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Abstract
This study examines phenotypically plastic responses in Pocillopora acuta collected from a highly urbanized reef environment 
to extreme low-light conditions. While among-species differences in how corals cope with low light are well documented, 
much less is known about within-species responses. It also remains unclear how extreme low light and provision of food 
may interact and influence coral physiology. Clonal fragments from six colonies (genotypes) of P. acuta were subjected to 
two light treatments with mean midday irradiances of 4 and 40 μmol photons  m−2  s−1 photosynthetically active radiation 
(PAR), representing just 0.5 and 5% ambient light level, and were either fed with zooplankton or not fed for nine days. Corals 
maintained in 4 PAR had lower endosymbiont density but higher cellular chlorophyll a concentration than those in 40 PAR. 
Feeding rates were similar in both light treatments and had no significant effects on endosymbiont density and chlorophyll a 
concentrations. While genotypes varied in the level of phenotypic plasticity expressed for both photoacclimation and hetero-
trophy, most displayed similar directions in their responses, indicating photoacclimation in P. acuta is broadly predictable. 
Our study demonstrates that P. acuta from Singapore is able to acclimate to very low-light conditions by adjusting their 
photophysiology, providing additional evidence that this species is resilient to urbanization-related stress.

Introduction

Light availability is arguably the most important factor 
determining the growth and productivity of scleractinian 
corals (Roth 2014). However, coral communities in urban 
reefs are frequently exposed to high levels of sediment 
and turbidity, resulting in low-light availability (Heery 
et al. 2018). Corals have developed a number of strategies 
to survive in low-light environments such as increases in 
endosymbiont densities and chlorophyll concentrations to 
enhance their light capturing abilities (Falkowski and Dubin-
sky 1981; Titlyanov and Titlyanova 2002). Some corals can 
also upregulate their heterotrophy to compensate for the 

decline in their photosynthetic activity (Houlbrèque and 
Ferrier-Pagès 2009). While among-species differences in 
how corals cope with low light are well documented, much 
less is known about within-species responses (Todd 2008).

Intraspecific variation in the phenotypes expressed by 
corals can occur as a consequence of genetic differences, 
phenotypic plasticity, or both (Foster 1979; Schlichting 
1989). Phenotypic plasticity represents environmental-
induced changes in the morphology, physiology, behaviour, 
and various life-history traits of an individual, enabling it to 
produce, within the constraint of its genotype, phenotypes 
that fit the environment it inhabits (Bradshaw 1965; Stearns 
1989). The degree of plasticity exhibited across a range of 
environmental conditions is likely to vary among genotypes 
(i.e., genotype × environment (G × E) interaction; Stearns 
1989; Pigliucci 2005), and this variation can be acted on by 
natural selection (Bradshaw 1965; Schlichting and Pigliucci 
1998).

Changes in light level have been shown to cause corals to 
alter their morphology, physiology, and behaviour—a type 
of phenotypic plasticity known as photoacclimation (Titly-
anov and Titlyanova 2002; Todd et al. 2004). For instance, 
Titlyanov et al. (2001a) determined that Stylophora pistil-
lata fragments increased their endosymbiont densities and 
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cellular chlorophyll concentrations when the fragments were 
transplanted from high-light level (95% incident light level,  I0) 
to low-light level (30%  I0). Falkowski and Dubinsky (1981) 
showed that S. pistillata fragments that were kept in shaded 
environment (0.3–1%  I0) had threefold cellular chlorophyll 
concentrations compared to fragments kept in high-light 
environment (50–90%  I0). These photoacclimation strategies 
are, however, not consistent among studies (e.g., McCloskey 
and Muscatine 1984; Titlyanov et al. 2000), probably due to 
the differences in the light regimes, acclimation duration, 
and coral species examined (Titlyanov and Titlyanova 2002). 
Several studies have demonstrated that coral colonies can fail 
to photoacclimate and experience high mortality when they 
are transplanted from their natal location to the opposite end 
of their light distribution range (Dustan 1982; Iglesias-Prieto 
et al. 2004; Bongaerts et al. 2011).

Corals might adjust their feeding rates in response to varia-
tion in light levels to maintain a positive energy balance (Houl-
brèque and Ferrier-Pagès 2009). For instance, Anthony and 
Fabricius (2000) reported that Goniastrea retiformis doubled 
its feeding rates and maintained its growth despite 35–47% 
decline in photosynthesis due to prolonged shading. Simi-
larly, Anthony (2000) found that Pocillopora damicornis and 
Acropora millepora collected from turbid inshore reefs had 
enhanced heterotrophic intakes compared to their conspecifics 
collected from less turbid nearshore and offshore reefs in the 
Great Barrier Reef, Australia. However, heterotrophic feeding 
can cause negative impacts on reproduction in P. verrucosa 
(Séré et al. 2010). Similar light and dark feeding rates have 
also been described in corals (e.g., Lewis 1976; Lavorano et al. 
2008), indicating that not all possess the ability to shift from 
being phototrophs to heterotrophs.

Coral communities in urban reefs are frequently exposed 
to low-light availability due to high levels of sedimentation 
and turbidity as a result of anthropogenic stressors including 
coastal construction and dredging operations (Heery et al. 
2018). On reefs near to dredging activities (< 2 km), daily 
light integral (DLI) can drop below 0.1 mol photons  m−2  d−1 
for days to weeks (Jones et al. 2015). Only a few studies have 
investigated the effects of such extreme low light on corals 
(e.g., Titlyanov and Titlyanova 2002; Bessell-Browne et al. 
2017) and they did not explicitly test for phenotypic plasticity. 
To better understand plastic responses in corals to extreme 
low-light levels, we asked: (1) how does Pocillopora acuta 
respond to low-light conditions with or without food provision, 
and (2) how do responses vary among genotypes?

Materials and methods

Study species and sampling sites

Singapore is a densely populated city state located just north 
of the equator. Sediment pollution is a major issue (Chou 
2006; Todd et al. 2010); for example, while late-morning 
light levels range from ~ 5 to ~ 500 PAR in shallow depths 
(1–3 m), under especially turbid conditions these can drop to 
below 0.5% surface ambient for several days (Browne et al. 
2015; Chow et al. 2019).

Pocillopora acuta Lamarck 1816 is commonly found on 
the shallow reefs (0–3 m) to the south of the main island of 
Singapore (Poquita-Du et al. 2019b). This species represents 
the last Pocilloporidae remaining in Singapore (previously 
there were five species) and is hence considered relatively 
resilient to local conditions (Poquita-Du et al. 2019a, b). A 
total of six colonies, at least 10 m apart and > 15 cm in diam-
eter, were collected at approximately 3 m depth from fring-
ing reefs at Pulau Satumu (1° 09′ 39′′ N, 103° 44′ 26′′ E) 
and Kusu Island (1° 13′ 25′′ N, 103° 51′ 38′′ E), i.e., three 
colonies from each site. Molecular studies by Pang et al. 
(2021) revealed that P. acuta colonies at least 10 m apart 
on Singapore’s reefs were genetically distinct. While Pulau 
Satumu is located farther away from the mainland Singapore 
compared to Kusu Island, and could be expected to be less 
affected by urbanization, both reefs have similar sedimenta-
tion rates (Ng et al. 2019). After collection, colonies were 
maintained in the flow-through outdoor aquaria at the St 
John’s Island National Marine Laboratory. Each colony was 
subsequently divided into 16 fragments (3.8 ± 0.5 cm height, 
mean ± SD) and these were kept in a holding tank for 1 week 
of acclimation under 50% shade netting (midday irradiance 
ranged between ~ 100 and ~ 300 PAR).

Experimental design

To examine the responses of corals to acute periods of very 
low light, coral fragments from each genotype were assigned 
randomly to two light regimes: (1) low light (~ 95% shading, 
average midday irradiance, i.e. between 10.30 and 13.30, of 
40 μmol photons  m−2  s−1 photosynthetically active radia-
tion (PAR) and mean daily light integral, DLI, of 1) and, 
(2) very low light (~ 99.5% shading, average midday irradi-
ance 4 PAR and mean DLI of 0.1; Fig. S1). As such low-
light levels tend to be transient in Singapore (Browne et al. 
2015), the experiment ran for 9 days only. Further, multiple 
studies have shown that corals can acclimate to their new 
environment within days (Titlyanov and Titlyanova 2002; 
Titlyanov et al. 2001b; Poquita-Du et al. 2019a). A PAR sen-
sor (LI-COR LI-192) was used at the start of the experiment 
to determine the shading levels. For each light level, corals 



Marine Biology (2021) 168:113 

1 3

Page 3 of 7 113

were either fed daily with freshly hatched Artemia nauplii 
 l−1 (the target was 5000 Artemia nauplii  l−1 each day, but 
the exact number was determined by counting nine repli-
cate samples under a stereomicroscope) for 2 h, or starved. 
Each treatment combination was replicated using four coral 
fragments (N = 96: 2 × light, 2 × food, 6 × genotype, 4 × rep-
licate). Every coral fragment was placed into an individual 
1 L tank supplied with fresh filtered seawater and aeration. 
The tanks were placed in a water bath to maintain a uniform 
temperature and were shuffled every three days to avoid any 
positional effects. Daily light levels and water temperature 
were monitored continuously using HOBO data loggers 
(Onset UA-002-08). A calibration constant of 0.0185 was 
applied to convert the lux readings recorded by the HOBO 
loggers into PAR (Thimijan and Heins 1983). Very little 
variation in temperature was recorded throughout the experi-
ment (29.69 ± 0.22 °C; mean ± SD).

Prey clearance rates were determined on day 1, 3, 5, 7, 
and 9. At the end of the 2-h feeding session, any remaining 
Artemia inside the tanks were filtered by pouring all the 
water inside the tanks over a 50 μm fine-mesh filter before 
being concentrated into 10 mL samples. Three 1 mL sub-
samples were counted under a stereomicroscope to deter-
mine the number of prey ingested, which was then nor-
malized to surface area (using the paraffin wax technique; 
Stimson and Kinzie III 1991) to obtain prey clearance rates. 
Initial analyses revealed that prey clearance rates did not 
vary among days, so data were pooled and averaged.

Endosymbiont density and chlorophyll (chl) a 
concentrations

At the end of the experiment, endosymbionts were isolated 
using the Waterpik technique (Johannes and Wiebe 1970). 
The resultant slurry was filtered, centrifuged, resuspended in 
5 mL filtered seawater, and subsequently stored at − 20 °C. A 
1 mL aliquot was taken out for enumeration of endosymbi-
ont cells using a Neubauer Improved Haemocytometer under 
a compound light microscope with at least eight subsamples. 
The endosymbiont density was normalized to coral surface 
area.

Chlorophyll (chl) a was extracted from the endosymbi-
onts using 100% acetone for 24 h at 4 °C. Pigment absorb-
ance readings were taken at 630, 663, and 750 nm using a 
spectrophotometer (Shimadzu UVmini-1240). Chl a content 
was then calculated using equations from Jeffrey and Hum-
phrey (1975) and normalized to (1) endosymbiont density 
to obtain cellular chl a concentration, and (2) surface area 
to obtain areal chl a concentration.

Statistical analyses

Eight fragments had died by the end of the experiment and 
were hence excluded from the analyses (Table S1). Using R 
statistical software (R v. 3.6.2, R Core Team 2019), two-way 
analysis of variance (ANOVA) was performed to quantify 
the effects of light and genotype on prey clearance rates, and 
three-way ANOVA to determine the effects of light, feeding, 
and genotype on endosymbiont density and chl a concen-
trations. Prey clearance rates were square-root-transformed 
to meet the normality assumption. Post hoc Tukey’s honest 
significant different (HSD) tests were performed for all pair-
wise comparisons. Reaction norms were plotted to visualize 
any G × E interactions (Stearns 1992).

Results and discussion

It is well recognized that corals respond to changes in their 
light environment, but it remains unclear how extreme low 
light and provision of food may interact and influence coral 
physiology. Further, among-genotype variation for pho-
toacclimation and heterotrophy is not well documented. 
The present study examined photoacclimation and hetero-
trophic intake in response to two low-light levels among 
coral fragments from six genotypes of P. acuta collected 
from Singapore’s turbid urban reefs. Results indicate that 
the differences in endosymbiont density and chl a concentra-
tions were influenced mainly by light, not food availability. 
We also found that the degree of plastic responses varied 
significantly among genotypes, with reaction norms crossed 
for all the measured variables suggesting genetic variation 
for plasticity.

Light regime had a significant effect on endosymbiont 
density [ANOVA, F (1,64) = 27.90, P < 0.001] and cellular 
chl a concentrations [ANOVA, F (1,64) = 19.69, P < 0.001; 
Table S2]. Coral fragments maintained in 4 PAR had sig-
nificantly lower endosymbiont densities but significantly 
higher cellular chl a concentrations compared to those in 40 
PAR (Fig. 1). The reduction in endosymbiont density was 
most likely a consequence of reduced cell growth and divi-
sion as, at 4 PAR, photosynthesis is likely limited (Kleypas 
et al. 1999). Having lower densities might also minimize 
self-shading among endosymbionts, optimizing their light 
capturing capacity (McCloskey and Muscatine 1984). Cor-
als are known to photoacclimate to low light by increasing 
their cellular chlorophyll concentrations, resulting in greater 
light capture potential of each endosymbiont (Falkowski and 
Dubinsky 1981; Titlyanov and Titlyanova 2002).

Coral fragments at 4 PAR maintained similar pigmen-
tation  cm−2 as fragments at 40 PAR across all genotypes 
(Fig. 1). In a longer running experiment, Bessell-Browne 
et al. (2017) found that P. acuta and Acropora millepora 



 Marine Biology (2021) 168:113

1 3

113 Page 4 of 7

Fig. 1  Reaction norms for 
endosymbiont density, cellular 
chl a concentration, areal chl a 
concentration, and prey clear-
ance rates. PAR photosyntheti-
cally active radiation. Vertical 
bars = standard error
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collected from mid-shelf reefs in the Great Barrier Reef 
gradually lost their pigmentation after 10 day of exposure 
to < 0.1 DLI and became skeleton white after 20 days, con-
sistent with patterns reported in past studies that exposed 
corals to complete darkness (Yonge and Nicholls 1931; 
Hoegh-Guldberg and Smith 1989; Titlyanov, et al. 2001a). 
The high tolerance of P. acuta in this study to 9 days of very 
low light could be due to the presence of resilient genotypes, 
of either the coral hosts or their endosymbionts, that are 
adapted to the local turbid conditions. Nevertheless, it is also 
possible that a longer duration of low-light environment may 
cause pigment loss.

Pocillopora acuta coral fragments consumed an aver-
age of 51.30 ± 28.62 (± SD) Artemia nauplii  cm−2  h−1, but 
these quantities did not differ significantly between the two 
low-light regimes [ANOVA, F (1,32) = 0.68, P = 0.415; 
Table S3], similar to findings by Clayton and Lasker (1982) 
and Lavorano et al. (2008), who also found no difference 
in the diurnal and nocturnal feeding rates of Pocillopora 
damicornis. Clayton and Lasker (1982) reported that P. 
damicornis fragments that were maintained under daylight 
conditions in aquaria were able to ingest 0.4 Artemia nauplii 
 polyp−1 in 15 min, or approximately 53 nauplii  cm−2  h−1 
assuming the average number of polyps in P. damicornis is 
33.4  cm−2 (Palardy et al. 2006), when they were presented 
with 0.9 mL of Artemia nauplii  L−1. This suggests that the 
feeding rates observed in the current study did not repre-
sent upregulation as they were comparable to the diurnal 
rates reported in Clayton and Lasker (1982). We also found 
no significant effects of feeding on endosymbiont density 
[ANOVA, F (1,64) = 0.30, P = 0.587] and chl a concentra-
tions [cellular: ANOVA, F (1,64) = 1.76, P = 0.189; areal: 
ANOVA, F (1,64) = 0.43, P = 0.514; Table S2]. These results 
are in contrast with findings from Ferrier-Pagès et al. (2003) 
and Houlbrèque et al. (2004) that demonstrated heterotrophy 
promoting endosymbiont proliferation and chlorophyll syn-
thesis, although these studies were conducted over longer 
time scales (3–8 weeks).

Our results suggest that P. acuta responds to short peri-
ods of extreme low-light levels primarily through adjust-
ments of photophysiological attributes. Previous studies 
by Muscatine and Cernichiari (1969) and Muscatine et al. 
(1981) that incubated P. damicornis with 14C in situ for 
24 h reported low contribution of heterotrophy to the daily 
carbon need of Pocillopora, suggesting that unfed corals 
were not substantially disadvantaged by being deprived 
of heterotrophic inputs. Heterotrophy probably plays a 
more important role in influencing acclimation responses 
in coral species that depend on heterotrophically acquired 
carbon to meet their daily metabolic energy require-
ments (e.g., Porites lobata, Porites compressa, Monti-
pora capitata; Palardy et al. 2008). Further, the effect of 
feeding is likely only apparent when corals are stressed, 

i.e., when the endosymbiont density is lower than normal 
levels (Jones and Yellowlees 1997). In the current study, 
the mean endosymbiont densities (0.671 and 0.978 ×  106 
cells  cm−2 for 4 and 40 PAR, respectively) were within the 
range measured in situ previously for P. acuta in Singapore 
(0.5–1 ×  106 cells  cm−2; Browne et al. 2015) and in the 
Great Barrier Reefs, Australia (0.32–1.01 ×  106 cells  cm−2; 
Ulstrup et al. 2006). It is possible that longer periods of 
even lower light may reduce endosymbiont density and 
lead to increased heterotrophy but, even in Singapore, such 
conditions are rare. Additional work is required to deter-
mine the role of heterotrophy in P. acuta during chronic 
periods (several week to months) of low light.

We identified among-genotype variation for areal chl a 
concentration [ANOVA, F (5,64) = 4.71, P < 0.001] and 
prey clearance rate [ANOVA, F (5,32) = 8.38, P < 0.001; 
Fig. 1, Table S2]. Although reaction norms crossed for all 
measured variables (Fig. 1), these G × E interactions were 
only significant between genotype and light for cellular 
chl a concentration [ANOVA, F (5,64) = 4.25, P = 0.002; 
Fig. 1, Table S2]. Notably, areal chl a concentration and 
feeding rate in Genotype F were significantly higher 
than the other genotypes regardless of treatment (Fig. 1, 
Table S4 and S5). Three fragments (out of 16) from Geno-
type F were dead by the end of the experiment, compared 
to two fragments from Genotype B, and one fragment each 
from Genotype A, D, and E (Table S1). While there were 
exceptions (as described above), most of the genotypes 
displayed similar directions in their responses, indicating 
photoacclimation in P. acuta is broadly predictable.

As development of tropical shorelines accelerates, coral 
reefs are increasingly threatened by deteriorating water 
clarity (Heery et al. 2018). Identifying species and geno-
types that have an acclimation advantage can help under-
stand and predict the composition of present and future 
urban reefs. Our study demonstrates that P. acuta collected 
from Singapore can respond rapidly to very low-light con-
ditions by adjusting their photophysiology. It is interest-
ing that, even though P. acuta actively consumed Artemia, 
endosymbiont density or chl a concentrations did not differ 
between fed and unfed corals, and there was no significant 
difference between the feeding rates of corals exposed to 
the two differing low-light levels. While genotypes varied 
in the level of plasticity (for heterotrophy and photoaccli-
mation) expressed, there were limited G × E interactions, 
suggesting that this is likely a typical response of local 
P. acuta genotypes to very low-light conditions. Findings 
here indicate that P. acuta is resilient to acute periods of 
low-light levels over short time scales (i.e., days), and this 
may partly explain its persistence on highly sedimented 
reefs in Singapore.
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Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00227- 021- 03900-4.
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