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Abstract
The shrinking and swelling of wood due to moisture changes are intrinsic mate-
rial properties that control and limit the use of wood in many applications. Herein, 
hygroscopic deformations of normal and compression wood of Chinese fir (Cun-
ninghamia lanceolata [Lamb.] Hook.) were measured during desorption and 
absorption processes. The dimensional changes were observed in  situ by an envi-
ronmental scanning electron microscope and analyzed at different hierarchical 
levels (tissue, cell and cell wall). The relationship between moisture variation and 
hygroscopic deformation was measured. During initial desorption periods from 95 
to 90 or 75% RH, an expansion of the lumen and a shrinkage of the cell wall were 
observed, revealing a non-uniform and directional deformation of single wood cells. 
The variation of shrinking or swelling at different hierarchical levels (tissue, cell and 
cell wall) indicates that the hygroscopic middle lamella plays a role in the deforma-
tion at the tissue level. Higher microfibril angles and helical cavities on the cell wall 
in compression wood correlate with a lower shrinking/swelling ratio. Normal wood 
showed a more pronounced swelling hysteresis than compression wood, while the 
sorption hysteresis was almost the same for both wood types. This finding is helpful 
to elucidate effects of micro- and ultrastructure on sorption. The present findings 
suggest that the sophisticated system of wood has the abilities to adjust the hygro-
scopic deformations by fine-tuning its hierarchical structures.
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Introduction

In the living tree, wood is in its fully hydrated state. After harvest, it undergoes dry-
ing and the intrinsically hygroscopic material is commonly subjected to variations 
in the environmental conditions, such as relative humidity (RH) during its use. Fluc-
tuations in RH lead to changing wood moisture contents (MCs). As wood absorbs 
water, it swells and with desorption it shrinks (Patera et al. 2013). Severe moisture-
induced deformation frequently causes problems in applications such as warping or 
distortion.

The origin of shrinking and swelling is attributed to the water sorption in the 
cell wall. When water absorbs or desorbs within the cell wall, the cell wall vol-
ume increases or decreases. The dimensional change of cell walls is directional and 
depends on the orientation of the cellulose fibrils in the cell walls since their lengths 
do not undergo large changes upon water uptake. At the macroscale, the arrange-
ment of the cells, the microfibril angle (MFA) and the interaction between early-
wood and latewood influence the anisotropic hygrodeformations (Garcia et al. 2020; 
Patera et  al. 2018; Siau 2012). Dimensional changes of 6–12% in the tangential 
direction, 3–6% in the radial direction and 0.1–0.3% in the longitudinal direction are 
reported for normal wood (Skaar 2012). However, the rate of shrinking or swelling 
depends on the length scale, and it has been shown on micropillars of the S2 layer 
that cell wall swelling exceeds the swelling of the cell and tissue (Chen et al. 2020; 
Rafsanjani et al. 2014). One reason is that restraining effects from the other cell wall 
layers with different cellulose orientations are missing (Skaar 2012). At the tissue 
scale, the hygrodeformation is affected by the constraining stress transfer between 
cells and the compositions and microstructure of cell wall layers (Joffre et al. 2016; 
Lanvermann et  al. 2014). Honeycomb cellular solids with homogenous cell walls 
deform isotropically, while honeycombs with a layered cell wall structure display 
anisotropic swelling behavior (Arzola-Villegas et al. 2019; Rafsanjani et al. 2013). 
In the secondary cell wall, cellulose microfibrils are wound around the longitudinal 
axis of the fiber with a certain angle and surrounded by the amorphous hemicellu-
lose and lignin. The helical structure of the main layer of the cell wall implies that 
the fiber will twist if the MC changes (Burgert et al. 2005; Plaza et al. 2013). How-
ever, in a tissue such a twist of a single fiber is constrained by adjacent fibers.

Within the S2 nanostructure, cellulose and amorphous hemicellulose and lignin 
exhibit diverse hygrodeformations. The cellulose crystalline lattice is deformed 
with changes in wood MC (Arzola-Villegas et al. 2019). Abe and Yamamoto (2005; 
2006) pointed out that the lateral expansion of crystalline cellulose is induced by the 
shrinking stresses of hemicellulose and lignin, while Zabler et al. (2010) believed 
that the expansion is created by the condensation and evaporation of water on the 
hydrophilic surface of the microfibrils.

Moisture-induced dimensional change of wood has been studied experimentally 
(Chen et al. 2020; Derome et al. 2011; Joffre et al. 2016; Ma et al. 2010; Perré 2005; 
Sakagami et  al. 2007) and by molecular dynamics simulations (Chen et  al. 2018; 
Derome et  al. 2018; Kulasinski et  al. 2015a, 2015b). In experiments, dimensional 
changes (especially in radial and tangential directions) and resulting stresses are 
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determined from the macroscale to the cell wall scale. Testing materials used in most 
of the reported studies are gymnosperms, because of the relatively simple structure.

Plantation Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.), as a valuable 
domestic Chinese species, is widely cultivated in the southern area of China. Related 
investigations of its physical and mechanical properties include Bao et  al. (2001), 
Jiang et  al. (2012), Peng et  al. (2019a), Wang and Rennolls (2005), Wang et  al. 
(2006), Yin et al. (2010, 2015) and Zhan et al. (2019). Similarly to other gymno-
sperms, Chinese fir responds to stimuli such as stem inclinations caused by slopes, 
winds or other external forces, with compression wood formation on the lower side 
of a branch or an inclined stem (Timell 1986). Characteristics of compression wood 
are thicker walled and roundish cells, a higher lignin content and a higher MFA. It is 
widely accepted that wood with a higher MFA shows reduced swelling in its trans-
verse direction upon humidity changes (Burgert et al. 2007; Joffre et al. 2014; Perré 
and Huber 2007).

Moisture-induced deformation of wood is closely related to the drying quality 
(Keey et al. 2000; Redman et al. 2016), but it also has the potential for fabrication of 
self-shaping composites or otherwise active materials (Eder et al. 2020; Grönquist 
et  al. 2019; Wood et  al. 2018). Toward a more efficient and sustainable material 
use, a deep understanding of the swelling properties is essential. In this study, the 
shrinking and swelling properties of Chinese fir were studied in situ by an environ-
mental scanning electron microscope (ESEM), making use of the high resolution 
provided by scanning electron microscopy. Swelling was analyzed at the tissue, cell 
and cell wall scale, and different locations within a growth ring were compared. The 
influences of the micro- and nanostructure on the dimensional deformation were dis-
cussed to explore origins of shrinking and swelling variations between normal and 
compression wood of Chinese fir.

Materials and methods

Sampling

Normal and compression wood of Chinese fir were selected from plantation trees 
grown in Zhejiang, China. Samples were obtained from air-dried logs. Samples with 
dimensions of 6 × 0.8 × 0.5 mm3 (radial × tangential × longitudinal) were cut for the 
shrinking/swelling tests. Within the cross section of the samples, a region containing 
the whole transition from early- to latewood within the 11th annual ring was present 
(Fig. 1). The surface of the samples was prepared by removing 1–2-µm thin slices 
with a cryomicrotome HM 560 (Microm, Germany). Three normal wood and three 
compression wood samples were prepared. All the samples were soaked in distilled 
water for 7 days to achieve a water-saturated state. In addition, 20-μm-thick sections 
(cross, radial and tangential) and 150-μm-thick tangential sections were prepared for 
anatomical characterization and MFA measurement. After MFA measurement, the 
sections were cut into chips (1 × 0.8 × 0.5 mm3, radial × tangential × longitudinal) for 
desorption and absorption isothermals.
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Microfibril angle measurement

The MFAs were determined by a wide-angle X-ray scattering experiment in a 
Bruker nanostar device. The 150-μm-thick tangential sections were exposed to 
Cu Kα X-ray radiation with a wavelength of 1.54 Angstöm. The distance between 
the sample and the Vantec 2000 detector was ~ 5 mm. The recorded 2D diffraction 
pattern was integrated, and the cellulose MFA was evaluated by the azimuthally 
scattering intensity distribution of the cellulose 200 reflection (Lichtenegger et al. 
1997). Three replicates for each location were performed.
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Fig. 1   Typical sampling locations and cell features of the normal and compression Chinese fir wood
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Anatomical characterization

The microscopic structure of the samples was studied with a digital microscope 
(Keyence VHX-S550E, Keyence Company, Japan) equipped with a universal objec-
tive (VH-Z100UR) and operated in the transmission mode.

In situ shrinking and swelling

Desorption and absorption experiment

The moisture desorption and absorption experiments were carried out in an ESEM 
(FEI Quanta FEG 600, FEI Company, USA). Temperature and vapor pressure in the 
sample chamber were controlled to provide different RHs. The sample in the cham-
ber was exposed to a conditioning process. Firstly, the ESEM was pumped down to 
931 Pa (100% RH) at a temperature of 6 °C. After 24-h conditioning, vapor pressure 
was reduced to 878 Pa (95% RH) for 12 h. The desorption and absorption experi-
ments were carried out by reducing and raising the vapor pressure progressively at 
6 °C, corresponding to different RHs. At each RH level, the sample was permitted to 
reach a new equilibrium MC within 12 h. Figure 2 illustrates the temperature, vapor 
pressure and corresponding RH conditions at each humidity step.

Measurement of dimensional changes

In each normal and compression wood sample, areas from latewood, transition wood 
and earlywood with high surface qualities were selected and monitored during the 
desorption and absorption experiments. Typical sampling locations and cell features 
are shown in Fig.  1. At the end of each desorption or absorption step, the traced  
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cells were scanned, and their cross-sectional areas were measured by ImageJ soft-
ware (https://​imagej.​nih.​gov/​ij/).

For the traced cells, the changes in cross-sectional areas were calculated as 
follows:

where RA and S are the relative area and real area (μm2), respectively. The subscripts 
“cell,” “lumen” and “cell wall” designate the corresponding data for cell, lumen and 
cell wall. The superscript “0” designates the corresponding data at the end of the 
conditioning step (i.e., the beginning of the desorption step). The superscript “i” 
designates the corresponding data at the end of every step during the desorption or 
absorption. The illustration of determination of cell wall and lumen areas is shown 
in Fig. 3a. When measuring the areas of cells and cell walls (Scell and Scell wall), the 
inner or outer boundaries of cells were traced manually. The areas of cells were 
measured including S1, S2 and S3 layers, and the middle lamella was excluded. In 
addition, RA of tissue (RAtissue) at different locations was also measured:
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Fig. 3   Illustration of the area determination in single cell (a) and tissue (b) (for single cell, 
Scell = Scell wall + Slumen)
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The tissue was defined by 5 × 5 cells in normal latewood and 7 × 7 cells in the 
other locations. The middle lamellae of the outer boundaries were excluded. A typi-
cal illustration of a tissue area is displayed in Fig. 3b. No ray cells were included in 
the measured tissue. The area of each cell or tissue (Scell, Slumen, Scell wall or Stissue) 
was calculated three times, and the average value was obtained to minimize the 
artificial error. In total, nine single cells and three tissues in each specific sampling 
location (normal or compression wood, and latewood, transition wood or earlywood) 
were measured.

Desorption and absorption isothermals

Desorption and absorption isothermal experiments were conducted on ca. 30  mg 
water-saturated wood chips by means of a dynamic vapor sorption apparatus (DVS 
Advantage 2, Surface Measurement Systems Ltd., UK). The temperature was set 
at 25 °C. The preprogrammed sequence of RH was identical to the shrinking and 
swelling experiment (95 → 90 → 75 → 50 → 25 → 0 → 25 → 50 → 75 → 90 → 95%) 
in the section Desorption and absorption experiment. At each RH level, the equili-
bration time was dependent on the weight change of the specimen. Once the weight 
change ratio was less than 0.0002%/min, the RH changed to the next humidity step. 
Three replications were performed for normal and compression wood.

Statistical analysis

The statistical software, SPSS version 17.0 (SPSS Inc, Chicago, IL, USA), was used 
for data analysis. Significant effects of sampling location on shrinking/swelling 
ratios were analyzed by Duncan’s multiple comparison test (p = 0.05).

Results and discussion

It is widely accepted that the swelling properties of wood depend both on density 
and on the cellulose microfibril angle. In the following, firstly the microstructure 
of the investigated sample and the corresponding MFAs is described, followed by a 
detailed analysis and discussion of the swelling and sorption experiments.

Microstructure and cellulose microfibril angle

Naturally, cell wall proportions increased from early- to latewood. In normal early-
wood, the cell wall ratio was as low as 10.6% and increased to 56.5% in latewood. 
Compression wood, which is known for its larger density (Timell 1986), showed 
smaller differences between early- and latewood with a cell wall proportion of 
24.8% in early- and 44.2% in latewood. The ESEM micrographs furthermore show 
numerous intercellular spaces (Fig. 1 and 4d) and hint that the S3 is at least partly 
missing in the compression wood samples (Fig. 1 and 4). Light micrographs show-
ing the helical cavities (Fig.  4b and 4e) confirm this finding. The helical cavities 
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together with checks point toward a high MFA (Barnett and Bonham 2004), which 
has been confirmed by the analysis of wide-angle X-ray diffraction data showing a 
MFA of ~ 40° for compression wood and a MFA of ~ 11° for normal wood. Com-
pared with normal wood, compression wood possessed more tracheids and ray cells 
filled with an orange substance (Fig. 4e) which we assume are tannins due to their 
similar coloring as found in other tannin cells (Angyalossy et al. 2016).

Area change of single cells

Figure 5 shows the change in cross-sectional area change of single cells during des-
orption and absorption. It needs to be mentioned here that the low pressure inside 

(a)

(b)

(c)

(e)

(d)

Fig. 4   Anatomical features of Chinese fir normal (a, c) and compression woods (b, d and e). Bordered 
pits in normal wood (a), a number of helical cavities on tracheid walls of compression wood (b). Inter-
cellular spaces (arrows) in cell corners of compression wood (d). Checks of cross-field pits in compres-
sion wood (e), no checks in normal wood (c). More orange cells (probably tannin-rich) in compression 
wood as arrows pointed in compression wood (e) than in normal wood (c). Scale bars in all Figs. 5 0 μm
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the ESEM might affect area changes compared to experiments performed under 
ambient pressure conditions. However, a comparison with literature data is difficult 
since differences in structure have an immediate effect on swelling and shrinkage 
(Quirk 1984). Despite this uncertainty, comparisons between the studied tissue types 
are feasible and it is expected that observed trends are also valid under ambient 
conditions. The total area of the cells shrank as RH decreased and swelled as RH 
increased. When RH changes, water molecules are desorbed from or adsorbed onto 
the cell wall surface. Due to its large proportion in the cell wall, the S2 layer has 
the largest influence on the shrinkage and swelling behavior of wood (Siau 2012). 
Expectedly, the area changes of cell walls and cells showed similar patterns. The 
total area change of a cell is the combined change of cell wall and lumen. Dur-
ing the absorption process, the lumen, cell and cell wall swelled with increasing 
RH. Surprisingly, the lumens of all cell types initially expanded upon drying when 
RH decreased from 95 to 90% or even to 75% before they started to shrink. Nor-
mal latewood showed the most obvious lumen expansion, which reached as much 
as 1.57%. The observed lumen expansions seem not to be a unique behavior of 
Chinese fir. Dimensional changes of lumens upon swelling have been a matter of 
debate already in 1933. Beiser (1933) found that lumens of both early- and latewood 
expanded upon swelling and discussed in his paper that this was in contrast to the 
findings of Mörath (1932), who was reported to suggest that lumen sizes decrease 
upon swelling. This result agrees well with the present observations that lumen 
areas increase during absorption. At that time, changes of lumen areas upon drying 
were not studied and in 1942 Stamm and Loughborough suggested that lumen sizes 
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stay constant during moisture changes (Stamm and Loughborough 1942). Later, 
Quirk (1984) observed expansion of Douglas fir earlywood lumen, while latewood 
lumens reduced their size upon drying. More recent experiments showed increas-
ing lumen sizes upon drying for Caribbean pine (Ma and Rudolph 2006) and the 
opposite behavior in Douglas fir early- and latewood (Murata and Masuda 2006). 
These different findings highlight that it is not surprising to read in recent reviews 
that dimensional changes of lumens are still a topic of controversy (Arzola-Ville-
gas et al. 2019). What the present results now clearly show are differences in lumen 
expansion and shrinkage during absorption and desorption, with consistent trends 
but varying magnitudes. During the initial phase of the desorption process, the inner 
side (lumen side) of the cell shrinks more easily than the outer cell wall, because the 
lignified middle lamella is assumed to donate resistance to lateral movement of cell 
wall (Quirk 1984). Furthermore, it is speculated that drying-induced increase in cell 
wall stiffness might play an additional role. The size changes of cells are possibly a 
trade-off of the stretch and restrain among cell wall and lumen, also among different 
layers in the secondary wall, and the lumen expansion of Chinese fir may contribute 
to the reduction of the drying stress.

Among the different cell types (normal or compression wood, latewood, transi-
tion wood or earlywood), their area changes showed similar trends but different val-
ues which depended particularly on the cell wall thickness. For both normal and 
compression wood, the shrinking (from 95 to 0% RH) and swelling (from 0 to 95% 
RH) ratios of cells decreased from latewood to transition wood and earlywood, due 
to decreasing cell wall proportions. Regardless of the sampling location, the area 
changes of cell walls were always larger than those of cells in both desorption and 
absorption processes. In the RH range from 50 to 90%, the area changes of cell and 
cell wall behaved quasi-linear in both desorption and absorption processes, which 
was also reported in a previous study (Murata and Masuda 2006).

Area changes at the tissue, cell and cell wall levels

In Fig. 6, the relative areas of normal and compression latewood are shown and 
were compared among tissue, cell and cell wall levels. During the desorption pro-
cess, the relative area change of tissue is between cell and cell wall for all RH 
condition. At 0% RH, RA was 0.876, 0.881 and 0.875 for tissue, cell and cell 
wall level in normal latewood and 0.915, 0.922 and 0.908 for tissue, cell and cell 
wall level in compression latewood. These results reflect the interdependencies 
between cell wall, cell and tissue. Wood is a sophisticated system, which has the 
abilities to fine-tune its structure at various scales (Fratzl and Weinkamer 2007). 
At the cell level, a cell can be seen as the compound of cell wall and lumen 
and its size change is the sum of lumen and multi-layered cell wall changes. 
Although the role of the lumen as a hollow space is often restricted to density-
related aspects, the relative humidity in this empty space is directly connected to 
cell wall swelling and shrinkage as the observed dimensional changes show. Of 
course, only the cross section of a bulk sample could be investigated, but due to 
the 12-h long equilibration times it is assumed that lumens of closed cells would 
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have also reached the same relative humidity. At the tissue level, the tracheids are 
attached to each other by middle lamella. As the MC changes, the middle lamel-
lae are the connection that allows simultaneous deformation of adjacent cells (at 
least in small samples or sample areas). However, middle lamellae also contribute 
to the shrinking or swelling, and according to Nečesaný (1966), the hygroscopic 
deformations of highly lignified middle lamellae are larger than those of cells. 
This could explain why dimensional changes at the tissue level are larger than on 
the cell level.

Figure 6 shows that the area change in compression wood was less than in normal 
wood at all the three levels. This is not surprising and can be explained by the higher 
MFA (40° in compression wood vs. 10° in earlywood) which causes reduced swell-
ing and shrinkage in the transverse direction and increased swelling in the longitu-
dinal direction (Burgert et al. 2007). When comparing RA of the desorption and the 
subsequent absorption, differences at the same RH condition have been observed. 
This swelling hysteresis is indicated by shaded areas in Fig. 6. The swelling hyster-
esis is associated with the sorption hysteresis, which will be described in detail in 
the section Swelling hysteresis.

A comparison of early- and latewood swelling is shown in Fig. 7. The trend that 
RAcell changes less upon humidity changes than RAtissue and RAcell wall was observed 
for both desorption and absorption processes. During the desorption process, the dif-
ference between RAcell and RAtissue was larger than that during absorption, especially 
at 25, 50 or 75% RH. When RH was 50%, the value “RAcell—RAtissue” was 0.025 and 
0.010, respectively, in desorption and absorption of the normal latewood. Besides, 
RA changes at high humidity changes are more pronounced during desorption than 
absorption. It is speculated that this is caused by a simultaneous increase in cell wall 
and lumen area during absorption, while the initial phase of the desorption process 

Fig. 6   Relative areas of normal (a) and compression (b) latewood at three levels: tissue, cell and cell wall
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is characterized by a lumen expansion and a more pronounced cell wall shrinkage 
(Fig. 5).

Naturally, the area changes of the earlywood tissue, cell or cell wall were less 
than in latewood (Fig.  7), due to the smaller cell wall proportion. For the tissue 
level, both shrinking (95 → 0% RH) and swelling (0 → 95% RH) ratios of earlywood 
were more than 10% smaller than in latewood. In addition, the swelling hysteresis 
was also smaller.

Roles of MFA and cell wall ratio in dimensional changes

During growth, trees manifest a wide variability of adaptable parameters of cell wall 
organization (MFA, cell size and cell wall proportion) to optimize water transport 
and mechanical support (Burgert et al. 2007; Eder et al. 2008; Reiterer et al. 2001). 
These adaptable parameters affect the shrinking/swelling and mechanical properties 
of wood. To explain the roles of MFA and cell wall ratio, the dimensional changes 
(shrinking and swelling ratios) are presented as a function of MFA and cell wall 
ratio, respectively, in Fig. 8 and 9. In Fig. 8, it is obvious that the shrinking ratio 

Fig. 7   Relative areas of normal latewood and earlywood during desorption or absorption process
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of normal latewood is higher than normal earlywood, which can be related to the 
higher cell wall proportion in the cross section. The significantly higher MFA of 
compression wood is clearly reflected in smaller dimensional changes of the cell 
wall. Due to the observed swelling hysteresis (Fig. 6), swelling ratios were less obvi-
ous than shrinking ratios for all samples (Fig. 8).

While significant differences in tissue swelling and shrinkage have been found 
between normal early- and latewood (p < 0.05), no statistically significant differ-
ences existed between early- and latewood of compression wood. The reason for this 
is twofold: (i) The higher MFA of compression wood leads to smaller area changes, 
and the differences in cell wall ratios of early- and latewood are smaller than in nor-
mal wood. Additionally, anatomical features of compression wood could play a role. 
This could include the presence of helical cavities in the tracheid walls (Fig. 4b and 

(a) (b)

Fig. 8   Relationship of microfibril angle and shrinking (95 → 0% RH) or swelling (0 → 95% RH) ratio at 
tissue, cell and cell wall levels

(b)(a)

Fig. 9   Relationship of cell wall ratio and shrinking (95 → 0% RH) or swelling (0 → 95% RH) ratio at tis-
sue, cell and cell wall levels



1372	 Wood Science and Technology (2021) 55:1359–1377

1 3

4e) absent in normal wood (Fig.  4a and 4c). In addition, voids existed in corners 
among almost round cross-sectional structure of tracheid (Fig. 4d).

Swelling hysteresis

Equilibrium MCs of normal and compression wood are shown in Fig.  10a. Inde-
pendent of whether the equilibrium moisture content is measured in absorption or 
desorption, MC of the compression wood at a given humidity level was higher than 
the normal wood. The higher MC of the compression wood may be related to the 
greater deposition of hemicelluloses and lignin between microfibrils (Peng et  al. 
2019b; Plomion et  al. 2001) and more tannin in tracheids (Fig. 4e). In this study, 
the sorption hysteresis was determined by the desorption isothermal (initiated from 
the water-saturated condition), and its value increased with increasing MC, which 
was different from the previous studies by using the scanning isothermal (Fredriks-
son and Thybring 2018; Hill et  al. 2010; Xie et  al. 2011). At given RHs (25, 50 
and 75%), sorption hysteresis of the compression wood was higher than the normal 
wood.

Based on results of MC (Fig. 10a) and area change at the cell wall level (Fig. 6), 
the relations are displayed in Fig. 10b. For both normal and compression wood, the 
relation was linear below a MC of 15%. Similar findings were reported in previ-
ous studies (Ma and Rudolph 2006; Murata and Masuda 2006). Moreover, changes 
in relative area during desorption and subsequent absorption coincided at low MC 
ranges (less than 10%), because adsorbed water molecule connected with cell wall 
surface directly. With further increasing MC, “mobile water” in small voids of the 
cell wall (Zelinka et al. 2012) had less impact on shrinking/swelling of cell wall pol-
ymers (swelling hysteresis in Fig. 10b). The relation between “sorption hysteresis” 
and “swelling hysteresis” was further constructed (Fig. 10c). These two hystereses 
were positively correlated. As a function of sorption hysteresis, swelling hysteresis 
of normal wood was significantly higher than compression wood (Fig.  10c). This 
result points to an interesting interrelation between sorption and swelling hysteresis. 
The sorption hysteresis is considered to be related to the mechanics of shrinkage and 
swelling of the cell walls during changes in MC (Engelund et al. 2013; Hill et al. 
2012). Commonly, more lignin content would cause more hysteresis in wood cell 
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wall (Derome et al. 2018; Kulasinski et al. 2015b). Compression wood of Chinese 
fir has more lignin content than normal wood (Peng et al. 2019b), which is consist-
ent with the sorption hysteresis magnitude observed in Fig. 10a and b.

Due to higher MFA values, values of shrinking and swelling of compression 
wood were lower compared to normal wood, which at least partially explain the 
smaller swelling hysteresis. In addition, the absorption or desorption process results 
in the expansion or contraction of microcapillaries in the viscoelastic wood cell wall. 
The helical cavities in compression wood give rise to free movements of the S2 layer 
to some extent and also influence the size changes of microcapillaries. It should be 
pointed out here that the in situ shrinking and swelling tests and the desorption iso-
thermal tests were carried out at 6 and 25 °C, respectively. These temperature dif-
ferences as well as the above-mentioned differences in pressure were not consid-
ered in the interpretation, and it cannot be excluded that additional effects arise from 
them. We also need to consider that the swelling hysteresis was evaluated only in 
the transverse 2D-plane, and the dimensional changes in the longitudinal direction 
were not considered, while the sorption experiments were performed on the whole 
3D wood material. Burgert et al. (2007) revealed that normal and compression wood 
showed contrary dimensional change in the longitudinal direction. Hence, a compre-
hensive consideration of the swelling hysteresis, especially for compression wood, 
should also consider the deformation in both transverse and longitudinal directions. 
Nevertheless, the results presented allow the comparison of compression and nor-
mal wood swelling in the 2D transverse direction and the sorption hysteresis for the 
same material.

Conclusion

In this paper, shrinking and swelling of Chinese fir wood was studied at the tissue, 
cell and cell wall level by in situ-ESEM experiments to explore variations between 
normal and compression wood. The findings contribute to a more holistic under-
standing of how wood responds to moisture changes from the cell wall to the tissue 
level in the transverse direction.

During initial desorption from 95 to 90 or 75% RH, the size of lumens increased. 
The different dimensional changes of cell walls and lumens illustrate a non-uniform 
and directional shrinking/swelling process and suggest that lumens could contribute 
to a reduction in drying stresses acting on the middle lamella. However, this needs 
further investigations and should be complemented by numerical or analytical meth-
ods. A comparison of the swelling/shrinkage behavior at the different length scales 
revealed that the response of tissues to changes in humidity was between cell and 
cell wall response, which suggests that middle lamellae swelling/shrinkage is not 
negligible. Observed lower dimensional changes of compression wood in the trans-
verse direction were related to the integrated effects of the structure, i.e., a higher 
MFA, smaller differences in early- and latewood density as well as anatomical char-
acteristics such as helical cavities and intercellular spaces between the cells. This 
newly generated dataset contributes to a deeper understanding of the relationships 
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between wood structure and swelling/shrinkage properties in at least 2 dimensions 
and provides a basis for a more targeted material use.
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