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Abstract
Three populations of the solar-powered sea slug Elysia crispata on reefs from the southern Gulf of Mexico and the Caribbean 
were analyzed. The aim was to describe and compare the changes in abundance and size of this species in different localities, 
as a function of depth and time-of-day. We hypothesized that differences in abundance would be related to locality, time of 
the day and depth, and differences in size would be related to locality and time of the day. Using snorkeling and SCUBA 
diving, all individuals within quadrats were counted and measured. A total of 680 organisms were recorded at Verde, Arcas 
and Puerto Morelos (PM) reefs at five times of the day (sunrise, morning, zenith, evening, and night) and depths of 0–13 m. 
Zero inflated negative binomial (ZINB) regressions adjusted to abundance data showed that E. crispata in Arcas and Verde 
reefs is expected to be more abundant (> 50) in shallow depths (< 2 m) at any time of the day except sunrise, whereas a low 
abundance (≤ 1 organism) is predicted in PM regardless of depth and time-of-day. According to linear models, size was not 
related to depth, but was related to locality and time-of-day, with sea slugs from Arcas and Verde having similar size, and 
both larger than those in PM. This information suggests that this sea slug is capable of moving within the reefs and helps to 
understand the unique biological phenomena of kleptoplasty.
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Introduction

Light conditions in the ocean depend on the amount of radia-
tion reaching different areas, due to variations in the sun’s 
angle throughout the day, as well as depth, turbidity and 
other parameters (Kirk 2011). Light is a resource for auto-
troph organisms because it represents the source of energy to 
maintain metabolic functions, but it also represents a limit-
ing condition. In mobile animals with photosynthetic capac-
ity, it can determine physiological and behavioral aspects, 
such as activity peaks (circadian rhythms) or be the cue to 
initiate certain displays, such as food searching or predator 
avoidance (Begon et al. 2006). Light changes, thus, define 
the occurrence and distribution of all photosynthetic organ-
isms (Lalli and Parsons 1997), and animals with photosym-
bioses are no exception (Melo Clavijo et al. 2018).

Sacoglossan sea slugs (Mollusca: Gastropoda) are the 
only metazoan group that can retain and keep functional for 
months the chloroplasts from the algae they feed on (Hän-
deler et al. 2009). As these mollusks can benefit from the 
maintenance of the foreign organelles through the obten-
tion of energetic products from their photosynthesis (Laetz 

Responsible Editor: R. Rosa.

 * Maite Mascaró 
 mmm@ciencias.unam.mx

1 Posgrado en Ciencias Biológicas, Unidad de Posgrado, 
Edificio D, 1° Piso, Circuito de Posgrados, Ciudad 
Universitaria, Alcaldía Coyoacán, C.P. 04510, Mexico City, 
México

2 UMDI-Sisal, Facultad de Ciencias, Universidad Nacional 
Autónoma de México, Puerto de Abrigo S/N, Sisal, Yucatan, 
Mexico

3 International Chair for Coastal and Marine Studies, Harte 
Research Institute for Gulf of Mexico Studies, Texas 
A and M University-Corpus Christi, Corpus Christi, TX, 
USA

4 Laboratorio Nacional de Resiliencia Costera, Laboratorios 
Nacionales, CONACYT , Mexico City, México

5 Laboratory for Innovation and Sustainability of Marine 
Biological Resources (ECOMARE), Department of Biology, 
Centre for Environmental and Marine Studies (CESAM), 
University of Aveiro, Campus Universitário de Santiago, 
3810-193 Aveiro, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s00227-023-04301-5&domain=pdf
http://orcid.org/0000-0002-8748-8154
http://orcid.org/0000-0001-7490-3147
http://orcid.org/0000-0003-4775-8161
http://orcid.org/0000-0003-3614-4383


 Marine Biology (2023) 170:154

1 3

154 Page 2 of 14

et al. 2017; Cruz et al. 2020; Cartaxana et al. 2021), they 
have been named “solar-powered” sea slugs (Rumpho et al. 
2000). The retention time of this process (also known as 
kleptoplasty) depends on the slug species, the algal source of 
the chloroplasts (kleptoplasts) and the light conditions (Cruz 
et al. 2013; de Vries et al. 2014). Light intensities mediate 
the photosynthesis within the animal cells, thereby affect-
ing its fitness as well as kleptoplast survival (Vieira et al. 
2009; Cruz et al. 2015). For instance, moderate irradiance in 
the habitat of Plakobranchus ianthobaptus can increase its 
fitness through kleptoplast survival (Donohoo et al. 2020), 
while high light intensities can decrease photosynthetic per-
formance in Elysia timida and Elysia viridis (Vieira et al. 
2009; Cruz et al. 2015; Cartaxana et al. 2018, 2019).

Elysia crispata is the most conspicuous solar-powered sea 
slug in the Gulf of Mexico and the Caribbean. Because of 
its large size (can reach 150 mm in length), it can be easier 
to find than other slugs. It is common on a broad variety of 
substrata all year long (e.g., dead coral, sea grass, algae and 
under rocks), inhabiting borrow pits and mangrove lagoons, 
as well as coral reefs throughout the Caribbean at up to 25 m 
depth (Sanvicente-Añorve et al. 2012; Camacho-García et al. 
2014; Krug et al. 2016). Clark (1994) suggested the exist-
ence of two subspecies of E. crispata, one inhabiting man-
grove areas and another living in coral reefs, and Pierce et al. 
(2006) later proposed a new species named Elysia clarki for 
the mangrove slugs. Krug et al. (2016) recently analyzed the 
populations and confirmed that E. crispata was a single spe-
cies. Nonetheless, the latter study recognized two ecotypes 
coinciding with the proposed separation by Clark (1994): 
clarki animals of a more consistently green coloration, that 
inhabit shallow, low energy waters, with less light incidence; 
and crispata animals of more variable body coloration that 
are present in deeper, high energy waters with more light 
(Pierce et al. 2006; Krug et al. 2016). This species can keep 
functional kleptoplasts for up to 4 months, hence it is consid-
ered a long-term retention species (Curtis et al. 2010). These 
characteristics make E. crispata an ideal model to study the 
ecology of photosynthetic animals.

Field studies regarding sacoglossan sea slugs are difficult 
to perform, as they are small sized animals, cryptic in the 
substrate (host algae) they are usually associated to and a 
high effort is required to obtain data, challenging the stud-
ies of their populations (Clark 1994; Jensen 1994). Despite 
these adversities, some species have been studied in situ. For 
instance, Baumgartner and Toth (2014) found that size and 
abundance of E. viridis vary among seasons and depend on 
the host algae: larger but fewer individuals were found on 
Cladophora rupestris in autumn, whereas smaller ones were 
more abundant on Cladophora sericea in summer. These 
authors hypothesized that predation might explain the dif-
ferences in abundance and size of E. viridis between algal 
hosts and time of year.

Research on E. crispata has focused on describing bio-
chemical and biomolecular components (Gavagnin et al. 
1996, 1997; Middlebrooks et al. 2012; Vital et al. 2021), 
photosynthetic activity (Curtis et al. 2006; Christa et al. 
2015), physiology related to kleptoplasty (Curtis et al. 2006, 
2007, 2010; Middlebrooks et al. 2019) and even microbiota 
(Mahadevan and Middlebrooks 2020). In general, this spe-
cies has been found to have a long-term retention of chlo-
roplasts from different algae, with a good physiological 
condition after months of starvation. Population studies of 
E. crispata have only been conducted in Florida in man-
grove swamps and pits, and most of them focused on the 
clarki ecotype (Clark 1994; Middlebrooks et al. 2014, 2020). 
Equivalent studies of this species in coral reefs in their west-
ern distribution are still lacking and would provide relevant 
information of this interesting biological model.

Light conditions influence the transfer of carbon and 
nitrogen from kleptoplasts to sea slugs (Cruz et al. 2020; 
Cartaxana et al. 2021). While ecological research efforts 
have mainly focused on the relation between light and Ely-
sia’s physiology and behavior (Schmitt and Wägele 2011; 
Miyamoto et al. 2015; Cartaxana et al. 2018), studies on its 
natural distribution are scarce. There is evidence that klep-
toplast photosynthesis minimizes weight loss and size reduc-
tion, and increases survival in E. viridis, E. timida and E. 
chlorotica under starving conditions (Giménez-Casalduero 
and Muniain 2008; Pelletreau et al. 2014; Cartaxana et al. 
2017). In addition, the growth rate of E. viridis relative to the 
rate in which it consumes algae (i.e., efficient growth) has 
been correlated with exposure to regular light and increased 
photosynthesis (Baumgartner et al. 2015). Thus, it is reason-
able to expect that light conditions influence the abundance 
and size of E. crispata by limiting its access to photosyn-
thetic resources.

Solar-powered sea slugs will thrive in habitats where opti-
mum light conditions are met. Light conditions vary both 
between localities and with depth due to the vertical attenu-
ation of light caused by absorption, scattering and diffraction 
(Kirk 2011), and other factors related to it (e.g., turbidity). 
In addition, individuals at any site will experience variations 
in the quality and quantity of light throughout a 24-h period. 
Circadian rhythms in sea slugs have been documented to 
be present in swimming and crawling behaviors (Melibe 
leonina, Newcomb et al. 2014) and the opening and closing 
of the parapodia (E. timida, Monselise and Rahat 1980). 
However, the need of light by photosynthetic sacoglossans 
makes them vulnerable to photodamage and predation, espe-
cially at higher light intensities, where the probability of 
location by visual predators is increased (Weaver and Clark 
1981). If sea slugs can move within a small spatial scale 
between places with varying light quality (e. g. from the 
top of a dead coral to a crevice nearby), then individuals of 
different size would occur in different numbers throughout 
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the day. Information on changes in size and abundance of 
E. crispata throughout a 24-h period will help understand 
the patterns and time scales of sea slug activity and mobility 
within the reef. Therefore, the aim of the present study was 
to describe and compare changes in size and abundance of 
three populations of E. crispata in Southern Gulf of Mexico 
and the Mexican Caribbean, as a function of time of the day 
and depth. We hypothesized that differences in abundance 
would be related to locality, time of the day and depth, and 
differences in size would be related to locality and time of 
the day.

Materials and methods

Study area

Field studies in three coral reefs of the Gulf of Mex-
ico and Caribbean were conducted: Verde (19°12′09′′ 
N, 96°03′58′′ W) in August 2018 and June 2019, Cayo 
Arcas (20°13′12′′ N, 91°58′22′′ W) in April 2018 and 
Puerto Morelos (20°50′59′′ N, 86°52′23′′ W; Fig. 1) in 

March and July–August 2019. Verde, located 5 km off 
the coast, is part of the reef system “Sistema Arrecifal 
Veracruzano-SAV” in Southern Gulf of Mexico, and has 
a marked seasonal variation in salinity, temperature, and 
turbidity. These variation are due to the influence of three 
major rivers flowing into the Gulf of Mexico and winter 
winds locally known as “nortes” (Salas-Perez and Gra-
nados-Barba 2008; Mateos-Jasso et al. 2012). Arcas is a 
remote reef located 128 km off the coast of Campeche 
in the Yucatan and Campeche Bank-YCB (Tunnell 2010). 
Puerto Morelos (PM) is part of the Mesoamerican reef in 
the Mexican Caribbean-CAR and is located at an approxi-
mate distance ranging from 500 m to less than 3 km paral-
lel to the coast. The continental platform in the Yucatan 
Peninsula is karstic with little or no transport of suspended 
sediments to the sea; thus, the coastal influence on the 
reef is minimal and waters are usually clear (SEMARNAP 
2000). These coral reefs were selected because variations 
in the abundance and distribution of E. crispata between 
them are probably related to the diverse biological, geo-
logical, physical and chemical processes occurring within 
each region (SAV, YCB, CAR) (Carrillo et al. 2007).

Fig. 1  Localities where populations of Elysia crispata were studied in Southern Gulf of Mexico and Caribbean: Arcas (YCB), Verde (SAV) and 
Puerto Morelos (CAR). Map created by authors in ArcGIS
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Sampling design and fieldwork

Quadrats (1 and 25  m2) were haphazardly sampled in differ-
ent sites of the three localities at five different times of day: 
sunrise (57), morning (48), zenith (78), evening (86) and 
night (55). Sampled quadrats were located at either side of 
different transects (20–40 m) which were used as guides to 
facilitate the identification of the area that had been searched 
and assure it was not sampled repeatedly. Searching times 
ranged between 0620 and 0745 h (sunrise), 0930 and 1110 h 
(morning), 1200 and 1340 h (zenith), 1700 and 1930 h 
(evening) and 2040 and 2300 h (night). By means of snor-
keling and SCUBA diving, all individuals of E. crispata in 
each quadrat were counted and measured (head–tail length) 
with a Vernier caliper (± 0.1 mm). Sea slugs on all types of 
substrata occurring within each quadrat were counted and 
measured but were never collected. As sacoglossan sea slugs 
are cryptic, we reduced searching bias by only using expe-
rienced divers in sampling trips and dive lights were used 
during night searches. Depth and light intensity were meas-
ured with a dive computer (Hollis DG03) and a light logger 
(HOBO® Pendant MX2202, Onset Computer Pocasset, MA, 
USA, with a precision of ± 1–40 lx), respectively. Measure-
ments were recorded every time that slugs were found and 
averaged per sampling unit. Light units were converted to 
µmol photons  m–2  s–1 following Thimijan and Heins (1983) 
to facilitate comparison with other studies.

Statistical analyses

To model the number of sea slugs as a function of reef 
(Verde, Arcas and PM), time-of-day (sunrise, morning, 
zenith, evening, night) and depth (from 0 to 13 m), a zero-
inflated negative binomial (ZINB) generalized linear model 
with a log link function was used. The log link function 
ensures positive fitted values, while the negative binomial 
distribution is typically used for count data with many 
zero observations and strong overdispersion (Zuur et al. 
2009). The ZINB model has two components to estimate 
the expected values of abundance as a function of a set of 
explanatory variables: a logit (zero inflated) component 
to assess the probability of finding false zeros and a nega-
tive binomial (count) component to predict the number of 
individuals.

Absence of organisms (zeros in counts) could be the 
result of (1) sampling in habitats that are unsuitable for the 
species, (2) poor experimental design or sampling practices, 
(3) the lack of experience or otherwise ability to identify 
specimens by the observer, (4) sampling in habitats that 
are suitable, but contain unexploited sites or (5) sampling 
outside the distribution range of the species, among oth-
ers (Zuur et al. 2009). Thus, true zeros refer to the real 
absence of organisms in that site, while false zeros refer to 

the inability to record organisms where they are most likely 
to be found. When the probability of finding a false zero is 
low, then, a recorded zero will truly reflect the absence of 
an organism (i.e., it is likely to be a true zero). By contrast, 
when the probability of finding a false zero is high, then, 
the study might not have been able to record true zeros (for 
instance, individuals could have been at the sampling site, 
but passed unnoticed by the observer). In ZINB models, if 
you find organisms in any of the conditions studied, their 
abundance will be predicted by the NB component of the 
model, hence the expected abundance would be consistent 
with having recorded them.

The terms in the ZINB model were reef (categorical fac-
tor with three levels), time-of-day (categorical factor with 
five levels), and depth (continuous). The interaction term 
was depth × time-of-day in the logit component:

ECi represents the abundance (counts) of E. crispata in 
observation i, which follow a negative binomial distribution 
with mean �i , k as the dispersion parameter and �i as the 
probability that observation ECi is a false zero. We simpli-
fied the notation for the predictor function by omitting the 
regression parameters that are usually provided before the 
variable names (Zuur et al. 2009).

The procedure to select the optimal ZINB model con-
sisted of dropping terms one by one in a systematic order and 
deciding whether they were likely to pertain to the model. 
To assist each decision the Akaike Information Criterion 
(AIC) and likelihood ratio tests were used (Zuur et al. 2009). 
Since all three reefs had suitable habitats for this species, 
we considered that origin of false zeros were most likely 
explained by differences in time-of-day (TOD) or depth, but 
not by differences between localities. Thus, the initial full 
model in the count component included reef, TOD, depth, 
and the interactions of depth with reef and time, whereas 
TOD, depth and their interaction were included only in the 
logit component.

In addition, a linear model was adjusted to the size 
data using depth, reef, TOD and the interaction of reef 
and TOD as explanatory variables. A model selection 
sequence based on F tests similar to the one described 

ECi ∼ ZINB(�i,k,�i)

E(ECi) = �i ×
(

1 − �i
)

and var
(

ECi
)

=
(

1 − �i
)

× �i ×

(

1 + �i × �i +
�2
i

k

)

log(�i) = �1 + Reef + Depth

logit(�i) = �2 + Time of Day + Depth + Time of Day × Depth.
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previously, was used to find the best combination of vari-
ables explaining changes in sea slug size. This proce-
dure showed that the model including reef and TOD and 
their interaction was the optimal model. Tukey’s tests for 
unequal N samples were then performed to assess signifi-
cant differences in size between reef and TOD once these 
terms resulted statistically significant (Zar 2009). As a 
low number of organisms were found in PM reef (N = 7), 
size data from this reef were only described and not con-
sidered in the hypothesis testing procedures.

Models were validated by visual analysis of the residu-
als using plots of Pearson residuals versus fitted values 
and each explanatory variable (Zuur et al. 2010). The best 
ZINB model derived from these procedures included reef 
and depth for the count data, while the best model for the 
binomial data included TOD, depth, and the interaction 
between them. All statistical analyses and graphs were 
performed in R v. 3.5.3 (R Core Team 2019), using stats 
v3.5.3 (R Core Team 2019), pscl v.1.5.1 (Jackman et al. 
2017), lmtest v. 0.9–37 (Hothorn et al. 2019) and ggplot2 
v3.3.5 (Wickham et al. 2021) packages. Differences were 
considered significant at p < 0.05 (Zar 2009).

Results

A total of 680 organisms of E. crispata was recorded in 
Verde, Arcas and PM reefs at five moments of the day (sun-
rise, morning, zenith, evening, night) and depths ranging 
from 0 to 13 m. Sampling covered a similar area of ~ 1.5 km 
in PM and Verde, but was reduced to 0.44  km2 in Arcas. 
Despite differences in sampling effort, Arcas and Verde had 
a more similar sea slug density compared to PM, where only 
seven individuals of E. crispata were recorded (Table 1).

Arcas and Verde slugs resembled the description of the 
crispata ecotype in possessing a completely white foot, 
whereas sea slugs from PM had a darker green colora-
tion and presented green diverticula in the foot, similar to 
the clarki ecotype (Fig. 2). Sea slugs were usually found 
exposed on top of hard substrates, such as coral fragments 
and coral pavement, yet some individuals were spotted on 
algae of the genus Halimeda and Padina. In general, few 
macroalgae species consistent with their potential food 
sources were observed near the sea slugs. An unidentified 
filamentous green alga was frequently found on the rocky 
substrates where sea slugs were common.

Measured at zenith (1200–1340 h), the overall mean light 
intensity was the highest at Arcas (309.78 ± 282.12 µmol 

Table 1  Number of sites 
sampled, depth range and total 
sampled area at each locality

The number and average density of E. crispata individuals recorded at each locality is also included

Locality Number of 
sites

Depth (m) Sampled area 
 (m2)

Number of indi-
viduals

Density 
(individuals 
 m–2)

Arcas 11 0.5–11 440 152 0.35
Puerto Morelos 9 1.5–10.5 1450 7 0.005
Verde 18 1–13 1546 521 0.63

Fig. 2  Elysia crispata found in Verde (a), Arcas (b) and Puerto More-
los (c). Sea slugs from Verde and Arcas resembled the description 
of the crispata ecotype, whereas slugs from PM had some charac-

teristics of the clarki ecotype (darker green coloration and presented 
green diverticula in the foot)



 Marine Biology (2023) 170:154

1 3

154 Page 6 of 14

photons  m–2  s–1), followed by PM (289.68 ± 195.22 µmol 
photons  m–2   s–1), and Verde with the lowest mean light 
intensity (148.52 ± 187.30 µmol photons  m–2   s–1). Light 
intensity also varied with depth (Fig. 3). In Arcas and Verde, 
light intensity decreased as depth increased, with mean val-
ues of 258.76 ± 188.4 µmol photons  m–2  s–1 at < 5 m and 
131.73 ± 224 µmol photons  m–2  s–1 at > 5 m deep. In PM, 
however, abnormally high values of light intensity were 
recorded at 10.5 m deep (Fig. 3).

Abundance

The highest numbers of slugs were found in Verde (521), 
followed by Arcas (152), and the lowest number of indi-
viduals was found in PM (7). When the times of day were 
considered, the highest number of organisms was found 
during night (203), followed by zenith (184) and evening 
(157), while the lowest during morning (58) and sunrise 

(78). Despite having a lower sampling effort in Arcas (i.e., 
less area sampled), the data was analyzed because it provides 
information of a very isolated population of sea slugs.

The zero-inflated component of the ZINB model describ-
ing the absence of sea slugs showed that the interaction 
between TOD and depth was statistically significant (Chi-
square test, χ2 = 32.898, P < 0.001), indicating that the 
probability of finding E. crispata changes with depth and 
these changes vary depending on the time-of-day (Table 2). 
During sunrise, the likelihood of false zeros decreased with 
depth, while in the morning, zenith, evening, and night, 
the likelihood of finding false zeros increased with depth 
(Fig. 4a). Therefore, the model suggests that the true absence 
of sea slugs at any time-of-day, except sunrise, is likely to 
decrease with depth.

Once the condition of finding slugs was met, the nega-
tive binomial component of the model predicted the 
number of individuals that would be found. This logistic 

Fig. 3  Light intensity as a 
function of depth measured in 
quadrats where Elysia crispata 
were sampled at zenith (1200–
1340 h) in Arcas (n = 10), Verde 
(n = 54) and Puerto Morelos 
(n = 14)

Table 2  Results of the model 
selection procedure applied to 
the NB segment

The terms in the model are the combination of explanatory variables included in each model tested, 
together with the corresponding degrees of freedom (df) and Akaike Information Criteria (AIC). At each 
step, a model containing all but the term dropped was taken as the full model and the term’s contribu-
tion assessed by means of a likelihood test using χ2; p is the probability of the observed χ2 under the null 
hypothesis of no contribution
D depth, R reef, TOD time-of-day

Terms in the model df AIC Term dropped χ2 p

R + TOD + D + R:D + TOD:D 25 967.70 None
R + TOD + D + R:D 21 964.55 TOD:D 4.85 0.303
R + TOD + D + TOD:D 23 989.13 R:D 25.08  < 0.001
R + D + R:D 17 962.83 TOD 11.01 0.201
R + D 15 980.66 R:D 32.89  < 0.001
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component predicts a decrease in the number of slugs with 
increasing depth in all three reefs. Nevertheless, the over-
all predicted counts in Arcas and Verde are much higher 
at lower depths compared to PM (Fig. 4b). In summary, 
the ZINB model showed that E. crispata in Arcas and 
Verde is expected to be more abundant (> 50 individuals) 
in shallow depths (< 2 m) at any time of the day, except 

sunrise, when true zeros are most likely. By contrast, low 
abundance (≤ 1 organism) is estimated in PM at all depths 
considered (Fig. 4c). The model, for example, implies that 
if there was an unfruitful search for this species in waters 
deeper than 6 m during the night in Verde and Arcas, sea 
slugs were probably there, but we failed to find them. In 

Fig. 4  Zero inflated negative binomial (ZINB) regressions adjusted 
to abundance data of Elysia crispata in the three localities studied 
(reefs: Arcas, Verde and Puerto Morelos) at five times of the day 
(sunrise, morning, zenith, evening, and night). a) Probability of find-
ing false zeros of E. crispata in different times of day and depths; 

b) predicted counts of E. crispata in the three localities and depths 
studied; c) expected values of E. crispata considering the explanatory 
variables included in both components of the ZINB model; “others” 
represent all times of day, except sunrise
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the event of finding them, the abundance of slugs would 
nonetheless have very low numbers (< 2 individuals).

Size

The smallest recorded individual (9 mm) was found in 
Arcas during zenith, whereas the three largest (70 mm) were 
found in Verde in the evening. Only small organisms were 
observed in shallower waters, and no sea slugs smaller than 
20 mm were found deeper than 7 m. Despite these contrast-
ing numbers, the observed changes in size with depth did not 
show statistical significance (F (1,663) = 0.365, P = 0.545; 
Online Resource 1 and 2).

The size of E. crispata, however, was statistically related 
to reef and TOD, as showed by the significant interaction 
term (F (4,666) = 8.66, P < 0.001; Online Resource 2). Pair-
wise comparisons indicated that sea slugs sampled during 
the morning, zenith and evening in Verde were larger than 
those sampled at the same TOD in Arcas (P < 0.05). None-
theless, sea slugs sampled at sunrise and night were similar 
in size (P > 0.05; Fig. 5). Sea slugs from PM ranged from 10 
to 25 mm in length and their mean size was 18.42 ± 4.64 mm 
(± SD).

Discussion

Decades of research in the laboratory have addressed the 
role of kleptoplasts in the fitness and survival of solar-pow-
ered sea slugs (see review by Wägele and Martin 2014). 
Still, the aspects of their abundance and distribution in their 
natural environments are unknown for most of the species. 
Even though E. crispata is a widely distributed and common 
species in the Caribbean, there are few records in the three 

localities studied herein (Gavagnin et al. 1997; Zamora-
Silva and Ortigosa 2012; Ortigosa and Simões 2019). In 
preliminary field studies in the remote coral reef islands of 
Alacranes and the submerged shallow reef (10 m) at Bajos 
del Norte, both located in the Southern Gulf of Mexico, we 
found 95 and 26 organisms of E. crispata, respectively. How-
ever, in coastal reefs 23 km off the coast of Sisal, Yucatan 
(Madagascar and Bajo de 10), no organisms of this species 
were found, confirming previous reports (Ortigosa et al. 
2013) as well as potential distribution predictions (Jiménez 
et al. 2021). It appears that not only the abundance of E. 
crispata is markedly variable, but its distribution is patchy 
with high numbers in some localities (e.g., Verde and Arcas) 
compared to very low occurrence in others (e.g., PM). Such 
heterogeneity poses a challenge in terms of describing and 
predicting the occurrence of E. crispata in the natural envi-
ronment. Together with the sea slug’s cryptic nature, these 
irregular patterns allow for debate on the causes that explain 
its absence in places where they could be plausibly expected. 
To attend this difficulty, the model used in our study (ZINB) 
enables to assess the probability of the true absence of sea 
slugs at different combinations of time-of-day and depth (in 
contrast with a false absence associated to a reduced ability 
of detection). Our results suggest that an effective detection 
of E. crispata depends on the light conditions found at cer-
tain depths and times of day.

Jiménez et al. (2021) found that distance to the coast was 
the best predictor with the highest contribution in the niche 
modeling of Elysia (including E. crispata) from the Car-
ibbean. The authors associated this result to the fact that 
areas closer to the coast usually have more light availability 
because they are shallower, warmer and more productive. 
The characteristics of shallow waters can be found in reefs 
far from the coast, where large numbers of these organisms 

Fig. 5  Size of Elysia crispata at 
different times of day, sunrise, 
morning, zenith, evening and 
night in two localities, Arcas 
and Verde reefs. The line 
represents the median, top and 
bottom of the box are the 25th 
and 75th percentiles, the whisk-
ers represent the maximum and 
minimum values, and dots are 
outliers
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can be expected. Despite Arcas is noticeably more distant 
from the coast than Verde and PM, it has three islands that 
fulfill the description of the niche modeled for Elysia (Jimé-
nez et al. 2021): high light availability due to shallow, warm, 
and productive waters. Accordingly, less favorable condi-
tions for sea slugs should include turbidity, and excess of 
sediment. These conditions are present in Verde (at least in 
certain seasons; Mateos-Jasso et al. 2012; Avendaño et al. 
2019), yet this reef had a high abundance of sea slugs. In 
addition, mangrove lagoons and borrow pits are character-
istic of another recognized habitat of the clarki ecotype in 
Florida (Middlebrooks et al. 2014). Taken as a whole, these 
results suggest that this species can inhabit a wide range of 
environmental conditions.

Studies in laboratory have shown that sacoglossan sea 
slugs regulate the potentially harmful excess of light through 
behavioral and physiological mechanisms (Jesus et al. 2010; 
Cartaxana et al. 2018). The differences in abundance of E. 
crispata found between Arcas, Verde and PM might be 
related to different light conditions (Fig. 3), particularly if 
turbidity is acting as a light regulator through the absorp-
tion by suspended particles (Carruthers et al. 2001). Verde 
is reported to have a high turbidity as the result of substan-
tial discharge of Jamapa, La Antigua and Papaloapan rivers 
(Avendaño et al. 2019; Liaño-Carrera et al. 2019), while 
Arcas and Puerto Morelos usually present clear waters 
(SEMARNAP 2000; Chávez et al. 2007). Despite the con-
trasting conditions of Arcas and Verde, E. crispata were 
found in similar abundances, signaling that other factors 
such as food accessibility, larval availability or conditions 
at a microhabitat scale might be determinant in the distribu-
tion of this species.

While sampling in Arcas, Verde and PM took place 
from March to August, it is unlikely that seasonal vari-
ability in environmental factors are responsible for the dif-
ferences in sea slug abundance found between the reefs. 
Differences in temperature and photoperiod, which have 
been signaled as important factors regulating sea slug tem-
perate populations (Clark 1975; Mondy and Pierce 2005), 
are less extreme in tropical than in temperate waters, and 
E. crispata occurs almost all year around in coral reefs 
of the Southern Gulf of Mexico and Mexican Caribbean 
(Gavagnin et al. 1997; Sanvicente-Añorve et al. 2012; 
Zamora-Silva and Ortigosa 2012; Ortigosa and Simões 
2019). Moreover, the most contrasting abundances found 
in this study were between Puerto Morelos and both, 
Arcas and Verde, yet PM and Verde were both sampled in 
the same months. During this study, massive sargassum 
arrivals affected the area near PM. Sargassum so vastly 
accumulated can decrease light illuminance almost 75% 
(van Tussenbroek et al. 2017; Hendy et al. 2021) and such 
events can also increase temperature and decrease pH 
and oxygen concentrations (van Tussenbroek et al. 2017; 

Hendy et al. 2021). These factors are known to affect both 
the normal development and kleptoplasty of E. crispata, 
through bleaching and causing body deformities (Dioní-
sio et al. 2017, 2018). As there is no previous data on the 
occurrence of E. crispata in PM, we can only suggest that 
sargassum arrivals could have been a cause for the low 
density of individuals found in this study.

Microhabitat availability is distinct between localities 
(Withers and Tunnell 2007), and could be providing dif-
ferent types of refuge for the slugs to take cover at different 
times of the day. As previously reported (Weaver and Clark 
1981; Middlebrooks et al. 2014; Krug et al. 2016), most 
individuals in the present study were found on top of hard 
substrates without algae. Weaver and Clark (1981) suggest 
that this could be a tactic to increase photosynthesis; how-
ever, in Bahamas it is common to find E. crispata on the 
underside of rocks in < 2 m depth (Redfern 2013). It is pos-
sible that the occurrence of sea slugs on substrate depends 
on microhabitat conditions at a smaller spatial scale, which 
in turn, vary with depth (Chávez et al. 2007). In Verde, for 
example, crevices are common at most of the depths, but 
they are less frequent both in shallow waters and close to 
the reef lagoon. By contrast, the reef lagoon has larger rocks 
and sea grass patches that provide shade in these otherwise 
luminous shallow waters. The great variety of microhabitats 
found in these coral reefs can be expected to serve as shelter 
for slugs to avoid highly irradiated waters, a condition that 
could be physiologically limiting (Vieira et al. 2009).

The low abundance of E. crispata with increasing depth 
could be related to the reduction of resources at deeper 
waters. Macroalgae abundance and diversity can change 
with increasing depth in the reef system (SAV) where Verde 
is located (Horta-Puga et al. 2020). Adults from this spe-
cies apparently consume a wide variety of macroalgae (Vital 
et al. 2021) but we rarely observed sea slugs associated to 
any macroalgae in the present study. Middlebrooks et al. 
(2014) also found low occurrence of E. crispata associated 
to their algal food in a completely different habitat in Flor-
ida. Adults might be temporarily staying at lower depths to 
lay eggs in algae and, moving back to deeper waters, as it 
has been suggested in other sea slugs (Willan 1979). While 
juvenile E. crispata have a narrower food range compared to 
adults (Curtis et al. 2007), the induction of metamorphosis 
in the larvae does not depend on the presence of a particular 
food source (Krug 2009). It is possible that juveniles were 
consuming filamentous green algae other than Bryopsis plu-
mosa or Derbesia tenuissima (Curtis et al. 2007), such as the 
one we observed near the rocky substrates where organisms 
were frequently found. Overall, these results suggest that the 
presence of food sources is unlikely to be the main factor 
determining the occurrence of this species within its geo-
graphical distribution, but further research should consider 
the feeding ecology of larval and juvenile stages.
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A weak association of E. crispata to its food sources 
would allow sea slugs to explore deeper waters under con-
ditions of low abundance or even absence of food. Within 
aquatic ecosystems irradiance decreases and the spectral 
composition of light changes with depth, thereby influencing 
photosynthetic activity (Hill 1996). Long (red) wavelengths 
are absorbed at the first few meters and short (blue) wave-
lengths are the last to be absorbed as the depth increases 
(Kirk 2011). Moving deeper could be an advantageous strat-
egy for sea slugs exploring lower light intensities, although 
limits to such advantages are surely imposed by the pigments 
in their chloroplasts and how these respond to the varying 
wavelengths. Elysia crispata has a wide variety of pigments 
in its chloroplasts and its composition and concentration do 
not seem to be related to depth (Vital et al. 2021), which 
might represent an advantage to them. The relationship 
between pigment concentration and light preferences by sea 
slugs, hence, constitutes an interesting area of research yet 
to be investigated.

In the present study we confirmed the significant effect of 
TOD as a relevant factor predicting both sacoglossan occur-
rence and size, and suggest that they have circadian rhythms 
as do other sea slug groups (Newcomb et al. 2014). A daily 
pattern with a lower number of organisms of E. crispata 
at sunrise was statistically identified in Arcas and Verde, 
suggesting that sea slugs are capable of moving within the 
reef. Light wavelengths vary with the angle of the sun as it 
changes throughout the day. If sea slugs respond to daily 
variations in light by moving, its quality and quantity could 
be determining sea slug presence in these reefs. Research 
on circadian rhythms in sea slugs is very scarce, but studies 
on E. timida in the laboratory and their habitat suggested 
the presence of a biological clock that partially controls its 
parapodial behavior (Rahat and Monselise 1979; Monselise 
and Rahat 1980). During daylight, Plakobranchus ocellatus 
seems to take cover on the underside of rocks or by burrow-
ing in the sand (Tanamura and Hirose 2016); likewise, E. 
crispata might move to crevices in the reef or under rocks. 
While only experienced observers participated in the present 
study, sampling bias cannot be completely overruled. The 
use of lights during night dives might have increased the 
detection of organisms by focusing the observer’s attention 
to a better illuminated, yet reduced field. It is unsure to what 
extent does E. crispata present nocturnal activity but results 
herein suggest mobility during that period of the day.

One of the main features of day light is that it synchro-
nizes physiological mechanisms of living organisms to a 
period that allows the recognition of 24-h cycles. Changes 
in ambient light constitute an external signal to initiate cer-
tain activities (Takahashi 1991). The fact that E. crispata 
of varying size were found in certain times of day and that 
these differed between Arcas and Verde leads to suggest that 
sea slugs are capable of a relatively wide range of mobility 

within 0 and 13 m deep, and that this is influenced, at least 
partially by day light. Such light-dependent movement could 
be the result of one or more of the following explanations: 
(1) light stress avoidance, (2) circadian rhythms, and/or (3) 
predation avoidance.

Avoiding light stress to maintain functional chloroplasts 
has been supported by laboratory experiments in other spe-
cies, such as E. timida (Jesus et al. 2010). Some of the algae 
used as food by slugs have photoprotection mechanisms 
through changes in pigments or by acclimating to depth and 
time of the day (Raniello et al. 2006). However, not all E. 
crispata present these pigments (Vital et al. 2021), and the 
macroalgae consumed most frequently by this species (e.g., 
Bryopsis, Penicillus and Halimeda) might not have them 
(Middlebrooks et al. 2019; Giossi et al. 2021). Other poten-
tial mechanisms for the protection of excessive light in E. 
crispata are mucus excretion, which has been speculated to 
be used as a sunscreen (Ireland and Scheuer 1979; Gavagnin 
et al. 1996; Havurinne et al. 2021), and behavioral strate-
gies, such as closing the parapodia (Cartaxana et al. 2018, 
2019) or moving towards areas in the reef that provide light 
protection.

Dial changes of light could also trigger movement of 
sea slugs within the reef. While the solar elevation changes 
throughout the day, there is no simple relation between this 
and the spectral distribution (i.e., the proportion of different 
wavelengths) or total irradiance (i.e., light intensity/photon 
flux). When the solar elevation is reduced at sunrise, the 
ratio of short to long wavelength light in the direct solar 
beam decreases. This is due to a removal of short wavelength 
(blue) light in the atmospheric path caused by scattering 
(Kirk 2011). It might be that E. crispata detects changes of 
the spectral distribution at certain moments of the day and 
modifies its position in the reef by moving towards more 
sheltered areas. For this behavior to be displayed, photore-
ceptors detecting different wavelengths must exist. The eyes 
of E. timida perceive light at 540 nm and the presence of 
extraocular receptors has also been considered (Rahat and 
Monselise 1979). While E. crispata has eyes, the extent to 
which they can detect quality of light and display avoid-
ance, or preference accordingly is still unknown. Either 
confirming light selective behaviors or finding other type of 
photoreceptors in E. crispata would constitute an additional 
element supporting the idea of behavioral mechanisms of 
photoprotection in this species and may help to explain some 
of the patterns in which they naturally occur.

Crypsis and secondary metabolites have been men-
tioned as mechanisms used by sacoglossans to avoid 
predation (Gavagnin et al. 1997, 2000). Predators of this 
sea slug group include crustaceans, fish, other sea slugs 
and even corals (Trowbridge 1994; Mehrotra et al. 2019). 
While we witnessed sea slug attacks by different fish spe-
cies during our field work, no consumption of E. crispata 
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was observed. Predation avoidance could be considered the 
most unlikely explanation of the patterns described herein, 
but it should not be fully discarded until further studies 
assess the consumption of Elysia by visual predators.

Our research provided novel population information, 
showing that the abundance and size of E. crispata in coral 
reefs of Southern Gulf of Mexico and Mexican Caribbean 
Sea depend on locality, depth, and time of the day. Such 
information suggests that this sea slug is capable of mov-
ing a few meters within the reefs, and its mobility may be 
triggered by light quality and intensity. Further research is 
needed to better understand the unique biological phenom-
ena of solar-powered sea slugs as they interact with their 
natural habitat and use it in management and conservation 
initiatives.
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