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Abstract
Trophic interactions in the Antarctic Ocean are likely to be affected by changing environmental conditions. Some of these 
impacts can be observed, and predicted, by monitoring trace element concentrations in the tissues of animals at certain trophic 
levels. The ‘glacial’ squid (Psychroteuthis glacialis) is an ideal indicator species for measuring trace element bioaccumulation 
in the Ross Sea because it plays a central role in local marine food webs. Trace elements (Al, As, Cd, Co, Cu, Fe, Hg, Ni, 
Mn, Pb, U, V, and Zn) were measured in mantle and digestive gland tissues of 57 P. glacialis specimens, including juvenile 
and mature individuals. Significant differences in Al, As, Cd, Cu, Fe, Mn, V, and Zn concentrations were observed across 
life stages, with juveniles generally having the highest concentrations. As the bioaccumulation of most trace elements is 
influenced by diet, our results suggest different feeding patterns between juvenile and mature P. glacialis. In turn, it is likely 
that the life stage of P. glacialis individuals consumed by predators will determine trace element exposure higher up the 
trophic web. Overall, this Antarctic squid appears to be influenced by the trace element cycling in the Ross Sea and contains 
lower concentrations of trace elements than have been observed in squids in warmer waters.
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Introduction

The Ross Sea is considered to be the most productive and 
biodiverse region of the Southern Ocean (Smith et al. 2012). 
Changing environmental conditions have impacted this pris-
tine ecosystem over the past five decades through drastic 
sea-ice reduction and altered deep-sea circulation (Smith 
et al. 2012, 2014). Noticeable changes have been reported 
in the Ross Sea food web, including the foundational phy-
toplankton blooms (Orsi and Wiederwohl 2009), which are 
highly influenced by iron and the availability of other essen-
tial trace elements (Feng et al. 2010).

Trace elements are ubiquitous in the marine environ-
ment (Anderson 2020), although concentrations vary among 

oceanic regions, and some are influenced by depth (e.g., Hg 
(Choy et al. 2009) and Pb (Henderson and Maier-Reimer 
2002). Sources of trace elements in the world’s ocean can 
be either anthropogenic or naturally influenced (Tchounwou 
et al., 2012). The remote Southern Ocean is considered to be 
isolated from human inputs of trace elements. Several trace 
elements occur only at naturally low levels (e.g., Cu or Fe) 
within this region, and are a limiting factor for phytoplank-
ton blooms (Grotti et al. 2008; Loscher et al. 1997; Martin 
et al. 1990), while others occur in very high concentrations 
(e.g., Hg, Cossa et al. 2011). These blooms, in turn, impact 
all trophic levels in the Ross Sea (Pinkerton and Bradford-
Grieve 2014).

Some Southern Ocean marine invertebrates have been 
reported to have highly efficient trace element bioaccumu-
lation rates (Cipro et al. 2018), resulting in anomalously 
high concentrations at surprisingly low trophic levels, as 
has been observed for Cd in crustaceans such as amphipods 
(e.g., Duquesne et al. 2000; Bargagli et al. 1996), and also 
cephalopods (e.g., Bustamante et al. 1998a), bivalves (Mauri 
et al. 1990) and fish (Bustamante et al. 2003). These high 
Cd concentrations are hypothesized to result from co-accu-
mulation of the limiting essential elements such as Cu and 
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Fe (Petri and Zauke 1993; Koyama et al. 2000; Bustamante 
et al. 2002). Cephalopods in particular have high bioaccu-
mulation capacities. For example, Cd and Cu were reported 
in high concentrations in Todarodes sagittatus (Bustamante 
et al. 1998b), and these trace elements have recently been 
suggested as biomarkers of overall trace element availabil-
ity in marine ecosystems (Seco et al. 2020). In particular, 
pelagic squids have been used as a proxy to assess Hg con-
centrations in different ecosystems including the Southern 
Ocean (Seco et al. 2020).

Cephalopods play an important role in the Ross Sea food 
web (Pinkerton et al. 2010). The deep-sea oegopsid ‘gla-
cial’ squid Psychroteuthis glacialis, endemic to the waters 
south of the Antarctic polar front (Gröger et al. 2000), is 
an important prey item for a variety of predators such as 
seabirds—e.g., procellariiformes (Anderson et al. 2009), 
emperor penguins (Aptenodytes forsteri), and Adelie pen-
guins (Pygoscelis adeliae, Offredo et al. 1985)—marine 
mammals—e.g., Weddell seals (Leptonychotes weddellii, 
Lake et al. 2003), elephant seals (Mirounga leonina, Daneri 
et al. 2000)—and Antarctic toothfish (Dissostichus maw-
soni, Stevens et al. 2014). In light of its important trophic 
role, the present study is the first to investigate trace element 

concentrations in P. glacialis. Our specific aims were to: (1) 
analyze potential effects of sex (male, female) and matu-
rity (juvenile, adult) on trace element concentrations; (2) 
assess trace element concentrations in both digestive gland 
and muscular mantle tissue; and (3) analyze whether squid 
size or sampling location may influence concentrations of 
trace elements.

Material and methods

Sample collection

Specimens of Psychroteuthis glacialis were collected by 
the Research Vessel Tangaroa (National Institute for Water 
and Atmospheric Research, Ltd [NIWA]) during one voy-
age (TAN1901) to the Ross Sea in January and February 
2019. Samples were collected by bottom (demersal) trawls 
in depths of 600–1500 m and the sampling area ranged 
from 71°22′ to 76°02′ S and 169°13 to 177°14′ E (Fig. 1). 
In total, 57 individuals from 13 stations were analyzed for 
trace elements. The sample set consisted of 26 juveniles 
of undetermined sex (105–160 mm dorsal mantle length 

Fig. 1   Sampling locations of Psychroteuthis glacialis specimens collected in January 2019 (voyage TAN1901) in the Ross Sea, Antarctica
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[DML]), 25 submature to mature females (143–405 mm 
DML), and 6 submature to mature males (144–335 mm 
DML). Specimens were stored frozen at –20° C until dis-
section and trace element analysis.

Trace element analysis

Digestive gland and mantle tissue samples were 
freeze-dried, homogenized with mortar and pestle, 
and ~ 100–300 mg dry weight (dw) of each sample was 
digested in a 3:1 mixture of 70% HNO3 (Merck, suprapur 
quality) and 37% HCl (Merck, suprapur quality) in a 
microwave digestion system (Multiwave GO, Anton Paar 
GmbH, Austria) at 105 °C for 50 min. Following digestion, 
samples were diluted to a volume of 50 ml with Milli-Q 
water. Trace element analysis (Al, As, Cd, Co, Cr, Cu, Fe, 
Hg, Ni, Mn, Pb, V, and Zn) was conducted by inductively 
coupled plasma mass spectroscopy (ICP-MS, Agilent 
Technologies 7500 series and Agilent 8900, CA, USA) 
at the University of Canterbury, Aotearoa New Zealand 
(Lischka et al. 2020a). The protocol for the Hg analysis 
followed Aldridge et al. (2017). The quality of the analysis 
was assured by measuring four blanks, duplicate samples, 
and lobster hepatopancreas certified reference material 
(CRM; TORT-3, National Research Council, Canada). 
Uranium was analysed because of its potential relationship 
to sea-floor phosphorites (Baturin and Kochenov, 2001; 
Kolodny et al., 1970) and was measured by microwave 
plasma atomic emission spectroscopy (MP-AES 4200 
Agilent Technologies, Australia) with a detection limit of 
0.001 µg g−1 dw and a recovery rate for the certified refer-
ence material (QC1209; Sigma Aldrich) of 107%.

Detection limits (µg g−1 dw) were calculated as 3 × the 
mean standard deviation of the blanks and the solution 
concentration converted to a tissue concentration follow-
ing Lischka et al. 2021a: Al (1.73), As (0.05), Cd (0.01), 
Co (0.01), Cr (0.77), Cu (0.52), Fe (1.70), Hg (0.020), 
Mn (0.10), Ni (0.10), Pb (0.04), Se (0.09), U (0.001), V 
(0.03), and Zn (1.27). With each ten samples, a blank and 
lobster hepatopancreas CRM (TORT-3, National Research 
Council, Canada, n = 4) was measured. Mean recoveries of 
trace elements ranged between 80 and 102%.

Chromium concentrations were removed from the 
analysis and manuscript as concentrations above 2 µg g−1 
dw were frequently observed and are indicative of poten-
tial contamination of samples during sample storage or 
processing. We further removed Pb concentrations above 
2 µg g−1 dw and Ni concentrations above 5 µg g−1 dw from 
the analysis since the observed values appear to be outli-
ers based on a detailed comparison with other cephalopod 
trace element studies (e.g., Lischka et al. 2018; Lischka 
et al. 2021a, b).

Statistical analysis

Differences in trace element concentrations between the 
mantle and digestive gland tissue were visualized using 
principal component analysis (PCA) in R (Ihaka and Gen-
tleman 1996; R Core Team 2017; package ‘ggbiplot’, Vu 
2011). Prior to the PCA, concentration data were normalized 
and auto-scaled (mean centred and divided by the standard 
deviation). To test for relationships between trace elements, 
pairwise nonparametric Spearman correlations were applied 
(‘corr.test’ function of the ‘corrgram’ package, Wright 
2012).

To detect whether trace element concentrations were 
influenced by tissue type, size, sex, or sampling location, 
generalised linear models (GLM) with a negative binomial 
distribution and the logit link function were applied in R 
(package ‘MASS’, Ripley et al. 2013). For each trace ele-
ment, one model was fitted against non-transformed data. 
Variance homogeneity and distribution of the residuals was 
checked with diagnostic plots.

Results and discussion

Tissue distribution

Trace element concentrations of Co, Hg, and U did not vary 
significantly between mantle and digestive gland tissue 
(Tables 1, 2). While concentrations of Al, Fe, Mn, Ni, Pb, 
and Zn were significantly higher in the mantle tissue, As, 

Table 1   Trace element concentrations (mean, standard deviation [sd], 
minimum, maximum) in digestive gland and mantle tissue of Psy-
chroteuthis glacialis (µg g−1 dw)

Significantly higher concentrations (p-value ≤ 0.05) between the two 
tissues are highlighted in bold

Digestive Gland Mantle

mean ± sd min– max mean ± sd min– max

Al 22.6 ± 26.4 4.25– 151 31.6 ± 34.6 11.3– 270
As 7.83 ± 3.57 1.57– 17.2 5.88 ± 2.68 2.31– 14.4
Cd 19.0 ± 22.5 2.83– 123 0.19 ± 0.32 0.01– 1.90
Co 0.23 ± 0.12 0.07– 0.55 0.12 ± 0.11 0.03– 0.54
Cu 369 ± 220 105– 1465 136 ± 243 12.0– 1245
Fe 45.4 ± 55.5 8.91– 374 69.5 ± 59.8 11.6– 309
Hg 0.17 ± 0.08 0.06– 0.47 0.13 ± 0.08 0.02– 0.49
Mn 3.29 ± 1.82 1.13– 11.4 4.16 ± 2.08 1.55– 9.97
Ni 2.39 ± 1.32 0.43– 4.78 2.1 ± 0.85 0.61– 4.03
Pb 0.12 ± 0.10 0.04– 0.53 0.81 ± 0.51 0.14– 1.95
U 0.03 ± 0.01 0.01– 0.08 0.02 ± 0.01 0.01– 0.06
V 1.10 ± 0.76 0.38– 3.92 0.23 ± 0.12 0.06– 0.84
Zn 56.0 ± 32.3 20.7– 256 101 ± 62.3 49.7– 370
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Cd, Cu, and V concentrations were significantly higher in 
the digestive gland tissue (Table 2; S.Fig. 1). This is com-
parable to other studies where higher concentrations of Cd 
and Cu were measured in the digestive gland (e.g., Busta-
mante et al. 2002; Lischka et al. 2018). The digestive gland 
is the known storage organ for Cd and Cu where detoxifica-
tion processes take place (Penicaud et al. 2017). Therefore, 
higher concentrations can generally be expected than those 
observed in muscular mantle tissues. 

Cadmium has been shown to bioaccumulate in cephalo-
pods (Bustamante et al. 1998b); however, Cd concentrations 
have not been previously assessed in P. glacialis. In this 
study, mean Cd concentrations were 19 µg g−1 dw in the 

digestive gland and 0.19 µg g−1 dw in the mantle tissues 
(Table 1). These concentrations are lower overall than those 
reported in oegopsid species from other oceanic regions 
(e.g., Lischka et al. 2018; Table 3), such as Sthenoteuthis 
pteropus (Lischka et al. 2018) and Todarodes sagittatus 
(Bustamante et al. 2002). Cadmium concentrations fluctu-
ate depending on the season in the Ross Sea (Corami et al. 
2005), and Cd in surface waters is nearly depleted during 
the Antarctic summer months (Scarponi et al. 2000). It may 
be that Cd concentrations throughout the Ross Sea pelagic 
food web—especially during the austral summer—are 
accordingly lower, explaining the relatively low concentra-
tions measured in P. glacialis. Comparative studies across 

Table 2   Generalised linear 
model (GLM) results for trace 
element models from tissues 
of Psychroteuthis glacialis 
specimens from the Ross Sea

The p-values of the variables are shown according to likelihood ratio tests (*** 0.001, ** 0.01, * 0.05). 
Negative (↓) effects for the continuous variables dorsal mantle length (DML) are indicated by arrows

Al As Cd Co Cu Fe Hg Mn Ni Pb U V Zn

Tissue *** *** *** *** *** * *** *** *** ***
Sex ** ** *** *** *** *** * ***
DML ↓ *
Location *** *** *** * ***

Table 3   Trace element concentrations for Cd (digestive gland [DG]) and Fe (mantle and digestive gland) reported to date in oegopsid squid spe-
cies

Concentrations are shown as the mean ± the standard deviation. All concentrations are in µg g−1 dry weight
*Converted from wet weight

Species Cd DG Fe Mantle Fe DG Sampling location Study

Architeuthidae
Architeuthis dux 65.8 ± 43.1 Bay of Biscay Bustamante et al. 2008
Gonatidae
Gonatus fabricii 35 ± 15 18.7 57.5 Western Greenland Lischka et al. 2020a, b
Ommastrephidae
Illex argentinus 1003 ± 566 Central South Brazil Dorneles et al. 2007*
Illex coindetii 15 ± 5 Bay of Biscay Bustamante et al. 2002
Nototodarus gouldi 15 ± 12 346 ± 231 New Zealand Lischka et al. 2020a, b
Nototodarus gouldi 50 ± 25 745 South-East Australia Smith et al., 1984
Nototodarus sloanii 111 ± 95 16 ± 9 186 ± 95 New Zealand Lischka et al. 2020a, b
Ommastrephes bartrami 287 ± 202 399 ± 204 Southern California Martin & Flegal 1975
Sthenoteuthis oualaniensis 782 ± 255 319 ± 67 Southern California Martin & Flegal 1975
Sthenoteuthis oualaniensis 82 100 Ogasawara, Japan Ichihashi et al. 2001
Sthenoteuthis pteropus 748 ± 279 431 ± 173 Eastern Tropical Atlantic Lischka et al. 2018
Todarodes filippovae 246 ± 187 9.9 ± 4.8 92 ± 32 Indian Ocean Kojadinovic et al. 2011
Todarodes filippovae 98.5 ± 67.2 9.7 ± 5.2 183 ± 105 Tasmania Kojadinovic et al. 2011
Todarodes sagittatus 85 ± 37 Bay of Biscay Bustamante et al. 2002
Todarodes sagittatus 18 ± 12 Bay of Biscay Chouvelon et al. 2011
Onychoteuthidae
Moroteuthopsis ingens (female) 53 ± 103 18 ± 27 233 ± 216 New Zealand Lischka et al. 2020a, b
Psychroteuthidae
Psychroteuthis glacialis 19 ± 23 70 ± 60 45 ± 56 Ross Sea This Study
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different seasons would be helpful in understanding sea-
sonal Cd fluctuations in marine organisms, but sampling of 
Antarctic cephalopods during the winter months remains 
challenging.

Iron, an essential element, is considered a limiting factor 
in the Southern Ocean (De Baar et al. 1995). In this study, 
Fe and Zn were measured at higher concentrations in the 
mantle compared to the digestive gland tissue (Tables 1, 3). 
The higher concentrations of Fe in the mantle compared to 
the digestive gland tissues contrast with findings for Archi-
teuthis dux (Bustamante et al. 2008), Moroteuthopsis ingens 
(Lischka et al. 2020a), and Todarodes filippovae (Kojadi-
novic 2011). Iron has been reported to transfer from diges-
tive gland tissues to mantle tissues in the squid Doryteuthis 
patagonica during freeze-thawing processes (Falandysz 
1989). Since the squids analyzed in this study were freshly 
dissected, fluctuations between tissues are unlikely influ-
enced by squid processing. It may be that the lower iron 
availability in the Southern Ocean, especially during the 
summer months, might influence tissue migrations in P. 
glacialis (Olson et al. 2000). However, the tissues analyzed 
in this study provide a single snapshot in time and further 
bi-annual monitoring is needed. Higher Zn concentrations 
in the mantle tissue compared to the digestive gland tissue 
were observed in other oceanic squid species, e.g., M. ingens 
(Lischka et al. 2020a) and Gonatus fabricii (Lischka et al. 
2020b). This distribution pattern could be explained by a 
competition of Cd and Zn for binding sites in the digestive 
gland, leading to co-accumulation of Zn and a redistribution 
to muscular tissues (Lischka et al. 2020a).

Influence of sex and maturity on trace element 
concentrations

Concentrations of Al, As, Cd, Mn, V, and Zn were higher 
in juvenile than in mature male and female specimens 
(Fig. 2a–d, Table 2). Cadmium, Ni, Pb, and Zn have also 
been reported at higher concentrations in juvenile Gona-
tus fabricii than in mature specimens (Lischka et al. 2020b; 
Gerpe et  al. 2000). It could be that dietary differences 
between juvenile and mature P. glacialis contribute to dif-
ferences in trace element concentrations. Juvenile squids 
tend to have a more crustacean-rich diet compared to adult 
squids which mainly prey on fish (Bustamante et al. 1998b; 
Kear 1992). Since crustaceans are not known to regulate 
their intake of non-essential elements (unlike fishes), higher 
concentrations can be expected (Duquesne et al. 2000) and 
might contribute to the differences observed between juve-
nile and mature P. glacialis. Apart from dietary changes, 
changes in habitat might also influence those maturity 
related concentrations differences. Future studies focussing 
on the diet of P. glacialis in the Ross Sea might identify 
dietary preferences and feeding habits.

Mercury concentrations

The Hg concentrations measured in mantle (0.13 ± 0.08 µg 
g−1 dw) and digestive gland tissues (0.17 ± 0.08 µg g−1 
dw; Table  1) were comparable to previously measured 
Hg concentrations in muscle tissues of this species (e.g., 
0.18 ± 0.11 µg g−1 dw, Anderson et al. 2009). No relation-
ship was observed between mantle length and Hg concentra-
tions in this study.

While the present study focusses on trace elements in P. 
glacialis as a study organism, previous studies focussed on 
Hg in Antarctic seabird colonies and analysed P. glacialis 
Hg concentrations mainly in bird regurgitates (Anderson 
et al. 2009) or in comparison to other Antarctic cephalo-
pods (Seco et al. 2020). In the latter study, as in our pre-
sent findings, Hg concentrations did not differ between P. 
glacialis mantle and digestive gland tissues, but the overall 
concentrations of Hg were lower compared to this study 
(0.024 ± 0.021 µg g−1 dw; Seco et al. 2020). Differences 
between these two studies could be driven by sampling loca-
tion or temporal fluctuations. Bioavailable mercury concen-
trations can vary among different Antarctic regions based 
on productivity, bathymetry, and temperature differences 
(Mason and Fitzgerald 1993; Cossa et al. 2011; Brasso and 
Polito 2013). For example, depending on the environmental 
factors, mercury “hot spots” have been previously reported 
from various regions of the Antarctic Ocean (Brasso and 
Polito 2013; Zheng et al. 2015). Future monitoring of Hg 
concentrations in Antarctic cephalopods may improve our 
understanding of mercury cycling within various regions of 
the Ross Sea.

Conclusion

This study provides the first comprehensive baseline data 
on trace element concentrations in an abundant mid-water 
cephalopod species of the Ross Sea. Juveniles generally 
had higher concentrations of trace elements than were 
observed in mature individuals. Overall, the trace element 
concentrations measured in this study were lower than have 
been reported in cephalopods from tropical and subtropi-
cal waters. In this study, Fe concentrations were lower than 
those reported in cephalopods from other oceanic regions, 
reflecting the generally low bioavailability of this element 
in the Ross Sea. Future studies should focus on Fe concen-
trations and compare the low Fe concentrations observed 
in this study to top predator concentrations, to improve our 
understanding of iron cycling in such naturally low parts of 
the ocean. If possible, samples should also be collected and 
analysed from other seasons, to investigate potential tempo-
ral variability in the trace element concentrations observed 
herein.
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Fig. 2   Trace element concen-
trations in the digestive gland 
(DG) and mantle tissue of 
unsexed juvenile (J), and mature 
female (F) and male (M) P. gla-
cialis specimens. The boxplots 
present the mean concentra-
tion as well as the 25th and the 
75th percentile. 26 juveniles, 
25 females and 6 males were 
included in this study
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Fig. 2   (continued)
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The data presented in this study will be important for 
future comparisons and for mapping trace element concen-
trations in Southern Ocean cephalopods, which are crucial 
members of Antarctic food webs. A comparison of different 
cephalopods from Antarctic waters would be useful in con-
tinuing to investigate trace element cycling in the Southern 
Ocean. This could help in identifying areas with high con-
centrations, enabling an assessment of potential contamina-
tion of different Antarctic habitats.

Supplementary Information  The online version contains supplemen-
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