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Abstract
Many aquatic invertebrates undergo an indirect development, a biphasic life cycle which encompasses the transformation 
of free-swimming larvae into benthic juveniles via settlement and metamorphosis. During this transition, metamorphic 
competence is a crucial developmental stage that allows larvae to swim and feed in the planktonic realm while retaining 
the ability to settle and metamorphose in response to environmental cues. Although there have been substantial efforts to 
decipher the molecular mechanisms underlying this event in several molluscan species, the conserved biological pathways 
that are crucial to enable this transition across species are not well understood. Here, we performed a comparative analysis 
of the developmental transcriptomes between bivalve Crassostrea gigas and gastropod Rapana venosa. We particularly 
explored the common gene expression signatures that may underlie their larval competence. We showed that, although the 
developmental transcriptomes differed remarkably between C. gigas and R. venosa, they likely shared a plethora of genes 
(n = 690) that exhibited similar expression signatures during their larval competence. Gene Ontology enrichment and expres-
sion analyses further indicated that competent larvae of both species exhibited up-regulation of pathways associated with 
response to stimuli, metal ion binding and transport, and neuronal development, but showed down-regulation of pathways 
that were mainly involved in cilium assembly and organ development. Using oyster and whelk as models, our study suggests 
that regulation of these conserved pathways is crucial for their subsequent settlement and metamorphosis and may represent 
a universal mechanism that enables the pelagic-to-benthic transition in a broader range of marine invertebrates.
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Background

The development of most benthic marine invertebrates 
involves a biphasic lifecycle (Jackson et al. 2004). Within 
a relatively short period of time after fertilization, larvae 
typically search for a suitable settlement surface and start to 
metamorphose, a fundamental bioprocess that transforms 
free-living larvae into predominantly benthic juveniles 
(Hadfield 1986; Jackson et al. 2004; Bishop et al. 2006a). 
During this transition, the major morphological changes in 

larvae include re-absorption of larval tissues (e.g., velum), 
extension of the pre-formed juvenile structures (e.g., foot), 
and shell growth (Lv et al. 2019). Accompanied by these 
alterations are the complex metabolic, physiological, and 
developmental changes that enable larvae to initiate a seden-
tary benthic lifestyle. Although metamorphosis is considered 
to have independently evolved multiple times across the tree 
of animals, one remarkable similarity in the development of 
marine invertebrates is the concept of metamorphic com-
petence, a developmental stage that directly precedes set-
tlement (Medina 2009; Hadfield et al. 2001). Metamorphic 
competence is characterised by the ability of developing lar-
vae to commence settlement and complete morphogenetic 
transformations into the adult benthic stage (Bishop et al. 
2006b). It usually occurs, in most marine invertebrates, when 
the development of juvenile structures is all or nearly com-
plete. For totally lecithotrophic species such as most Porif-
era, Cnidaria, and Ascidiacea, larvae become competent at 
the time of hatching, while for other marine invertebrates, 
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larvae usually spend a period of time in the planktonic realm 
before achieving metamorphic competence (Hadfield et al. 
2001). The transformation from planktonic larvae into ben-
thic juveniles usually requires reception of external envi-
ronmental cues, which are typically chemicals released by 
conspecific adults or present around settlement sites, and 
substrate-derived physical cues that indicate the quality of 
habitat (Rittschof et al. 1998; Rodriguez et al. 1993). Many 
marine invertebrate larvae can postpone metamorphosis and 
retain competence for extensive periods of time until specific 
cues are encountered (Bishop et al. 2006b; Pechenik 1999). 
Given that metamorphic competence is pervasively observed 
in the development of diverse animal phyla, this plasticity 
may represent a crucial convergent adaptation that enables 
larvae to survive until favourable habitats are found.

Over the past few decades, substantial efforts have been 
made to investigate the molecular mechanisms of the bipha-
sic transition in many marine invertebrates, with a particular 
focus on molluscs such as oyster Crassostrea angulata (Qin 
et al. 2012), scallop Patinopecten yessoensis (Wang et al. 
2020), clam Meretrix meretrix (Huan et al. 2012), abalone 
Haliotis diversicolor (Huang et al. 2012), sea hare Aplysia 
california (Fiedler et al. 2010), and whelk Rapana venosa 
(Song et al. 2016). These studies have revealed a number of 
molecular pathways that may underlie the genetic basis of 
larval metamorphic competence in molluscs. These path-
ways include transmembrane receptor signalling (Vogeler 
et al. 2014; Kaur et al. 2015), neuronal development (Qin 
et al. 2012; Zhou et al. 2013), neuroendocrine-immune 
crosstalk (Balseiro et al. 2013; Vogeler et al. 2014), and 
shell formation (Yu et al. 2016). However, large variation 
exists among different species in the degree to which lar-
vae can maintain metamorphic competence without the 
presence of cues and the degree to which specific cues are 
required for metamorphic changes over time (Bishop et al. 
2006b). In addition, it was previously thought that compe-
tent larvae exhibit decreased transcriptional activity and low 
metabolism and growth (Hadfield et al. 2001), but recent 
studies have uncovered a different scenario. For example, 
a study on the developmental transcriptomes of abalone 
Haliotis asinina revealed that the genes highly expressed in 
the competent stage are known to suppress metamorphosis, 
indicating their possible involvement in the maintenance of 
metamorphic competence (Williams et al. 2009). Sedanza 
et al. (Sedanza et al. 2022) compared the transcriptomes 
between competent larvae and post-larvae of oyster Cras-
sostrea gigas. This study discovered that genes up-regulated 
in competent larvae mainly encode chemoreceptors and neu-
rotransmitter receptors that enable larvae to sense and trans-
duce environmental signals (Sedanza et al. 2022). Some of 
these genes also show up-regulation in the competent larvae 
of more distant-related polychaete Capitella teleta (Burns 
and Pechenik 2017) and coral Acropora millepora (Strader 

et al. 2018). These results suggest the complexity of the lar-
val transcriptomes of marine invertebrates at the competent 
stage, and that understanding the genetic basis of such an 
evolutionary event requires comparative investigation across 
taxa.

To explore the common molecular mechanisms underly-
ing larval competence, a comparative study on developmen-
tal transcriptomes between species which undergo the bipha-
sic transition is required. Ideally, the taxa should display 
remarkable disparities in physiological and morphological 
changes during larval development and have comprehensive 
sets of developmental transcriptome data available. Compar-
ing two species exhibiting such striking differences through-
out their development potentially avoids the inclusion of 
common gene expression signatures which are not crucial 
to metamorphic competence across a range of species. As 
far as we are aware, time-series transcriptomes that cover the 
entire larval development are currently not available for most 
molluscan species, except for the veined rapa whelk Rapana 
venosa (Song et al. 2016) and the Pacific oyster Crassostrea 
gigas (Zhang et al. 2012). While the availability of data is 
clearly a determining factor in the choice of species for this 
study, the disparities in the development of R. venosa and C. 
gigas render them as ideal taxa to investigate the common 
molecular pathways underlying metamorphic competence 
in Mollusca.

R. venosa and C. gigas are from the two large molluscan 
groups (gastropods and bivalves) which diverged approxi-
mately 500 million years ago (Smith et al. 2011). Both spe-
cies are important shellfish in China due to their high eco-
nomic and medicinal value. However, artificial aquaculture 
has been limited by high larval mortalities, especially for R. 
venosa, due to extremely low settlement and metamorphosis 
rates of competent larvae (Yu et al. 2020). Although not 
fully understood yet, differences have been observed in met-
amorphic competence between R. venosa and C. gigas. Their 
retention periods vary, and specific signals are required to 
effectively trigger settlement and metamorphosis in respec-
tive species (Bishop et al. 2006b; Hadfield et al. 2001). For 
example, acetylcholine chloride and CaCl2 are active induc-
ers of R. venosa larval metamorphosis (Yang et al. 2015; 
Joyce and Vogeler 2018), whereas EPI (epinephrine) and 
L-DOPA (L-3,4-dehydroxyphenylalanine) are more effective 
to trigger the biphasic transition of C. gigas larvae (Coon 
et al. 1985). From a physiological and ecological perspec-
tive, one of their major differences lies in the fact that R. 
venosa is carnivorous and needs to undergo diet shift from 
herbivorous to carnivorous during metamorphosis, com-
pared to the lifelong herbivorous C. gigas. Despite these 
notable disparities, their competent larvae exhibit common 
developmental traits, such as settlement behaviours and loss 
of larval characteristics (Hadfield et al. 2001). A compara-
tive transcriptomic study on the development of C. gigas 
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and R. venosa will, therefore, enable us to detect common 
molecular mechanisms underlying these traits that are essen-
tial to their successful biphasic transition. This will provide 
great insights into the key molecular mechanisms of larval 
metamorphic competence that are universal in molluscs, 
with potential benefits for the aquaculture industry.

In this study, we conducted a comparative analysis of 
the developmental transcriptomes between gastropod R. 
venosa and bivalve C. gigas. We particularly investigated the 
changes of molecular pathways when their larvae became 
metamorphically competent and were readily adaptive to 
a benthic lifestyle, a relatively comparable developmen-
tal stage that occurs in the development of both species. 
Although the developmental transcriptomes differed strik-
ingly between oyster and whelk, we showed that both spe-
cies shared a wealth of genes (n = 690) that exhibited simi-
lar expression signatures during larval competence. Gene 
Ontology (GO) enrichment analyses further indicated that 
these common genes were enriched in multiple bioprocesses. 
The genes that exhibited up-regulation in competent larvae 
of both species were mainly associated with response to 
organic and inorganic substances, metal ion transport, and 
neuronal development, while the down-regulated genes were 
enriched in cilium assembly and organ development. Our 
results suggest that the molecular changes in these common 
pathways are crucial for the adaptation to a benthic lifestyle 
of competent larvae in both R. venosa and C. gigas.

Materials and methods

The developmental transcriptomes of C. gigas 
and R. venosa

This study was performed using publicly available sequenc-
ing data and did not require any ethical approval or permits. 
The transcriptome data of C. gigas (n = 30) and R. venosa 
(n = 18) from different developmental stages were obtained 
from the National Centre for Biotechnology Information 
(NCBI) under the BioProject PRJNA146329 (Zhang et al. 
2012) and PRJNA288999 (Song et al. 2016), respectively. 
The oyster transcriptomes cover the stages including early 
gastrula (7.5 hpf), gastrula (8.5 hpf), trochophore (12.5 hpf), 
early D-shape (16 hpf), D-shape (1 dpf), early umbo (5.7 
dpf), umbo (10.3 dpf), late umbo (15.3 dpf), pediveliger 
(competent, 18 dpf), spat (22.2 dpf), and juvenile (215 dpf), 
while the whelk transcriptomes were sequenced from larvae 
at 1-spiral whorl stage (1 dpf), 2-spiral whorl stage (5 dpf), 
early 3-spiral whorl stage (12 dpf), late 3-spiral whorl stage 
(20 dpf), 4-spiral whorl stage (competent, 30 dpf), and post-
larval stage (33 dpf), respectively. The detailed information 
of the samples is available in Supplementary Table 1.

Prediction of putative single‑copy orthologous 
genes between C. gigas and R. venosa

To elucidate the common molecular pathways underlying 
larval competence of C. gigas and R. venosa, their puta-
tive orthologous genes were identified. To achieve this, we 
extracted the coding sequences (CDS) from the genome 
of C. gigas (Zhang et  al. 2012) and the transcriptome 
assembly of R. venosa (Song et al. 2016), respectively. 
Using these CDS, a reciprocal tBLASTx (v2.2.27) search 
(Altschul et al. 1990) was performed between C. gigas 
and R. venosa. The best reciprocal blast hits (RBH), with 
E-value < 10–5, sequence coverage > 70% and sequence 
identity > 70%, were considered as putative orthologous 
genes. These putative orthologs between C. gigas and R. 
venosa were further annotated by comparing them against 
the Uniprot database (release 2021_02) using BLAST 
(v2.2.27) (Altschul et al. 1990), with the same criteria 
above.

Transcriptomic analysis across developmental 
stages

Focusing on the orthologs, we investigated the overall tran-
scriptomic shift across the different developmental stages 
in both species. Prior to ortholog quantification, the adap-
tor sequences and low-quality bases (base score < Q30) in 
each sample were removed using Cutadapt (v2.9) (Mar-
tin 2011). For each species, we mapped the high-quality 
reads of each sample to the corresponding orthologs using 
Salmon (v1.2.0) (Patro et al. 2017). Within each species, 
the expression counts of the orthologs were normalized 
using the Trimmed Mean of M-values (TMM) method, 
and further log2-transformed. The orthologs that did not 
express in either species were removed from downstream 
analyses. Based on the normalized expression data, pair-
wise Spearman’s correlation coefficient tests and principal 
component analyses (PCA) were performed using the R 
packages cor and prcomp, respectively (v3.0). To further 
explore the expression patterns of these orthologs across 
the development of C. gigas and R. venosa, we imple-
mented a weighted gene co-expression network analysis 
for each species using the R package WGCNA (v1.63) 
(Langfelder and Horvath 2008). In brief, the orthologous 
genes were clustered into different modules based on their 
expression levels across different stages, and the eigengene 
that represents the expression pattern of each module was 
identified. It is noteworthy that, due to the limited number 
of biological replicates for oyster, we grouped the oys-
ter samples from a few developmental stages for PCA, 
WGCNA, and the downstream differential gene expression 
analyses (Supplementary Table 1).
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Differential gene expression and pathway analysis

This study aims to identify the common transcriptomic 
signatures which are shared in metamorphically competent 
larvae of both oyster and whelk. However, it is challenging 
to compare transcriptomes of complex developmental pro-
cesses, because the developmental stages in R. venosa and 
C. gigas do not align and the samples from these two species 
were sequenced with different platforms, methodologies, and 
depths. Instead of directly comparing developmental tran-
scriptomes between C. gigas and R. venosa, we established 
an analysis pipeline that detected differentially expressed 
genes in the competent larvae within each species. Then, 
we obtained the overlapping up- and down-regulated genes 
common to both oyster and whelk. To achieve this, for each 
species, we performed differential gene expression analyses 
between different developmental stages. In particular, we 
compared the competent stages (pediveliger for oyster, 18 
dpf; 4-spiral whorl stage for whelk, 30 dpf) with all other 
stages using DESeq2 (v1.6.3) (Love et al. 2014), respec-
tively. Only the genes which exhibited differential expres-
sion (FDR < 0.05) between the competent stage and at least 
three other stages were considered specifically expressed 
(up-regulation or down-regulation) in competent larvae. By 
intersecting the gene lists, we obtained the common genes 
which were up-regulated and down-regulated in competent 
larvae in both species. Gene Ontology (GO) enrichment 
analyses were performed, respectively, on the common up-
regulated and down-regulated genes using Fisher’s exact 
tests through Metascape (Zhou et al. 2019). The putative 
orthologous genes identified between C. gigas and R. venosa 
were used as background for GO enrichment analyses, and 
the enriched GO terms with FDR < 0.05 were considered 
statistically significant. We further explored the overall 
expression of these enriched GO terms, which are specific 
to competence, across the developmental stages. Briefly, for 
each species, we collected all the genes belonging to each 
enriched GO term, summed up their normalized expression 
values, and further converted them to Z-scores. We used 
these Z-scores to represent the expression of each enriched 
GO term across different developmental stages. Z-scores 
were visualized using heatmap.

Results

Identification and quantification of orthologs

Using our pipeline, we identified 9863 putative orthologous 
genes between C. gigas and R. venosa, and used them as 
references for comparative transcriptomic analyses. In total, 
446.8 million reads and 226.3 million reads were obtained 
from 30 oyster samples and 18 whelk samples, respectively 

(Supplementary Table  1). For C. gigas, on average, 
52.71% ± 3.86% of reads per sample mapped to the refer-
ences, whereas the average mapping rate is 63.46% ± 2.94% 
per sample for R. venosa. We removed the genes that were 
functionally unknown or not expressed. This led to two 
matrices containing expression data of 5427 genes across 
different developmental stages in C. gigas and R. venosa, 
respectively.

Overview of developmental transcriptomes in C. 
gigas and R. venosa

To gain a global view of transcriptomes, based on the gene 
expression matrices, we performed pairwise Spearman’s 
correlation tests across different developmental stages 
in both C. gigas and R. venosa (Fig. 1a, b). Not surpris-
ingly, the correlation coefficients between the samples 
from the same developmental stages (ρoyster = 0.96 ± 0.02; 
ρwhelk = 0.98 ± 0.02) were significantly higher (P < 0.00001, 
Mann–Whitney U test) than those between the samples from 
different stages (ρoyster = 0.86 ± 0.08; ρwhelk = 0.82 ± 0.12). In 
addition, PCA showed that the samples were clustered by 
species rather than the comparable developmental stages 
(e.g., metamorphic competence; Fig. 2), suggesting that 
the larval developmental transcriptomes differed remark-
ably between C. gigas and R. venosa (Fig. 2). Next, we per-
formed weighted gene co-expression analyses (WGCNA) to 
explore the dynamic expression patterns of these orthologs 
across different developmental stages. We identified 23 and 
22 modules that exhibited distinct expression patterns in C. 
gigas and R. venosa, respectively. The raw expression counts 
used for the expression analyses are available in Supplemen-
tary Table 2.

Common transcriptomic signatures of metamorphic 
competence

To further identify the common genes which may underlie 
larval competence in both C. gigas and R. venosa, we con-
ducted differential gene expression analyses (see Materials 
and methods). We predicted a large number of differentially 
expressed genes (DEGs) between competent stages and other 
developmental stages (Fig. 3a, b). This indicated that each 
stage exhibited a distinctive transcriptomic signature likely 
responsible for their developmental bioprocesses. Expect-
edly, more DEGs were found in the comparisons of more 
distant stages. For example, in C. gigas, only 163 genes 
(78 up-regulated and 85 down-regulated) were detected 
as DEGs between competent larvae and post-larvae, while 
3565 DEGs (1803 up-regulated and 1762 down-regulated) 
were found between competent stage and gastrula (Fig. 3a, 
b). In addition, we considered that genes had distinctive 
expression signatures in the competent stage only if they 
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showed differential expression with at least three other 
developmental stages. Based on this criterion, 2260 genes 
(1275 up-regulated and 985 down-regulated) and 2330 genes 
(1,062 up-regulated and 1268 down-regulated) were distinc-
tively expressed in competent larvae of oyster and whelk, 
respectively. By intersecting the gene lists, we obtained 690 
common genes (333 up-regulated and 357 down-regulated) 
that exhibited distinctive expression signatures in competent 
larvae of both species (Supplementary Table 3).

Pathway enrichment and expression analyses

To further explore the biological processes in which these 
690 common genes were enriched, we performed GO 
enrichment analyses (see Materials and Methods). The 
common up-regulated genes in the competent larvae of 
both R. venosa and C. gigas were enriched in a variety 
of developmental processes, such as response to stresses 
(GO:0010035, GO:0009725, GO:0009410, GO:0009314), 
ion transport (GO:0030001, GO:0006814), and neu-
ronal development (GO:0021954, GO:0099177). The 
common down-regulated genes were mainly involved 
in cilium assembly (GO:0060271), organ development 
(GO:0007420, GO:0007423, GO:0060541), and cell divi-
sion (GO:0051301). A full list of the enriched GO terms is 
available in Supplementary Table 4. Consistent in both C. 
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gigas and R. venosa, the overall expression levels of these 
GO terms differed dramatically between the competent stage 
and other developmental stages (Fig. 4a, b).

Discussion

The life cycle of marine gastropod and bivalve species 
involves a transition from planktonic larvae to benthic juve-
niles during development (Hadfield et al. 2001; Jackson 
et al. 2004). Uncovering the underlying biological pathways 
shared by both lineages can shed light on the mechanisms of 
settlement and metamorphosis in marine invertebrates from 
an evolutionary perspective. However, it is a grand challenge 
to conduct a comprehensive comparison of developmental 
transcriptomes between these lineages due to their idiosyn-
cratic developmental processes (Rodriguez et  al. 1993; 
Joyce and Vogeler 2018; Pechenik 1999). Therefore, a direct 
comparison between developmental transcriptomes of two 

species is not feasible. In this study, we developed a strategy 
to address this issue and performed a comparative analysis 
of developmental transcriptomes between C. gigas and R. 
venosa, the species representing Bivalvia and Gastropoda, 
respectively, with a particular focus on the competent stages.

From a global perspective, our analyses showed that 
both species experienced dynamic gene expression changes 
during larval development, reflected by correlation analy-
ses, WGCNA, and differential gene expression analyses 
(Fig. 1, 3). This is not surprising, as this phenomenon has 
been observed in a wide range of taxa, including cnidar-
ians (Leclère et al. 2019), sponges (Conaco et al. 2012), and 
barnacles (Chen et al. 2011). The unique gene expression 
signatures in each stage may correspond to its specific devel-
opmental changes. Interestingly, the principal component 
analysis showed that the developmental transcriptomes dif-
fered remarkably between C. gigas and R. venosa (Fig. 2). 
This result appears to reflect the taxonomic disparities in 
physiology, morphology, and behaviour during development 

Fig. 3   The number of differen-
tially expressed genes (DEGs) 
detected between the competent 
stage and any other stage. a C. 
gigas. b R. venosa 

a b

a

b

Fig. 4   The overall expression of common GO terms underlying larval 
metamorphic competence in C. gigas and R. venosa. a GO terms that 
exhibited up-regulation in the overall expression during larval compe-

tence in both species. b GO terms that exhibited down-regulation in 
the overall expression during larval competence in both species
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[e.g., torsion uniquely seen in gastropods (Page 2003)] 
between these two species.

Despite these differences, the development of both C. 
gigas and R. venosa involves metamorphic competence, a 
convergent adaptation which enables free-swimming larvae 
to transition to benthic juveniles. Although variation exists, 
we showed that competent larvae of both species exhibited 
common gene expression signatures, which were enriched 
in several fundamental bioprocesses (Fig. 4a, b, Supplemen-
tary Table 4). The genes that were up-regulated were mainly 
enriched in the GO terms ‘response to metal ion’, ‘response 
to hormone’, ‘metal ion transport’, ‘regulation of hormone 
levels’, and ‘neuronal development’ (Fig. 4a, Supplementary 
table 4). Not surprisingly, up-regulation of some of these GO 
terms has also been reported in competent larvae of the sea 
snail Babylonia areolata (Shen et al. 2018), and the oyster 
C. gigas (Sedanza et al. 2022). Competent larvae typically 
have almost developed juvenile traits and are prepared to 
settle and metamorphose in response to favourable chemi-
cal signals. These signals are represented by a wide range 
of stimuli such as metal ions (e.g., Ca2+, Mg2+, and K+) 
and neurotransmitters (e.g., serotonin, L-DOPA). Besides 
the reception of external cues, internal regulation of hor-
mones is also indispensable to initiate larval settlement and 
metamorphosis. We found that the genes involved in hor-
mone regulation (e.g., ACE, CRHR1, PTPRN2) showed up-
regulation in the competent stage of C. gigas and R. venosa. 
Recent studies indicated that hormones have pleiotropic 
effects on the development of marine invertebrates and are 
involved in regulation of larval and juvenile morphogenesis 
and apoptosis (Heyland and Moroz 2006). One of the most 
prominent examples is that thyroid hormones (THs) were 
verified to promote differentiation of juvenile character-
istics while simultaneously deconstructing larval traits in 
competent larvae of ascidians, echinoderms, and molluscs 
(Heyland et al. 2004; Patricolo et al. 2001; Fukazawa et al. 
2001). Likewise, some juvenile hormones such as methyl 
farnesoate (MF) were reported to have identical effects in 
some barnacle species (Yamamoto et al. 1997). These results 
might indicate that distantly related marine invertebrates 
inherited the same basic molecular receptive and regulatory 
mechanisms from their most recent common ancestor during 
larval competence.

Noticeably, we found that several genes encoding cad-
herin proteins such as CDH1 and FAT1 were highly 
expressed in competent larvae of C. gigas and R. venosa. 
Cadherins are a family of transmembrane receptors that 
regulate cell–cell adhesion in animals (Takeichi 1988). For 
example, competent larvae of most marine invertebrates 
exhibit a substratum-testing manner to explore suitable 
habitats by foot extension. This process involves tissue mor-
phogenesis regulated by cadherins, which includes cell size 
and shape changes and formation of junctions to bind cells 

together within tissues. Up-regulation of cadherins has been 
documented during larval competence in diverse marine 
invertebrates including the oyster C. angulata (Di et al. 
2020), the coral Acropora gemmifera (Yuan et al. 2018), and 
the polychaete Boccardia wellingtonensis (Figueroa et al. 
2021). These results suggest that cadherins and their associ-
ated pathways may represent a universal mechanism in tis-
sue remodelling during larval competence in marine inver-
tebrates. In addition to cadherins, we found another gene 
encoding a transmembrane protein, epidermal growth factor 
receptor (EGFR), that was highly expressed in the competent 
larvae of C. gigas and R. venosa. EGFR is a member of the 
receptor tyrosine kinase superfamily. In mammals, EGFR is 
activated by a variety of polypeptide ligands and regulates 
cell adhesion, proliferation, differentiation, and apoptosis by 
signalling transduction (Wee and Wang 2017). These cellu-
lar processes are highly associated with the morphological 
changes during larval settlement and metamorphosis, such 
as loss of velums, foot extension, and shell formation. Dur-
ing the development of C. angulata, EGFR exhibited an ele-
vated expression from the onset of metamorphic competence 
(Qin et al. 2012). In addition, inhibition of EGFR signalling 
was reported to prevent settlement and metamorphosis of the 
barnacle B. amphitrite larvae (Okazaki and Shizuri 2000). 
In addition to EGFR, we noticed that several genes involved 
in the EGFR signalling pathway (e.g., NEDD4, PLD1, and 
STMN1) were up-regulated in competent larvae of both C. 
gigas and R. venosa. These results indicate that morphogen-
esis may occur at the competent stage ahead of larval set-
tlement in C. gigas and R. venosa, and this process is likely 
mediated by EGFR signalling.

Similar to C. gigas and R. venosa, the GO term ‘metal 
ion transport’ was also enriched by the genes that were up-
regulated in competent larvae of the eastern oyster Crassos-
trea virginica (Prytherch 1934) and a more phylogenetically 
distant species, the annelid C. teleta (Burns and Pechenik 
2017). On top of its involvement in the process of receiving 
environmental cues, ion transport appears to play crucial 
roles in biomineralization and the nervous system during 
metamorphic competence of many marine invertebrates. For 
example, the transport of calcium and bicarbonate ions to 
the extracellular calcification space results in shell forma-
tion in molluscs (Clark et al. 2020). This process involves 
calcium ATPase and Na+/Ca2+ exchangers, whose activa-
tion is driven by the transmembrane sodium gradient (Clark 
et al. 2020). In many molluscan species, the metamorphic 
transition involves rewiring of the central nervous system, 
and metal ion channels and transport are pivotal for neurons 
to transmit signals, process information, and conduct larval 
morphogenetic changes. In parallel, we also observed that 
the GO terms related to neuronal development and synapse 
were up-regulated in competent larvae of C. gigas and R. 
venosa (Fig. 4a). This is not surprising as molluscan species 
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usually have extensive larval nervous systems, beginning 
to develop from trochophore larvae (Croll and Dickinson 
2004). For example, the competent larvae of the sea hare A. 
californica will remain planktonic until the complete adult 
nervous system is formed (Heyland et al. 2011). In pedive-
liger larvae of the mussel Mytilus trossulus, more neurons 
appear in the ganglia and neurites, which will later form the 
adult central nervous system (Voronezhskaya et al. 2008). 
This similar developmental process was also seen in more 
phylogenetically distant lineages, such as the annelid C. tel-
eta (Meyer et al. 2015). Interestingly, besides its functions 
mentioned above, the gene EGFR also regulates differen-
tiation and functions of neurons and neuroglia in animals 
(Romano and Bucci 2020). This suggests that EGFR sig-
nalling is implicated in remodelling of the central nervous 
system in competent larvae, such as degeneration of larval 
nervous system.

A major characteristic of metamorphosis in marine inver-
tebrate larvae is loss of larvae-specific structures, such as 
ciliated velum (Bonar 1976). In molluscs, the velum devel-
ops from the ciliary lobe (prototroph), and larvae at this 
stage feed, swim and exchange gas by means of velums. 
However, they shrink and degenerate in metamorphosed 
larvae (Hadfield et al. 2001). Interestingly, we found that 
a wealth of genes (n = 52) enriched in cilium assembly and 
microtube cytoskeleton organization were down-regulated in 
competent larvae of oyster and whelk (Fig. 4b, Supplemen-
tary Table 4), suggesting that degeneration of larvae-specific 
characteristics may begin from late larval stages prior to the 
onset of settlement and metamorphosis. Down-regulation 
of these bioprocesses was also reported in competent lar-
vae of the peanut worm Sipunculus nudus (Cao et al. 2020) 
and the demosponge Amphimedon queenslandica (Conaco 
et  al. 2012). These morphogenetic changes can also be 
ascribed to the up-regulation of bioprocesses associated 
with hormone regulation and apoptosis, possibly mediated 
by EGFR signalling. In particular, we noticed that a large 
number of bioprocesses engaged in organ development were 
also down-regulated (Fig. 4b, Supplementary Table 4). This 
phenomenon is also seen in other molluscan species, and 
aligns with a previous review on metamorphic competence 
of marine invertebrates, which argued that in marine inver-
tebrates, metamorphic competence typically occurs when 
nearly all required juvenile characteristics are present in the 
larvae prior to settlement (Hadfield et al. 2001). Indeed, we 
did notice that these bioprocesses specifically identified in 
competent larvae exhibited similar expression signatures 
in post-larvae, relative to larvae from other stages (Fig. 4a, 
b). These results further indicate that competent larvae in 
these two species possess some juvenile characteristics, and 
metamorphosis is mainly restricted to loss of larvae-specific 
structures, physiological processes, and behaviours (Had-
field et al. 2001).

Although variations in morphology, physiology, and 
behaviour exist in competent larvae across marine inverte-
brates, by searching current literatures, we found that some 
of the transcriptomic signatures identified in molluscan 
competent larvae are also seen within a broader phyloge-
netic bracket, including corals (Meyer et al. 2009), mol-
luscs (Song et al. 2016; Qin et al. 2012; Shen et al. 2018), 
barnacles (Chen et al. 2011), and many others (Conaco 
et al. 2012; Burns and Pechenik 2017; Cao et al. 2020; 
Mok et al. 2009). These signatures include up-regulation 
of pathways associated with response to organic and inor-
ganic substances, sodium ion transport and neuronal devel-
opment, and down-regulation of bioprocesses related to 
cilium assembly and organ development. This suggests 
that the transcriptomes of competent larvae are highly 
dynamic, and that different marine invertebrates share 
some conserved molecular mechanisms that are critical 
for larvae to enable a successful pelagic-to-benthic transi-
tion. It is worth mentioning that some of these pathways, 
such as metal ion transport and EGFR signalling, may 
have pleiotropic functions in morphogenesis during this 
biphasic transition. These results indicate the complex-
ity of larval development in marine invertebrates. In the 
future, a time-series analysis on different phases of com-
petent larvae is required, because the length of competent 
stage varies significantly across species (Hadfield et al. 
2001). For example, competence period can last as short as 
a few days in many invertebrate larvae while it can exceed 
several months in other species under laboratory condi-
tions, such as the sea hare Aplysia juliana (Kempf 1981) 
and the coral Pocillopora damicornis (Richmond 1987). 
Therefore, it is necessary to sample multiple time points 
during larval competence and increase the sample size to 
gain a refined comparison across species.

Collectively, using comparative transcriptomics, we 
showed that marine gastropod and bivalve species likely 
share some common molecular pathways during metamor-
phic competence. These pathways exhibit specific expres-
sion signatures in competent larvae and may form a complex 
gene regulatory network that orchestrates larval settlement 
and metamorphosis. These findings contribute to our knowl-
edge of the evolution of metamorphic competence in mol-
luscan species. A systematic comparison is required, in the 
future, to determine if these conserved bioprocesses are also 
employed by competent larvae of other molluscan species 
and a wider range of lineages, including sponges, corals, 
and barnacles.
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