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Abstract
Accurate taxonomy, population demography, and habitat descriptors inform species threat assessments and the design of 
effective conservation measures. Here we combine published studies with new genetic, morphological and habitat data that 
were collected from seahorse populations located along the European and North African coastlines to help inform manage-
ment decisions for European seahorses. This study confirms the presence of only two native seahorse species (Hippocampus 
guttulatus and H. hippocampus) across Europe, with sporadic occurrence of non-native seahorse species in European waters. 
For the two native species, our findings demonstrate that highly variable morphological characteristics, such as size and pres-
ence or number of cirri, are unreliable for distinguishing species. Both species exhibit sex dimorphism with females being 
significantly larger. Across its range, H. guttulatus were larger and found at higher densities in cooler waters, and individuals 
in the Black Sea were significantly smaller than in other populations. H. hippocampus were significantly larger in Senegal. 
Hippocampus guttulatus tends to have higher density populations than H. hippocampus when they occur sympatrically. 
Although these species are often associated with seagrass beds, data show both species inhabit a wide variety of shallow 
habitats and use a mixture of holdfasts. We suggest an international mosaic of protected areas focused on multiple habitat 
types as the first step to successful assessment, monitoring and conservation management of these Data Deficient species.

Introduction

The paucity of species-specific data is among the many chal-
lenges to designing effective marine conservation measures 
that are resilient to the enduring threats of climate change, 
coastal development, over-fishing, by-catch effects and inva-
sive species (Klein et al. 2013; Selig et al. 2014). These 
challenges are further compounded when the taxonomy 
of species is uncertain. Knowing which species occur and 
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understanding their life-history, ecology, and behaviour is 
increasingly important to ensure effective and robust con-
servation and management (Perry et al. 2005; Lavergne et al. 
2010; Dawson et al. 2011).

The cryptic nature of seahorses (genus Hippocampus) has 
led to significant confusion regarding their taxonomy and 
ecology, which poses challenges to managing the activities 
that threaten these fishes. The most recent and comprehen-
sive taxonomic review suggests there are two native species 
of seahorse in European waters, H. guttulatus and H. hip-
pocampus (Lourie et al. 2016), but considerable intraspecific 
variability in morphology within this genus (Lourie et al. 
1999b; Otero-Ferrer et al. 2017) has led to much confusion 
regarding their taxonomy, and the taxonomy and nomen-
clature of these species is not stable. Authors previously 
suggested many additional species within this geographic 
range, based on small morphometric differences (Kuiter 
2009). For instance a study by Vasil’Eva (2007), which has 
not been adopted (Eschmeyer and Fricke 2016), attempted to 
change the names of these species, while another author sug-
gested additional species were present based on photographs 
(Kuiter 2009). There is ongoing discussion as to whether 
H. ramulosus is a simple synonym of H. guttulatus, and 
whether the regional morphological differences observed 
across the seahorse populations in the region are indica-
tive of different species (Kuiter 2009). Taxonomic contro-
versy involving splitting and lumping of species is common 
throughout the Syngnathidae family, due to limited discrimi-
nating morphological characteristics between species and 
the ability within the family to change colour and cirri (fila-
mentous skin appendages) (Curtis 2006). As most ecological 
studies of seahorses in Europe have used the nomenclature 
of H. hippocampus and H. guttulatus to define their focal 
species (e.g. Curtis and Vincent 2005; Kitsos et al. 2008; 
Ben Amor et al. 2011; Caldwell and Vincent 2012; Filiz 
and Taskavak 2012; Gristina et al. 2015), there is some con-
sensus for a conservative view of seahorse taxonomy. Some 
reports also suggest range extensions into European waters 
by non-native species: H. algiricus presence in the Canary 
Islands (Otero-Ferrer et al. 2015b, 2017), the Lessepsian 
migrant H. fuscus in the eastern Mediterranean (Golani and 
Fine 2002), and occasional rare migrants (e.g. H. erectus, 
Woodall et al. 2009). Therefore genetic data are particularly 
useful to clarify taxonomy and complement morphological 
data (Padial et al. 2010).

The two European seahorses H. guttulatus and H. hip-
pocampus are the currently recognised names used in the 
IUCN Red List of Threatened Species (2012) and both are 
currently assessed as Data Deficient (Woodall 2012a, b). 
Both species have a large geographic range extending across 
most of Europe and North Africa including the Atlantic 
Ocean, Mediterranean and Black Seas (Lourie et al. 1999b; 
Otero-Ferrer et al. 2017). Neither species is thought to be 

currently targeted by fisheries throughout most of their geo-
graphic range, but there is trade in west Africa of H. hip-
pocampus (Cisneros-Montemayor et al. 2016) and a new and 
increasing fishery for H. guttulatus in the Ria Formosa in 
Portugal (M. Correia, pers. obs.). Both species are also sus-
ceptible to anthropogenic activities and habitat loss (Curtis 
et al. 2007). Ecological data on seahorses are scarce due to 
their apparent patchy distribution and low density, as well 
as their cryptic nature (Foster and Vincent 2004). These fea-
tures make them particularly difficult to survey, assess and 
monitor the status of their populations, either for scientific 
research or commercial development projects, such as envi-
ronmental impact assessments prior to construction work.

To date, a range-wide ecological assessment has been 
conducted for just one seahorse species (H. capensis), which 
is confined to three estuaries in South Africa (Lockyear et al. 
2006). For European seahorses, research has generally been 
limited to small focal sites (e.g. Curtis and Vincent 2006; 
Gristina et al. 2015) or collection of qualitative data (e.g. 
Filiz and Taskavak 2012). However, a very large sighting 
dataset has been collected for UK and Ireland (N. Garrick-
Maidment pers. comm.). Comparisons of population struc-
ture among studies is also challenging because seahorse 
length can be measured by standard length (LS), total length 
(LT) or height (Lourie et al. 1999a) and previous studies have 
used all of these (e.g. Verdiell-Cubedo et al. 2008; Nadeau 
et al. 2009; Caldwell and Vincent 2012; Vieira et al. 2014).

Focusing on the taxonomy, biology and life history of 
European seahorses, we use published and unpublished 
sources of genetic, demographic and environmental data to 
investigate the following objectives:

1. Use genetic markers to confirm the number of seahorse 
species present in Europe

2. Test for differences in population structure and behav-
iour throughout the range

3. Test for the correlation of population structure and mor-
phology with environmental variables

This information will help to advance our ability to effec-
tively manage Hippocampus spp. within Europe, by provid-
ing detailed information that can help determine appropriate 
protection and mitigation interventions as well as the accu-
rate assessment of seahorse populations.

Materials and methods

Geographic extent, literature sources 
and standardization

The geographic extent of this review covers seahorse pop-
ulations from the Northeast Atlantic Ocean, including the 
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Macaronesian islands, and the Mediterranean and Black 
Seas. In total, data from 13 countries and 37 different sites 
are reviewed. These data cover the known geographic 
range of H. guttulatus and H. hippocampus (Lourie et al. 
1999b), however most individual studies generally focused 
on sites in Portugal and the eastern Mediterranean due to 
these being identified as having relatively high seahorse 
abundance that led to longer term studies. Data used in 
this review were from a wide range of sources, including 
sources known to authors or found using a combination 
of the following search terms ‘Seahorse, Hippocampus, 
guttulatus, ramulosus, Mediterranean, Atlantic, Black Sea, 
short snouted, long snouted, Hippocampe, Caballito de 
Mar, cavalos marinhos’ in search engines Google Scholar 
and Web of Science. Sources include new data and pub-
lished literature comprising peer-reviewed papers, theses, 
books and grey literature such as conference posters and 
reports. Due to the diversity of the methods employed by 
these studies, we were not able to use all data from all 
studies in comparisons among sites. However, all den-
sity measures were standardised to ind.  m−2 and seahorse 
length measurements were compiled as standard length 
(LS) (Curtis and Vincent 2006), height (Foster and Vincent 
2004) or total length (LT) (Verdiell-Cubedo et al. 2008).

New sample acquisition and genetic analysis

Most specimen tissue was collected during sampling dives. 
Further specimens or tissue and associated data were also 
donated by fishers, public aquariums and academics, and 
were used when source location was known. In total, sea-
horse tissue was obtained from specimens from 18 sites 
around Europe and North Africa (Fig. 1). Authors directly 
sampled tissues from 14 sites, while tissue from the remain-
ing four locations was donated by other researchers. The 
mitochondrial DNA cytochrome b gene (cytb) and Control 
Region (CR) were amplified from specimens using methods 
given in Woodall et al. (2011, 2015). All DNA sequences 
were deposited in Genbank (Table S1). Cytb is most rou-
tinely sequenced in seahorses, and thus provided an oppor-
tunity to include the greatest number of species. The cytb 
sequences were combined with seahorse reference sequences 
(Casey et al. 2004; Teske et al. 2007a, b), and aligned using 
ClustalW (Larkin et al. 2007) implemented in Geneious 
v6.1.7. The pipefish Syngnathus temminckii was used as an 
outgroup. A phylogenetic tree, to group similar haplotypes, 
was created in Mr. Bayes (Huelsenbeck and Ronquist 2001) 
implemented in Geneious after using Find model (Posada 
and Crandall 2001) to determine the most suitable nucleo-
tide substitution model (GTR + γ) for this dataset.

Fig. 1  Locations of seahorse tissue collection, population demography and environmental data, including site codes. Filled shapes are sites with 
new data and open shapes are sites with published data
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Environmental and demographic data collection

Environmental and demographic data were collected oppor-
tunistically during SCUBA dives, and morphological data 
from donated specimens as detailed below. Ideally, a strati-
fied random or systematic sampling regime would be used 
to capture the full range of diversity in genetic and demo-
graphic structure and to identify environmental correlates. 
However, this was not feasible at the geographic scale of 
interest because so little information is known of seahorse 
distributions, which are generally patchy and low-density 
(Curtis and Vincent 2005). Instead local knowledge of sea-
horse occurrences was used to identify suitable and accessi-
ble survey locations. All seahorses encountered were identi-
fied in the field as either H. guttulatus or H. hippocampus, 
using morphological characteristics that have proved to 
be robust such as head shape and head:snout ratio (Lourie 
et al. 1999b; Curtis 2006). Photographs of specimens were 
taken when possible and representative images displayed in 
Fig. S1. Water temperature was extracted from http://www.
seatemperature.org (1st July 2015) and was used for all sites 
where published studies were conducted.

Survey data collected by divers

At 14 of the 37 sites, diving methods were employed to sam-
ple seahorse populations in two ways: (a) to collect tissue 
samples for genetic studies (collection dives—see Woodall 
et al. 2011); or (b) to carry out rapid population assessments 
(transect dives—adapted from Curtis and Vincent 2005; 
Woodall et al. 2015). All dives were conducted during the 
main breeding season for the seahorses (May–October, Cur-
tis and Vincent 2006). During both dive types (collection 
and transect), once individual seahorses were located, their 
holdfast (seagrass species, algae species, artificial structures, 
sand, shells, sessile invertebrates), depth and macro habitat 
(seagrass, macroalgae, sessile invertebrates, sponge, sand/
mud, stones/pebbles, rocks, cliff or artificial structures) were 
recorded, as well as species, sex, maturity (size when brood 
pouch is mature in males of that population; Curtis and Vin-
cent 2006; Curtis et al. 2017), presence or absence of cirri 
(Curtis 2006) and straight trunk length (LTr) which was later 
converted to standard length (LS) (Curtis and Vincent 2006). 
Water clarity was assessed during each dive by estimating 
the horizontal visible distance (meters). The mean tempera-
ture at each site was calculated and recorded using a dive 
computer (Mosquito, Suunto).

(a) Collection dives
  Between two and five (site dependant) divers 

searched the benthic substratum for seahorses using 
a random search pattern. The total time spent search-
ing (diver hours) and number of individual seahorses 

located were recorded, but using this search pattern it 
was not possible to record the area of benthos searched. 
Search effort was measured by time and the number of 
searching divers, so the relative abundance of seahorses 
(seahorse per diver hour) could be reported (Schmitt 
and Sullivan 1996).

(b) Transect dives
  A random position within the general search area was 

assigned as the starting point. This point was defined 
either by its GPS position or by its bearing and dis-
tance from a known structure (e.g. pier or rocky fea-
ture). From the starting position, a 30 m tape was laid 
out by one diver in a random direction while the other 
diver recorded the number of seahorses by species, sex 
and holdfast within a 2 m corridor belt transect centred 
along the tape length. Returning along the transect, 
both divers assessed the habitat by determining the 
dominant habitat type, which was defined by the broad 
categories given above. The divers also determined the 
percentage of cover of each habitat type within three 
randomly positioned 1 m2 quadrats. This process was 
repeated so that a total of four transects were surveyed 
per site. At one site in Greece (KGR—Fig. 1), the tran-
sects originated from a start line running at right angles 
to the slope. These transects were positioned to run 
parallel to the slope contours, at randomly assigned dis-
tances along the starting line. The deepest transect was 
surveyed first and the shallowest last. This method was 
necessary at KGR as it had a rapidly sloping benthic 
profile, which was absent from other sites.

Commercial trade and fishing data

Fisher data were collected from two locations in the UK. 
The seahorses were accidentally captured in gill nets and 
crab pots by local fishers who were targeting Solea solea 
and Cancer pagurus. Undamaged seahorses were returned 
to the water and injured ones were donated to local public 
aquariums. Environmental (habitat and depth) and seahorse-
specific data (species and number) were recorded on the fish-
ing boat and at the aquariums. Seahorses were donated by 
researchers from three locations in France, Portugal and Italy 
(AFR, TPO and RIT Table 1, Fig. 1). Seahorses from site 
AFR were collected during experimental trawls that were 
used to survey fish diversity in the bay. These seahorses were 
returned to their collection site following LTr measurement 
and photographing. Sites TPO and RIT were fished using 
beach seine nets by aquarium staff for specimen provision 
to local public aquariums. Specimens were measured and 
photographed by aquarium staff. Specimens from Senegal 
(SEN) were donated by Project Seahorse. Most of these 
Senegalese samples were obtained from a traditional medi-
cine market (Hong Kong) by representatives of a Project 

http://www.seatemperature.org
http://www.seatemperature.org
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Table 1  Sample sites of seahorses Hippocampus guttulatus (G) and 
H. hippocampus (H), sampling method [Fishing Method (Net, Pot, 
Trawl, Trammel or Dredge), Type of dive (Collection, Survey or 

Transect), Social (Donations, Interviews or Trade)], and environmen-
tal parameters (depth, visibility, temperature, habitat and main sea-
horse holdfast), (a) new data (b) published data

(a) New data

Site Country Location type Species Sampling 
method

Depth range (m) Visibility (m) Tem-
perature 
(°C)

Holdfast Habitat

HUK UK Coast H Fisher–Nets ≈ 55 n/a n/a Plocamium spp. Sand and mac-
roalgae

SUK UK Coast H Fisher–Pots ≈ 25 n/a n/a n/a Mussel bed
BFR France Coastal H, G Collection dive 2–6 16 Z. marina, Ulva 

spp., Sabel-
lidae spp.

Z. marina beds

AFR France Lagoon G Donation 5–10 n/a n/a n/a Channel of sand 
with Z. marina 
beds on sides

TPO Portugal Lagoon G Donation, col-
lection dive

3–4 2–4 19 Z. marina Z. marina beds on 
sand

PPO Portugal Estuary G Collection dive 1–3 < 1 19 Artificial Ropes and other 
artificial struc-
tures on heavy 
silt

RPO Portugal Lagoon H, G Collection dive 1–6 1–7 20 Sand, Z. marina, 
C. nodosa, 
Artificial

Sparse Z. marina, 
sand urchins and 
macro-algae, 
tunicates and 
artificial

MSP Spain Coastal H, G Collection dive 6–8 2–5 19 Z. marina Mixed sparse 
seagrass beds

TFR France Lagoon G Collection dive 2–4 1–4 21 Various Mixed and com-
plex

GFR France Coastal H Collection dive 4.5–6 < 1 15 On benthos Heavy silt and 
tunicates

GMA Malta Coastal H Collection dive 9–20 15–40 18 Z. marina Sand/seagrass bed, 
+ 70 m deep 
wall @ 20 m

KGR Greece Coastal H, G Collection dive 
transect dive

5–19 15–20 24 Z. marina Mixed seagrass on 
slope

CGR Greece Coastal G Collection dive 
transect dive

2–5 15–20 26 Stones Sponge, rock and 
pebble wells

VBU Bulgaria Coastal G Collection dive 
transect dive

5–6.5 1 25 In mixed algae, 
Dictyopteris 
and Chaeto-
morpha spp.

Ulva spp.

LCN Spain Coastal H Collection dive 
transect dive

6–21 10–30 21 Artificial sub-
strates

Rock, rope and 
ship wreck

SEN Senegal n/a H Trade n/a n/a n/a n/a n/a

(b) Published data

Site Country Type Species Sampling method Depth range (m) Holdfast Habitat References

DUK UK Coastal G Survey dive 1–3 Z. marina Z. marina Garrick-Maidment 
et al. (2010)

OUK UK Lagoon H, G Interview 0–17 Algae and seagrass 
(G) n/a (H)

Algae (H + G), 
sand (H + G), 
mixed seagrass 
(G), Oyster bed 
(H + G)

N. Garrick-Maidment 
Pers. Corr.
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Seahorse/TRAFFIC partnership, but twelve were obtained 
by K. West directly from Senegal traders (West 2012).

Statistical analysis

Pearson correlation was used to assess all correlation rela-
tionships between seahorse size, sex and cirri presence. 
Differences in seahorse length, once juvenile data (Cur-
tis and Vincent 2005) were removed, were assessed using 
GLM to determine whether there was a difference between 
sexes and between sites (when mature seahorse n > 10), 

or a combination of the two. A post hoc Tukey pairwise 
comparison was used to determine at which sites seahorse 
lengths were significantly different. Differences in seahorse 
abundance were determined by Mann–Whitney test, and cor-
relation between abundance of the two species was assessed 
with Pearson correlation. Deviation of sex ratios from equal 
was measured with Chi squared goodness of fit, and post 
hoc multiple test Benjamini–Hochberg correction. Correla-
tion between abiotic parameters and species abundance was 
assessed with Spearman Rho. All these tests were imple-
mented in Minitab v 17. Association of species presence 

Table 1  (continued)

(b) Published data

Site Country Type Species Sampling method Depth range (m) Holdfast Habitat References

AFR France Lagoon H, G Interview 3–20 n/a Z. marina, Z nolti, 
sand, shells

Grima (2011)

GSP Spain Coastal H, G Survey dive 2.5–8 Macroalgae (G)
Seagrass (H)

Sand (G), seagrass 
macroalgae

Valladares et al. 
(2011), (2013)

APO Portugal Estuary H, G Net n/a n/a n/a Veiga et al. (2009)
RPO Portugal Lagoon H, G Transect dive and 

net
0–7 Tunicates and shells 

(H + G), Artificial 
(G), sessile inver-
tebrates (H + G), 
macroalgae 
(H + G), seagrass 
(H + G)

Mixed seagrass and 
macroalgae (G), 
sessile inverte-
brates (H + G), 
sand (H)

Curtis and Vincent 
(2005, 2006), Curtis 
(2004), Caldwell 
and Vincent (2012), 
Correia et al. 
(2015), Vieira et al. 
(2014)

RSP Spain Lagoon G Net 2–3 n/a C. nodosa, invasive 
Caulerpa

Verdiell-Cubedo  
et al. (2006)

TFR France Lagoon G Transect dive 0–9 Artificial Sand, algae and 
sparse seagrass

Louisy (2011)

SIT Italy Coastal H Transect dive n/a n/a Sand Canese et al. (2007)
MIT Italy Lagoon H, G Transect dive 0–5 12 Artificial (H + G) Mixed sand, sparse 

seagrass, dense 
Ulva sp.

Tiralongo and Balda-
cconi (2014), Gris-
tina et al. (2015)

VIT Italy Lagoon H, G Net n/a n/a Seagrass (H + G), 
saltmarsh (G)

Franco et al. (2006)

TSL Slovenia Coastal G Transect dive 4–10 C. nodosa C. nodosa Bonaca and Lipej 
(2005)

KGR Greece Coastal G Transect dive n/a n/a n/a Issaris and Katsane-
vakis (2010)

MTR Turkey Coastal G Net 0–2 n/a Seagrass, sand Keskin (2007)
TTR Turkey Coastal G Interview n/a n/a n/a Kasapoglu and Duz-

gunes (2014)
NTR Turkey Coastal G Interview n/a n/a n/a Başusta et al. (2014)
WTR Turkey Coastal H, G Interview 0–30 n/a Seagrass, rock, 

mud, sand
Filiz and Taskavak 

(2012)
ATR Turkey Coastal H, G Interview and trawl n/a n/a n/a Gurkan and Taskavak 

(2007)
RGR Greece Coastal H, G Trawl 12–15 n/a seagrass Kitsos et al. (2008)
GTU Tunisia Lagoons H, G Trammel net and 

dredge gear
n/a n/a n/a Ben Amor et al. 

(2011)
GCN Spain Coastal H Transect dive 15 Macroalgae, sessile 

invertebrates, 
seagrass

Rock, sand, C. 
nodosa, macroal-
gae, artificial

Otero-Ferrer (2011)
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with specific habitat parameters was calculated by ANOSIM 
in Primer v7.

Results

Genetic differentiation

In total, 478 seahorse specimens from 18 sites represent-
ing 10 countries (Fig. 1, Table 1) were PCR amplified and 
sequenced for both cytb and CR regions, with fragments 
trimmed to 518 and 397 bp, respectively to assist align-
ment. Data suggested the presence of a single specimen 
of H. erectus from the Azores (Woodall et al. 2009), three 

specimens of H. fuscus from Egypt, and five specimens of 
H. algiricus from Senegal (cytb data only shown, Fig. 2). 
All other specimens clearly group into two monophyletic 
clades corresponding to the two recognised European 
species H. guttulatus (212) or H. hippocampus (257). 
Intraspecific DNA sequence variation across all samples 
of H. guttulatus and H. hippocampus was low (1.23% cytb 
and 1.49% CR, and 1.94% cytb and 1.96% CR, respec-
tively), and identical (H. guttulatus) or similar (H. hip-
pocampus) to variation observed within individual popula-
tions [maximum of 1.23% for cytb (VBU) and 1.49% for 
CR (MSP) in H. guttulatus, and 1.21% for cytb (RPO) and 
1.67% for CR (SEN) in H. hippocampus—see Woodall 
et al. (2011, 2015)].

Fig. 2  Phylogenetic tree of the relationship among Hippocampus species, constructed from Cytochrome b using MrBayes (GTR + γ) and shows 
posterior probability. Shaded labels are those generated in this study, and H. hippocampus from Senegal are denoted by bold text
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Seahorse morphology

Cirri were present on both species and the number of cirri 
present on seahorses varied considerably between sites and 
between individuals within sites. The mean cirri presence 
for H. guttulatus was 87% (40–100%, N = 500) across 11 
sites and for H. hippocampus the mean was 43% (6–74%, 
N = 226) across 9 sites, covering the entire geographic range 
of these species. For both species the number of cirri varied 
more between individuals within the same site than between 
species; however the species differed significantly in num-
ber of cirri (Mann–Whitney, W = 157, N1 = 11, N2 = 98, 
P < 0.005). In H. guttulatus, data from this study show there 
is no correlation between sex and cirri presence (Pearson 
correlation, R = − 0.11, N = 151, P = 0.16), however stand-
ard length and cirri presence are significantly correlated with 
larger fish having cirri more often than smaller fish (Pearson 
correlation, R = 0.40, N = 151, P < 0.001). By contrast 
female H. hippocampus were more often seen with cirri than 
males (Pearson correlation, R = − 0.27, N = 91, P < 0.01).

Standard length of H. guttulatus was significantly differ-
ent between sexes and between sites (GLM, sex F = 39.4, 
P < 0.001, sites F = 47.7, P < 0.001, site and sex F = 0.47, 
P = 0.83). Males were significantly smaller than females, 
and H. guttulatus in the Black Sea were significantly smaller 
than at any other site according to Tukey’s pairwise com-
parisons at 95% CI. When new and published data are com-
bined, individuals of H. guttulatus in the Black Sea (VBU 
and TTR, Fig. 1) are smaller than specimens sampled from 
everywhere else (Fig. 3, Table 2). In H. hippocampus there 
were significant differences in standard length between 

sexes, sites and the interaction of the two, accounting for 
55% of the variation seen (GLM, sex F = 50.8, P < 0.001, 
sites F = 4.9 P < 0.005, sex and site F = 8.6, P < 0.001). 
Similar to H. guttulatus, male H. hippocampus were signifi-
cantly smaller than the females according to Tukey’s pair-
wise comparisons at 95% CI, and individuals from Senegal 
were significantly larger than those of all other sites (Fig. 3, 
Table 2). In both species there is no correlation between lati-
tude and standard length (H. guttulatus Pearson correlation, 
R = 0.23, N = 15, P = 0.42; H. hippocampus R = − 0.362, 
N = 16, P = 0.17).

Seahorse population density

The total number of seahorses observed at each site var-
ied considerably depending on species and survey method. 
The mean abundance of H. guttulatus was 3.15 ± 1.08 
(mean ± SE) seahorses per diver hour for collection dives, 
and in transect surveys density was 0.076 ± 0.06 ind.  m−2. 
For H. hippocampus, the mean abundance was 2.49 sea-
horses per diver hour but only one transect was conducted 
for this species, so no mean density is reported. When data 
from published studies were combined with transect dives 
in this study, mean abundance was greater in H. guttulatus 
than H. hippocampus (H. guttulatus: 0.04 ± 0.01 ind.  m−2 
N = 12; H. hippocampus: 0.003 ± 0.001 ind.  m−2, N = 7) 
(Table 3).

In all locations (N = 6) where the two species occurred 
sympatrically, the density of H. guttulatus was greater than 
that of H. hippocampus and in all but one case this was by 
at least an order of magnitude greater (Table 3). In the Ria 

Fig. 3  Standard length of H. 
guttulatus (squares) and H. 
hippocampus (circles) includ-
ing new data and that from 
published studies, when n > 10. 
Filled in shapes are new data 
and open shapes are data from 
previous studies (Table 1 for site 
code details). Sites are grouped 
by region and are ordered from 
north to south or west to east 
depending on location
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Table 2  Population demographics of Hippocampus guttulatus (a) and H. hippocampus (b)

Site Total number Juvenile (%) Proportion of 
females

Ls (cm)
(min and max)

Sampling period References

(a) Hippocampus guttulatus
 PUK 17 0 0.53 13.6 (8.6–18.6) May, Aug, Oct This study
 OUK 28 n/a n/a 15.7 (10.0–21.6)b n/a Neil Garrick-Maidment Pers. Corr.
 BFR 15 1 0.60 15.2 (8.0–20.5) June This study
 AFR 38 3 0.71 13.0 (8.6–17.4) Sept, Oct, Nov This study
 GSP 21 14 0.33 n/a Year-round Valladares et al. (2011)
 APO 84 n/a n/a 12.8 (3.6–18.5) Year-round Veiga et al. (2009)
 TPO 37 8 0.50 13.2 (9.0–20.4) Sept, Oct This study
 PPO 42 43 0.45 13.9 (9.0–16.8) Sept This study
 RPO 321 17 0.57 12.7 (8.7–17.9) Sept This study

384 13 0.55 11.3a (6.9–21.5) May–Oct over 3 years Curtis and Vincent (2006)
58 10 0.57 n/a July–Nov Caldwell and Vincent (2012)

1674 6 0.53 n/a Year-round Correia (2015)
2042 n/a n/a 11.7 (7.1–16.6)b Year-round Vieira et al. (2014)

 MSP 19 0 0.62 11.8 (9.2–17.9) June This study
 RSP 31 n/a n/a n/a (4.2–7.3)c Year-round Verdiell‐Cubedo et al. (2006)
 TFR 25 0 0.36 13.0 (9.9–18.6) June, July, Aug This study

114 16 0.62 12.0 (8.1–16)b Year-round Louisy (2011)
 MIT 225 21 0.54 10.0 (7.0–14.0) June–Sept Gristina et al. (2015)
 KGR 14 7 0.46 13.0 (8.0–15.7) Sept This study
 CGR 13 0 0.53 11.2 (8.6–15.3) Sept This study
 VBU 60 2 0.68 6.4 (4.3–9.0) June This study
 TTR 272 n/a 0.50 8.3 (6.5–10.3)c Year-round Kasapoglu and Duzgunes (2014)
 NTR 139 n/a 0.42 n/a (5.7–9.0) n/a Başusta et al. (2014)
 WTR 135 n/a n/a 10.8 (6.4–13.2)cd n/a Filiz and Taskavak (2012)
 ATR 200 n/a 0.48 13.3 (10.0–16.5) Year-round Gurkan and Taskavak (2007)
 RGR 279 n/a 0.54 10.8 (7.8–22.5) Mar Kitsos et al. (2008)
 GTU 1773 n/a n/a 12.5 (6.3–17.6)ce Year-round Ben Amor et al. (2011)

(b) H. hippocampus
 HUK 49 40 0.61 10.5 (5.6–19.8) Sept This study
 SUK 24 33 0.50 9.9 (7.1–16.8) April This study
 OUK 9 n/a n/a 9.4 (5.1–15.2) n/a Neil Garrick-Maidment Pers. Corr.
 BFR 16 0 0.50 10.2 (7.3–13.5) June This study
 AFR 13 13 0.54 10.6 (5.7–15.7) Sept, Oct, Nov This study
 GSP 9 n/a 0.34 n/a (11.8–17.1) Year-round Valladares et al. (2013)
 APO 9 n/a n/a n/a (4.5–13.7)c Year-round Veiga et al. (2009)
 PPO 6 0 0.33 8.3 (4.3–14.9) Sept This study
 RPO 44 0 0.60 8.7 (4.3–17.6) Sept, October This study

41 2 0.44 n/a (8.7–14.6) June–Sept Curtis and Vincent (2005)
18 28 0.38 n/a July–Nov Caldwell and Vincent (2012)

418 n/a n/a 8.3 (5.0–13.4)b Sept Vieira et al. (2014)
86 22 0.53 n/a Sept Correia (2015)

 MSP 23 0 0.52 8.5 (5.1–13.4) May, June This study
 GFR 21 0 0.61 8.5 (5.6–13.3) July This study
 GMA 5 0 0.60 9.1 (6.4–13.4) Aug This study
 MIT 16 6 n/a n/a June–Sept Gristina et al. (2015)
 RIT 46 n/a n/a 8.4 (5.7–10.3) March This study
 KGR 8 0 0.50 7.9 (5.7–11.1) Sept This study
 WTR 279 n/a n/a 8.4 (5.2–12.8)d n/a Filiz and Tasavak (2012)
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Formosa, Portugal, where observations covered many years, 
H. guttulatus was always found in greater abundance than H. 
hippocampus when the Ria Formosa was considered as one 
site, but in some locations within the Ria Formosa only one 
of the two species was found (e.g. Curtis and Vincent 2005).

There is no significant difference in abundance of H. 
guttulatus or H. hippocampus between sites where it 
cohabits or not with its congener (H. guttulatus new data 
Mann–Whitney, W = 18, N = 10, P = 0.8; H. hippocampus 
all data Mann–Whitney U = 12, N = 7, P = 1). There was no 

Table 2  (continued)

Site Total number Juvenile (%) Proportion of 
females

Ls (cm)
(min and max)

Sampling period References

 ATR 29 n/a 0.27 11.3 (7.9–14.0) Year-round Gurkan and Taskavak (2007)
 RGR 19 n/a 0.26 9.3 (6.9–10.4) Mar Kitsos et al. (2008)
 GTU 236 n/a n/a 10.9 (7.4–15.6) Year-round Ben Amor et al. (2011)
 LCN 19 0 0.52 8.4 (5.6–11.9) Nov This study
 GCN 165 20 0.58 10.2 (7.7–14.7) Year-round Otero-Ferrer et al. (2015a)
 SEN 40 n/a n/a 13.7 (10.8–18.1)d n/a This study

Number of seahorses samples, percentage of juveniles, sex ratio, standard length (Ls) and sampling period
a At first reproduction
b Height
c Total length
d Dried specimens
e ID as H. ramulosus

Table 3  Mean population 
abundance include new and 
published data new for H. 
guttulatus and H. hippocampus 

a Only one seahorse seen but first report of this species here
b Range given not mean abundance
c Abundance estimate was limited by underwater genetic sampling procedures
d Calculated from 15 min dive transects

Site Seahorses per diver hour Seahorses per  m2 of transect References

H. guttulatus H. hippocampus H. guttulatus H. hippocampus

BFR 1.565 1.130 – – This study
GSP – – 0.007 – Valladares et al. (2011)
TPO 3.000 0.006 – – This study
PPO 6.000 0.980 – – This study
RPO – – 0.073 0.007 Curtis and Vincent (2005)

– – 0.004 0.001 Caldwell and Vincent (2012)
– – 0.107 0.005 Correia (2015)

SFR 0.980 0.001a – – This study
– – 0.001–0.014b – Louisy (2011)

GFR – 7.000 – – This study
GMA – 0.190 – This study
SIT – – – 0.006 Canese et al. (2007)
MIT – – 0.018 > 0.001 Gristina et al. (2015)
VIT – – 0.001 > 0.001 Franco et al. (2006)
TSL – – 0–0.08 – Bonaca and Lipej (2005)
KGR 1.070 1.000 0.020 0 This study

– 0.004 – Issaris and Katsanevakis (2010)
CGR 1.220 0.002 0.004 0 This study
VBU 8.240c – 0.203 – This study
LCN – 2.100 – 0.002 This study
GCN – 1.760/0.840d – – Otero-Ferrer et al. (2015b)
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correlation between the density of the two seahorse species 
for either the data collected as ind. diver  hour−1 (Spearman’s 
rho, rs = − 0.1, N = 5, P = 0.8) or in the Ria Formosa, Portu-
gal, when abundance was measured as ind.  m−2 (Spearman’s 
rho, rs = 0.2, N = 3, P = 0.8).

Population structure

Each seahorse population had its own unique combination 
of characteristics, regards juvenile percentage and sex ratio 
(Table 2). In both species, the proportion of observed juve-
niles varied widely, from 0 to 43% for H. guttulatus and 
from 0 to 40% for H. hippocampus. However, on average, 
this was about 17% across both species, and there appeared 
to be no effect of time of year. No H. guttulatus popula-
tions were significantly male-biased, but TFR2 and VBU 
were both significantly female-biased (Chi Squared, TFR2: 
χ2 6.9, P < 0.01; VBU: χ2 8.1, P < 0.01), following Ben-
jamini–Hochberg multiple comparison correction (false 
recovery rate 0.1). No H. hippocampus populations had a 
significant sex bias.

Abiotic parameters of seahorse habitat

There was a large variation in the environmental parameters 
of locations where seahorses were found. When all survey 
methods were considered, seahorses were found at depths 
ranging from 1 to 55 m, but when only dive surveys were 
included, seahorses were just found at 1–21 m. Most H. gut-
tulatus (86%) were found at 2–5 m depth, from surveyed 
depths of 1–28 m. By contrast, just 19% of H. hippocam-
pus specimens were found in 2–5 m depth and at two sites 
(GMA&LCN) all were found much deeper (≥ 20 m). Neither 
water temperature nor visibility correlate with H. guttulatus 
abundance (Spearman’s rho, water temperature rs − 0.03, 
N = 8, P = 0.96, visibility rs − 0.50, N = 8, P = 0.20), or 
with H. hippocampus abundance (Spearman’s rho, water 
temperature rs − 0.38, N = 6, P = 0.34, visibility rs 0.04, 
N = 6, P = 0.94) when density is calculated as ind. diver 
 hour−1.

Seahorse habitat and holdfast preference

New data from this study show most seahorses encountered 
used holdfasts, with only 1% of H. guttulatus and 2% of H. 
hippocampus seen while they were actively swimming. The 
seagrass Zostera marina was present at most sites (67%) 
where H. guttulatus was observed. However seagrass beds 
were not the dominant habitat (6.1 SE ± 4.2%) in any of the 
sites assessed with transect dives, although it was the most 
popular holdfast, accounting for just under half of H. guttu-
latus holdfasts (Fig. 4) (Table 1a). The second most popular 
holdfast type was artificial structures (> 25% of seahorses). 

Artificial holdfasts were items such as tyres, fishing gear, 
ropes, bricks and pier supports. Transect dives revealed that 
most seahorses were found in complex habitats on a sand/
silt substrate. These habitats included seagrass beds, sessile 
invertebrates, algal species and artificial structures (Table 4).

Most sites that H. hippocampus inhabited were mixed 
habitats of open sand or silt. These substrata often had added 
complexity due to the presence of sessile invertebrates, arti-
ficial structures or macroalgae. In addition, at six sites at 
least one species of seagrass was observed in the general 
vicinity of the seahorses. Hippocampus hippocampus was 
most commonly found settled into depressions in the sedi-
ment. However artificial structures were the most common 
holdfast used when they were present (19%) (Fig. 4).

Detailed descriptions of seahorse habitat and holdfast 
preference are lacking from many previous studies. However 
when reported, seagrass was present, but not dominant, at 
most of the sites (86%). The seagrass observed was a mix of 
genera: Cymodocea, Zostera and Posidonia. However, when 
holdfast preference was recorded, macroalgae and artificial 

Fig. 4  Holdfast substrate types utilized by H. guttulatus (a) and H. 
hippocampus (b). Blues Organic, Browns Inorganic, Orange Artifi-
cial, Green No holdfast (swimming)
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substrates were more often used by H. guttulatus, and inver-
tebrates used by H. hippocampus. Data were transformed 
into presence/absence due to the variety of methods and 
detail reported, but no individual factors could account for 
seahorse presence (ANOSIM, seagrass R = 0.26, macroalgae 
R = − 0.01, sand R = 0.09, substrate complexity R = 0.18 
and artificial objects R = − 0.06).

Discussion

The present study provides the first comprehensive review 
of genetic and demographic information on European sea-
horses throughout their geographic range. It also provides 
data on variability in morphology and habitat use between 
and within H. guttulatus and H. hippocampus. Despite sam-
pling constraints, these baseline data provide useful informa-
tion for conservation assessments for these data poor species 
of conservation concern (Woodall 2012a, b).

How many species of seahorse are there in European 
waters?

Genetic data from 478 samples representing 18 loca-
tions collected in 10 countries revealed the presence of 
five species of seahorse in NE Atlantic, Mediterranean 
and Black Sea waters: H. algiricus, H. erectus, H. fus-
cus, H. hippocampus, and H. guttulatus. One specimen 
from the Azores was identified as H. erectus using genetic 
techniques, and subsequent morphological examination 
has confirmed this was the first observed occurrence 
of this species in the eastern Atlantic Ocean (Woodall 
et al. 2009). Another species, H. fuscus, is an example of 
Lessepsian migration and was identified from specimens 
originating from northern Egypt, although congruence of 

morphological characteristics was not possible as tissue 
was donated rather than whole specimens. This species 
had previously been recorded in the south–eastern Medi-
terranean Sea (Golani and Fine 2002; Gokoglu et al. 2004) 
and extant populations have been observed as far north 
as Turkey (Gokoglu et al. 2004). Hippocampus algiricus, 
native to North–West African coasts (Czembor 2012), was 
observed in the Canary Islands (Otero-Ferrer et al. 2015b). 
By far the two most frequently seen species are H. gut-
tulatus and H. hippocampus, which are native European 
species (Lourie et al. 2016).

There was no genetic evidence within the samples tested 
for the presence of cryptic species or of substantial within-
species differentiation (i.e. of sub-species level). This con-
clusion could be drawn as all clades included reference 
sequences from known species and displayed no geographi-
cally based or morphology-related structuring, despite 
the high degree of intra-specific morphological variation 
observed within and among sites (Otero-Ferrer et al. 2017). 
The only substantial within-species genetic differentiation 
observed was that associated with haplotypes of H. hip-
pocampus from Senegal and some H. guttulatus haplotypes 
from the Black Sea (Fig. 2). However in both cases no 
genetic and morphological correlation can be assumed, as 
both Black Sea and Senegalese populations also possessed 
the widely distributed common haplotypes of their respec-
tive species (Woodall et al. 2011, 2015). Levels of intra-
specific genetic variation in cytochrome b sequences for both 
H. guttulatus and H. hippocampus (1.23 and 1.94%, respec-
tively) were similar to values reported for other seahorse 
species such as H. barbouri (1.72%, Lourie et al. 2005) and 
H. erectus (1.44%, Boehm et al. 2013). Intra-specific varia-
tion in the Control Region in H. guttulatus and H. hippocam-
pus (1.49 and 1.96%, respectively) likewise was within val-
ues given for other species such as H. abdominalis (2.23%, 

Table 4  Survey dive data, habitat types observed from transects and quadrat surveys

Site Species Transect habitat Quadrat habitat and percentage cover

Dominant habitat Other habitats Bottom type % cover Flora/Fauna % cover Artificial % cover

KGR H. hippocampus
H. guttulatus

Sand Zostera/Cymo-
docea mixed 
beds

Sea urchins

Sand
Gravel
Stones
Rock

41.2
38.0
4.1
0.2

Zostera
Cymodocea
Urchins

11.3
3.0
0.2

Brick 2.0

CGR H. guttulatus Sand/Rock covered 
in algae

Gravel, urchin, 
sea cucum-
ber, gravel, 
sponge

Sand
Stones
Rock

51.0
33.6
7.4

Zostera
Urchins
Anemone
Sponge

4.0
0.8
0.8
1.6

Brick 0.8

VBU H. guttulatus Sand Algae Sand 96.0 Mixed Chaetomor-
pha and Clad-
ophora spp.

Hermit crab

3.0
1.0

LCN H. hippocampus Sand Rock, rope, tyre Sand 98.0 Rock 0.5 Rope tyre 1.0
0.5



Marine Biology (2018) 165:19 

1 3

Page 13 of 19 19

Nickel and Cursons 2012), H. capensis (1.49%, Teske et al. 
2003) and H. ingens (2.10%, Saarman et al. 2010).

The lowest inter-specific genetic variation among sea-
horses has been reported between H. reidi and H. algiri-
cus, consistent with these species having the most recent 
common ancestor (Teske et al. 2007a), whereas most other 
species pairwise comparisons show much greater genetic 
divergence (e.g. 5.75% between H. erectus and H. patago-
nicus, Boehm et al. 2013). Although not conclusive, such 
levels of inter-specific and intra-specific genetic variation 
across seahorse species suggest that the intra-specific vari-
ation observed across the entire geographical ranges of H. 
guttulatus and H. hippocampus is consistent with these com-
prising single undifferentiated species, and is also congruent 
with the limited morphological difference seen. This is an 
important conclusion, as previous studies based solely on 
morphological data proposed new subspecies and species in 
the Mediterranean Sea (Kuiter 2009) and Black Sea (Lourie 
et al. 1999b), that have subsequently been synonymised on 
the basis of the genetic data (Woodall 2012a, b). This infor-
mation is crucial for surveying, assessing, monitoring, and 
managing the two focal species of this study, but could have 
wider ramifications for seahorse taxonomy globally, where it 
is common for morphological characters alone to be used to 
describe species. Integrated taxonomy is recommended for 
many species (Schlick-Steiner et al. 2010; Chen et al. 2011) 
and conclusions from this study suggest this is particularly 
important for seahorses where morphological differentiation 
can be challenging.

Morphology in H. hippocampus and H. 
guttulatus is not consistent across their range 
or within populations

Previous studies have relied on a subset of morphological 
characters that are distinctive in seahorses (Lourie et al. 
1999b) to determine taxonomy. Data on two commonly used 
characteristics (presence/absence of cirri, standard length) 
show a differing proportion of individuals with cirri in each 
population of both species, and results indicate that the pres-
ence and number of cirri are unreliable characters for Euro-
pean seahorse species identification. This result is congruent 
with the few other studies that recorded this morphological 
character (Curtis and Vincent 2006; Curtis 2006; Louisy 
2011; Tiralongo and Baldacconi 2014; Otero-Ferrer et al. 
2015a). Cirri presence was more likely on larger H. guttula-
tus supporting findings by Curtis (2006), however this is not 
always the case (Garrick-Maidment pers. comm.), suggest-
ing that the conditions required to exhibit this character are 
highly complex. In H. hippocampus however, females were 
more likely to have cirri. This was congruent with a study 
in the Canary Islands by Otero-Ferrer et al. (2015a) which 
reported females were more likely to have cirri than males. 

Tagged H. hippocampus can shed cirri over time (JMR Cur-
tis, unpublished data) and in some locations in the UK, H. 
hippocampus are never seen with cirri (Garrick-Maidment, 
unpublished data).The general shape of cirri on H. guttulatus 
and H. hippocampus is often different, with cirri branching 
in a different manner (for example images see Figure S1). 
However these differences are often unclear unless speci-
mens are compared simultaneously. As the genetic data 
clearly confirm the presence of just two native European 
species, this current study can therefore confidently confirm 
cirri presence or absence is not a consistent or diagnosing 
feature within species, concurring with Curtis (2006).

Sexual dimorphism, in the form of a shorter standard 
length of males, was observed in H. guttulatus and H. hip-
pocampus. This was previously reported for H. guttulatus 
(Curtis and Vincent 2006) and in many other seahorse spe-
cies (Foster and Vincent 2004), but the current study is the 
first to indicate that this is consistent for European seahorses 
across their entire geographic range. Sexual dimorphism is 
generally a characteristic associated with polygamous spe-
cies, rather than monogamous ones like seahorses (Emlen 
and Oring 1977; Jones and Avise 2001), although H. guttu-
latus is serially monogamous across breeding seasons (Naud 
et al. 2008). In seahorses the mating system is thought to 
be result from morphology, behaviour of mate competition, 
and the energy required to produce eggs and brood them 
(Kvarnemo and Simmons 2013).

Adult H. guttulatus from the Black Sea were signifi-
cantly smaller than those from all other locations. This 
was observed for both new data (VBU) and published data 
(TTR—Kasapoglu and Duzgunes 2014). In addition, H. hip-
pocampus from Senegal were larger than those from other 
sites. A significant size difference of seahorses from differ-
ent populations has not been observed previously, however 
a large range of sizes have been reported for both H. hip-
pocampus and H. guttulatus (Table 2), morphological vari-
ation has been seen across Macaronesia and W. Africa in 
H. hippocampus (Otero-Ferrer et al. 2017), and phenotypic 
plasticity is recognised in other seahorse species (Teske 
et al. 2007b). In some species of pipefish, which are in the 
same family as seahorses, lengths are significantly different 
between populations (e.g. Syngnathus floridae, Mobley and 
Jones 2009; Syngnathus typhle, Rispoli and Wilson 2008), 
and another pipefish species, Syngnathus abaster, appears 
to be morphologically divergent across different locations 
(Cakic et al. 2002; Veiga et al. 2009; Ben Alaya et al. 2011). 
Based on mtDNA data, these studies suggest the morpho-
logical differences between populations are probably linked 
to genetic differentiation in S. abaster, whereas ecological 
factors are a more likely cause for the morphological vari-
ation observed in other pipefish species as no genetic cor-
relation is seen (Mobley and Jones 2009). In the present 
study the size of both focal species was different across sites. 



 Marine Biology (2018) 165:19

1 3

19 Page 14 of 19

Additional studies are required to elucidate which location-
specific factors correlate with the observed size differences 
in seahorses. Despite the apparent trend for seahorses to be 
larger in the most northerly locations (a proxy of seasonal 
variation in temperatures), these findings are not signifi-
cant and therefore neither European seahorse species fol-
low Bergmann’s rule. This rule states larger individuals are 
found in colder environments, and smaller ones in warmer 
ones. This nonconformity could be a sampling artefact, but 
may also reflect that an organism’s size is influenced by a 
complex range of ecological and evolutionary processes 
(Berke et al. 2013), and seahorse survival requirements are 
known to be complex. It is therefore unsurprising that they 
show morphological variation across their geographic range 
as an adaptation to different local conditions, similar to that 
observed in their confamilial Syngnathus leptorhynchus 
(Wilson 2009).

Population demographics

Seahorse density was generally low, but patchy and highly 
variable. New abundance estimates were within values 
given in other studies of both species (Table 1), but few 
report density using ind. diver  hour−1, which comprises the 
majority of new data in this study. No direct comparison 
between ind.  m−2 and ind. diver  hour−1 was possible. Safety 
considerations during diving, such as depth, water clarity, 
current flow rate and boat traffic limited the possible search 
area within known seahorse sites (Curtis and Vincent 2005; 
Curtis et al. 2017). All new study sites were chosen because 
seahorses had previously been observed at them, therefore 
abundance presented is artificially inflated. The choice 
of search method has also been shown to influence abun-
dance recorded, which in most cases will have also inflated 
abundance reported (Correia et al. 2016). However, mean 
density for H. hippocampus from new data presented here 
are within values extrapolated from previous studies of H. 
hippocampus (Otero-Ferrer et al. 2015a). Data from both 
species combined (Goffredo et al. 2004) suggests that this 
method could be useful for surveys and comparisons with 
distance transect measures, should be a priority. Densities 
reported in previous studies are from transects or focal grids. 
The latter are often chosen to encompass areas of high sea-
horse density (e.g. Bell et al. 2003) and therefore seahorse 
densities from focal studies would be artificially higher com-
pared to randomly placed transects. The seahorse densities 
given per area surveyed in the present study were generally 
similar to those previously reported in these species (e.g. 
Gristina et al. 2015), but greater than those reported for other 
seahorse species (Foster and Vincent 2004). This may be 
an artefact of the sampling protocol as mentioned above, 
a species-specific characteristic or peculiarity of sample 
location. Both abundance measures (ind. diver  hour−1, ind. 

 m−2) employed in the current study showed that across their 
range H. guttulatus abundance was greater than that of H. 
hippocampus. The abundance of H. guttulatus was always 
greater than that of H. hippocampus in locations where they 
co-occurred. Other studies have shown this pattern over lim-
ited geographic areas (Curtis and Vincent 2005; Caldwell 
and Vincent 2012; Gristina et al. 2015). Just one other study 
reports percentage abundance of co-occurring seahorse spe-
cies, which revealed the same composition of species and the 
same most abundant species (Murugan et al. 2008). Counter 
to this in pipefish the species of greatest abundance appears 
to be related to season (Ripley and Foran 2006) and micro-
habitat preference (Malavasi et al. 2007).

The female-biased sex ratio of H. guttulatus in two of 
the sites, in the Black Sea and southern France (VBU in 
this study and TFR2 in Louisy 2011) is unexpected as serial 
monogamy reported for H. guttulatus in an ex situ trial and 
over 2 years in the wild (Naud et al. 2008) and over 4 years 
in the wild at a UK site (Garrick Maidment unpublished 
data) predicts an equal sex ratio. An independent study (new 
data in the present study) of site TFR reported an equal sex 
ratio, which might suggest the female bias of the Louisy 
(2011) may be an anomaly and additional data should be 
collected to investigate this further. Seasonal changes in the 
sex ratio have been reported for H. zostera (Strawn 1958), a 
female biased population was documented in H. abdominalis 
(Martin-Smith and Vincent 2005), and an equal sex ratio was 
observed for H. comes (Perante 2002), suggesting a variety 
of sex ratios can be observed across seahorse species. All H. 
hippocampus populations in the present study had an equal 
sex ratio, with most individuals found as male/female pairs 
(pers. obs.), although seasonal changes have been indicated 
in one study (Otero-Ferrer et al. 2015a). This interesting 
difference between species should be investigated further 
to determine if this phenomenon is a possible characteristic 
for niche partitioning in these species, especially as mat-
ing behaviour studies have not yet been conducted for H. 
hippocampus.

The number of juveniles seen in surveyed populations 
is fewer than adults. However, juveniles could be observed 
less frequently that adults due to the sampling method and 
regime or as a result of an ontogenetic habitat shift. Most 
studies of other seahorse species (reviewed in Foster and 
Vincent 2004), including H. guttulatus (Correia 2015; Gris-
tina et al. 2017), also documented low proportions juveniles, 
however a high proportion has been found in some popu-
lations of H. capensis (Lockyear et al. 2006). There is a 
precedent for ontogeny in seahorses (H. comes, Morgan 
and Vincent 2007; H. whitei, Harasti et al. 2014). Further 
research is required to understand this aspect of behaviour in 
European seahorses, although has been observed in H. hip-
pocampus in the Canary Islands (Otero-Ferrer et al. 2015a). 
This is especially important as best practice dictates that the 
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effective management and conservation of species needs to 
address all life stages (Gerber and Heppell 2004).

Can seahorse population location be predicted 
by environmental parameters?

In this study, no individual environmental parameters 
could define the presence of seahorses, species abundance, 
or determine which species was present. However survey 
locations were not picked at random, with only locations 
where seahorses were already known to be present being 
studied, which may have limited our ability to detect envi-
ronmental parameters that are unsuitable for seahorses. In 
order to model where seahorses may occur, it is important to 
identify how different locations and habitats fulfil the needs 
of seahorses. These factors could include environmental 
parameters under extreme events like storms and extended 
periods of heat (Cohen et al. 2017). Correlation of H. gut-
tulatus abundance and temperature has been reported for 
multiple populations within the Ria Formosa (Correia 2015), 
although neither visibility nor temperature appeared to cor-
relate with seahorse sightings in a UK site (The Seahorse 
Trust 2014).

When only new data were analysed, H. guttulatus was 
most commonly seen in complex habitats and H. hippocam-
pus in simpler ones; supporting previous location-specific 
studies (Curtis and Vincent 2005; Canese et al. 2007; Cor-
reia 2015; Garrick-Maidment 2011; Gristina et al. 2015; 
Otero-Ferrer et  al. 2015a). Niche partitioning was also 
observed in sympatric pipefish (Kendrick and Hyndes 2003; 
Malavasi et al. 2007 and in the pygmy seahorses H. denise 
and H. bargibanti Smith et al. 2012). There is inconclusive 
evidence of the importance of Zostera marina as a required 
or preferred habitat for H. guttulatus, as although it did not 
always co-occur with seahorse populations, when present it 
was most often used by H. guttulatus as a holdfast. Although 
Z. marina itself could be important for H. guttulatus, it is 
more likely to be the food availability as infauna and epi-
fauna associated with the seagrass (Bostrom and Bonsdorff 
1997) that is driving habitat preference, as is the case with 
pipefish (Ryer and Orth 1987). Individuals of both H. gut-
tulatus and H. hippocampus were observed using artificial 
objects as holdfasts. The use of artificial holdfasts is seen 
in many seahorse species (Rosa et al. 2007; Clynick 2008; 
Faleiro et al. 2008), and could be an important factor in man-
agement measures as they could provide refuge for seahorse 
prey items or function as seahorse aggregation devices (Cor-
reia et al. 2013, 2015), but this apparent behavioural pref-
erence may be an observer artefact because they are more 
easily seen on this type of object.

The apparent wide range of habitats means that predict-
ing the likelihood of these species’ presence from habitat 

and environment parameters alone is challenging. This is an 
important consideration for environmental assessments that 
are made before potentially damaging activities (e.g. coastal 
construction). The requirements of such assessments differ 
across states, however habitat is often used as a precursor to 
determine which species (such as seahorses) could be at risk. 
Our findings suggest that this strategy would not be suit-
able for determining potential impacts on H. hippocampus 
and H. guttulatus. Furthermore, as seahorse conservation 
efforts are currently associated with seagrass conservation 
(e.g. Heritage Lottery Fund 2014), much of the variation in 
European seahorse habitat may be missed if seagrass beds 
alone are conserved, despite this habitat being important for 
many other species (McCloskey and Unsworth 2015).

Important new insights and future research 
suggestions to enable appropriate conservation 
measures

This study provides the first synthesis of data on habitat, 
population demography, morphology and genetics of the two 
native European seahorse species H. guttulatus and H. hip-
pocampus from across their geographic range. We report the 
large variety of habitats in which these fish are found, failed 
to identify one simple parameter that predicts the presence 
or abundance of these seahorses, but note that seagrass is 
not always associated with either species. Data show that 
the morphology of specimens should be carefully consid-
ered together with genetic data, in an integrated approach, in 
order to assign species identifications (Feulner et al. 2007); 
such accurate integrated identification is vital in order to 
allow international legal mechanisms and international 
agreements such as the Convention on International Trade 
in Endangered Species (CITES 2015) to work effectively.

Emerging techniques such as eDNA screening could 
be applied to locate hitherto unknown populations, which 
would be valuable for understanding the distribution and 
ecology of these species. The differences in abundance 
observed between the two species suggest different condi-
tions are required for these species to thrive, but these exact 
parameters are yet to be determined. Niche partitioning is 
expected in congeneric species, and further observations to 
determine any differences in prey items (Kitsos et al. 2008), 
morphology and behaviour would be an interesting contribu-
tion to determine how management measures differentially 
impact the two species.

As both H. guttulatus and H. hippocampus are currently 
classified as Data Deficient (IUCN 2015), any range-wide 
conservation measures should also encompass long-term 
monitoring so that the threat status of these iconic fish can 
be reassessed. Especially as population trends are unknown 
in many locations. Applying the precautionary principal, 
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widespread threats from coastal development and non-
target fisheries, combined with the large geographic range, 
low genetic differentiation (Woodall et al. 2011, 2015) and 
small adult home ranges (Curtis and Vincent 2006; Curtis 
et al. 2017) of European seahorses suggests that a network 
of protected areas would be part of an effective scheme for 
seahorse in situ conservation. These protected areas should 
combine different habitat types and safeguard shallow waters, 
should be large enough to account for changing environmen-
tal conditions and be close enough to each other to ensure 
genetic and demographic connectivity. Although unlikely to 
be the panacea for seahorse conservation due to wider rang-
ing issues such as climate change, where they are fished or 
habitat is directly damaged by human activities, protected 
areas have been shown to increase the size of the seahorses 
within them (Yasue et al. 2012) resulting in increased brood 
size, and thus increased resilience of the population.
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