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Abstract
Foraging specialisations are common in animal populations, because they increase the rate at which individuals acquire food 
from a known and reliable source. Foraging plasticity, however, may also be important in variable or changing environments. 
To better understand how seabirds might respond to changing environmental conditions, we assessed how plastic the forag-
ing behaviours of short-tailed shearwaters (Ardenna tenuirostris) were during their non-breeding season. To do this, we 
tracked 60 birds using global location sensing loggers (GLS) over a single year between 2012 and 2016 with the exception 
of 8 individuals that were tracked over 2 consecutive years. Birds predominantly foraged in either the Sea of Okhotsk/North 
Pacific Ocean (Western strategy) or the southeast Bering Sea/North Pacific (Eastern strategy). The eight birds tracked for 
2 consecutive years all returned to the same core areas, indicating that these birds were faithful to foraging areas between 
years, although the time spent there varied, probably in response to local changes in food availability. Overall, 50% of the 
birds we tracked left their core area towards the end of the non-breeding period, moving into the Chukchi Sea, suggesting 
that the birds have flexible intra-seasonal foraging strategies whereby they follow prey aggregations. We hypothesise that 
seasonal declines in chlorophyll a concentrations in their primary core foraging areas coincide with changes in the availability 
of large-bodied krill, an important food source for short-tailed shearwaters. Decreasing prey abundance likely prompts the 
movement of birds out of their core foraging areas in search of food elsewhere. This strategy, through which individuals 
initially return to familiar areas but disperse if food is limited, provides a mechanism that allows the birds to respond to the 
effects of climate variability.
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Introduction

Knowing where individuals find their food and how they 
adapt their foraging strategies in response to changes in 
prey distribution and abundance is an important compo-
nent of animal ecological studies. Physical features such 
as fronts, continental shelves and slope areas, and sites of 

up-welling are important to marine predators as they can 
provide predictable, dense aggregations of prey for marine 
predators in otherwise ephemeral environments (Lea et al. 
2006; Weimerskirch 2007; Bost et al. 2009; Lee et al. 2017). 
Accordingly, marine predators tend to show fidelity to these 
features (Nel et al. 2001; Queiroz et al. 2012; Patrick and 
Weimerskirch 2014). When individuals repeatedly return to 
the same foraging sites, they gain experience in how to find 
prey in that habitat, increasing foraging efficiency (Piper 
2011; Phillips et al. 2017). Consequently, foraging site fidel-
ity can be maintained over a number of days to months and 
these sites may be revisited over many years (Bradshaw et al. 
2004; Auge et al. 2014; Arthur et al. 2015; Samarra et al. 
2017).

The sites to which individuals show fidelity during the 
non-breeding stage are important, because the amount of 
energy accrued can influence short-term survival and subse-
quent reproductive output (Harrison et al. 2011; Shoji et al. 
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2015; Fayet et al. 2016b; Abrahms et al. 2018). For marine 
predators that migrate after breeding to exploit remote, sea-
sonally available resources, the costs of migration must be 
outweighed by energy gained in the non-breeding habitat 
(Cox 1985; Ramenofsky and Wingfield 2007; Lea et al. 
2015). Therefore, returning to familiar sites (Irons 1998) 
could reduce searching time and increase the rate at which 
prey is encountered. However, if environmental conditions 
change unidirectionally, then high levels of site fidelity could 
be disadvantageous (Irons 1998; Bolnick et al. 2003; For-
cada et al. 2008; Travis et al. 2013). Under such conditions, 
a strategy where animals are initially faithful to known areas, 
i.e. sites where they have previously found food, and then 
disperse to new areas if resources are poor or limited, may 
increase prey encounters within a season (Switzer 1993). 
Nonetheless, determining foraging site fidelity in wild ani-
mals is not straightforward because it is difficult to follow 
individuals over multiple years and the degree of individual 
site fidelity is likely to differ greatly within populations. 
Some of this variation in site fidelity could be explained 
under the win-stay–lose-shift (WSLS) strategy framework, 
where an individual returns to its most recent foraging area 
only if the previous visit was profitable (Bonnet-Lebrun 
et al. 2021), much like the hierarchical strategy outlined 
above.

The migratory short-tailed shearwater (Ardenna tenui-
rostris) is a long-lived seabird that breeds in colonies in 
southern Australia and spends the non-breeding stage, May 
to October, in the North Pacific Ocean (Skira 1991). During 
this time, short-tailed shearwaters go to the Sea of Japan, 
the Bering Sea, the Gulf of Alaska and the Chukchi Sea 
(Carey et al. 2014; Yamamoto et al. 2015). The existence of 
a number of foraging areas within the population may allow 
short-tailed shearwaters to maximise foraging success both 
during and amongst years. The environmental conditions 
in the regions in the Northern Hemisphere that are used by 
short-tailed shearwaters have undergone considerable envi-
ronmental change in recent decades (Grebmeier et al. 2006; 
Overland et al. 2008; Brown et al. 2011; Ogi et al. 2015), 
causing shifts in sea ice dynamics, the location and timing of 
spring phytoplankton blooms, water column temperature and 
stratification (Brown et al. 2011; Hunt et al. 2011; Duffy-
Anderson et al. 2017). These all influence the distribution 
and abundance of prey upon which shearwaters and other 
meso-predators such as seabirds and marine mammals rely 
(Trites and Donnelly 2003; Grebmeier et al. 2006; Bluhm 
and Gradinger 2008; Gall et al. 2017).

Using a 5-year tracking dataset on shearwaters in Tasma-
nia, Australia, we described the non-breeding foraging areas 
in the northern Pacific Ocean of short-tailed shearwaters 
to determine: (i) the core foraging areas of shearwaters in 
the North Pacific, (ii) whether individual birds use different 
foraging sites during their post-breeding foraging trips; (iii) 

if individual birds maintain fidelity to these areas between 
years; (iv) if and how foraging areas affect the level of bird 
activity; (v) the environmental characteristics within the for-
aging areas; and (vi) whether environmental conditions in 
these broad foraging sites changed intra-annually and across 
our 5-year study.

Methods

Global location sensors (GLS)

 Shearwater movements and distribution during the non-
breeding season were estimated with global location sensing 
(GLS) devices attached to birds at Wedge Island, southeast 
Tasmania, Australia (43° 07’ S, 147° 40’ E) from 2011 
to 2015. The GLS devices were deployed on average for 
11 months (range 7–52 months) (Table S1). Three types 
of GLS devices were used over the course of the study, all 
of which collected ambient light, activity (wet/dry events) 
and sea surface temperature data (SST; − 0.125 °C resolu-
tion), which were used to estimate twice daily locations (Hill 
1994 ). The C250 tags recorded water temperature when 
the device had been continuously wet for 20 min, and the 
minimum, maximum and mean measurements were taken 
every 4 h, allowing the data to be compared to remotely 
sensed SST. The MK19 and MK3005 tags provided tem-
perature data when the device had been submerged for 
25 min. Recording stopped if the sensor was dry for 6 s or 
longer. The C250 tags sampled every 6 s and recorded the 
total number of seconds the device was wet/dry on change 
of state from wet to dry and dry to wet. The MK19 and 
MK3005 tags recorded activity data on state change (within 
three seconds), if the state persisted for longer than 6 s. All 
loggers recorded activity data based on the relative time that 
they were in seawater (wet), which was used to infer foraging 
behaviour; either foraging or resting on the water surface, 
compared to when they were flying (dry).

Tags were attached to the tarsus after Cleeland et al. 
(2014). The maximum weight of the tag and attachment was 
4.5 g, < 1% of the mean mass (597.1 ± 57.3 g, n = 421) of the 
birds. Tags were calibrated at the deployment site by placing 
them under the open sky for 2 to 7 days prior to deployment 
to provide light recordings at a known location allowing for 
accurate estimation of sun elevation (Lisovski et al. 2012). 
A subset of non-tagged birds (n = 74) were weighed using 
a 1 kg (± 5 g) Salter spring balance (Super Samson models, 
Salter Australia Pty Ltd, Melbourne, Australia) and com-
pared with those of tagged birds to check for device effects 
at the end of the return migration. A total of 141 GLS tags 
were deployed during the breeding season (Table 1) and 93 
GLS tags were retrieved during subsequent breeding sea-
sons except for one individual found in South Australia in 
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2013. Tags were recovered from eight birds after 2 years. 
Overall, a total of 60 devices provided data that were used 
in analyses.

Location estimation

Daily positions were estimated from the light and SST val-
ues in the R package SGAT (https:// github. com/ SWoth erspo 
on/ SGAT) (Sumner et al. 2009; Wotherspoon et al. 2013). 
Because the tags deployed on these birds were attached to 
their leg, the sensor was sometimes shaded by the bird, so 
anomalous data were, therefore, manually adjusted to match 
the overall trend in the light level prior to twilight. Similarly, 
anomalously high SST values were removed using the SST-
filter and selectData functions in SGAT.

The package SGAT is based on a Bayesian framework 
that uses Markov Chain Monte Carlo (MCMC) methods 
to estimate the posterior distribution of locations (Sumner 
et al. 2009). The locations for each bird were estimated (and 
95% CI) from the pre-processed light data using a set of pri-
ors that included: (i) a spatial probability mask, to exclude 
locations on land, (ii) a movement model where the average 
speed of travel between successive locations was assumed 
to be Gamma distributed, the probability of distribution of 
speeds is estimated using the mean time intervals between 
twilights (in hours), limiting the distance between locations 
(set at 80 km  h−1), (iii) to improve accuracy of location data, 
SST was used to constrain the location estimation. The final 

estimated track was calculated using a Metropolis algorithm 
to run 12 000 iterations, and (iv) to account for twilight 
errors associated with tag shading, a log-normal probability 
distribution was applied to twilights, providing more accu-
rate location estimation (Wotherspoon et al. 2013).

Spatial analysis of location data

For consistency, the migration phase was determined to have 
commenced when a bird moved north of 40° S, as movement 
beyond this latitude was associated with rapid and continu-
ous changes in latitude, and ended when it moved north of 
40° N, which coincided with the cessation of rapid continu-
ous latitudinal movements. Using the complete set of daily 
posterior location estimates produced by SGAT, the propor-
tion of time individual birds spent in each 20° latitude by 10° 
longitude grid cell (calculated as a proportion of the total 
time spent between 40° and 80° N and 125°–135° W) was 
determined, to identify the core areas used. This spatial reso-
lution was chosen to account for (i) the known uncertainty 
associated with light level Geolocation and (ii) to maximise 
the number of cells in the analysis. Groups of birds with 
the same patterns of use of grid cells were identified using 
hierarchical cluster analysis using Ward’s minimum variance 
method based on Euclidean distances (hclust, R Develop-
ment Team). Only cells used by more than three individuals 
were included in analyses to provide an indication of general 
usage of cells.

Table 1  The year, the model 
and the number of GLS devices 
deployed on and retrieved from 
short-tailed shearwaters at 
Wedge Island

*Includes data from three devices retrieved in 2013 that were deployed during 2012 (providing consecutive 
non-breeding stage data)
**Includes data of a device retrieved in 2014 that was deployed during 2013 (providing consecutive non-
breeding stage data)
***Data from five devices retrieved in 2016 that were deployed in 2015 (providing consecutive non-breed-
ing stage data)

Year Model GLS  deployeda GLS recov-
ered

Tracks included in 
 analysesb,c

Activity data 
included in 
 analysesd

2012 MK19 15 10 8 0
2013 MK3005 30 13 10* 4
2014 MK3005 32 27 7** 5
2015 MK3005 & C250 64 38  39 38
2016 C250 NA 5 4*** 0
Total – 141 93 68 47
(a) Excluding birds only tracked for the breeding season
(b) Some tags failed during deployment and consequently did not provide data for the entire non-breeding 

stage. Data were only included if available for ~ 80% of the non-breeding stage, resulting in 60 birds 
being included in analyses

(c) Includes data from eight individuals that were tracked for two consecutive non-breeding stages
(d) The tags used in this study had limited capacity to store activity data (~ 7 months). In the instances 

where the logger had been deployed during the breeding season and/or for multiple years, the tag 
ceased recording activity data prior to the end of the non-breeding stage. Individual activity data were 
only included if available for ~ 80% of the non-breeding stage

https://github.com/SWotherspoon/SGAT
https://github.com/SWotherspoon/SGAT
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Using the mean daily location estimates of the individu-
als, both the core and home range estimates were calculated 
for all birds and then for each cluster group using the ade-
habitatHR package (Calenge 2006). The 50% Kernel Utilisa-
tion Distribution (KUD) represented the core area and 95% 
KUD was considered the home range (Wood et al. 2000). 
These were calculated using the fixed Kernel Density Esti-
mation method taken from the least-squares cross-validation 
bandwidth. The time individuals spent within their core 
areas was calculated as a proportion of the total time they 
spent within the non-breeding region (> 40°N).

Inter‑annual site fidelity

We assessed the degree of inter-annual site fidelity for the 
subset of birds that recorded foraging trips in two consecu-
tive winters using a bootstrap analysis (Wakefield et al 
2015). Here, we calculated 95% KUDs for each year and 
then calculated the percentage overlap of the two KUDs. 
We then contrasted this with the percentage overlaps of 95% 
KUDs for 20 pairs of birds randomly drawn from the pool 
of birds which recorded only a single trip. If the degree of 
overlap was greater for repeat birds and the random pairs, we 
took this as evidence that individuals were more consistent 
between years than expected by chance.

Activity data

The birds in this study spent more time on the surface of the 
water at night (t = − 19.477, df = 17,955, p < 0.0001), most 
likely associated with time spent resting due to limited vis-
ibility (Phalan et al. 2007; Shaffer et al. 2009; Wilson et al. 
2009). Consequently, we excluded night activity data, and 
used the time spent on the water during daylight (pwet) as 
an index of foraging activity. Although it is likely that a 
proportion of the time spent on the water surface during 
daylight hours could be associated with resting or moult-
ing rather than foraging (Cherel et al. 2016), the amount of 
time a logger is wet is considered to provide an acceptable 
index of seabird foraging activity (Catry et al. 2009; Krietsch 
et al. 2017). Further, the occurrence of non-foraging activi-
ties should not compromise comparison between regions 
as we used the wet/dry data as an index to compare activ-
ity, unless there is a regional bias in these activities, which 
seems unlikely (Cherel et al. 2016).

Environmental data

We described the environmental characteristics of each core 
foraging area using available time series of: chlorophyll a 
concentration (Chl a) (2003–2016), SST °C (1983–2016), 
sea surface height (SSH) (1993–2016) and sea surface height 
anomaly (SSHa) (1993–2016). We selected variables that were 

previously identified as good predictors of the oceanic habitat 
of short-tailed shearwaters in the North Pacific (Yamamoto 
et al. 2015). Data were obtained from the Australian Antarc-
tic Data Centre and extracted using the R package raadtools 
(Sumner 2017). The mean yearly value for each environmental 
variable was calculated from the daily values for the entire 
period that the short-tailed shearwaters were present in the 
North Pacific Ocean (May to October).

Statistical analyses

We used a two-sample t test to compare the body masses of 
instrumented and un-instrumented birds at the end of the 
migration. One-way ANOVAs were used to compare behav-
ioural parameters between cluster groups: (i) the mean within 
year time spent in the core regions; (ii) the time taken on 
each annual migration to the North Pacific and whether these 
differed between years and (iii) the most northerly location 
reached each year and between years. All dependent variables 
were log transformed when necessary and significance levels 
were set at p < 0.05. To assess whether the proportion of the 
day spent in the water (pwet) varied between cluster groups, we 
used a linear mixed effects model (LME) (Bates et al. 2015) in 
the nlme package (Pinheiro et al. 2017). To account for tem-
poral autocorrelation of the daily activity data, we used an 
autoregressive correlation [AR(1)] structure. The proportion 
of the day the logger was wet was logit transformed to obtain 
approximately normal distributions. All models had Bird ID 
as the random term and a Gaussian family distribution and the 
model fit was estimated using maximum likelihood.

Spearman’s rank correlation coefficients were used to 
examine if environmental variables were correlated. Vari-
ables were weakly correlated, in all cases  (rs < 0.5), so all 
variables were included in analyses. To quantify the annual 
variation of marine environmental variables (Chl a, SST, 
SSH, SSHa), we compared the mean values from each year 
in the 50% core foraging area for each group of shearwa-
ters using generalised linear models (GLM), where groups 
were included as covariates within models. With the MuMin 
package, the best models were elected using Akaike’s Infor-
mation Criteria (AIC) (Burnham and Anderson 2002) and 
Akaike’s weight (wAIC), using the small sample size correc-
tion (AICc). Unless otherwise stated means ± standard error 
(s.e.) are presented. Statistical analyses were performed in R 
(version 3.5.1, R Development Team 2014).

Results

Migratory pathways and non‑breeding distribution

Carrying a GLS device did not influence the return body 
masses of tracked birds (567.8 ± 6.9 g) when compared 
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with those of control birds (572.0 ± 6.0 g, t = − 0.46, 
df = 113.3 p = 0.65). The onset of the migration to the 
North Pacific varied by up to 4 weeks between individ-
uals, with birds commencing the migration between 3 
and 29 April. Birds dispersed upon reaching the North 
Pacific: utilising the Sea of Japan, the Sea of Okhotsk, the 
North Pacific Ocean, the Bering Sea, the Gulf of Alaska 
and the Chukchi Sea (Fig. 1).

Individual spatial foraging distribution

From the cluster analysis, we identified two groups of birds 
with similar spatial usage patterns (Fig. 2) defined here as 
the Western and Eastern groups (Fig. S1). The core area (the 
50% KUD) of the Western group (n = 25) incorporated areas 
of the Sea of Japan/Sea of Okhotsk and the North Pacific 
Ocean (Fig. 3). On average, 61 ± 4.2% of the locations of 
birds in the Western group were in this core area. The core 
area (50% KUD) of the Eastern group (n = 35) incorporated 
areas of the southeast Bering Sea, the Aleutian Islands 

Fig. 1  The post-breeding 
movements (April–October) 
of 60 short-tailed shearwaters 
tracked from Wedge Island 
(2012–2016). Arrows indicate 
direction of travel. SoJ Sea of 
Japan, OK Sea of Okhotsk, 
BS Bering Sea, CK Chukchi 
Sea, GoA Gulf of Alaska, 
NPO North Pacific Ocean. The 
locations south of −50 degrees 
show the post-breeding foraging 
trip to the Southern Ocean just 
prior to the winter migration
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Fig. 2  Cluster groups of short-tailed shearwaters from Wedge Island 
during the non-breeding period (2012–2016), determined by Ward’s 
minimum variance method: (1) Eastern group (southeast Bering Sea/

North Pacific; and (2) Western group (Sea of Okhotsk/North Pacific 
Ocean). Individual Bird IDs are shown
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Fig. 3  a The 95% KUD home range of 60 short-tailed shearwaters tracked from Wedge Island, during the non-breeding season (2012–2016); 
and the 50% kernel KUD core foraging areas for; b the Western group (n = 25); and c the Eastern group (n = 35)
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and Bristol Bay (Fig. 3). For birds in the Eastern group, 
64.3 ± 2.9% of their locations were in this core area. Except 
for four individuals, birds in the Eastern group did not for-
age in the Western core area (Sea of Japan/Okhotsk Sea); 
instead they travelled in an easterly direction after reaching 
the North Pacific. The number of days taken to migrate to 
the non-breeding region (Eastern group 11.4 ± 0.7; Western 
group 10.9 ± 0.5), days spent in the non-breeding region 
(Eastern group 149.9 ± 2.0; Western group 145.5 ± 2.3) 
and the most northerly latitude the birds moved to (East-
ern group 67 ± 1.0°N; Western group 62 ± 1.7°N) were all 
similar between the groups (Table 2; p > 0.05 in all cases).

Within‑season foraging movements

The proportion of time birds stayed within their core 
area varied between individuals but not amongst groups 
 (F1,66 = 0.90, p = 0.37) (Western 61 ± 4.2%; Eastern 
64.3 ± 2.9% Table 2). Overall, birds spent between 15 and 
99% (63 ± 1.7%) of their time in their core areas. Eight birds 
from the Western group first moved into the Sea of Japan 
upon reaching the North Pacific, where they spent between 
26 and 46 days, before moving to the Sea of Okhotsk. Of 
the Eastern group, four birds spent between 3 and 8 weeks 
foraging in the Western core area (Sea of Okhotsk, Sea of 
Japan, Kuril Islands and eastern Japanese coastline) before 
moving to the Eastern core area in the southeast Bering Sea. 
An additional three birds from the Eastern group foraged 
in the eastern North Pacific/Gulf of Alaska following their 
arrival (for > 4 weeks) and then moved back into the Eastern 
core area. By the end of August, 10 Western birds and 20 
birds from the Eastern group shifted to the Chukchi Sea, 
where they remained (mid-August–early-September) until 
they commenced the southern migration (Fig. 4). Further, 
two birds from the Western group and three birds from the 
Eastern group shifted to the North Bering Sea/Bering Strait 
in August.

Foraging behaviour of birds tracked for 2 years

The eight birds that were tracked in 2 successive years all 
used the same areas in both years (Fig. 5). We tested this 
by comparing the percentage overlap in 95% KUD of each 

year for all 8 birds, with a random sample of 20 pairs drawn 
from the sample of birds that made a single trip. For the 
repeat birds, the mean overlap was 51.3 ± 11.0% compared 
to 37.7 ± 17.0%, which were significantly different (t = 2.49, 
df = 19.93, p = 0.021). This indicates that the birds had 
broadly overlapping home ranges in both years. However, 
the timing of arrival, the proportion of time spent in the area 
and the western and northern extents reached varied between 
years for some of the birds (Table 3).

Foraging effort amongst groups

The proportion of time in the water (pwet) in the core 
50% KUD areas was similar for each group (wAIC = 0.4) 
(Table 4). The pwet for the Western group was 71 ± 0.5%, 
and the pwet for the Eastern group was 66 ± 0.5%.

Relationship between environmental variables 
and core foraging areas

Sea surface temperature was ~ 2 °C warmer in the Western 
core area than the Eastern core area (Table S2). The SST 
fluctuated between years but increased between 1983 and 
2016 (Fig. 6). Neither region nor year were found to influ-
ence mean annual Chl a (2003–2016) (wAIC = 0.5) (Table 5; 
Fig.). Over time, SSH and SSHa (1993–2016) trended 
upward in both core areas (Fig. 6). However, SSH varied 
between core areas and years (wAIC = 0.4) and SSHa varied 
between years but not core areas (wAIC = 0.5). Chl a showed 
a distinct seasonal pattern in both core areas (May–October 
2003–2016). In the Eastern core area, Chl a was highest dur-
ing May and gradually declined through October, whereas 
the Western core area had two peaks in May and October 
(Fig. S2).

Discussion

The birds tracked in this study used two primary foraging 
regions: the Sea of Okhotsk/North Pacific Ocean and the 
southeast Bering Sea/North Pacific. The eight individuals 
tracked for 2 years showed fidelity to foraging sites and 
returned to the same core foraging area in subsequent years. 

Table 2  The number of days short-tailed shearwaters took to migrate, 
the number of days spent in the non-breeding region and the most 
northern point visited by birds (latitude) and the proportion (%) of the 

non-breeding stage that was spent in the core 50% KUD region by 
birds in each group

All values are mean ± SD

Region Northern migration Southern migration Non-breeding stage Northern 
latitude (°)

Proportion of time (%) spent 
in core foraging area

n

Western 10.9 ± 0.5 12.8 ± 0.8 144.5 ± 3.3 62 ± 1.7 60 ± 4.2 25
Eastern 11.4 ± 0.7 12.5 ± 1.7 149 ± 2.0 67 ± 1.0 64.3 ± 2.9 35
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Fig. 4  The seasonal distribution (50% KUD) of short-tailed shearwaters in the Western and Eastern core foraging areas during the non-breeding 
stage. Early (May–June), mid (July–August) and late (September–October)

Fig. 5  Successive non-breeding season movements of eight short-
tailed shearwaters in the North Pacific Ocean. Bird IDs:061 (2015/
blue and 2016/red), 071 (2013/blue and 2014/red), 580 (2015/blue 

and 2016/red), 690 (2015/blue and 2016/red), 691 (2015/blue and 
2016/red), 19,732 (2012/blue, 2013/red), 19,740 (2012/blue, 2013/
red) and 19,747 (2012/blue, 2013/red)
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Interestingly, all the birds for which return trips were avail-
able had core foraging areas in the eastern North Pacific, 
and therefore may not be representative of the whole popula-
tion’s behaviour. However, for these eight birds, these core 
regions likely provide a predictable supply of prey allowing 
the birds to quickly replenish reserves lost during their tran-
shemispheric migration. Whilst these core areas are clearly 
important to the birds, given the high degree of overlap in 
successive years, they did use a larger area to feed in and 
shifted core areas as the season progressed, most likely in 
response to changing prey availability (Charnov 1976). Nev-
ertheless, we do concede that this interpretation needs to 
be treated with some caution, because; (i) we do not have 
direct observations linking movements to prey fields and (ii) 
because the timing of these movements occurs around the 

equinox when location accuracy is notoriously poor (Hill 
1994).

Within‑population foraging strategies

Most birds that used the Eastern core area did not forage in 
the Western core area and vice versa. It is unlikely that this 
is the result of sex-specific habitat requirements given males 
and females display similar migratory behaviours (Carey 
et al. 2014). Rather, birds most likely select where to for-
age based on past experience, as most individuals directly 
navigated to their core foraging area. Further, birds tracked 
in previous studies were found to use the same regions we 
have identified here (Watanuki et al. 2015; Yamamoto et al. 
2015).

For long-lived species, such as short-tailed shearwaters, 
an extended immature phase (Skira 1991) allows individuals 
to thoroughly explore foraging habitats, leading to forag-
ing site specialisations as individuals learn where to find 
food (Guilford et al. 2011; Missagia et al. 2015; Wakefield 
et al. 2015). Familiarity with an area should increase forag-
ing success (Irons 1998), which is important after the long 
migration undertaken by the shearwaters over the less pro-
ductive waters of the central Pacific (Baduini et al. 2001). 
Additional energy required for moult of the flight feathers 
shortly after arrival would place further pressure on birds to 
find food (Lindström et al. 1993; Hedenström and Sunada 
1999). Of the Eastern group, four individuals foraged to the 
west of their core area before reaching the Eastern core area. 

Table 3  The day of year (DOY) 
the core foraging region was 
reached, the most western 
longitude, the most northern 
latitude and the proportion of 
the non-breeding period spent 
in their core foraging region by 
eight birds that were tracked 
over 2 successive years

**The proportion of days spent in specialist area calculated from the total days spent in the non-breeding 
region (> 40°N)
DOY day of year

ID Year Core 
foraging 
region

Arrived into core 
foraging area 
(DOY)

Western longitude Northern latitude Time in spe-
cialist area** 
(%)

19,732 2012 Eastern 129 178°E 72°N 66
19,732 2013 Eastern 124 174°E 72°N 60
19,740 2012 Eastern 191 151°E 69°N 16
19,740 2013 Eastern 173 130°E 60°N 26
19,747 2012 Eastern 117 157°E 59°N 90
19,747 2013 Eastern 134 155°E 72°N 76
71 2013 Eastern 121 159°E 58°N 66
71 2014 Eastern 120 160°E 70°N 60
61 2015 Eastern 136 177°W 81°N 32
61 2016 Eastern 113 165°E 64°N 72
580 2015 Eastern 111 167°E 70°N 66
580 2016 Eastern 117 167°E 70°N 65
690 2015 Eastern 162 131°E 71°N 43
690 2016 Eastern 161 131°E 71°N 50
691 2015 Eastern 143 136°E 69°N 90
691 2016 Eastern 160 131°E 69°N 50

Table 4  Linear mixed effects models for determining the relation-
ship between the time the Western and Eastern groups of short-tailed 
shearwaters spent in the water (pwet) during the non-breeding period

pwet = proportion of time the logger was wet
LogLik, log likelihood, ΔAICC is the difference in AIC of the models 
to the best fitting model
wAIC, indicates the probability of the best model
The top ranked model is in bold

Candidate models LogLik AICC ΔAIC wAIC

1. Null − 6929 13,864.1 0 0.6
2. Group ~ pwet − 6928.6 13,865.1 1.03 0.4
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The lipid reserves of migrating shearwaters are depleted fol-
lowing the migration and so birds which used the Eastern 
region may have ‘stopped over’ to feed before continuing 
to the Eastern core region (Baduini et al. 2001; Goymann 
et al. 2010).

Secondary foraging regions

The timing of intra-North Pacific movements of the shearwa-
ters corresponded approximately with the seasonal cycle of 
primary production which is influenced by changing daylight 
hours, temperatures, sea ice extent and spring phytoplankton 
blooms (Hirota and Hasegawa 1999; Saito et al. 2002; Liu 
et al. 2004; Kasai and Hirakawa 2015). We hypothesise that 
this results in changes in the distribution and abundance of 
prey, leading to the birds moving to new locations. Krill 
(Thysanoessa raschii and T. inermis) is the principal prey 
of short-tailed shearwaters during their occupation of the 
North Pacific Ocean and the Bering Sea (Hunt et al. 2002; 
Nishizawa et al. 2017). Fish such as sandlance (Ammodytes 
hexapterus), age-0 gadids (likely walleye pollock (Thera-
gra chalcogramma) and copepods can also be important in 
their diet (Jahncke et al. 2005). Higher densities of short-
tailed shearwaters have been associated with the abundance 
of large-bodied krill (Nishizawa et al. 2017), age-1 pollock 
(Suryan et al. 2016), and also with frontal systems and 

shallow waters where euphausiid spp. can become trapped 
(Hunt et al. 1996).

There are seasonal shifts in the distribution of the prey 
of shearwaters associated with the changing environmental 
conditions in this region. Euphausiid spp. and sand lance 
move from inshore/inner-shelf areas to offshore through 
early spring to late summer and this shift has been associ-
ated with the distribution of short-tailed shearwaters (Jah-
ncke et al. 2005; Hunt et al. 2014; Nishizawa et al. 2017). 
Like Yamamoto et al. (2015), we also found that towards 
the end of the non-breeding stage (mid—late August) that 
at least 50% of the shearwaters had moved northwards into 
the North Bering Sea and the Chukchi Sea, where earlier 
ice retreat and a longer open water period are promoting 
phytoplankton blooms. These blooms are attractive to the 
zooplankton on which the shearwaters feed (Gall et al. 2017; 
Kuletz et al. 2020).

Such within season shifts have also been observed for 
long-tailed skuas (Stercorarius longicaudus) (van Bemme-
len et al. 2017), brown skuas (Catharacta antarctica) (Kri-
etsch et al. 2017), and the yelkouan shearwater (Puffinus 
yelkouan) (Raine et al. 2013), which also return to the same 
sites amongst years but then move locally in response to 
environmental conditions. Resolving how the birds in this 
study are responding to changes in their environment is dif-
ficult using broad proxies of productivity such as Chl a. 
Specialised instrumentation that measures in situ behaviour 

Fig. 6  The relationship identified by generalised linear models 
between; a chlorophyll a (Chl a μg/l; 2003–2016); b sea surface tem-
perature (SST °C; 1982–2016); c sea surface height (SSH m; 1993–
2016) and d sea surface height anomaly (SSHa; 1993–2016) and year 

and the core foraging regions used by short-tailed shearwaters during 
the non-breeding stage. 95% confidence interval is indicated by the 
grey shading. Yearly means (May–October) are indicated by the trend 
lines
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and biological activity can provide insight (McMahon et al. 
2021). However, further miniaturisation of such instruments 
is required before they can be fitted to small animals such as 
shearwaters, and until then we rely on proxy measures and 
correlation analysis such as those presented herein.

Implications of individual foraging strategies 
in a changing climate

The overall time spent in the core foraging areas and the pro-
portion of time spent in the water during the day were simi-
lar between groups. However, the time birds spent within 
their core foraging area varied between individuals. Theory 
predicts that when food availability becomes low, individu-
als should expand their foraging habitats to compensate for 
lower overall food densities (Stephens and Krebs 1986). We 
found that the physical conditions within the core foraging 
areas used by shearwaters are changing, and predict that 
those birds with a more flexible foraging strategy will ben-
efit when resources are scarce (Switzer 1993; Phillips et al. 
2017) in accordance with theoretical predictions (Stephens 
and Krebs 1986). However, there are also advantages of 
long-term foraging site fidelity, primarily that it maximises 
net energy gain over a lifetime (Perry and Pianka 1997). 

Although if the productivity of a region decreases progres-
sively in response to changes in the climate, then individuals 
that maintain fidelity to that region will have diminished 
fitness (Hindell et al. 2017). The short-tailed shearwater 
population may be resilient in a changing climate because 
they use a wide range of foraging sites and they demonstrate 
plastic foraging behaviour. Further, if the persistence of open 
water areas in the Chukchi Sea results in increased primary 
production that supports shearwaters prey, this may present 
an alternative foraging site if prey availability declines in 
their more southern foraging areas (Gall et al. 2017).

Although our results suggest that some individuals may 
use the same core areas longitudinally, we cannot be cer-
tain that these strategies endure over a shearwater’s lifetime 
(Carneiro et al. 2017). There is evidence that some seabirds 
repeatedly use the same non-breeding staging areas over 
the long-term, such as Atlantic puffins (Fratercula arctica) 
(Fayet et al. 2016a). In contrast, some common (Uria aalge) 
and thick-billed murres (U. lomvia) switched core winter 
foraging areas after 2 to 3 years (Tranquilla et al. 2014). 
Further, Cory’s shearwaters (Calonectris diomedea) have 
extreme foraging site plasticity, switching between ocean 
basins and hemispheres (Dias et al. 2011). However, the ten-
dency of short-tailed shearwaters to leave their core foraging 

Table 5  Generalised linear 
model (GLM) results examining 
the relationship between 
region, year and environmental 
variability

The top model for each of the four (Chl a = chorophyll a; SST = sea surface temperature; SSH = sea surface 
height; SSHa = sea surface height anomaly) environmental covariates is in bold
Chl a = chlorophyll a (May–September 2003–2016); SST = sea surface temperature (May–September 
1983–2016); SSH = sea surface height (May–September 1993–2016); SSHa = sea surface height anomaly 
(May–September 1993–2016). LogLik, log likelihood, ΔAICC is the difference in AIC of the models to the 
best fitting model. wAIC indicates the probability of the best model

Candidate models DF LogLik AICC ΔAIC wAIC

Chla
 1. Null 2 18.3 − 32.2 0.0 0.5
 2. Chla ~ region 3 18.8 − 30.7 1.5 0.2
 3. Chla ~ year 3 18.4 − 28.1 2.4 0.2
 4. Chla ~ region + year 4 18.9 − 28.1 4.1 0.1

SST
 1. SST ~ region + year 4 − 52.2 113.0 0.0 0.7
 2. SST ~ region + year + region:year 5 − 51.7 114.3 1.4 0.3
 3. SST ~ region 3 − 61.6 129.6 16.7 0.0
 4. SST ~ year 3 − 126.7 259.7 146.8 0.0

SSH
 1. SSH ~ region + year + region:year 5 129.1 − 246.7 0.0 0.6
 2. SSH ~ region + year 4 127.2 − 345.6 1.2 0.4
 3. SSH ~ year 3 120.2 − 233.9 12.8 0.0
 4. SSH ~ region 3 114.4 − 222.2 24.5 0.0

SSHa
 1. SSHa ~ year 3 127.3 − 248.0 0.0 0.5
 2. SSHa ~ region + year 5 129.1 − 246.8 1.2 0.3
 3. SSHa ~ region + year + region:year 4 127.3 − 245.6 2.4 0.2
 4. Null 2 114.4 − 222.2 23.5 0.0
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area within a season indicates that the foraging decisions 
of the birds are intertwined with conditions they encounter 
and the knowledge of alternative productive foraging sites.

Long‑term environmental trends in the core 
foraging regions

The environmental variables measured in this study fluctu-
ated considerably through time, but we observed a grad-
ual annual increase in SST (0.03 °C; 1983–2016), SSH 
(0.002 m; 1993–2016), and in SSHa (0.002 m; 1993–2016), 
but a slight annual decrease in Chl a (−  0.005 μg/l; 
2003–2016) in the core foraging regions. Overall, SST was 
warmer in the Western core area (0.04 °C increase annually), 
but the increase in SSH and SSHa over time was similar 
between regions. The increase in SST in the core areas mir-
rors the general warming trend of the North Pacific, which is 
significantly changing the dynamics of sea ice and primary 
productivity (Johannessen et al. 2004; Overland and Stabeno 
2004; Markus et al. 2009; Wood et al. 2015).

Reduced sea ice extent and warmer SST in the southeast 
Bering Sea can reduce the spring phytoplankton bloom and 
subsequently zooplankton abundance over the shelf (Hunt 
et al. 2011; Stabeno et al. 2012; Sigler et al. 2014; Duffy-
Anderson et al. 2017). This is thought to deprive large-bod-
ied lipid rich zooplankton of ice algae, which is needed for 
reproduction and growth (Hunt et al. 2011; Stabeno et al. 
2012; Sigler et al. 2014). When warm stanza events occur 
in the Bering Sea, the reduction in zooplankton cascades up 
to higher trophic levels (Moss et al. 2009; Coyle et al. 2011; 
Mueter et al. 2011). If the observed warming trend contin-
ues, it is possible that seabirds and other top predators could 
decline in the southeastern Bering Sea if the prey on which 
they depend becomes less abundant (Renner et al. 2016).

Sea ice extent and duration have fluctuated significantly in 
the Bering Sea in recent years but have remained relatively 
more stable (Brown et al. 2011; Frey et al. 2015), than sea ice 
in the Sea of Okhotsk and the Chukchi Seas where the extent 
and persistence of sea ice have both declined (Stroeve et al. 
2012; Ogi et al. 2015; Paik et al. 2017). In years when produc-
tion in the core foraging areas is reduced, increased open water 
areas in the Chukchi Sea may present highly mobile species 
such as short-tailed shearwaters with alternate foraging areas. 
Indeed, earlier sea ice retreat and an increase in the availability 
of open water in the Chukchi Sea are thought to contribute to 
more favourable conditions for large-bodied euphausiid spp. 
and copepods, and this has been associated with increasing 
densities of shearwaters in this region in recent decades (Gall 
et al. 2017; Kuletz et al. 2020). How these complex environ-
mental changes will affect shearwaters remains to be explored 
in full, but here we have provided some information on which 
to build a more comprehensive understanding of the long-term 
effects on shearwater performance.

Conclusion

From our multi-year study of post-breeding shearwater for-
aging behaviour in the North Pacific Ocean, we found that 
short-tailed shearwaters tend to return to known foraging 
areas in successive years (i.e. they show forging site fidel-
ity). However, despite this initial fidelity to known foraging 
grounds, the birds do not necessarily stay at these sites and 
will move to alternative areas within their broader foraging 
habitats to find food. Such behaviour shows that the birds 
follow a hierarchical foraging strategy whereby, as theory 
may predict, they initially return but will subsequently 
move if the resources are not available or are depleted in 
accordance with the marginal foraging theorem. In other 
words, the birds follow some simple rules to optimise their 
foraging success: (i) return to the same area and stay there 
and feed if food is abundant and (ii) if food is not available 
at the known feeding site, move until food is found. These 
findings suggest that hierarchical foraging strategies may 
provide the behavioural plasticity to respond to changing 
environments across large temporal and spatial scales for 
this highly migratory species.
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