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Abstract
Stable isotopes have provided important insight into the trophic structure and interaction in many ecosystems, but to date 
have scarcely been applied to the complex food webs of coral reefs. We sampled white muscle tissues from the fish spe-
cies composing 80% of the biomass in the 4–512 g body mass range at Cape Eleuthera (the Bahamas) in order to examine 
isotopic niches characterised by δ13C and δ15N data and explore whether fish body size is a driver of trophic position based 
on δ15N. We found the planktivore isotopic niche was distinct from those of the other trophic guilds suggesting the unique 
isotopic baseline of pelagic production sources. Other trophic guilds showed some level of overlap among them especially 
in the δ13C value which is attributable to source omnivory. Surprising features of the isotopic niches included the benthivore 
Halichoeres pictus, herbivores Acanthurus coeruleus and Coryphopterus personatus and omnivore Thalassoma bifasciatum 
being close to the planktivore guild, while the piscivore Aulostomus maculatus came within the omnivore and herbivore 
ellipses. These characterisations contradicted the simple trophic categories normally assigned to these species. δ15N tended 
to increase with body mass in most species, and at community level, the linear δ15N–log2 body mass relationship pointing to 
a mean predator–prey mass ratio of 1047:1 and a relatively long food chain compared with studies in other aquatic systems. 
This first demonstration of a positive δ15N–body mass relationship in a coral reef fish community suggested that the Cape 
Eleuthera coral reef food web was likely supported by one main pathway and bigger reef fishes tended to feed at higher 
trophic position. Such finding is similar to other marine ecosystems (e.g. North Sea).

Introduction

In coral reef food webs, fishes are typically categorised into 
strict trophic guilds (e.g. Hiatt and Strasburg 1960; Jennings 
et al. 1995; Polunin 1996; McClanahan et al. 1999; Hughes 
et al. 2003; MacNeil et al. 2015; D’Agata et al. 2016; Gra-
ham et al. 2017; Stamoulis et al. 2017; Hadi et al. 2018; 
Moustaka et al. 2018). Yet this may overlook trophoplastic-
ity, where many species feed across trophic boundaries (e.g. 

Robertson 1982; Chen 2002) and thus their trophic functions 
and the overall functioning of the reef (Mouillot et al. 2014). 
Inaccurate trophic information jeopardises comprehensive 
understanding of these food webs. Traditional gut contents 
analysis gives detailed dietary information; however, this 
typically has high temporal and spatial variability (Jennings 
et al. 2001) and it might include items accidently ingested 
(e.g. eDNA in gut contents DNA bar coding; Leal and Fer-
rier-Pagès 2016). Stable isotopes provide a time-integrated 
signal of what has been assimilated from the diet (Jennings 
et al. 2001). The stable isotope ratio of carbon (13C/12C, 
expressed as δ13C) is commonly used to distinguish produc-
tion sources such as benthic and pelagic autotrophs (Tieszen 
et al. 1983; Bearhop et al. 2004), whereas the stable iso-
tope ratio of nitrogen (15N/14N, expressed as δ15N) is used 
as a proxy for trophic position (TP) because it has a higher 
trophic enrichment factor (TEF) (DeNiro and Epstein 1978, 
1981; McCutchan et al. 2003; Strieder Philippsen and Ben-
edito 2013) and shows less variation at the baseline (Hes-
slein et al. 1991) than does carbon. Combining δ13C and 
δ15N delineates ‘isotopic niches’ (Leibold 1995; Newsome 
et al. 2007) which inform feeding strategies and trophic 
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interactions (Post 2002) at species, trophic guild and com-
munity levels (France et al. 1998; Jennings et al. 2001, 
2002a, b; Al-Habsi et al. 2008). Combining these levels of 
data can explain a species’ trophic ecology including how 
strict it is and what potential source(s) it is utilising with 
the latter being very important because trophic interactions 
among omnivorous species within the same community 
remain understudied in coral reefs.

Trophodynamics can be size based. In aquatic systems, 
large individuals generally feed at higher TPs (Jennings et al. 
2001, 2002b; Al-Habsi et al. 2008; Romanuk et al. 2011). 
This is a result of ontogenetic dietary shifts, morphometric 
changes including increasing gape size, post-maturity factors 
and greater predator ability that influence foraging (Peters 
1986; Jennings et al. 2001; Munday 2001; Jennings et al. 
2002b; Al-Habsi et al. 2008; Newman et al. 2012; Robinson 
and Baum 2015; Ríos et al. 2019). However, some large 
fishes forage at lower TPs due to dietary shifts (e.g. Chen 
2002; Layman et al. 2005), seasonality effects (Bronk and 
Glibert 1993; Rolff 2000) and human disturbance (Pastorok 
and Bilyard 1985). TPs of some species remain relatively 
unchanged with increasing body size (e.g. herbivores; Plass-
Johnson et al. 2013; Dromard et al. 2015). Size-based feed-
ing remains almost unstudied in coral reef ecosystems (Rob-
inson and Baum 2015) where large herbivores contribute 
greatly to the biomass.

Investigating TP to body mass relationships at commu-
nity level can improve understanding of predator to prey 
relationships and energetic pathways (Romanuk et al. 2011; 
Robinson and Baum 2015) and of changes in community 
trophic composition (Graham et al. 2017). Where a positive 
TP relationship with body mass exists, the predator–prey 

mass ratio (PPMR) can be calculated. This reflects con-
straints on community structure (Trebilco et al. 2013) and 
can be used to evaluate general food web properties such 
as food chain length (Jennings and Warr 2003) and food 
chain transfer efficiency (Jennings et al. 2002c; Barnes et al. 
2010) across different aquatic systems (Jennings et al. 2001, 
2002c; Bode et al. 2003, 2006; Al-Habsi et al. 2008). The 
great diversity of production sources and trophic partitioning 
by consumers on coral reefs suggest that the PPMR may be 
smaller and food chains longer than in many other marine 
ecosystems. But to date, the community-level δ15N to body 
mass relationship and the PPMR have not been reported for 
a coral reef, so important insights such as measures of food 
chain length cannot be gained.

Here, underwater visual census and stable isotope data 
were used to explore the role of body size and trophic inter-
actions among fish species in structuring a coral reef fish 
community at Cape Eleuthera (the Bahamas). Specifically, 
the study aimed to: (1) define isotopic niches at species and 
trophic guild levels in order to understand the principal 
energy pathways supporting them; and (2) assess whether 
there are positive δ15N–body mass relationships at the spe-
cies and community levels and if so, derive an average pred-
ator–prey biomass ratio (PPMR).

Materials and methods

Study site

Four accessible and conservation-protected reef sites (Fig. 1) 
on the Exuma side of Cape Eleuthera (the Bahamas) with 

Fig. 1  Map of survey sites at Cape Eleuthera (the Bahamas)
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relatively high structural complexity and a diverse fish com-
munity were selected for visual surveys and fish sampling. 
These sites were close to each other and to shore and repre-
sented both bommies and patch reefs. In spite of the conser-
vation status of the study sites, the reefs have been subject 
to chronic overfishing and otherwise impacted by cyclones 
and coral bleaching episodes.

Fish survey

Underwater visual census (UVC) was conducted by two 
divers using eight single-sweep 30 m × 5 m transects at 
each site to record fish species, individual total length (L, to 
nearest cm) and numbers of individuals. Surveyors’ length 
estimation precision was repeatedly measured by conduct-
ing underwater fish-shaped object length estimation train-
ing (Bell et al. 1985) to minimise error (± 5%). Transects 
ran parallel to each other to avoid intersection. Transects 
were carried out in the morning (9:30–11:30) or after-
noon (14:00–16:00), while swimming at a steady speed for 
30 min. Highly mobile transient individuals (e.g. sharks and 
jacks) were excluded since they had large home range and 
were not necessarily reef associated, and also large schools 
of fishes were excluded since they were sighted only sporadi-
cally (Ferreira et al. 2001).

Sampling for stable isotope analysis

Abundant species were selected by their contribution to the 
total biomass (B). From UVC data, individual body mass 
values (M, g) were calculated from L (cm) using:

with published length to weight conversion factors a and b 
(“Appendix A” in supplementary materials) from fishbase.
org (Froese and Pauly 2017). Where conversion factors 
were linked with standard or fork length rather than L, or 
L was in units other than centimetres, length was converted 
into appropriate units or length types using the equations in 
fishbase.org. All body mass data were  log2 transformed to 
remove any effects of relationship between body size and 
phylogeny (Freckleton 2000). For each M class (2–512 g), 
B was calculated by summing individual M values. Species 
were ranked in order of their contribution to the B of each 
 log2M interval, and those making up 80% of the B were 
selected for the community trophic structure analysis.

Samples of selected species (Table 1) were collected 
through the length range recorded in the UVC to adequately 
describe species δ15N–log2M relationships (Galván et al. 
2010). The size range cover ratio (rL = LSIA sample range/LUVC 
range) was used to check whether the sampling objective 
was met. Fish were collected using a variety of techniques 
depending on their behaviour towards divers, feeding 

(1)M = a × Lb

habits and swimming patterns. Hand net, gill net (mesh size: 
1 cm × 1 cm, net size: 2 m × 1 m), BINCKE net (Anderson 
and Carr 1998), underwater fishing hook and line, static 
hook and line, spearfishing (local fishermen only) and hook 
and line surface trolling were all used in the sampling in the 
survey sites and adjacent areas (Table 2). Fish were killed by 
spine dislocation and stored in an ice chest on board. Sam-
ples were all collected within a 1-month period and from 
nearby sites to reduce spatial and temporal isotopic variation 
(Bronk and Glibert 1993; Jennings et al. 1997; Rolff 2000; 
McCutchan et al. 2003).

After landing, approximately 2 g of dorsal white muscle 
tissue near the dorsal fin were dissected, rinsed with water 
and stored in individual whirlpack bags in a − 20 °C freezer, 
and algal samples were only rinsed and stored in a freezer. 
All samples were dried in individual tin trays in an oven 
at 40 °C for ~ 12 h until fully dried and then in individual 
sealed Eppendorf tubes in zip-lock bags.

Stable isotope analysis preparation

All dried samples were imported to Newcastle Univer-
sity, freeze dried and then manually ground with mortar 
and pestle. Fish samples were weighed to 1.0 ± 0.1 mg 
in tin capsules with a Mettler MT5 microbalance. The 
prepared samples were analysed by Iso-Analytical Ltd 
(Crewe, UK) by Elemental Analysis-Isotope Ratio Mass 
Spectrometry (EA-IRMS). The 15N/14N ratio (δ15N) was 
expressed relative to  N2 in air for nitrogen, while that of 
13C/12C (δ13C) was relative to Pee Dee Belemnite (PDB) 
of  CO2. Reference material used for this analysis was 
IA-R042 (δ13C = − 21.6 ± 0.1‰, δ15N = 7.6 ± 0.1‰), 
with quality control check samples IA-R042, IA-R038 
(δ13C = − 25.0 ± 0.1‰, δ15N = − 0.4 ± 0.1‰), a mix-
ture of IA-R006 (δ13C = − 11.7 ± 0.0‰) and IA-R046 
(δ15N = 21.9 ± 0.2‰). IAR042 and IA-R038 were calibrated 
against and traceable to IAEA-CH-6 (δ13C = − 10.4‰) and 
IAEA-N-1 (δ15N = 0.4‰), IA-R006 to IAEA-CH-6 and 
IA-R046 to IAEA-N-1. External standards (fish white mus-
cle tissue, δ13C = − 18.9 ± 0.0‰, δ15N = 12.9 ± 0.1‰) were 
also used for future reference. The precision of analysis for 
δ13C, δ15N, %C and %N was ± 0.1‰, ± 0.2‰, ± 4% and 
± 1%, respectively. For individual samples, no lipid extrac-
tion was needed because their C/N ratios were less than 3.7 
(Fry et al. 2003; Sweeting et al. 2006).

Data analysis

All data were tested for normality and homogeneity of vari-
ance prior to analysis and analysed in R 3.24 (R Core Team 
2016) using the package siar (Parnell and Jackson 2013) 
between δ13C and δ15N data, linear regression (Wilkinson 
and Rogers 1973; Bates et al. 1992) between δ15N and  log2 
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body mass and mvtnorm to simulate values from a bivariate 
normal distribution. Results were visualised using ggplot2 
(Wickham and Chang 2016). The assumptions of the ordi-
nary least squares linear regression analyses were assessed 
with QQ plots, histograms of standardised residuals and 
plots of standardised residuals versus fitted values. Pearson’s 
correlation coefficient was used to test correlations between 
variables. Significance was set at p = 0.05 in all cases. All 
errors are reported as ± 1SE unless otherwise stated.

Species and trophic guild stable isotope analyses

The bulk δ13C and δ15N data were used to interpret 
δ15N–δ13C relationships in each species and trophic guild 
(Froese and Pauly 2017). Isotopic niches of five trophic 
guilds (four benthic: benthivore, herbivore, omnivore and 
piscivore and one pelagic: planktivore) were investigated 
using SIBER in the siar package. This was achieved by 
investigating standard ellipse parameters: eccentricity (E) 
and the angle in degrees (θ, 0°–180°) between semi-major 
axis and the x axis, the sample size corrected standard 
ellipse areas  (SEAC) and Bayesian standard ellipse areas 
 (SEAB) (Jackson et al. 2011). θ and E values potentially 
distinguish among isotopic niches where different trophic 
guilds have similar sized  SEAC but different relationships 
between δ13C and δ15N (Reid et al. 2016). θ values close to 
0° or 90° suggest dispersion in only one axis: θ values close 
to 0° represent relative dispersion along the x axis (δ13C), 
indicating multiple production sources, while θ values close 
to 90° highlight relative dispersion along the y axis (δ15N), 
indicating feeding across multiple trophic positions from a 
uniform basal source. E explains the variance on the x and 
y axes: low E refers to similar variance on both axes with a 
more circular shape, while high E indicates that the isotopic 
niche is stretched along either x or y axis. The overlap of the 
standard ellipses between guilds was calculated using “sea.
overlap” using SIBER. In order to compare isotopic niche 
areas among trophic guilds, a Bayesian approach was used 
that calculated 20,000 posterior estimates of  SEAB based 
on the data set. The mode and 95% credible intervals (CI) 
were reported. A significant difference among  SEAB was 
interpreted graphically whereby if the 95% CI did not over-
lap, then the  SEAB were deemed to be significantly different 
(Parnell and Jackson 2013).

δ15N–body size relationship

Cross-species relationships between stable isotope data and 
M were analysed using linear regression between mean bulk 
δ13C and δ15N of each species and their maximum body mass 
(Mmax) recorded by Humann and DeLoach (1989). Comparing 
fishes at a fixed proportion of maximum size (here ≥ 55% of 
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Lmax) reduced the risk of comparing different life stages (Char-
nov 1993; Jennings et al. 2001; Galván et al. 2010).

For each species, the δ15N–log2M relationship was gen-
erated using linear regression, the slope and intercept val-
ues being used to calculate δ15N values of individuals of 
the same species with other body mass values. To derive 
the community relationship between δ15N and  log2B (B 
was used instead of M to differentiate the community-level 
analysis from the species-level analysis), the mean weighted 
δ15N value of each  log2B class was derived by calculating 
(1) the mass ratio (r) of each individual (i) in each  log2B 
class, using ri = Mi∕

∑n

i=1
Mi , where n is the total number 

of individuals in the  log2B class; and (2) mean weighted 
δ15N for each  log2B class j of the whole community as 
δ15Nj =

∑n

i=1
δ15Ni × ri (Al-Habsi et al. 2008). The δ15N 

of each individual (δ15Ni) was either calculated using the 
species-level linear δ15N–log2M relationship if it is signifi-
cant or equivalent to the mean δ15N of the species if not.

Because of the species richness of these reefs and limita-
tion of fishing techniques, not all species could be sampled. 
To obtain δ15N values of such species, several methods were 
used (full details in “Appendix B” supplementary materi-
als): (1) using samples from similar species within the same 
genus if possible (order of priority: same genus, family, site, 
trophic position, diet and feeding habit from fishbase.org) by 
comparing 3 criteria: (a) length to weight conversion factors, 
(b) dietary similarities and (c) their feeding behaviours in 
this area; and (2) using existing data in the literature from 
nearby locations or elsewhere in the Caribbean with baseline 
adjustment (D. cavernosa to D. cavernosa if possible, oth-
erwise D. cavernosa to turf algae) to reduce temporal and/
or spatial baseline variations (Cabana and Rasmussen 1996).

Predator–prey mass ratio

The mean PPMR was calculated using the slope (b) 
of the regression line of the TP–log2B relationship as 
PPMR = 21∕b . TP was calculated using the additive frame-
work as

where the Δδ15N is assumed constant and equal to 3.4‰ 
(DeNiro and Epstein 1981; Minagawa and Wada 1984). 
 TPbase was indicated by the striped parrotfish (S. iserti, 
δ15Nbase = 4.2 ± 0.1‰;  TPbase = 2.0) due to its low isotopic 
variation across sizes, time integration of seasonality from 
producers and adequate sample size (n = 10). The slope (b) 
of TP–log2B relationship was obtained from the slope (s) of 
δ15N–log2B relationship where b = s∕3.4 . Thus, the PPMR 
is calculated as

The uncertainty of PPMR was estimated by (1) simulat-
ing 10,000 times of independent variables s (the mean and 
standard deviation from the linear regression statistics) and 
Δδ15N values (mean and standard deviation of 3.4 ± 1.0‰; 
Post 2002) from a bivariate normal distribution (ρ = 0) and 
(2) calculating PPMR estimates using Eq. 3. The median, 
25th and 75th quantiles were reported. The same method 
was applied to existing studies for comparison.

Results

Isotopic niches at species and trophic guild levels

In total 9055 individuals (L from 1 to 120 cm, M from 0.01 to 
2742 g) were recorded in 32 UVCs over 4800 m2 of reef. Of 
41 fish species collected and analysed for δ15N, 11 had sample 
sizes under three, and three (Coryphopterus glaucofraenum, 
Balistes vetula, Holocentrus adscensionis) were sampled to 
represent certain uncollected species. The size range cover 
ratio (rL) ranged from 0 to 100% (mean = 31.0 ± 5.0%). Mean 
species δ13C ranged from − 17.4 ± 0.2‰ (Halichoeres pictus) 
to − 9.5 ± 0.0‰ (Lutjanus griseus), while mean δ15N ranged 
from 3.9 ± 0.8‰ (S. aurofrenatum) to 9.9 ± 1.5‰ (Sphyraena 
barracuda). δ15N values were significantly but weakly cor-
related with δ13C (p < 0.05, r2

adjusted
= 0.29 ) at the species level 

(2)TP = TPbase +
δ15Nfish − δ15Nbase

Δδ15N

(3)PPMR = 23.4∕s.

Table 2  List of fishing method and targeting species

J juvenile, A adult, for codes see Table 1

Fishing method Targeting species Examples of species

Hand net Slow, approachable, small, cryptic, territorial Gobies, damselfish, PTVO, AUMA
1 cm× 1 cm gill net Fast, alert, non-thread shaped, schooling J. Scarinae, A. labrids, J. haemulids, pomacentrids
BINCKE net Fast swimming, close to substrate, schooling J. Scarinae, labrids
Underwater fishing Large bodied, fast swimming, cryptic, smart and alert A. haemulids, HORU, some Scarinae, lutjanids, grouper
Line and hook Pelagic, fast, alert Carangids, lutjanids
Spearfishing Fast, aggressive A. Scarinae, acanthurids, PTVO
Surface troll Pelagic, fast swimming individuals Carangids, SPBA
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(Fig. 2). Some species had large SE values in δ13C (≥ 1‰) 
(e.g. S. barracuda) or δ15N (≥ 0.5‰) (e.g. Aulostomus macu-
latus), or both δ13C and δ15N (e.g. Elacatinus genie). Mean 
δ13C and δ15N values of strict pelagic planktivores (e.g. 
Chromis cyanea, TP = 3.7, δ13C = − 17.0 ± 0.1‰, 
δ15N = 5.2 ± 0.1‰) and strict benthivores of similar TP (e.g. 
B. vetula, TP = 3.8, δ13C = − 12.4 ± 0.3‰, δ15N = 7.7 ± 0.1‰) 
were significantly different.

The herbivore and benthivore guilds had the largest iso-
topic niches, followed by the piscivore guild, and then the 
omnivore guild; the planktivore guild had an isotopic niche 
significantly smaller than others (Table 3). The plankti-
vore guild had a lower δ13C than others and was separated 
from the herbivore, benthivore and piscivore trophic guilds 
(Fig. 2, Table 4). The isotopic niche of the omnivores over-
lapped with those of the herbivores and planktivores as 
did those of the benthivore and piscivore (Table 4). The 
isotopic niche of the herbivores was vertically separated 
from those of the benthivores and piscivores. E and θ val-
ues differed among trophic guilds (Table 3); the herbivore 
guild had the lowest E (0.77), while the omnivores had 
the highest (0.98). The benthivore (0.94) and planktivore 
(0.79) trophic guilds had E values very similar to those of 
the omnivore and herbivore trophic guilds, respectively. 

Fig. 2  Plot of bulk δ15N against δ13C (mean ± SE) of all sampled fish species (for codes see Table 1) and standard ellipses (solid line-ellipses) for 
five trophic guilds (and one species of parasitivore, ELGE) of fish at Cape Eleuthera (the Bahamas)

Table 3  Isotopic niche area (‰2) estimates and parameters [eccen-
tricity (E), the angle in degree between the semi-major axis of the 
standard ellipse and the x axis (θ) for five trophic guilds (benthivore, 
herbivore, omnivore, piscivore and planktivore) of coral reef fish at 
Cape Eleuthera (the Bahamas)]

Estimates of isotopic niche areas are given as  (SEAC) and the mode 
of the Bayesian standard ellipse area  (SEAB) estimates. Upper and 
lower 95% credible intervals (CI) indicate the uncertainty in the 
 SEAB estimates

Trophic 
guild

SEAC (‰2) E θ (°) SEAB (‰2) SEAB 95% CI

Benthivore 5.30 0.94 20.96 5.19 3.96–6.93
Herbivore 5.90 0.77 6.29 5.73 4.32–7.53
Omnivore 1.83 0.98 19.17 1.77 1.05–3.14
Piscivore 3.91 0.89 14.36 3.81 2.88–4.04
Planktivore 0.46 0.79 75.69 0.41 0.26–0.66

Table 4  Standard ellipse overlap (‰2) among the five trophic guilds

Trophic guild Benthivore Herbivore Omnivore Piscivore

Herbivore 0.00
Omnivore 0.00 0.77
Piscivore 0.57 0.00 0.00
Planktivore 0.00 0.00 0.03 0.00
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The θ values of the δ15N versus δ13C relationships of all 
the trophic guilds were positive; the herbivores had the 
lowest θ (6°), while the planktivores had the highest (76°). 
Among the benthivore, omnivore, piscivore and herbivore 
trophic guilds, the isotopic niche was spread along the x 
axis (θ < 45°), while that of the planktivores was more 
vertically spread (θ > 45°). Some species (the benthivore 
H. pictus, herbivores Acanthurus coeruleus and Coryphop-
terus personatus and omnivore Thalassoma bifasciatum) 
had isotopic coordinates close to the ellipse of the plank-
tivore trophic guild, and one piscivore (A. maculatus) had 

an isotopic coordinate within the standard ellipse of the 
herbivore trophic guild.

δ15N–body mass relationships at species 
and community levels and PPMR

There were significant but weak relationships across spe-
cies between  log2Mmax (maximum body mass) and both 
δ15N ( r2

adjusted
= 0.12 , p < 0.05; Fig.  3a) and δ13C data 

( r2
adjusted

= 0.17 , p < 0.05; Fig. 3b). The δ15N values of sev-
eral species did not scale positively with  log2Mmax (e.g. E. 

Fig. 3  Plots of bulk δ15N (a) 
and bulk δ13C (b) (mean ± SE) 
versus  log2 maximum body 
mass for all collected fish 
species (for codes see Table 1) 
at Cape Eleuthera with mean 
isotope values of individuals 
bigger than 55% of their Lmax. 
Solid line: linear regression line 
(p < 0.05)



Marine Biology (2019) 166:160 

1 3

Page 9 of 14 160

genie, Sparisoma viride, Scarus iserti and S. aurofrena-
tum). The SE values of δ13C were generally higher than 
those of δ15N regardless of Mmax. δ15N tended to vary with 
 log2M for 29 species (Fig. 4) with n ≥ 3; of these 24 rela-
tionships were positive (significantly so, e.g. C. cyanea), 
while five were negative (significantly so, e.g. Pomacan-
thus arcuatus, “Appendix C” supplementary materials). 
There was considerable variability around the regression 
line for nine species ( r2

adjusted
< 0.5 , e.g. S. barracuda), 

whereas this was not the case for others (e.g. Clepticus 
parrae, Calamus pennatula, Halichoeres garnoti). At the 
community level, the combined isotope data demonstrated 
a strong positive linear relationship between mean δ15N 
and  log2B, the regression equation being δ15N = 0.34 ± 0.
04log2B + 4.03 ± 0.24 ( r2

adjusted
= 0.64 , p < 0.05, Fig. 5). 

The slope value of TP–log2B was b = 0.10 ( r2
adjusted

= 0.80 , 
p < 0.05), and the PPMR estimates were 1047:1 (Table 5).

Fig. 4  Plot of δ15N versus  log2 
body mass (linear regression) 
of all sampled species at Cape 
Eleuthera (the Bahamas). Solid 
line: significant relationship 
(p < 0.05), dashed line: non-
significant relationship. For 
codes see Table 1

Fig. 5  Plot of combined 
relationship (linear regression) 
between δ15N and  log2 body 
mass at Cape Eleuthera (the 
Bahamas). Solid line: linear 
regression line (p < 0.05), long 
dashed line: 95% CI
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Discussion

Species and trophic guild trophodynamics

Stable isotope data at both species and trophic guild levels 
indicated that at the Cape Eleuthera site there were large 
differences in trophic ecology within and among species, 
and species utilising a range of production source types were 
common.

High within-species variability in δ13C and δ15N values 
for some species suggested the existence of individual spe-
cialisation (Matthews and Mazumder 2004) in the food web 
where different individuals of the same species were consist-
ently sampling different production sources. For example, 
similarly sized individuals of the apex predator S. barracuda 
had similar δ15N values but differed greatly in δ13C values. 
The δ13C value of approximately − 16‰ was close to that 
within the planktivore trophic guild, while the δ13C value of 
− 10‰ was more consistent with the piscivore trophic guild. 
Trophic position omnivory indicated by differences in δ15N 
also occurs, for example, in the parasitivore E. genie which 
feeds on parasites from fish at different trophic positions.

The SIBER analysis indicated at least two types of pro-
duction sources, namely benthic (e.g. algae) and pelagic 
(e.g. plankton), and mixed-feeding patterns for some species 
that are typically regarded as relying solely on single types 
of source materials (e.g. herbivorous fish; Plass-Johnson 
et al. 2013; Dromard et al. 2015). In this study, isotopic 
niche areas of the planktivores were significantly smaller 
than other guilds even though plankton can have highly vari-
able isotopic signatures (McClelland and Montoya 2002; 
Kürten et al. 2013), which indicated a level of dietary strict-
ness or consistency. High θ, low E and low SEA values of 
the planktivore guild nevertheless suggested TP omnivory, 
with these fish feeding at different TPs albeit from the same 
type of pelagic source (e.g. phytoplankton and zooplank-
ton). The omnivore guild had high E, low θ and SEA values, 
the δ13C data indicating that the two species are supported 
by plankton and benthic algae with similar δ15N baselines. 
Although based on only two species, the omnivores may be 
connecting these two pathways to some extent (McMeans 

et al. 2016). The benthivore, piscivore and herbivore trophic 
guilds, which share mostly benthic production sources, had 
similar isotopic niche areas which were much greater than 
those of the planktivores and omnivores, with their isotopic 
niches spread along the x axis as indicated by E and θ values, 
suggesting source omnivory within the benthic producer cat-
egory. Overlapping isotopic niches among the trophic guilds 
(e.g. piscivore and benthivore) suggested that they might 
share dietary resources to some extent; for example, some 
lutjanids are both piscivorous and feed on zoobenthos (Allen 
1985; Kulbicki et al. 2005; Layman and Allgeier 2012). The 
vertical distribution in the isotopic niches for the four ben-
thic trophic guilds reflected the herbivorous fish feeding at 
low trophic positions, while the omnivores, benthivores and 
piscivores utilised a wider range of energy sources from dif-
ferent TPs. There were species with stable isotope values 
outside the isotopic niches of their assumed trophic guilds, 
which suggested feeding on different food sources than pre-
viously known or those derived from snapshot diet studies. 
For example, the four benthic feeders (H. pictus, A. coer-
uleus, C. personatus and T. bifasciatum) were likely relying 
on plankton sources, and the piscivore A. maculatus might 
be predating on smaller herbivores. Some herbivores came 
partly within the isotopic niches of other trophic guilds, indi-
cating feeding on food sources in addition to algae such as 
invertebrates or planktivore faeces (Robertson 1982; Wulff 
1997; Dunlap and Pawlik 1998; Chen 2002; Plass-Johnson 
et al. 2013). This can only be confirmed with detailed die-
tary analysis including baseline variation (i.e. during the 
3–6 months isotopic turn over period).

δ15N–body mass relationship

The majority of species had a positive trend between δ15N 
and  log2M indicating that they tend to feed at higher TPs as 
size increases. This could be a result of increasing gape size, 
predatory skill and fitness level allowing individuals to feed 
on higher TP prey as they grow (Peters 1986; Munday 2001; 
Newman et al. 2012). Those with negative or highly vari-
able stable isotope-size relationships potentially have dietary 
shifts from isotopically high value production sources to 

Table 5  Mean PPMR values 
of different communities from 
the literature using the additive 
framework

Community PPMR estimates Reference

Median 25th and 75th quantiles

Central North Sea 104:1 42 to 75:1 Jennings et al. (2002a, b)
Northern North Sea 1037:1 239 to 4503 Jennings et al. (2001)
Cape Eleuthera 1047:1 250 to 4833:1 Present study
Puget Sound 4320:1 779 to 2.71 × 104:1 Reum et al. (2015)
North Sea 8349:1 1235 to 6.73 × 104:1 Jennings and Warr (2003)
Western Arabian 8935:1 1287 to 6.60 × 104:1 Al-Habsi et al. (2008)
Iberian Peninsula 2.02 × 107:1 2.27 × 105 to 1.61 × 1010:1 Bode et al. (2006)
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low or multi-pathway (e.g. exploitation of short food chain) 
feeding patterns in their sampled size ranges, or otherwise 
assimilating significantly different isotopic baselines across 
the population (Jennings et al. 2002a; Layman et al. 2005). 
Unlike Robinson and Baum (2015) where δ15N–log2M rela-
tionships of all individuals in two separate trophic pathways 
(herbivore and carnivore) were investigated, species-level 
and whole-community-level analyses were conducted in 
this study. The variation among species is attributable to 
differences in the trophic pathways supporting them, but to 
understand better how trophic pathways affect such relation-
ships, more data are clearly needed. At community level, a 
positive linear relationship between δ15N and  log2B across 
the combined sites was found, indicating that TP tended to 
increase with body mass regardless of taxonomy and larger 
coral reef fish in this Cape Eleuthera community on average 
fed at higher TPs.

The weak cross-species relationship between isotopic 
signatures and  log2Mmax suggested that maximum body 
mass could scarcely constrain species’ trophic capabilities 
in this food web in which there were small-bodied benthi-
vores and planktivores and large-bodied herbivores. The 
body-size structuring is similar to that of North Sea and 
Western Arabian Sea community data (Jennings et al. 2001; 
Al-Habsi et al. 2008). Here, the small size class biomass 
data were dominated by herbivores rather than higher TP 
omnivores such as Labridae (Graham et al. 2017), while the 
large size classes were dominated by piscivores and omni-
vores rather than large-bodied herbivores such as Scarinae 
(Hughes et al. 2007; Zhu 2019). Although the surveyed 
Cape Eleuthera sites are now legally protected, they were 
previously fished and are structurally degraded. The linear-
ity of the δ15N–log2B relationship at Cape Eleuthera may 
not be generic; it could be influenced by the loss of habitat 
structural complexity and aspects of past overfishing (e.g. 
removal of large herbivores).

The present study also had limitations. All individu-
als were treated as if they had the same isotopic baseline, 
yet significant isotopic differences between benthic and 
pelagic sources are expected (McConnaughey and McRoy 
1979; Polunin and Pinnegar 2002), whereas other baselines 
would have been taken into consideration when estimating 
the trophic positions of consumers with significantly mixed 
diets. Also, for some species, sample sizes failed to ade-
quately fulfil requirements for confidently describing stable 
isotope changes as a function of body mass (Galván et al. 
2010), yet linear regression was still applied to these spe-
cies to explore their δ15N–log2M relationships. Low sample 
sizes and/or size ranges (rL) meant that for some species, 
stable isotope data could not be derived across whole UVC 
size ranges; for these stable isotope data were assumed to 
be size invariant. For missing species, the methods used to 
infer stable isotope values had limitations including species 

within the same genus or family having ontogenetic and/or 
dietary differences; some not meeting all three criteria and 
using published data from the same species could be subject 
to feeding strategies varying ontogenetically (Plass-Johnson 
et al. 2013) or spatially (Jennings et al. 1997; Matthews and 
Mazumder 2004). Unlike studies using combined baselines 
(Mill et al. 2007), here the benthic alga D. cavernosa was 
the sole baseline and this might not adequately represent 
the whole benthic assemblage, which includes turf algae, 
cyanobacteria and other potential production sources.

Predator–prey mass ratio

The mean PPMR at Cape Eleuthera indicates a relatively 
long food chain in this coral reef system compared with 
other aquatic systems (Table  5), suggesting potentially 
greater ecosystem size and stability (Jennings and Warr 
2003). However, surveys at adjacent non-protected sites 
failed to show the presence of large predators there; thus, 
the PPMR data we report seem to be specific to the protected 
sites.

Conclusions

Stable isotope data indicate more than one production source 
and mixed reliance on them by some coral reef fishes sug-
gesting evidence of reef fish crossing trophic boundaries 
described by their trophic guilds and that current catego-
risations are often simplistic. Combining visual census and 
stable isotope data indicated that the Cape Eleuthera coral 
reef fish community was size structured. The relationship 
at this site points to body size as a driver of predator–prey 
relationships and trophic pathways at community level, with 
the isotope data suggesting that trophic position plasticity 
is common at species level. This is the first indication of a 
positive linear δ15N–log2 body mass relationship in a coral 
reef system, but this may not pertain to all coral reefs.
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