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Abstract
The wood-based furniture manufacturing industries prioritize quality of production to 
meet higher market demands. Identifying various types of edge-glued wooden panel 
defects are a challenge for a human worker or a camera. Several studies have shown 
that the detection of edge-glued defects with low, high, normal, overlong, short is 
identified but detection of residue and bluntness is highly challenging. Thus, the pre-
sent model identifies defects of low, high, normal, overlong, short by computer vision 
and/or deep learning, whereas defects of residue and bluntness by deep learning based 
decide by pass for having better performance. The goal of this paper is to provide an 
improved defect detection solution for wood-based furniture manufacturing indus-
tries by process automation. Therefore, a system was designed that takes defect input 
images from a camera as raw image and laser-aligned image for defect detection of 
the edge-glued wooden panel. The process automation then performs computer vision-
based image features extraction with deep learning for defect detection. The aim of 
this paper is to solve edge-glued defect detection problems by using design and imple-
mentation of edge-glued wooden defect detection, that can be stated as edge-glued 
wooden panel defect detection using deep learning (WDD-DL) for process automation 
by artificial intelligence and Automated Optical Inspection (AOI) consolidation. Possi-
bly there exist several types of defects on the edges while edge-banding on the wooden 
panel in furniture manufacturing. Therefore, the scope is to achieve higher accuracy by 
raw image and laser-aligned image feature extraction using deep learning algorithms 
for final result defect classification in WDD-DL by AOI. The WDD-DL system uses 
Gabor, Harris corner, morphology, structured light detection and curvature calculation 
for pre-processing and InceptionResnetV2 Convolutional Neural Network algorithm 
to attain the best results. The applications of this work can be found in quality control 
of the furniture manufacturing industry for an edge, corner, joint defect detection of 
the wooden panels. The WDD-DL achieves best results as the precision, recall and F1 
score are 0.97, 0.90 and 0.92, respectively. The experiments demonstrate higher accu-
racy achievement as compared to other methods with overkill and escape rate analysis. 
Ultimately, the discussion section provides an interesting experience sharing about the 
necessary factors for implementing the WDD-DL in real-time industrial operations.
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Introduction

Furniture manufacturing industries usually perform operations in the form of 
multiple independent stages. Each stage requires a particular operation that 
includes traditional ways of human skills based tasks, i.e., cutting, edge banding, 
border smoothing, etc. Process automation will help with quality control (Q.C.) 
checking for edge defect problems with better accuracy and less human depend-
ency. The furniture manufacturing process can be detailed as initially import-
ing raw material depending on the type of wood requirements. A wooden panel 
is then produced with proper cutting and polishing, thus a defect-free panel is 
passed on to the next stage. Selection of wooden panel is based on the respective 
furniture parts specification, which is then passed through an edge-glued band-
ing machine. A traditional approach shows the oversized band is cut manually for 
border smoothing.

In practise, when the process is completed, the roughness on the edges is still 
present which compromises the quality as well as brand value. To improve the 
quality control process, WDD-DL provides a solution to identify the edge-glued 
defects and to show live defect screening as output. The conventional process 
of manufacturing involves only human workers in all the stages, which can be 
improved with the help of process automation for better and defect-free produc-
tion. Applications include wood-based chairs, tables, closets, library racks, art-
work, etc. Process automation is evaluated to be a better alternative in both cases 
of less infrastructure setup and less human worker dependency. In furniture man-
ufacturing, the quality control requirements are satisfied by the WDD-DL edge 
defect detection system. Usually, during the quality control process, the detection 
of different types of edge defects is a challenge (Aleksi et al. 2019). The differ-
ent types of edge-glued wooden panel defects can be given as high (the tape is 
higher than the surface of the panel), low (the tape is lower than the surface of the 
panel), bluntness (the tape is trim or has scrap on the edge), residue (visible glue 
marks), short (the tape is shorter than the length of the panel) and overlong (the 
tape is longer than the length of the panel). Practically, detecting the edge-glued 
wooden defects is different as compared to wooden edge defects (Aleksi et  al. 
2019; Wells et al. 2018) having edge knots, wane, split, pith, cracks, decays, etc.

The motivation for WDD-DL is how to achieve high accuracy for edge-glued 
wooden defect detection in the furniture industry? Chen et  al. (2018) published 
a paper on edge detection based on machine vision, which describes the use of 
edge filter, canny operator and pixel-wise width calculation, but the results pro-
vided for accuracy were quite inefficient. Therefore, a necessity to design a new 
approach was realized that can provide higher accuracy and help in industrial 
process automation. The background for WDD-DL can be referenced by various 
edge detector, filters and classifiers of visual-based defect detection methods in 
manufacturing industries (Czimmermann et al. 2020). The Harris corner is a well-
known computer vision algorithm that calculates differential of the corner score 
with respect to direction. It has a high edge and corner distinguishing capability. 
The process involved is colour to gray-scale conversion for enhancing processing 
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speed, spatial derivative calculation, structure tensor setup, Harris response cal-
culation and non-maximum suppression for picking up optimal values. The Gabor 
filter is a linear filter used for texture analysis, that can be described as analyzing 
frequency content within an image’s specific region of analysis. In the case of 
Local Binary Pattern (LBP), it requires fewer computations and quite an efficient 
filter for defect detection. As the surface image has low-rank structure, defects 
within them will be quite hard to detect. So, entity sparsity pursuit model is used 
to detect such defects and resolve it based on LBP (Wang et  al. 2019). Micro 
defects present within OLED panels are detected using modified LBP and SVM 
classifier for better performance (Sindagi and Srivastava 2015). Edge features 
extraction is used for many defect detection approaches that have a criterion for 
edge length, strength and calculating edge neighbours having grey level pixel val-
ues for distribution (Wen and Xia 1999). In case of processing, texture elements 
in spatial locations, also known as texture primitives are usually individual pixel 
or grey-scale regions. To improve segmentation in the texture based defects for 
fabric processing, Cao et al. (2017) implemented subspace segmentation model-
ling using local priori algorithm. Morphological based defects detection used to 
avoid fatal defects before steel surface cracks can occur is presented by Yun et al. 
(2019). An exhaustive dynamic encoding algorithm is used for searching such 
defects by optimizing structural elements. The WDD-DL edge defects detection 
process consists of checking defects in the raw image and laser-aligned image-
based features using detail inspection by deep learning. Multi-sensor (Wells et al. 
2018) systems have been dominating the industrial detection environment for a 
long time. The use of line laser and video camera constitutes a distinct approach, 
that is applied to smart manufacturing (Contreras Masse 2019) for process auto-
mation of design and implementation of wooden panel edge defect detection using 
deep learning algorithms (WDD-DL). Considering the case of defect detection 
approach, segmentation (global) and non-segmentation (local) approaches were 
used for defect object detection and non-overlapping rectangular defect regain 
parts are used, respectively. The WDD-DL uses a non-segmentation approach, 
to evaluate different detection algorithms and provide an efficient result. The 
two-stage system uses different detection algorithms consisting of raw image and 
laser-aligned image-based features using deep learning. A sequence of operations 
is completed by process automation and will help manual workers to watch a live 
screening of edge defects on the wooden panel during the manufacturing process. 
In short, WDD-DL uses multi-sensor, two-stage system for process automation 
by improving the quality of work. Ultimately, a defect-free and parallel manufac-
turing process automation is accomplished. In WDD-DL, the research gap can 
be given about the edge-glued defect detection, which has hardly been presented 
before. Most of the defect detection process focuses on panel or surface-based 
defects, so the present model is exclusively built for improving the edge defect 
detection process. The WDD-DL research is rationale because it provides a new 
two-stage approach to solve edge-glued defect detection problem. This approach 
is practical for the furniture industry in the quality control process. Table 1 shows 
a comparison of different defect detection models in detail.
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Considering the results presented by most of the automation systems (Aleksi 
et al. 2019; Czimmermann et al. 2020), they are inefficient in accurately identify-
ing edge defects on the wooden panel. Efforts are made to increase the quality con-
trol, but lack of high accuracy edge defect detection is the limitation of the litera-
ture work. Therefore, to achieve higher accuracy in the defect detection process, 
WDD-DL consists of a two-stage model that performs extraction of image features 
from the raw image and laser-aligned image using deep classification-based evalu-
ation. The aim of this study is to solve edge defect detection problems, which can 
be stated as edge-glued wooden panel defect detection using deep learning (WDD-
DL) for process automation. The scope is to achieve higher accuracy by image and 
laser feature extraction using deep learning algorithms for final result evaluation 
in WDD-DL. Table S1 in Electronic Supplementary Material provides a compari-
son of different defect detection models for the industrial quality control.

The WDD-DL objectives are in detail as follows:

– Solving the wooden panel edge defect detection using AOI-based process 
automation: AOI-based process automation is considered as a crucial fac-
tor in wooden panel edge defect detection. Previously, trained workers were 
assigned in every manufacturing stage to identify wooden panel defects and 
remove them separately. This manual process was not effective enough as 
they have missed many edge defect errors quite frequently. To overcome such 
problems, process automation is provided to identify defects in the raw image 
and laser-aligned image features by the industrial camera for classification. 
Henceforth, various popular CNN models are used here for deep learning-
based classification.

– Real-time display of edge defects on the live screen: Most of the machine 
learning and deep learning methods require high processing time for clas-
sification that form a bottleneck for live screen display of edge defects. How-
ever, there exist some simplified filters based on a rule-based system to solve 
such issues. For efficient processing, the wooden panel edge defects must be 
identified in real-time for shorter or long edge defects with both for straight 
edge and corner of edge. So, WDD-DL solves the challenge of detecting dif-
ferent edge defect types by multi-sensor and two-stage process in real-time. 
The real-time live screening of edge defects is processed by using a raw 
image and laser-aligned image features, where deep learning classification is 
optional. Different types of edge-glued wooden panel defects can be identi-
fied by raw image and laser-aligned image features using deep classification 
model.

– Deploying the model in the live manufacturing environment of the furniture 
industry: Even though the experiments will demonstrate the accuracy and 
performance of the model in various scenarios, a discussion with the manu-
facturing workers will help to share detailed experiences as presented in the 
discussion section. Henceforth, a live production environment will help us to 
understand the practical aspects of the manufacturing scenario.
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Literature survey

Recently, process automation within the furniture manufacturing industries was 
performed for increasing quality, productivity and decreasing human-related errors. 
Even though the traditional process automation was performed involving segmen-
tation (geometrical features) and non-segmentation (tonal and textual features) 
approach, they were not found efficient for wooden panel edge/corner defect detec-
tion because of their low defect detection accuracy. Therefore, the present paper 
proposes the WDD-DL two-stage approach combining filters and deep learning, 
involving morphological and curvature calculation of edges in images with laser 
information as a new two-stage approach to achieve higher accuracy for the qual-
ity control process. Some recent studies are shown in Fig. 1. Defect control strat-
egy analysis consists of defect detection in manufacturing, which includes statistics, 
machine and deep learning.

Several statistical feature extractions based models for wooden defect detection 
including Linear Discriminant Analysis (LDA), Local Binary Patterns (LBP), Gray 
Level Dependence Matrix (GLDM), Partial Least Squares (PLS), GradeView algo-
rithm, etc., are given below. The sawn wooden board-based texture used for feature 
extraction and defect detection is demonstrated by Aleksi et  al. (2019). The mod-
elling is performed using feature selection by statistical feature extraction, texture 
defect detection and signal to noise ratio calculation. The automated grading system 
for hardwood lumber defect detection is presented by Wells et  al. (2018). In nine 
different types of hardwood lumber, the defect detection model consists of board 
scanning with Microtec Goldeneye 300 multi-sensor-quality scanner, and data were 
analyzed with the Purdue GradeView algorithm. The use of local binary pattern var-
iants for wood defect image classification was performed by Rahiddin et al. (2020). 
The basic and variants of the LBP feature set are constructed, from a stage of feature 
extraction processes with the Basic LBP, Rotation Invariant LBP, Uniform LBP, and 
Rotation Invariant Uniform LBP.

The wood defect classes were further evaluated with the use of ANN, KNN 
and J48 decision tree classifiers. Classification of wood defects for texture feature 

Fig. 1  Defect control strategy analysis
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analysis is demonstrated by Abdullah et al. (2020). The extraction and analysis of 
features are based on statistical texture in wood defects images. Feature extrac-
tion using the Grey Level Dependence Matrix (GLDM) and feature analysis were 
executed to investigate the appropriate displacement and quantization parameters 
that could significantly classify wood defects. Timber defect classification by mul-
tivariate texture descriptor performance evaluation is demonstrated by Hashim et al. 
(2016). This paper presents a performance evaluation of texture features based on 
orientation independent Grey Level Dependence Matrix (GLDM) for the classifica-
tion of timber defects and clear wood. A series of processes including feature extrac-
tion and feature analysis was implemented to facilitate data understanding in order 
to construct a good feature. Wood defects soft measurement by feature fusion of 
LDA and the compressed image sensor is presented by Li et al. (2017). Linear Dis-
criminant Analysis (LDA) algorithm was used to integrate these features and reduce 
their dimensions. Features after fusion were used to construct a data dictionary and 
a compressed sensor was designed to recognize the wood defects types. Appear-
ance lumber-based resin defect detection by 2D NIR spectroscopy is demonstrated 
by Thumm and Riddell (2017). Resinous defects found on the finished products of 
a barge’s boards and weatherboards, can cause resin bleed and resin show-through, 
which is a discoloration of the paint layer above the resin feature. Several efforts 
are made to eliminate resinous wood via manual and automated grading systems. 
2D histogram-based classification of wood defects using Local Binary Differential 
Excitation Pattern and LBP is presented by Li et al. (2019). A classification algo-
rithm based on LBP and local binary differential excitation pattern is presented 
for the classification of the crack and the linear mineral line on the surface of the 
birch veneer. The local binary differential excitation pattern (LB-DEP) is a texture 
description model proposed in this paper, which is generated by the combination of 
LBP and Weber’s Law. The 2D histogram is used to classify the defects with Euclid-
ean distance classifier.

In case of defect detection using ultrasonic testing and machine learning model, 
they can be further described by ultrasonic, genetic and classification and regression 
trees (CART). Wood and wooden products testing by using air-coupled ultrasonic 
technologies is presented as a review by Fang et al. (2017). Air coupled ultrasonic 
(ACU) testing is a contactless ultrasonic measurement method used for material 
characterization. To not contaminate during the testing processes by coupling agents 
utilized in conventional ultrasonic testing, correlations between the ACU parameters 
(amplitude, velocity, and spectrum) and the wood properties (i.e., density, moisture 
content, strength, and stiffness) as well as the wood defects (knots, cracks, decay, 
insect damage, and delamination) are inspected. Wood hole defects feature extrac-
tion by wavelet-based ultrasonic testing is presented by Yang and Yu (2017). Wave-
let energy moment can reflect the distribution of energy along the time axis, the 
amount of energy in each frequency band and later extract the energy distribution 
characteristics of signals in each frequency band. Therefore, wavelet energy moment 
can replace the wavelet frequency band energy and constitute wood defect feature 
vectors by PCA and feature vectors.

Deep learning methods including CNN, R-CNN, GAN-CNN, BPNN in com-
puter vision are a preferred method for the recent studies, which is given as follows. 
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Wooden defect feature extraction and detection by using deep convolutional neural 
networks is demonstrated by He et  al. (2020). A laser scanner is used through a 
deep convolutional neural network (D-CNN) and TensorFlow to train the network, 
which consists of an input layer, four convolutional layers, four max-pooling lay-
ers, three fully-connected layers, a softmax layer, and an output layer. Additional 
configurations involve dropout, L2 regularization, and data augmentation to avoid 
the overfitting problem. Wood defect feature extraction and classification using BP 
neural network, wavelet moment and Hu moment are demonstrated by He et  al. 
(2020). Five features of training samples are extracted from the area, roundness and 
circumference, which are represented by (x1, x2, x3) to form a three-dimensional 
vector, so 150 test samples form a 150*3 matrix. Characteristics of wavelet energy, 
the principle and characteristics of Hu moment invariant and extraction of wave-
let moment features are utilized. Wood veneer surface defect identification using 
faster region CNN and transfer learning is presented by Urbonas et  al. (2019). A 
faster region-based convolutional neural network (Faster R-CNN) for the identifica-
tion of defects on wood veneer surface texture is presented. To improve the results, 
pre-trained AlexNet, VGG16, BNInception, and ResNet152 neural network models 
for transfer learning are used. Lumber tasks classification by using deep learning is 
demonstrated by Hu et al. (2019). The four datasets used in this work were manually 
marked as lumber defects, wood textures and lumbers by experts with configured 
80:20 ratios for training and testing. They investigate variations of deep learning 
strategies based on ResNet18 for classification of lumber images. Surface defect 
inspection by using weakly supervised learning from deep convolutional networks 
is presented by Chen et al. (2020). A novel end-to-end CNN architecture integrat-
ing the robust classifier and spatial attention module is proposed to enhance defect 
feature representation ability for classification accuracy. Spatial attention class acti-
vation map (SA-CAM) is added to improve segmentation adaptability by generating 
more accurate heat map. Defect recognition by using deep learning for multi-level 
fusion of information is demonstrated by Gao et  al. (2019). A three-level Gauss-
ian pyramid is introduced to generate the multi-level information of the defect, for 
model training. Three VGG16 networks are built to learn the information, and the 
outputs are fused for the final recognition result. Wood defect identification and 
location by using convolutional neural networks is presented by He et al. (2019a). 
In Mix-FCN, filter weights were initialized during training from the trained VGG16 
model, whereas weights of VGG16 were learned from the dataset 1 and their sys-
tem model was trained, validated and tested on dataset 2. Overall classification 
accuracy (OCA), pixel accuracy (PA), mean intersection over union, detection rate, 
missing alarm, false alarm rate, and precision were evaluation indicators. Surface 
defect classification using image segmentation by convex optimization is presented 
by Chang et al. (2018). The convex optimization (CO) with different weights is used 
as a pretreatment method for smoothing and the Otsu segmentation method to obtain 
the target defect area images. Structural similarity (SSIM) results between the orig-
inal image and defect image were calculated to evaluate the performance of seg-
mentation with different convex optimization weights. The geometric and intensity 
features of defects were extracted before constructing a classification and regression 
tree (CART) classifier.
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Ultimately, the following achievements of WDD-DL are summarized as com-
pared to the limitations observed in the above literature survey: 

1. WDD-DL uses both segmentation and non-segmentation approach, to decide 
which approach suits better with different types of edge-glued wooden panel 
defects as verified by the experiments.

2. The use of hybrid approach provides a better accuracy, which was rarely utilized 
for implementation. Moreover, it performs better than the statistical and computer 
vision filters to detect various types of defects in the industrial process.

3. The use of multi-sensor, two-stage design approaches yields better performance.
4. The algorithms are defined properly in pseudo-code and are quite practical to 

implement.

Methodology

In the methodology section, the workflow process pre-requirements are presented 
that enable the workflow in the furniture manufacturing industry. The WDD-DL 
operational process is described as a workflow model given below:

– Resource Requirement: The manufacturing process must plan for detailed 
resource requirements. The resources include input raw material, types of mate-
rial, processing machinery, human workers, etc. In addition, all the resources 
must be available, so as to be ready before the manufacturing process. An appro-
priate schedule plan ensures smooth initialization and completion of the work-
flow.

– Process Planning: Planning specifies the synchronization of process steps that are 
required to be implemented. A proper plan will ensure fixed operations with opti-
mal steps. Details of the machine usage, resource availability, human worker task 
assignment, etc., are crucial factors of process planning. Each task performed 
with the respective resources will be specified with a timing diagram/chart for 
efficient operations.

– Quality Control: The grading of resources, evaluation, outcome is the measure 
of quality control. Therefore, the wooden panel types, defect types, wastage in 
production, accuracy in production, and evaluation by the international quality 
standard are performed. For manual workers, their skill training, past experience, 
performance are also considered. In short, the quality control process helps to 
reduce time, wastage and schedule resources for better performance.

The approached system WDD-DL, as shown in Fig. 2, is presented in four major 
categories: The input provided to the system, AOI-based process automation that 
automates the manufacturing system, filtering and classification using deep learning 
and real-time defect detection for the manufacturing process.

(Note: Raw image is input to the computer vision algorithm, whereas laser-
aligned image is input for CNN.)
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WDD‑DL system model

1. Input to the System: The input provided to the system consists of a specific type of 
wooden panel, to detect the edge-glued defects on it. In addition, the wood panel 
exact size, positioning and placement on the conveyor should be determined.

2. AOI-based Process Automation: After the input is given to the system in the 
form of a wooden panel, the defect detection process is known to be initialized. 
The AOI-based process automation consists of controlling all of the hardware 
and software within the WDD-DL. At first, when the input is provided in the 
form of a wooden panel on the conveyor, the edge banding on the wooden panel 
is performed by the edge banding machine, as shown in Fig. 2. The WDD-DL is 
evaluated for detecting the accuracy of band placement on the edge-glued wooden 
panel for the defect types identification. The identification of the defect will be 
based on raw image, line laser-based image processing for computer vision with 
the help of industrial camera having set the focal length and field of view (FOV), 
which is processed by a local Nuvo-8108GC computer. Evaluating the results is 
based on the environment having a camera, line laser, a combination of lenses and 
its holder. Ultimately, the objective is to achieve real time live defect detection on 
the wooden panel at the end of the conveyor as output.

3. Computer Vision-based Filtering and Deep Learning based Classification: The 
filtering is performed on the raw image and on line laser image by using computer 
vision algorithms so that the defects can be identified on the edge-glued wooden 
panel after the edge banding process. Figures 3 and 4 are used to describe the 
wooden defect detection system with the flowchart and its functions, respectively. 
The WDD-DL process automation inspects the raw image and laser image-based 
region-of-interest (ROI) for filtering and classification. In the beginning, the 

Fig. 2  System model
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image is captured for a wooden panel which needs to be inspected and is given 
as input to the system. The system then checks whether the line laser mark is pre-
sent within the image, if not present then the system is required to recapture the 
image. The absence of a line laser in the captured image may be due to weather 

Fig. 3  Flowchart for the system model

Fig. 4  Functional model
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conditions, camera blurring, noise or other technical problems. The defect fea-
tures are then extracted from the raw image using k-means with contours, com-
paring pixel distribution, evaluating pixel after applying the threshold, means 
denoising, Harris corner, local binary patterns (LBP), a histogram of oriented 
gradients (HOG), wavelet-based contourlet transform, Gabor /convert scale edge 
detection based on using Canny, Sobel, Prewitt, Roberts and Laplace. Ultimately, 
WDD-DL has better defect detection achieved by Harris corner and Gabor filter 
based on the results demonstrated in the experiment section. Whereas, the types 
of edge-glued wooden defects present within WDD-DL are high, low, bluntness, 
residue, short and overlong. For the line laser image, the features are extracted 
using morphological processing and curvature calculation. After the above two 
steps of defect feature extraction, if the present defect is detected by the camera, 
then the defect ROI raw image is further passed for classification using deep 
learning. If no defect is detected, then the camera continues to take new images 
from the other parts of the edge-glued wooden panel based on the speed motion 
of the conveyor. The deep learning classification models used are ResNet50, 
MobileNetV2, DenseNet201 and InceptionResNetV2. If the defect is classified by 
the deep learning model, then the defect area is highlighted on the real-time live 
output screen, so that the human worker can notice it and can place that particular 
wooden panel separately as an exception. The defect types are given as low (L), 
high (H), normal (N), overlong (O) and short (S), which if detected by computer 
vision then the results are declared even if unclassified by deep learning. In case, 
the defect is not classified by the deep learning classifier, even after confirmed by 
the computer vision algorithm, then it has to be confirmed by pass. For the case 
of defect type residue (R) and bluntness (B) from captured image input with line 
laser, when the control is in decide by pass function and if detected by computer 
vision but not classified by deep learning, then it will use the result by deep 
learning instead. If deep learning detects the defect, then it will output the defect 
type without decide by pass. The functional model as shown in Fig. 4. presents 
functions used within different stages of WDD-DL system.

4. Real-Time Defect Detection: The live screen is used to display the wooden panel 
passing on the conveyer for quality inspection. The WDD-DL system helps to 
identify edge defects in real-time and displays the defects on the edge-glued 
wooden panel with the banding errors by highlighting the prone area. Therefore, 
an alert is raised for helping the machine operator to notice the defect with the 
beep sound, as passing the quality control checkpoint in that stage. Real-time 
processing eases the manual work of missing the defect detection and ensures 
high-quality checking and separating out the defective items.

Mathematical model

For the effective corner detection of better invariance including scale, rotation, 
image noise and illumination variance, Harris corner detector is utilized (Derpanis 
2004). In this case, signals use the local function of auto-correlation which identifies 
local changes by a measure for shifting patches in various directions. In Eq. (1), the 
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auto-correlation function can be given with the points (x, y) and the shift ( � x, � y) 
as,

In Equation (1), I(. , .) is image function and (xi, yi) is centered (x,y) points of the W 
(Gaussian) window. The Taylor expansion approximation for the shifted image can 
be given in first-order term as:

In Eq. (2), Ix(., .) and Iy(., .) is used to denote (x,y) partial derivatives, respectively.

Equation (3) is obtained by substituting Eq. (2) into (1). Here, c(x,y) is used to 
denote capturing of local neighbourhood intensity structure. Let the matrix c(x,y) 
have eigenvalues �1, �2 forming the description for rotational invariant. When both 
�1, �2 are low, high and opposite then it represents constant intensity, corner and 
edge, respectively. Another corner detection algorithm, Gabor function given in 
Eq. (4) is used by Gaussian function as complex exponentially modulated operation 
(Kumar and Pang 2002a). A non-orthogonal basis set is formed by complete Gabor 
function and in 2-D plane, its impulse response can be given as:

The Gabor function’s radial frequency is denoted by uo . The (x, y) axis with Gauss-
ian envelope can be given as �x , �y space constants. Gabor functions behave as a 
bandpass filter in the frequency domain and f(x, y) Fourier transform is given as:

In Eq. (5), �u =
1

2
��x and �v =

1

2
��y . The learning for deep residuals can be given 

as a subset of stacked layer mapping as H(x), where prior layers’ input is x. Assum-
ing asymptotic approximations of several nonlinear layers of complicated functions 
then it is also equivalent to residual function, i.e., H(x) - x, having the same dimen-
sions for input and output. So, F(x): = H(x) - x can be given as distinct for different 
functions. The training error for deep models (He et al. 2016) is equivalent to shal-
low models when identity mapping is constructed from added layers. The difficulties 
given by solvers for mapping identity to deep nonlinear layers are found to suffer 
degradation. For the optimal identity mappings with the reformulation of residual 
learning, the solver makes the weight tune to zero for identity mappings of the deep 
nonlinear layers. Reformulation helps in the case of precondition problems having 
less optimal identity mapping in reality. It is considered to be efficient for searching 
permutations referring to identity mapping, when the closeness of identity mapping 
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is to optimal function instead of new function learning. Every subset of stacked lay-
ers adapts to residual learning. The building block is given as

Here, we consider the input and output as x and y layers, respectively. In Eq. (6), 
the learning for residual mapping can be given by F(x, {Wi}) function. For two lay-
ers, F = W2�(W1x) where ReLU is given as � and notation simplifying by omitting 
biases. The element-wise addition and shortcut connection are F  +x operation, �(y) 
is second nonlinearity adapted after addition. The shortcut connections use Ws as a 
linear projection for dimension matching, when x and F  dimensions are not equal.

Ws square matrix can be used in Eq. (7). Here, F  is flexible as a residual function. 
The notations given above can be applied to both fully connected layer and convo-
lutional layer, where deep convolution layer can be given by y = F(x, {Wi}) . The 
feature map uses channel by channel element-wise addition. For training high defini-
tion mini-batch SGD (Akiba et al. 2017), the SGD and RMSprop are used to repre-
sent a simplified combination of momentum as an update rule.

In Inception Resnet (Zhang and Davison 2019), the extracted features have 
detailed information, achieving higher accuracy by the classifier. The features are 
trained for the robust classifier to account quantitatively for the conditional and mar-
ginal distribution having relative importance with the function, as distribution align-
ment is dynamic. Manifold learning is used to present learned feature alignment 
given by Manifold Embedded Distribution Alignment (MEDA). The process can 
be given as: (a) manifold-based feature learning, (b) the conditional and marginal 
distribution of data is aligned-based on dynamic distribution and (c) the estimated 
parameters are used for classified labels updating.

In modified distribution alignment, original features are preferred over the use of 
GFK model features. It can be justified as: (a) the GFK model undetermined dimen-
sionality is avoided by the original features information and (b) the classification 
problem can obtain required detailed information from the Inception Resnet (IR) 
feature extraction.

Algorithms

This section presents algorithms with detail description used to carry out two-stage 
operation process of WDD-DLA that includes computer vision-based defect detec-
tion, neural network-based defect detection and hybrid algorithm for final results 
using computer vision and neural network-based defect detection.

The Algorithm 1. AOI for computer vision-based defect detection is given in the 
form of pseudo-code. In step 1, the input is given to the algorithm using a cam-
era. The input image consists of both raw image and laser-aligned image. The raw 
image does not consider the presence of line laser, whereas the laser-aligned image 
requires line laser mark for its processing. In step 2, the output of the algorithm is 
given as candidateSet 1, which consists of computer vision-based filtered defects 

(6)y = F(x, {Wi}) + x

(7)y = F(x, {Wi}) +Wsx
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given as C. In step 3, the candidateSet 1 is initialized to NULL. In step 4, the If 
condition checks whether the input image given to the algorithm is able to detect the 
Region of Interest (ROI) in both the raw and laser-aligned image. In step 5, if the 
previous condition is true, then morphological ROI feature (fm) is calculated from 
the laser-aligned image to enhance laser features. In step 6, a new loop is started for 
each laser feature taken from the 3D matrix of laser image to calculate pixel depth 
difference having range 1 to k, where k is given as all of the non-segmented defects 
detected from the laser image. In step 7, the depth curvature ( DepthCur ) is calculated 
for each laser feature. In step 8, the depth local ( DepthLocal ) stores the successive 3D 
matrix difference from 1 to k given as adjacency difference. In step 9, a new if con-
dition checks whether the depth locally calculated is greater than the tolerance limit 
and depth curvature is within the curvature threshold limit. In step 10, if the above 
condition is true then candidateSet 1 stores the classified defects that can either hold 
one of the values from high, low and overlong. 

In step 11, the blur kernel ( fb ) stores the calculated blur sharp boundary. In step 
12, the Gabor filter ( fg ) stores the edge texture analysis features calculated from the 
raw image. In step 13, the Harris-corner filter ( fh ) is used to store blunt boundary 
features from the enhanced edge banding featured image. In step 14, inherited for 
loop checks defect features for each pixel of normalized fh. In step 15, if condition 
checks whether the defect features within that pixel are higher than the tolerance 
limit. In step 16, if the above condition is true then candidateSet 1 stores the classi-
fied defects as bluntness, residue and short. In step 17, finally after processing all the 
pixels within the target image, the defect features computed by computer vision are 
returned as candidateSet 1.

The Algorithm 2 pseudo-code given above is AOI for neural network-based defect 
calculation in the pseudo-code form. In step 1, the input (Image) to the algorithm is 
given by a camera for defect detection. In step 2, the output is given as candidateSet 
2, which contains the defects detected by the neural network on the input image. 
In step 3, the neural network confidence ( NNConf  ) is given by the model predicted 
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confidence. In step 4, the candidate set 2 is initialized by setting it to NULL. In step 
5, the input image captured by the camera may have different dimensions depend-
ing on the camera picture resolution, so the image is resized to the standard neural 
network input image dimensions. In step 6, after providing the resize image as input 
to the neural network, the output is provided in the form of classified defects type 
( ClassifyDefect ) and neural network confidence ( NNConf  ) about that classification. In 
step 7, candidateSet 2 is added with the output of the neural network having Clas-
sifyDefects and NNConf  as the format. In step 8, the output is returned by the algo-
rithm as candidateSet 2 for the defect features computed by neural network.

The Algorithm 3 given is a computer vision and neural network hybrid algo-
rithm for the final defect result detection presented in the pseudo-code form. In 
step 1, the input given to the algorithm is the captured image from the camera. 
In step 2, candidateSet 1 is used which stores the AOI-based computer vision 
detected defects. In step 3, candidateSet 2 is used which stores the AOI-based 
neural network detected defects. In step 4, the NNConf  is used to store a prediction, 
specifically neural network model confidence about the detected defect. In step 5, 
the output candidateFinal determines whether the output type will be predicted by 
computer vision defect or neural network defect or by combining both  hybrid. In 
step 6, the result candidateFinal is initialized to NULL. In step 7, the if condition 
checks that whether candidateSet 1 is a subset of either having a defect in D1 set 
defect type low, high, normal, overlong and short. In step 8, if the previous con-
dition is true then a new inherited If condition checks whether NNConf  is greater 
than or equal to 80% and none of the candidateSet 1 values match with the can-
didateSet 2 values. In step 9, when the previous two conditions are true then the 
result candidateFinal is assigned the values by adding candidateSet 1 and candi-
dateSet 2. In step 10, if step 8 is not true then the result candidateFinal in step 11 is 
assigned only the values from candidateSet 1. Step 12 checks if the candidateSet 
1 is a subset of value from D2 set having defect type as residue or bluntness. Step 
13 verifies if the previous condition is true and NNConf  is greater than or equal to 
80%. In step 14, when the previous two conditions are true then candidateFinal is 
assigned the values from candidateSet 2 as the neural network defect. In step 15, 
the else condition represents if the NNConf  is not greater than or equal to 80%. In 
step 16, candidateFinal is assigned the values from candidateSet 1 as the computer 
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vision defect. In step 17, finally the hybrid algorithm returns the candidateFinal as 
the final result of the WDD-DL system.

Experiments

For the experiments section, the workstation configuration used is presented in 
Table 2. All the experiments performed in this section are used to support pro-
posed methodology demonstration of this paper. The results are evaluated using 
a large set of defect category and multiple defect category dataset using deep fea-
ture extraction. The system configuration consists of Solid State Drive (SSD) and 
Graphics Processing Unit (GPU) card for edge-glued wooden panel defect detec-
tion using deep feature extraction.

Dataset

The dataset given in Tables  3 and 4 presents the defect category and multiple 
defect category with their corresponding frames, respectively.

These two datasets are used for both training and testing with different ratios 
of CNN models for deep feature extraction. Various CNN models are used for 
checking the accuracy of the test dataset for selecting the high accuracy model 
and achieving best performance. The training data consist of various types of 
independent or combined edge-glued wooden defects, which is used to train a 
CNN model. A test data will then be used to check for the accuracy given by the 
various CNN models. All the data used for training and testing are taken from a 
single source Sakura furniture industry in Taichung, Taiwan. The high definition 
industrial camera is used for capturing different defect images to generate a data-
set, which will be utilized by filters of computer vision (Kumar and Pang 2002b) 
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and classification by CNN for evaluating the results. In Fig. 5a, the different cat-
egory sample types are presented, which are used for this experimentation.

Evaluations

The configuration for CNN functional parameters is shown in Table  5, which 
presents the input parameters that are used for configuring the CNN model. The 
input shape denotes the height, width and depth (color channel) of the image used 
for processing. The batch size is used to indicate the data fitting in the batch of 10 
to the network. A single epoch presents the dataset accessed in the set of batches 
within the neural network by a forward and backward pass at once, which is com-
pleted in iterations. The weights here are referred from “Imagenet” visual object 
recognition project (Russakovsky et  al. 2015), which are learnable parameters 
used for controlling the signal within the network. The train and test ratio defines 
the distribution for the images into experiments for validation. Figure  5b pre-
sents the output generated after processing images from Gabor filter. Four images 
are shown, which have bluntness defect type, given as input for the Gabor filter 
operation. The purpose of Gabor filter is to extract features of edge and perform 
the operation of convert scale, suitable for pattern identification. The result of 
two algorithms is similar, but the convert scale function has better identification 
evaluation.

In Fig.  6a, K-means, an unsupervised machine learning algorithm is used to 
find new pixel-based patterns by clustering, for image segmentation purpose. 

Table 2  System configuration Processor Intel Core i7-7700 @ 3.60 GHz

Memory 16 GB
SSD card Plextor PX-256S2C
Graphics card (GPU) 1060 Nvidia GeForce GTX, 6GB
Python library Numpy, Sklearn, OpenCV, Keras, 

Tensorflow, Matplotlib and 
Seaborn

Table 3  Dataset for defect 
category and frames

Defect category Normal Bluntness Residue High Low

Frames 1722 2343 1269 106 2655

Table 4  Dataset for multiple defect category and frames

Defect category Bluntness + Low Residue + High Residue + Low

Frames 525 1815 3
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Successively, Find contours function is used for defect detection within the input 
image for normal and bluntness types. Even though the output in processed image 
shows defect detection by red mark, it is still not evaluated to be effective for achiev-
ing high accuracy. In Fig. 6b, the pixel distribution comparison algorithm is used to 
capture and fetch the defect features and their positions, respectively. The high and 
low defect gap is used to represent the unnecessary gap between the tape and panel 
in the images.

Fig. 5  Different categories of defects and edge-glued defect evaluation

Fig. 6  Evaluation by basic image processing algorithms

Table 5  Convolutional neural network (CNN) parameters

Input shape Batch size Epoch Initial weights Train and test ratio

(224, 224, 3) 10 20 Imagenet 66:33
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Therefore, the purpose of this algorithm is to extract the region, segments from 
the images with respect to foreground and background. It is still ineffective as per 
the expected results and demonstrated by the fluctuating graph.

In Fig. 7a, Means denoising and threshold otsu is used to present the algorithm 
for filtering out non-defect and fetch the defect regions after eliminating the noise. 
Henceforth, by a careful inspection, it was found to be suffering from similar accu-
racy issues as discussed previously for k-means. Figure  7b shows various edge 
detection filtering algorithms such as Canny, Sobel, Prewitt, Roberts and Laplace, 
which are used to extract edge features from the input image. Each filter has its own 
way of edge feature extraction, which takes input of bluntness wood pattern type 
image.

Usually, applying computer vision-based filters are considered to be a basic 
process in edge defect detection. In Fig. 8, hybrid algorithms are used to present 
experiments by combining different algorithms. At first, the bluntness wooden 
pattern is taken as input. Here, applying smoothing and threshold algorithm 
before edge detection algorithm has achieved better detection results. The first 

Fig. 7  Processing by denoising, threshold and edges

Fig. 8  Hybrid algorithm
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result is obtained after combining it with original image and canny. The second 
result is obtained by combining original and Gaussian blur. Similarly, third result 
is obtained by combining threshold with Canny. Figure 9 presents Harris corner 
evaluations for normal, high, low with bluntness and bluntness defect types. The 
process achieved by means denoising, Harris corner function and Harris corner 
map presents high accuracy evaluation of defects. Therefore, from Figs. 5b, 6, 7, 
8, 9, Gabor function and Harris corner are only found to achieve high accuracy. 
Table 6 shows the F1 score calculated as a part of performance measure for the 
WDD-DL F1 score (also F-score or F-measure) as a measure of a test’s accuracy. 
The column shows the various deep neural network models used within this paper 
for performing experiments, whereas the row for every model represents 5 types 
of defects detected from the wooden panel image by the respective neural net-
work model. The values present the F1 score, which is given as a weighted aver-
age of precision and recall.

Fig. 9  Harris corner evaluations for different defect samples: a Normal, b High, c Low + Bluntness and 
d Bluntness

Table 6  Comparison of different defect classification models based on F1 score

Models/defects Bluntness Residue High Low Normal Evalua-
tion time 
(s)

MobileNetV2 0.873 0.892 0.993 0.979 0.924 0.003
ResNet50V2 0.625 0.844 0.995 0.667 0.83 0.005
ResNet50 0.818 0.973 0.997 0.979 0.886 0.007
DenseNet169 0.95 0.982 0.997 0.984 0.952 0.007
InceptionResNetV2 0.904 0.986 0.997 0.991 0.93 0.008
ResNet101V2 0.795 0.935 0.991 0.957 0.648 0.008
ResNet101 0.736 0.735 0.86 0.761 0.61 0.009
DenseNet201 0.703 0.974 0.997 0.984 0.903 0.009
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It is also known as an indicator to mark precision and recall together as given 
in Eq. (8). Here, the red colour highlighted values shows the highest score for a 
particular defect. In this case, the InceptionResNet v2 is the choice for this paper, 
as it shows the highest F1 score values evaluated among most of the defects in 
comparison. The defect detection time given by the InceptionResNet v2 is 0.008 
sec, which is quite practical to present the results in the real time environment. 
The computer vision evaluation time for detecting a defect is given as 0.013, 
which is quite higher as compared to any of the deep neural network models 
listed above.

Figure  10 presents the performance measure of WDD-DL by precision, recall, 
F1 score and evaluation time for the different neural network models for the average 
of various types of defects. In Fig. 10a, the precision is used to present the actual 
“accuracy”, when predicting the positive results. It can also be said as correctly pre-
dicted positive observations to the total predicted positive observations. The preci-
sion formula is given in Equation (9) as

The highest precision in all deep neural network models is demonstrated by 
DenseNet 169 and InceptionResnet v2. Figure 10b presents the recall performance 
measure calculation for the actual positive output to “How much can be recalled”, 

(8)F1Score = 2 ×
Precision × Recall

Precision + Recall

(9)Precision =
TruePositive(TP)

TruePositive(TP) + FalsePositive(FP)

Fig. 10  Deep neural network performance measure comparison: a Precision, b Recall, c F1 Score and d 
Prediction Time
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when the actual situation is positive. Recall can be given as the ratio of correctly 
predicted positive observations over all observations in the actual class. The recall 
formula can be given as Eq. (10),

The F1 score as presented before, is given in Fig. 10c where DenseNet 169 and 
InceptionResnet v2 are found to be leading in comparison to other deep neural net-
work models. Figure 10d presents an evaluation time taken by each model for mak-
ing a defect prediction. It can be observed that even though the fastest evaluation is 
performed by MobileNet v2, it does not provide higher F1 score for most of the dif-
ferent types of defect detection.

The benchmark results show the comparison between the ANN (DN) + Find 
contours method, LBP + SVM method, HOG+SVM method and WDD-DL sys-
tem. Table 7 shows that the defects F1-score comparison is presented independently, 
recall is effective in the defect detection process, the precision for the alarm and 
evaluation time for the processing. Overall the WDD-DL system performs best in 
all the experiment cases for the performance and evaluation time to the recent refer-
ences. The output processed image results and the detail benchmark results for the 
confusion matrix are given in Figure S1 and Figure S2 to S4 in Electronic Supple-
mentary Material, respectively.

The highest recall is recorded by the DenseNet 196, DenseNet 201 and Inception-
Resnet v2 in all of the deep neural network models. The neural network model time 
is given by processing of 1 frame per second as prediction time. Even though the 
running time for half of the models shown in the table is less, the performance meas-
ure is taken as the priority. The performance measure given by accuracy is more 
instinctively accurate and can be given as the ratio of correctly predicted observa-
tions to the total observations.

Figure S5(a) in Electronic Supplementary Material, which shows Neural Net-
work model training epoch vs. accuracy presents the increase in accuracy over more 
epochs until achieving stable accuracy rate, whereas Figure S5(b) in Electronic 

(10)Recall =
TruePositive(TP)

TruePositive(TP) + FalseNegative(FN)

Table 7  Benchmark comparison results for the defect classification

Reference/algorithm Bluntness Residue High low Normal Recall Precision Evaluation 
time (sec.)

ANN (DN) + Find 
Contours (Wenshu et al. 
2015)

nan 0.005 0.005 nan nan 0.001 0.325 0.051

LBP + SVM (Kuang 
et al. 2018)

0.275 0.707 0.909 0.655 0.455 0.489 0.908 108.5

HOG + SVM (Sugiarto 
et al. 2020)

0.693 0.902 0.97 0.909 0.835 0.819 0.916 106.4

WDD-DL 0.904 0.986 0.997 0.991 0.93 0.90 0.97 0.008
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Supplementary Material shows Neural Network model training epochs vs. loss pre-
sents the decrease in loss over more epochs until achieving stable loss rate.

Overkill and escape analysis

As the industrial measurement and inspection error are unavoidable, there are some 
issues faced that include defect-free cases, which are rejected (overkill) and defective 
cases are accepted (Escape) (Fu et al. 2011). Overkill and escape lead to high produc-
tion cost and dissatisfaction of the customer, respectively. These overkill and escape 
analysis is used in industrial system for analysis and process improvement. The input 
parameters for obtaining the model in Figure S6 analysis of error distribution graph 
in Electronic Supplementary Material, is shown by Table 8 parameters set for overkill 
and escape analysis. The upper specification, the lower specification limit and average 
value are taken from the defect types low and high range. The total sigma is the pro-
cess standard deviation, which is assumed to be normal distribution. The Gage R & 
R (GRR) sigma is a measurement variation, which is narrowed as possible and taken 
between 10% ∼ 30% as a marginal rate. Less than 10% are acceptable and less than 5% 
is good but will incur high cost and hard to achieve. It can also be given as in Eq. (11),

Fig. 11  The analysis of test cases

Table 8  Parameters set for 
overkill and escape analysis

USL LSL Average Total sigma GRR sigma Bias

0.2 − 0.3 − 0.1 0.1 0.01 − 0.01

Table 9  Parameters for GRR 
AND CPK

GRR (Percent of total variance) 10%

GRR (Percent tolerance with 5.15 distribution width) 10%
Cpk Observed 0.67
Cpk Actual 0.64
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Here, the measurement system variation is �m , the upper specification limit is USL 
and the lower specification limit is LSL. The bias is the difference between observed 
mean and the reference value measurement, which can be positive or negative. As 
shown in Table 9, Cpk is the part of process capability index, which specifies pre-
determined specification limits for producing items that can be given as in Eq. (12),

Here, the process mean is � and the process standard deviation is � . Figure S6 in 
Electronic Supplementary Material, presents the analysis of error distribution, 
which shows the error range for USL and LSL. Variance and percentage of error 
is given as standard distribution, with low overkill rate and escape rate as tolerable 
values in process automation.

Figure 11 presents the analysis of test cases, which can be stated as: 

1. A good part is evaluated to be good.
2. A bad part is evaluated to be bad.
3. (Type I error) Overkill: A good part is evaluated to be bad.
4. (Type II error) Escape: A bad part is evaluated as good.

The observations from the measurement system for fault rate analysis is when we 
increase sigma gradually, the overkill rate and escape rate are found to be increas-
ing. In case of increasing GRR sigma, the overkill rate is increasing, but the escape 
rate is found to be fluctuating highly, whereas for increasing the bias, the overkill 
rate and escape rate are increasing too. Higher accuracy in defect detection can be 
achieved, which will require hyper-parameter setting in deep neural network and 
will take high processing power for evaluation.

Discussion

Analysis of CNN model and evaluation

Convolutional Neural Network (CNN) serves the purpose of feature extraction and 
classification. During the baseline CNN evaluation, several challenges are faced 
with different angles (rotation, translation and scaling), different background and 
illumination. In such case, high training images of the defect are required, which is 
quite a challenge for identifying different shapes and sizes of defect. To overcome 
these challenges, we have used geometric filters to capture different category of 
defect features as for two-stage classification. The illumination problem was solved 
using batch normalization and rectified linear unit (ReLU). CNN is usually stuck in 
local minima because of high redundancy in training feature. To avoid this problem, 

(11)GageR&R =
5.15 × �m

USL − LSL
× 100%

(12)Cpk =
min(USL − �,� − LSL)

3�
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feature selection used within the algorithm helps to resolve such issue. Still, eval-
uation metrics in CNN was average for accuracy, precision, recall and F1-score 
because of over-fitting. Therefore, optimization was needed to achieve best predic-
tion without over-fitting. The over-fitting problem is resolved by using dropout layer 
and ReLU as a part of regularization. Also applying minimal CNN and some well 
known CNN models was not enough. To achieve better performance, more experi-
ments and high-end GPU for processing were used. InceptionResnet v2 performed 
better than other CNN models by having high accuracy and recall with better evalu-
ation time for different defect detection models.

For baseline CNN, the training time is high, whereas classification is average, 
there is a need of proper data pre-processing, CNN layer configuration and feature 
extraction. The CNN performed with high accuracy in capturing different defect 
shapes and sizes with geometric filters. Feature extraction was also simplified by 
categorizing different types of defects distinctly. Even though geometric filters 
were applied, most of the CNN models suffered in accuracy because of high false 
alarm rate. Loss incurred is higher too, while performing convolution operation. A 
proper setting for CNN configuration is one of the crucial tasks for achieving bet-
ter performance with minimal values as shown in Table  5 (CNN parameters). In 
addition, the CNN with appropriate filters and multiple planned experiments con-
stitutes a finely executed approach for implementing effective and efficient research. 
CNN is incomplete without the support of high-end GPU hardware to accelerate the 
implementation.

Structural light detection for the depth edges

The purpose of using structured light detection is to perform depth edges detec-
tion accurately and avoid scattering of the inner texture edges. Usually, the depth 
discontinuities based distortion depends upon the distance from the camera (Park 
et al. 2008). The depth edge detection is crucial in the defect detection process as it 
represents object contours. The limitations of the traditional computer vision-based 
edge detection method are no differentiation present within depth edges and texture 
edges. Moreover, detecting depth edges is possible by eliminating the need of recon-
struction of dense 3D image scenes. The process of detecting depth edge map con-
sists of consecutively projecting white and structured light of the target object. The 
pattern image is obtained by differentiating the white and structured light images 
with robust threshold criteria. The final depth edge map is achieved by capturing 
candidate locations from the Gabor filter by identifying depth edge and distortions 
of the light patterns.

Experience sharing for development and deployment

Wooden furniture has several applications in the market including homes, offices, 
shops, restaurants, etc. Several manufacturing industries are completely depend-
ent on the human workers for identification of various types of defects. In such 
cases, the wood material is first cut into a wooden panel, which is then sent for the 
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edge-glued banding process. During the edge-glued banding process, several defects 
can arise that include tape can be high, low, bluntness, residue, short and overlong. 
Traditionally, a quality check (Q.C.) sticker was put on the wooden panel after the 
human worker inspection. There are high chances that the human identification of 
such defects can be missed. In addition, the human worker needs extra time other 
than the edge banding process to identify the defects because missing an error may 
affect the brand image and quality of the furniture product. Due to inefficiency of 
this process, WDD-DL was designed to overcome this problem and provide real-
time identification of edge-glued banding defects. At the start of WDD-DL, some 
basic image filters were used to identify such defects but due to their inaccuracy 
only Gabor and Harris corner were used with a deep feature extraction as a two 
stage model to achieve higher accuracy.

Comparing the literature (Hao et al. 2020) and this paper’s experiments, most of 
the systems use the same group of edge feature detection filters. WDD-DL experi-
ments have been performed on various filters including the hybrid ones but dem-
onstrate better results with the use of red line laser with filtering and different per-
formance evaluation with accuracy and loss. Various defect/data feature collections 
were performed with infrared, ccd cameras but was decided to use line laser as to 
represent the highlight of the model. The edge-glued based defect detection can be 
performed on wooden panels of different shapes and sizes. The image quality is con-
trolled by adjusting the angle of the red line laser (laser-aligned), frequency of tak-
ing images is maintained to 75 frames/sec by the use of practical industrial camera 
in the experimentation environment. The pre-processing of the image taken to get 
the necessary features includes specifying the image resize and several defect label-
ling to the training images with the help of manual operations too. The speed of the 
conveyor is not an issue as the 75 frames/sec are taken by the camera to process 
the frame. Documentation of the production operation can be done by generating 
a report that includes day-wise, weekly or monthly production with average errors 
encountered per day, per week or per month respectively. The WDD-DL system 
shows very few false alarm detected as the accuracy presented by the CNN models 
is quite high. The threshold set by the CNN model is 80% for identifying a defect 
type based on the training defect images. Ultimately, the human operators sort out 
the defective wooden panels after edge banding based on the error alert as shown 
by the WDD-DL display screen. The WDD-DL system performs comparison with 
different edge defect detection algorithms, CNN models and evaluates them based 
on F1 score, precision, recall, accuracy and loss. Henceforth, the overall benefit of 
the system can be represented as high accuracy, real-time defect detection, while the 
wooden panel is on the conveyor after the edge banding process.

Applying AOI in the industrial environment

AOI approach is being applied to solve many industrial challenges (He et al. 2019b; 
Block et al. 2020). It is focused on reducing human dependency, improve speed and 
achieve high accuracy. The use of AOI has helped the quality control process to be 
transformed and implement process automation to identify, notify, alert and display 
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the affected region. The purpose of using AOI is to provide high accuracy defect 
detection for quality inspection and higher production with less maintenance cost. 
The performance modelling can be done by accuracy, precision, F1-score and recall 
from the confusion matrix calculations.

The deep learning algorithms are well known to provide only classification, 
which is insufficient to locate exact defect position on the edge-glued wooden panel. 
Therefore, a two-stage approach consists of high level pre-processing by computer 
vision that captures laser based non-segmented defects for size of defect and type 
stored in candidate set 1, whereas the other defect patterns detected by better classi-
fication are stored in candidate set 2. Later, both candidate set 1 and candidate set 2 
are combined to represent as a complete final result. “The computer vision based fil-
tering consists of a rule-based system for achieving good accuracy results, whereas 
the deep learning based classification provides the enhancement for the best accu-
racy.” Ultimately, the innovation statement can be stated as the various wood-based 
edge-glued defect detection in the WDD-DL having structured light detection and 
line laser (multi-sensors) by using the computer vision-based pre-processing, filter-
ing and convolutional neural networks for re-evaluation, to achieving high accuracy 
results. The goal of this paper is to perform hardware and software based integration 
using AOI and to share practical industrial implementation experience for achieving 
high accuracy results.

Limitations of the WDD‑DL

Limitation of this work can be given that the experiments are performed only on 21 
different wood types, and fewer defect training images were available for overlong 
and short edge banding. However, the improvements are not a big challenge to be 
implemented as only some additional training is required for the CNN model. The 
approach presented by the WDD-DL paper is multi-disciplinary research. This paper 
is the successor for the edge based defect detection process in the furniture indus-
try. In the future, WDD-DL can be included as a part of the ERP system operating 
within the respective industrial environment to have better track of Quality Control 
(Q.C.) process and records for reporting.

Conclusion

WDD-DL provides automation for the development of the production line, by eas-
ing defect detection work load on the human machine operators. Integration of 
WDD-DL and production line helps to complete the workflow automation process. 
Edge-glued wooden defect detection has high demand in the furniture industry, hav-
ing products for homes, offices, shops, institutions, organizations, etc. Therefore, 
advancing the real-time defect detection process, which is the part of quality con-
trol in the industrial environment by using various computer vision and CNN algo-
rithms for achieving higher accuracy. The use of two-stage model utilizing computer 
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vision-based filtering and deep learning-based classification by using Inception-
ResnetV2 is found to be yielding best performance with the highest recall of 0.90 
in comparison with other popular CNN models, which is effective for the defect 
detection process. Moreover, the evaluation time is quite reasonable to be shown on 
the live screen at 0.008 seconds. The outcome of this paper can be given as achiev-
ing high accuracy quality control in the furniture industry using multi-sensor, two-
stage approach for real-time monitoring of defects. The paper also provides detailed 
overkill and escape rate analysis. The discussion section containing interaction with 
industrial employees after implementing the WDD-DL provides various insights 
into the practical working scenario. In the future work, a new interpretable AI model 
is planned to be demonstrated, which can detect different kinds of defects includ-
ing the wooden panel surface defects for overall industrial product defect inspection. 
Ultimately, the paper achieves better performance for the quality control process by 
WDD-DL with higher F1 score.
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