caught 
S. aurata individuals also have distinctly higher δ66Zn 
values than pisciculture ones, with bone values of + 0.66 
and + 0.77 ‰ and enameloid values of + 0.30 and + 0.55 
‰ (Fig. 3). Pagrus caeruleostictus have bone δ66Zn value 
between + 0.35 and + 0.53 ‰ (mean of + 0.42 ± 0.13 ‰ 
2SD, n = 6). Balistes capriscus have enameloid δ66Zn val-
ues between + 0.11 and + 0.21 ‰ (mean of + 0.18 ± 0.16 ‰ 
2SD, n = 6). Mean white muscle values for P. caeruleostictus 
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Fig. 3  Zinc isotope values (‰ JMC Lyon) in enameloid, bone and 
white muscle of pisciculture Sparus aurata (mean) and wild-caught 
fish from Haifa Bay. Mean pisciculture S. aurata (n = 7 for enam-
eloid and bone, and 5 for white muscle) and wild fish individual 
Zn isotope values (n = 2 for enameloid and bone of S. aurata, n = 3 
for B. capriscus white muscle and enameloid, n = 4, 6 and 8 for P. 
caeruleostictus white muscle, bone and enameloid, respectively) are 

depicted with whiskers indicating 2SD variability. Individuals caught 
in 2020, depicted by a grey bracket, were treated with tap water and 
their bones are contaminated by post-mortem Zn uptake. These bone 
values are thus not depicted here, see Supplementary Discussion 1, 2 
and Supplementary Figs. 1, 2, and 3. Maximum measurement uncer-
tainty is given in 2SD
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individuals range between − 0.27 and − 0.04 ‰ (mean of 
− 0.14 ± 0.22 ‰ 2SD, n = 4) and for B. capriscus between 
− 0.06 and + 0.03 ‰ (mean of 0.00 ± 0.07 ‰ 2SD, n = 3, 
Supplementary Data 1, Fig. 3). The larger enameloid intra- 
and interspecific δ66Zn variability of wild-caught fish com-
pared to the pisciculture individuals likely reflects a different 
and more variable diet for the former.

With the exception of the contaminated bone δ66Zn 
values of the 2020 caught Pagrus caeruleostictus and 
Balistes capriscus (Supplementary Discussion 2), all wild-
caught fish have similar Δ66Zntissue-tissue values as observed 
in the pisciculture Sparus aurata, with progressively lower 
δ66Zn values in the order bone > enameloid > white muscle 
(Fig.  1). For the two wild S. aurata, Δ66Znenameloid-bone 
values are − 0.22 and − 0.36 ‰. For four P. caeruleostictus, 
Δ66Znenameloid-bone values range between −  0.25 ‰ and 
− 0.39 ‰ (mean of − 0.30 ± 0.13 ‰ 2SD, n = 4) and thus 
close to the mean pisciculture S. aurata Δ66Znenameloid-bone 
of − 0.24 ± 0.11 ‰ (2SD, n = 7). For the three B. capriscus 
mean Δ66Znmuscle-enameloid values (− 0.11, − 0.18, − 0.24 
‰) are comparable to the mean pisciculture S. aurata 
value of −  0.14 ± 0.07‰ (2SD, n = 5). The four P. 
caeruleostictus caught 2020, however, have generally 
lower Δ66Znmuscle-enameloid values (− 0.29, − 0.38, − 0.41, 
− 0.43 ‰). In contrast to the pisciculture S. aurata, the 
wild fish species may have variable diets over time, both 
seasonally and through ontogeny (Tancioni et al. 2003; 
Hamida et  al. 2009; Taieb et  al. 2013; Goldman et  al. 
2016). Even though sparid teeth are replaced continuously 
throughout the animal’s life cycle (Elgendy et al. 2016), 
perhaps even seasonally (Sisma-Ventura et al. 2018), zinc 
turnover rates for different tissues are still largely unknown 
and likely vary. In addition, once Zn is incorporated into 
enameloid it becomes chemically inert, whereas muscle Zn 
can still be exchanged. Thus zinc isotope values recorded 
in muscle may reflect diet consumed at a different time 
than those recorded in enameloid, perhaps explaining the 
different Δ66Znmuscle-enameloid for wild P. caeruleostictus 
individuals. Still, in general, wild fish Δ66Zntissue-tissue values 
are in agreement with those from control-fed pisciculture 
S. aurata.

A detailed investigation into differences in diet among 
wild taxa is not possible with such a limited sample size 
and we do not observe any correlation for enameloid δ66Zn 
values with size (weight). All wild-caught individuals 
come from Haifa Bay, thus potential spatial variability in 
food web baseline δ66Zn values, as observed elsewhere 
in the Mediterranean (Chifflet et al. 2022), is most likely 
negligible among individuals and their δ66Zn variability 
relates to differences in dietary Zn intake as a result 
of their trophic ecology. Enameloid δ66Zn values for 
wild-caught fish range between −  0.01 and + 0.55 ‰ 
with overlap between species (Fig.  3). This indicates 

a trophic range among these wild durophageous fish 
larger than one trophic level when using the pisciculture 
S. aurata Δ66Znmuscle-diet value of −  0.45 ‰ as an 
approximate trophic discrimination factor. Applying the 
Δ66Znenameloid-diet values from the pisciculture S. aurata 
to all analysed teleost wild fish indicates they have fed 
on a diet with average compositions between + 0.28 
and + 0.84 ‰ (Supplementary Fig. 4). All three species 
feed on a variety of mainly hard-shelled prey items also 
depending on seasons, ontogeny and habitat, with bivalves, 
decapod crustaceans, gastropods, barnacles, echinoderms, 
annelids, and small teleosts generally considered the most 
important (Tancioni et al. 2003; Hamida et al. 2009; Taieb 
et al. 2013; Goldman et al. 2016). In the Levant, contrary 
to many other populations, smaller teleosts are likely a 
particularly important prey for P. caeruleostictus (Gilaad 
et al. 2017).

There is very little information on δ66Zn values for most 
of the prey species, but δ66Zn values of some filter-feeding 
bivalves from studies aimed at investigating anthropogenic 
Zn contamination have a wide range of bivalve soft tissue 
values from − 0.11 to + 1.43 ‰ worldwide (Shiel et al. 
2012, 2013; Petit et al. 2015; Araújo et al. 2017, 2021; 
Ma et al. 2019; Jeong et al. 2021). A direct comparison 
with published bivalve soft tissue δ66Zn data is only 
tentative, as there is no data available from the Eastern 
Mediterranean, only a few taxa are represented, and 
reported δ66Zn values can vary significantly across 
localities in part also as most of these studies, by design, 
aimed to investigate anthropogenic metal contamination 
which varies geographically. Nevertheless, our anticipated 
dietary δ66Zn values are well within the range of values 
previously reported for filter-feeding bivalves. Our wild 
fish δ66Zn values are therefore in agreement with a trophic 
position as secondary to tertiary consumers, feeding on 
primary consumers (e.g., filter-feeding bivalves) and other 
secondary consumers (e.g., gastropods, echinoderms, 
teleosts) (Supplementary Fig. 4).

Because pisciculture and wild fish demonstrate constant 
and predictable Δ66Zntissue-tissue offsets, and in the case 
of controlled-fed pisciculture S. aurata also constant 
Δ66Zntissue-diet values, δ66Zn values of various tissues can be 
used to investigate marine trophic ecology and potentially 
identify sources of anthropogenic Zn contamination to 
marine vertebrates. In addition, because pristine biological 
δ66Zn values are highly resistant against diagenetic alteration 
in highly mineralised fish enameloid (McCormack et al. 
2022b) and mammalian enamel (Weber et al. 2021), our 
Δ66Znenameloid-tissue and Δ66Znenameloid-diet values will allow 
identifying Zn dietary resources and reconstructing the 
trophic ecology of both extant as well as long-extinct fossil 
marine vertebrates.
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Conclusion

This study compares Eastern Mediterranean pisciculture 
Sparus aurata bone, enameloid, and white muscle δ66Zn 
values from seven individuals to the isotope composition of 
their pellet diet. Supplementing the pisciculture individuals, 
we also investigate the same tissue δ66Zn values of wild S. 
aurata, Pagrus caeruleostictus and Balistes capriscus caught 
in Haifa Bay, close to the location of the pisciculture. Our 
results show:

1. All pisciculture S. aurata have constant diet-tissue 
discrimination factors (Δ66Zntissue-diet) of − 0.04 ± 0.09 
‰ (2SD, n = 7) for bone, − 0.29 ± 0.06 ‰ (2SD, n = 7) 
for enameloid, and − 0.45 ± 0.07 ‰ (2SD, n = 5) for 
white muscle.

2. For both pisciculture and wild fish, we observe 
comparable δ66Zn tissue-tissue fractionation 
with progressively lower δ66Zn values from 
bone > enameloid > white muscle.

3. Wild-caught fish δ66Zn values are distinct from those of 
the pisciculture from the same area (i.e., Haifa Bay and 
Central Israel) and display a larger variability among 
individuals reflecting an isotopically more heterogonous 
diet in wild compared to controlled-fed specimen. Thus, 
tissue δ66Zn values are mainly related to Zn from the 
diet and not from ambient sea water.

4. The depletion in 66Zn in the here examined tissues 
compared to the diet is in line with the use of this proxy 
as a trophic level indicator, with lower δ66Zn values 
higher up the food chain. Our pisciculture Δ66Znmuscle-diet 
value of −  0.45 ± 0.07 ‰ (2SD) is close to values 
previously reported for trophic level spacing for both 
marine and terrestrial mammals.

In general, our study broadens the knowledge of tissue-
diet and tissue-tissue Zn isotope fractionation factors to 
include the marine realm and non-mammalian vertebrates 
with multi-disciplinary applicability. Among others, our 
documented Δ66Zntissue-diet values in both controlled-fed 
and wild fish species could be used to monitor diet-borne 
Zn toxicity in marine vertebrates and to estimate individual 
and population dietary/trophic variability.
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