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Abstract
The chemical composition of wood is one of the key features that determine wood 
quality. The focus of this study was on identifying differences between juvenile and 
mature woods in Scots pine (Pinus sylvestris L.) and developing models for pre-
dicting the chemical composition of these two wood types. Chemical traits, deter-
mined by traditional wet chemistry techniques, included the proportion of lignin, 
polysaccharides and extractives. Partial least squares regression of Fourier transform 
infrared (FTIR) spectra was used for model building. The model performance was 
primarily evaluated by root mean squared error of predictions (RMSEP). High pre-
dictive power was attained for the content of lignin (RMSEP of 0.476 and 0.495 for 
juvenile and mature woods, respectively) and extractives (0.302 and 0.471), good 
predictive power for cellulose (0.715 and 0.696) and hemicelluloses in juvenile 
wood (0.719) and low predictive power for hemicelluloses in mature wood (0.823). 
A distinct band was observed at 1693 cm−1, and its intensity was strongly asso-
ciated with the content of extractives (r = 0.968 and 0.861 in juvenile and mature 
woods, respectively). FTIR has proved suitable for the rapid, non-destructive, cost-
efficient assessment of the chemical composition of  juvenile and mature woods in 
Scots pine. The band at 1693 cm−1 is to be further investigated to unravel its link 
with individual extractive components.
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Introduction

Wood is an abundant and renewable natural composite material that has been uti-
lized for a great variety of purposes such as production of paper, construction lum-
ber, furniture or textiles. It has been receiving increasing interest as an alternative, 
carbon-neutral source of energy to fossil fuels (Baratieri et al. 2008; Morris et al. 
2000) with a great potential to help balance net  CO2 emissions (Gnansounou et al. 
2009) and mitigate environmental pollution (Acquah et  al. 2016b). Its properties 
are determined by its anatomical and chemical structure, i.e. by the presence, extent 
and distribution of different types of wood tissue, by wood cell anatomy and by the 
chemical composition, in particular, the relative proportion of different chemical 
components and their allocation (Pereira et al. 2003).

Cellulose, hemicelluloses and lignin, polymeric macromolecules that are mainly 
allocated in plant cell walls, constitute the structural components of wood, with 
cellulose microfibrils and hemicellulosic chains being embedded in lignin (Rubin 
2008). They jointly form ca 90–96% of total wood material (40–50%, 25–35% and 
18–35% of the dry weight, respectively) (Pettersen 1984). The rest falls on a large 
and diverse group of extractives (Ekeberg et al. 2006; Shebani et al. 2008), compris-
ing of both organic and inorganic compounds, among which the most important are 
pinosylvin, stilbenes, resin acids, fatty acids and sterols (Fries et  al. 2000). While 
these four major components are common to all wood materials, their proportions 
vary among and within tree species and also depend on the age and part of a tree, 
the geographic location and soil conditions (Pettersen 1984).

The chemical composition of wood strongly influences wood quality (sensu 
lato) (Barnett and Jeronimidis 2009), but its determination under laboratory condi-
tions using conventional methods is expensive, time-consuming and laborious and 
is therefore impractical in projects that involve large numbers of samples, such as 
genetic studies or breeding programs (Gebreselassie et al. 2017). High-throughput 
vibrational spectroscopy-based techniques, such as near-infrared (NIR; Tsuchi-
kawa and Kobori 2015), Fourier transform infrared (FTIR; Rodriguez-Saona and 
Allendorf 2011) or Raman (Bowley et al. 2012) spectroscopy, have the potential to 
overcome phenotyping limitations (Conrad and Bonello 2016), as they can rapidly 
and inexpensively generate chemical fingerprints of various biological samples, 
including wood. The great advantage of these techniques is that chemical compo-
sition needs to be determined only for a small subset of samples, while those of 
the remaining ones will be predicted from the corresponding IR or Raman spectral 
profiles. Principal component regression (PCR), soft independent modelling of class 
analogy (SIMCA) and partial least squares regression (PLSR) belong to the most 
widely employed statistical methods in this context (Cozzolino 2014; Zhou et  al. 
2015).

FTIR spectroscopy is a powerful analytical tool for a rapid and accurate charac-
terization of lignocellulosic biomass (Dokken et al. 2005) based on the presence of 
fundamental molecular vibrations (Acquah et al. 2016b). It can provide information, 
albeit indirect, about the chemical composition of a sample, including molecular 
structural details (Diem 1993; Gillgren and Gorzsás 2016). It has been successfully 
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applied as a surrogate to the traditional wet laboratory protocols in a number of for-
est tree species (Chen et al. 2010; Poletto et al. 2012), for the characterization of dif-
ferent types of biomass such as wood, slash, wood with bark (Acquah et al. 2016a, 
b), fibres (Åkerholm and Salmén 2001) and pulp (Bjarnestad and Dahlman 2002; 
Strunk et al. 2011) and for the identification of chemical changes occurring during 
particle and fibreboard production (Müller et  al. 2009). Owing to the high sensi-
tivity and the qualitative and (semi)quantitative nature of the analysis, it is capable 
of detecting minor differences in the chemical composition among samples (Rodri-
guez-Saona and Allendorf 2011). It is therefore particularly advantageous in studies 
where only small variations in the chemical composition are expected, for instance, 
when samples from different developmental stages of the same trees (juvenile ver-
sus mature wood) are analysed. Juvenile and mature woods differ in a number of 
key properties such as density, stiffness, tracheid length or the chemical composi-
tion, which strongly affect the wood’s suitability for further utilization (Burdon et al. 
2004; Ivkovic et al. 2013; Sykes et al. 2003). Since juvenile wood is considered to be 
inferior in many aspects, it is important to investigate the two types independently, 
especially if one takes into account the increasing proportion of juvenile wood in 
genetically improved trees as a consequence of shortened rotation periods (Pearson 
and Gilmore 1980). Although information regarding the samples’ location within a 
tree (i.e. distance from the pith and bark) is scarcely provided, most published stud-
ies seem to have focused on mature wood only.

The objective of this study was to develop PLSR models for predicting the chem-
ical composition of Scots pine (Pinus sylvestris L.) wood from FTIR spectra. Focus 
was placed on identifying differences between spectra obtained from juvenile and 
mature woods, and the predictive power of their models was compared. This could 
ideally pave the way for subsequent rapid screenings of individuals intended for 
inclusion in advanced cycles of tree breeding.

Materials and methods

Sample population

Samples for this study were taken from two Scots pine (P. sylvestris L.) full-sib 
progeny tests: “Skorped” (411-2-H72-Skorped-Y; latitude 63.3444° N, longitude 
17.6417° E, altitude 330 m a.s.l.) and “Vännäsby” (411-3-V73-Vännäsby-AC; lati-
tude 64.0250° N, longitude 19.8519° E, altitude 200 m a.s.l.). Seeds for both tests 
were sown in May 1972 in Skogforsk (the Forestry Research Institute of Sweden), 
Sävar. The tests were established by Skogforsk in October 1972 and May 1973, 
respectively, as part of a broader progeny test series. They were established on nor-
mal forest soils with intermediate fertility using completely randomized single-tree 
plot design. The study was conducted at the age of 43 years; thus, 30–35 years had 
passed since the trees reached breast height. The central part (hereafter classified 
as juvenile wood) had formed heartwood, which is—especially in Scots pine—very 
rich in extractives.
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Increment core collection

A subset of 40 trees on each test site was originally sampled for this study. In order 
to avoid jeopardizing the stability of trees, 5-mm-wide increment cores were col-
lected, instead of standard 12-mm ones. This, unfortunately, led to insufficient 
amounts of wood material for some samples for subsequent analyses. Therefore, 
only 70 juvenile wood samples (36 from Skorped and 34 from Vännäsby) and 39 
mature wood samples from Vännäsby were finally included in this study. The cri-
terion for selection of trees was to cover as much phenotypic variation as possible 
in wood density and acoustic velocity from earlier measurements of ca 1200 trees 
using Resistograph IML-RESI PD300 (Instrumenta Mechanik Labor, Germany) and 
Hitman ST300 (Fibre-gen, Christchurch, NZ), respectively.

The increment cores were extracted from trees at breast height (ca 1.3 m above 
ground) using a 5-mm core borer (Haglöf, Långsele, Sweden) that was drilled 
through a stem bark to bark with a portable, battery-operated machine. After extrac-
tion, the cores were inserted into paper tubes and kept as such in a laboratory at ca 
+ 23  °C and 30% relative humidity until further processing. Each increment core 
was divided into a front and rear half at the pith; the front part corresponding to the 
side where the borer was attached to a stem. Each half was further split into juvenile 
and mature wood sections, which were represented by annual rings 2–6 as counted 
from the pith and 8–12 as counted from the bark, respectively. The outermost annual 
rings were removed to avoid contamination by material from earlier taken cores as 
well as to reduce the presence of the tree’s own bark. The core sections (four pieces 
from each tree) were temporarily stored in locked 2.0-mL plastic tubes.

Wood sample preparation

The core sections were cut into ca 2-mm-wide pieces and ground in a Retch MM400 
ball mill (Retch GmbH, Haan, Germany) at the frequency of 30  Hz using metal 
jars with 12-mm metal balls. Two milling cycles of 40  s were conducted, with a 
ca 2 min gap between them to avoid sample overheating. Approximately 7 mg of 
wood powder was mixed with 390 mg of spectroscopy-grade KBr (Sigma-Aldrich, 
St. Louis, MO, USA) and manually finely ground using agate mortar and pestle. 
When not utilized immediately after grinding, the KBr-wood mixture powder was 
stored in locked 2.0-mL plastic tubes in a paper box with silica gel in a low-moisture 
environment.

Analysis of chemical composition

Chemical compositional analysis of the 109 wood samples was performed in 
MoRe Research (Örnsköldsvik, Sweden) using the wood powder from ball milling 
(142–389  mg per sample; 245.7 ± 64.8  mg SD). Carbohydrates were determined 
using protocol SCAN-CM 71:09 (Scandinavian Pulp, Paper and Board Testing 
Committee 2009) that involves hydrolysis of wood with sulphuric acid. The content 
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of glucose (Glu), xylose (Xyl), mannose (Man), galactose (Gal) and arabinose (Ara) 
as the principal monosaccharides was quantified by ion chromatography (IC) using 
Dionex ICS-5000 (Thermo Scientific Inc., Sunnyvale, CA, USA) and was subse-
quently used to calculate the proportion of cellulose (Cel) and hemicelluloses (Hem) 
in total carbohydrates as Glu − 1

3
 Man and 1 − Cel, respectively (Sjöström 1993). The 

remaining solid residue from the acid hydrolysis of carbohydrates was used for the 
determination of lignin content. Total lignin (Lig) was quantified as a sum of gravi-
metrically determined acid-insoluble (Klason) and spectrophotometrically deter-
mined acid-soluble lignin following the TAPPI protocols 222 om-02 (TAPPI 2002) 
and UM 250 (TAPPI 1991), respectively, with a slight modification to accommo-
date for small amounts of wood (< 1 g). The acid-soluble lignin was determined in a 
solution after filtering off the insoluble lignin, using a spectrophotometric method at 
wavelength 205 nm, while the acid-insoluble lignin, yielded from the filtering step, 
was dried and weighed. The analysis of non-volatile extractives (Ext) was performed 
in a small-scale extraction equipment to lower the amount of material needed, but 
it otherwise followed the gravimetric determination of extractives according to the 
Soxhlet extraction protocol SCAN-CM 67:03 (Scandinavian Pulp, Paper and Board 
Testing Committee 2003). Briefly, samples were treated with cyclohexane/acetone 
(9:1 ratio) at boiling temperature for 1 h and refluxed. The solution was filtered off 
and samples were washed with cyclohexane/acetone several times. The amount of 
extractives was weighed after drying. Samples were not extracted prior to lignin 
determination; therefore, lignin content was corrected for the extractive content after 
the analysis of extractives was performed.

FTIR spectroscopic analysis

Spectra acquisition

FTIR spectroscopic analysis was performed at the Vibrational Spectroscopy Core 
Facility at Umeå University, using a Bruker IFS 66v/S vacuum bench spectrometer 
(Bruker Optics, Ettlingen, Germany). Spectra from 70 juvenile and 39 mature wood 
samples were collected over the spectral range of 5200–400 cm−1 at 4 cm−1 spectral 
resolution (and a zero filling factor of 2). 128 scans per sample were co-added to 
obtain good signal-to-noise ratios. Background spectra were collected with the same 
settings, using pure KBr powder. Measurements were repeated when absorbance 
values were outside the 0.1 and 0.8 range and/or when a spectrum exhibited excess 
noise. 11% of the samples were replicated, and their superimposed spectral profiles 
were used to visually assess the levels of technical errors, including potential incon-
sistencies in instrument performance.

Spectra standardization

Raw absorbance spectra were exported using OPUS 7.0 (Bruker Optics, Ettlin-
gen, Germany) and standardized for subsequent prediction model calibration 
using the free, open-source graphical user interface developed at the Vibrational 
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Spectroscopy Core Facility at Umeå University (https ://www.umu.se/en/resea 
rch/infra struc ture/visp/downl oads/). The standardization procedure involved 
four steps: (1) cutting the spectral region to the 1870–770 cm−1 range (“finger-
print region”) to eliminate non-informative and hard-to-standardize regions (i.e. 
maximize information content and minimize noise); (2) baseline correction via 
asymmetrical least squares fitting (Eilers 2004), with parameters λ and p set to 
 106 and  10−3, respectively (Eilers and Boelens 2005); (3) normalization using 
two different methods: (a) total area normalization (TAN) performed over the 
1870–770 cm−1 range and (b) area minimum–maximum normalization (AMM), 
i.e. scaling the spectra according to a selected region corresponding to prominent 
features. These regions in the present case were 925–1145 cm−1 (dominated by 
carbohydrate-associated bands), 1487–1553  cm−1 (dominated by aromatic skel-
etal vibrations), and 1553–1633 cm−1 (dominated by aromatics and extractives) 
(Dokken et  al. 2005; Gierlinger 2018; Gorzsás and Sundberg 2014), referred to 
as AMM1, AMM2 and AMM3, respectively; and (4) smoothing, using a mild 
Savitzky–Golay filtering (Savitzky and Golay 1964) with first-order polynomial 
and a frame rate of 3, since original signal-to-noise ratios were already high.

Model calibration

Models for predicting the chemical composition of wood from standardized FTIR 
spectra were developed using partial least squares regression (PLSR), a method 
that is based on the singular value decomposition of the X′Y matrix (i.e. predictor 
and response variables), with the objective to extract successive linear combina-
tions of the predictor variables (aka latent variables or factors) to simultaneously 
explain as much variation in the predictor and response variables as possible. The 
computation was performed using the statistical package SAS 9.4 (PROC PLS, 
SAS Institute Inc., Cary, NC, USA) using the nonlinear iterative partial least 
squares (NIPALS) algorithm.

In total, 570 predictor variables were included in the PLS regression, each rep-
resenting the intensity value at a given wavenumber in the 1870–770 cm−1 range 
(at steps of ca 1.925  cm−1, resulting from the spectral resolution and the zero 
filling factor). The response chemical variables were comprised of the content of 
total lignin, cellulose, hemicelluloses and extractives as well as the five principle 
monosaccharides (glucose, xylose, mannose, galactose and arabinose) measured 
independently. Each of the response chemical variables was modelled separately. 
Raw spectra (RAW) and four sets of standardized spectra based on different nor-
malization procedures were tested (TAN and AMM1–3), and three series of mod-
els were produced for each chemical variable: one for juvenile wood (based on 70 
samples), one for mature wood (based on 39 samples) and one for pooled samples 
(based on 109 samples). All models were validated using a split-sample cross-
validation test, in which groups of every seventh observation beginning with the 
first, second and so forth were excluded from calibration data sets.

https://www.umu.se/en/research/infrastructure/visp/downloads/
https://www.umu.se/en/research/infrastructure/visp/downloads/
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The split-sample-validated root mean predicted residual error sum of squares 
(PRESS), also known as the root mean squared error of predictions (RMSEP), cal-
culated as

was used as the benchmark statistics during calibration. The symbol n denotes the 
number of observations, yi is the ith observation for response variable y and ŷi(i) is 
the predicted value for the ith case; the second subscript indicates that the ith case 
was omitted when the regression model was fitted (Kutner et  al. 2005). Van der 
Voet’s randomization-based model comparison test (Van der Voet 1994) was then 
applied as the primary criterion for model selection, as it minimizes the number of 
retained factors through the exclusion of factors that have only a marginally higher 
RMSEP value than the absolute minimum, and thus reduces model complexity and 
the risk of overfitting. The cut-off probability for declaring a non-significant differ-
ence between factors was set at 0.1. The presence of outliers was visually assessed 
with the aid of diagnostics plots, which show the distance of each data point to 
the PLSR model with reference to both predictor and response variables. When 
an observation was found to lie dramatically far from other observations, it was 
removed from the calibration data set and the procedure was repeated.

Simple linear regression (PROC REG in SAS) was applied to quantify the rela-
tionship between absorbance intensities at individual wavenumbers (570 variables) 
and four major chemical components (Lig, Cel, Hem and Ext) and thereby  evalu-
ate how the predictive power is distributed across the whole spectral range. In each 
regression model, only a single wavenumber was supplied as a predictor variable; 
therefore, the statistical significance level (α = 0.05) was adjusted using Šidák cor-
rection 1 − (1 − α)1/m to accommodate for the large number of independent hypoth-
eses tested (m = 570).

Results

Analysis of chemical composition

All 109 samples included in the study provided estimates for the nine chemical 
variables despite the limited amounts of wood material used. The only excep-
tion was one sample of juvenile wood for which there was not enough powder 
left to perform the cyclohexane–acetone extraction analysis, and therefore, its 
extractive content could not be obtained. Chemical composition differed between 
juvenile and mature wood samples. While the proportion was similar for hemicel-
luloses and almost equal (ca 1% difference) for lignin between the two groups, 
there was on average nearly 9% less cellulose (and, correspondingly, glucose) 
and over 5% more extractives in juvenile wood than in mature wood. Variation in 
chemical composition among individual trees was comparable, but slightly higher 

(1)RMSEP =

�

PRESS

n
=

�

∑n

i=1

�

yi − ŷi(i)
�2

n
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in juvenile wood, with the highest variation in galactose and extractive content 
(Table  1). The coefficient of variation for the extractives was higher in mature 
wood (64.1% vs. 53.6%), but the range of individual values was much greater in 
juvenile wood, extending from 2.0 to 19.8% as compared with only between 0.7 
and 6.7% in mature wood.

FTIR spectra

All 70 juvenile and 39 mature wood samples provided interpretable spectra over 
the fingerprint region (1870–770  cm−1). In this region, spectra have a complex 
pattern, containing a number of bands that are indicative of the presence of main 
chemical components of wood. Bands around 1739  cm−1, 1317  cm−1, 1157  cm−1 
and 897 cm−1 have been earlier assigned to bending or stretching vibrations of dif-
ferent functional groups in polysaccharidic compounds, bands around 1595  cm−1, 
1510 cm−1, 1270 cm−1 and 1230 cm−1 to those in aromatic compounds (in this case 
mainly lignin) and bands around 1465  cm−1, 1425  cm−1, 1375  cm−1, 1111  cm−1 
and 1030 cm−1 to those in both polysaccharidic and aromatic compounds (see Chen 
et  al. 2010; Acquah et  al. 2016b; Poletto et  al. 2012 for references and a detailed 
description of the corresponding functional groups and vibration modes in differ-
ent pine wood samples). The samples here followed a similar absorbance pattern 
with all the above bands observed, albeit sometimes at slightly shifted wavenumbers 
(mostly within 2 cm−1).

A summary of spectral profiles obtained for the juvenile and mature wood sam-
ples is presented in Fig.  1. On the left (a), average juvenile and mature wood spec-
tra, constructed from mean absorbance intensity values, are compared. The two groups 
produced similar profiles although juvenile wood (b) exhibited a broader variation in 
absorbance intensity over nearly the whole spectral range than mature wood (c), with 

Table 1  Descriptive statistics 
of the chemical composition of 
70 juvenile and 39 mature wood 
samples

SD standard deviation, CV coefficient of variation
a Based on 69 samples

Component Juvenile wood content 
(%)

Mature wood content 
(%)

Mean SD CV Mean SD CV

Lignin 27.1 2.26 8.4 27.7 1.97 7.1
Cellulose 32.6 2.31 7.1 41.5 2.83 6.8
Hemicelluloses 22.9 1.61 7.0 21.9 1.02 4.6
Glucose 35.3 2.51 7.1 44.9 3.12 7.0
Mannose 7.9 0.81 10.2 10.1 1.04 10.3
Xylose 5.9 0.53 8.9 4.6 0.41 9.0
Galactose 4.7 1.39 29.8 2.6 1.48 57.0
Arabinose 1.8 0.22 12.3 1.3 0.11 9.0
Extractives 7.4a 3.99a 53.6a 1.9 1.25 64.1
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the most profound differences occurring between 1570 and 1750  cm−1, as shown 
in more detail in Fig. 2. Small differences could also be observed at 1595 cm−1 and 
1423 cm−1, but the absorbance intensities overlapped between the two groups. Simi-
larly, although there was a difference in mean absorbance values between 1165 and 
980 cm−1, with local maxima at 1037 cm−1 and 1058 cm−1, the value range was large 
and overlapping in this region (Fig.  1). Apart from bands assigned to lignin and/or 
polysaccharides earlier, both juvenile and mature woods produced bands at 1453 cm−1 
and 1058 cm−1. Additionally, about half of the juvenile wood samples exhibited a clear 
extra band at 1693 cm−1 (Fig. 2a), which was completely missing in all but three sam-
ples of mature wood (Fig. 2b).

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

A
bs
or
ba
nc
e
in
te
ns
ity

Wavenumber (cm-1)

(a) Juvenile vs. mature wood

Juvenile

Mature

Wavenumber (cm-1)

(b) Juvenile wood

Mean
Range

Wavenumber (cm-1)

(c) Mature wood

Mean
Range

Fig. 1  Standardized FTIR spectra (following total area normalization) of juvenile and mature wood sam-
ples of Scots pine constructed from mean absorbance intensity values (a) and minimum and maximum 
values (dashed lines) to illustrate the absorbance intensity range at each wavenumber for 70 juvenile (b) 
and 39 mature (c) wood samples

Fig. 2  Standardized FTIR spectra following total area normalization (grey lines) of 70 juvenile (a) and 
39 mature (b) wood samples of Scots pine in spectral region from 1550 to 1830 cm−1 that encompasses 
the most notable differences in absorbance intensities between the two wood groups. The orange and 
green lines and the highlighted areas around them represent sample means and their standard deviations 
for given wavenumbers, respectively
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Prediction model calibration

Full spectra

Using standardized FTIR spectra as predictor variables and the content of chem-
ical components of wood as response variables, predictive PLSR models were 
developed separately for each response variable in both juvenile and mature 
woods. All 70 and 39 samples, respectively, were used in model calibration and 
for cross-validation. All four normalization methods (TAN and AMM1–3) were 
tested, but only one, which provided the lowest value of minimum RMSEP, was 
kept for a given variable (Table 2). Each of the four normalization methods per-
formed best for at least one of the variables. TAN was superior for predicting five 
variables in juvenile wood (Cel, Glu, Man, Xyl and Ext) and three in mature wood 
(Lig, Man and Gal); AMM1 was best for Gal and Ara in juvenile wood; AMM2 
for Lig in juvenile wood and Hem, Ara and Ext in mature wood, and AMM3 for 
Hem in juvenile wood and Cel, Glu and Xyl in mature wood.

Following the models’ diagnostics, up to four and up to three outliers were 
removed from the data sets of juvenile and mature wood samples, respectively, 
to further improve model fit. This treatment did not decrease the RMSEP sub-
stantially (it reached on average 0.613 vs. 0.683 and 0.606 vs. 0.691 for the 
two groups of samples, respectively), but R2 increased markedly in nearly all 
instances, with the highest difference being attained for Hem in juvenile wood 
(+ 0.463 for AMM1) and Man in mature wood (+ 0.312). Besides, while the 
full data set of 39 mature samples failed to produce significant models for Hem 
and Xyl, removing three and two outliers, respectively, enabled us to resolve the 
problem to a certain extent, giving raise to models with R2 of 0.658 and 0.790, 
albeit with relatively high RMSEP levels (0.823 and 0.845). The only variable 
for which we failed to develop a significant model was Ara in mature wood, as 
even after removing up to five outliers from the calibration data set, the minimum 
RMSEP did not drop below 1.

The overall predictive power of the present models was good, but highly vari-
able both between juvenile and mature woods and among response variables within 
the two groups (Table  2). Excellent predictive powers (i.e. highly reliable predic-
tions) were obtained for Ext in juvenile wood (RMSEP = 0.302) and Gal in mature 
wood (0.311). Very good predictive powers were achieved for Lig and Gal in juve-
nile wood and Ext in mature wood (0.476, 0.483 and 0.471, respectively). Mod-
els for Ara in juvenile wood and Hem and Xyl in mature wood were considerably 
worse (0.812, 0.823 and 0.845, respectively). In order to improve the fit, juvenile 
and mature wood samples were pooled, and the models were recalibrated for all 
response variables (Table 2). As expected, the increased sample size (N = 109) as 
well as a larger variation within the samples led to a substantial improvement of the 
models, as the average RMSEP dropped down to 0.481 (versus 0.613 and 0.606 for 
models exclusive to juvenile and mature woods, respectively), with only three values 
slightly exceeding 0.5 (Lig, Xyl, Ara) and one staying near 0.8 (Hem) (Table 2). This 
indicates that models calibrated and cross-validated using a larger sample size might 
offer a greater statistical power for future predictions.
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In most cases, the R2 values exceeded 0.8 (Table 2) (or a ratio of performance to 
deviation (RPD) equivalent of 2.24; see Minasny and McBratney 2013 for details). 
In juvenile wood, it ranged from 0.679 for Ara to 0.953 for Ext and reached on aver-
age 0.826 ± 0.081 SD for the nine variables. The situation was similar in mature 
wood [average (AVG) 0.787 ± 0.130 standard deviation (SD)], although R2s did not 
reach 0.8 for four variables (Cel, Hem, Glu and Xyl). The models also tended to 
exploit most of the predictor variation, utilizing 48.5–92.9% (AVG 79.9 ± 12.9% 
SD) and 63.0–95.7% (AVG 78.5 ± 14.0% SD) of variation in juvenile and mature 
wood spectra, respectively.

The number of significant factors retained following Van der Voet’s test ranged 
from 1 to 9 in juvenile wood and from 1 to 7 in mature wood. In ten instances, the 
number of factors was the same for the minimum RMSEP and Van der Voet’s test 
selection criteria. In the remaining eight, two to five factors were non-significant and 
thus excluded from the models. Note that while three factors corresponding to the 
minimum RMSEP of 1.036 were obtained for Ara in mature wood, none of them 
was significant. The greatest difference (five factors) occurred for Lig and Ext in 
juvenile wood, but the R2 was only marginally lower due to the exclusion, reduced 
by 9% and 3% (0.811 vs. 0.902 and 0.953 vs. 0.978), respectively.

Diagnostic band positions

Absorbance intensities at 13 band positions (wavenumbers) listed in the Full spectra 
section are considered to be good indicators of the presence of lignin and cellulose 
in wood materials. To test how much information they carry in relation to the two 
major wood components in the present samples, the models were run calibrated with 
all 570 variables above, using only intensities at these selected 13 wavenumbers 
(9 for polysaccharides and 9 for lignin, of which 5 were shared), but keeping the 
respective normalization selected during calibration for each response variable. The 
results did not differ markedly from the models where all 570 wavenumbers were 
included. Only a small decrease in R2 and increase in RMSEP in Lig and a slightly 
bigger change for Cel, in particular in juvenile wood, were observed. It confirms 
that the 13 selected variables capture most of the variation pertaining to the respec-
tive wood components (Table 3). However, when the nine wavenumbers assigned to 
cellulose were applied to predict the content of hemicelluloses, we failed to obtain 
reliable models for either of the two wood groups. In juvenile wood, the R2 was less 
than a half of that attained by all predictors and the RMSEP reached nearly 1. In 
mature wood, no significant factors at all were obtained. On the other hand, the con-
tent of extractives attained a high predictability using only these bands plus the three 
unassigned bands at 1058  cm−1, 1453  cm−1 and 1693  cm−1. R2 remained nearly 
equal in juvenile wood and even increased by 1% in mature wood when all other 
predictors were removed; RMSEP slightly improved (0.263 vs. 0.302 and 0.435 vs. 
0.471 for juvenile and mature woods, respectively).
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Regression using individual wavenumbers

The relationship between the intensities at individual wavenumbers and the content 
of the four major wood components (Lig, Cel, Hem and Ext) was further investi-
gated. Figure 3 shows R2 values computed using univariate regression analyses (570 
for each response variable) plotted against the respective wavenumbers. One set 
of graphs was constructed for each of the components in both juvenile and mature 
woods. Each graph contains colour lines representing one of the four normalization 
methods plus raw data, and the grey area illustrates the highest R2 for a given wave-
number. Statistical significance of each relationship was evaluated based on p val-
ues, where the α level was adjusted to 9 × 10−5 following Šidák correction.

For all four response variables, the distribution of R2 across the whole spectral 
range was greatly dependent on the normalization method used (Fig. 3), although 
the pattern remained more or less consistent between juvenile and mature woods. 
For instance, in variable Lig, AMM2 produced a large region of R2 values near 0.6 
between 1170 and 1480 cm−1, with a narrow but deep depression at 1400 cm−1, as 
well as in two shorter regions around 950 cm−1 and 1730 cm−1. The other three nor-
malizations were inferior for Lig over most of the spectral range, especially in juve-
nile wood. Similarly, TAN produced a longer region of high R2 (also ca 0.6) between 
980 and 1130 cm−1 and a number of narrow but clearly separated peaks at shorter 
wavenumbers for the variable Ext (and with smaller R2s also for Hem in juvenile 
wood). AMM1 was superior between 1150 and 1460 cm−1 for Ext and AMM3 over 
a large region from 850 to 1450 cm−1 in Cel, both in mature wood.

The most distinct and, at the same time, most consistent R2 hotspot across all nor-
malization methods and the two types of wood material was found for variable Ext 
near 1693 cm−1, with local maxima ranging from 0.822 and 0.938 for juvenile wood 
and 0.688 and 0.741 for mature wood (all p values < 0.001) (Fig. 3). This finding 
corresponds well to the present observations of individual FTIR spectra described 
earlier (presented in Fig. 1), which revealed highly variable absorbance intensities 

Table 3  Comparison of partial least squares regression models’ statistics for four major chemical com-
ponents of wood, using all 570 wavenumbers in the fingerprint region as predictor variables versus indi-
vidual bands only (9, 9, 13 and 16 variables for lignin, cellulose, hemicelluloses and extractives, respec-
tively)

R2, coefficient of determination; F, number of significant factors based on Van der Voet’s randomization-
based model comparison test; RMSEP, root mean squared error of predictions
a Minimum RMSEP = 1.058

Wood part Juvenile wood Mature wood

Predictors used All Individual bands All Individual bands

Statistic R2 F RMSEP R2 F RMSEP R2 F RMSEP R2 F RMSEP

Lignin 0.812 1 0.476 0.775 1 0.522 0.860 3 0.527 0.802 3 0.556
Cellulose 0.806 7 0.715 0.598 3 0.733 0.622 1 0.696 0.612 1 0.705
Hemicelluloses 0.778 5 0.719 0.343 2 0.932 0.658 5 0.823 N/A N/A NAa

Extractives 0.953 4 0.302 0.951 4 0.263 0.858 2 0.471 0.871 2 0.435
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at this wavenumber, particularly in juvenile wood. On the other hand, Hem exhib-
ited a weak relationship with individual frequencies across the whole spectral range 
regardless of the normalization method used, with the highest R2 values barely 
exceeding 0.4 in juvenile wood (local maxima occurred at 1693  cm−1 and 831 cm−1 
with R2s of 0.425 and 0.431, respectively) and not even reaching 0.2 in mature 
wood. The corresponding correlation coefficients that reveal the direction of the 
above-described relationships are presented in Figure S1 in Online Source.

(a)

(b)

Fig. 3  Relationship between absorbance intensities at individual wavenumbers and the content of major 
wood components (lignin, cellulose, hemicelluloses and extractives) in juvenile (a) and mature (b) wood 
based on 70 and 39 samples, respectively. R2 values are computed using univariate regression (570 for 
each response variable) plotted against the respective wavenumbers. Each colour line represents one nor-
malization method (TAN and AMM1–3), while the grey line shows results using raw spectra for com-
parison. The light grey area illustrates the highest R2 for a given wavenumber
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Discussion

Prediction model evaluation

Using FTIR spectra as predictor variables and chemical composition (content of 
major components or their groups) as response variables, predictive PLSR models 
for juvenile and mature woods were developed using 70 and 39 samples, respec-
tively. Their performance was evaluated based on the minimum value of the root 
mean square error of prediction (RMSEP), a measure of the average accuracy of 
prediction of new observations, i.e. of the difference between the true and estimated 
values. R2 was also used as a secondary measure (Table 2). While R2 is a good indi-
cator of how well a model fits actual data from which it is constructed, the reliabil-
ity and predictive ability of a model are generally better assessed with the aid of 
appropriate cross-validation statistics. Aside from the RMSEP, the most widely used 
statistics for evaluating the performance of predictive models are the standard error 
of prediction (SEP), which measures the precision of the predictions (i.e. the differ-
ence between repeated measurements); the ratio of performance to deviation (RPD), 
which is the ratio of the standard error in prediction to the standard deviation; and 
the bias, which is the average difference between the predicted and real values, indi-
cating under- or overestimation (Acquah et al. 2015; Chen et al. 2010; Kutner et al. 
2005; Zhou et al. 2015).

In the present study, the RMSEP statistics varied across the studied chemi-
cal components, from very high for extractives in juvenile wood and galactose in 
mature wood, through high to moderate for most variables in both groups down to 
very low for hemicelluloses, despite R2s being high across variables and wood types 
(Table 2). The standardization of raw spectra (consisting of four steps: (1) trimming 
the spectral region; (2) baseline correction; (3) normalization; and (4) smoothing), 
generally had a positive effect on model performance, although the minimum val-
ues of RMSEP and the corresponding R2 attained following standardization were 
not necessarily superior to those obtained using raw spectra. For some variables, 
the predictive models yielded a slightly lower RMSEP when raw spectra were uti-
lized and thus performed apparently better than those constructed using their stand-
ardized counterparts. However, with the exception of Cel and Glu in juvenile wood 
and Hem and Man in mature wood, the numbers of retained factors were greater 
with raw spectra (on average by 2.9 and 2.3 factors per response variable in juvenile 
and mature woods, respectively). This is likely to be the result of accounting for the 
baseline shift along with the other standardization steps. Thus, the models obtained 
with raw spectra were more complex, possessing an increased risk of overfitting. The 
unstructured patterns of R2 and r coefficients obtained from raw spectra (grey lines 
in Figs. 3 and S1, respectively), which follow nearly straight lines along the whole 
spectral region, confirm that raw spectra are suboptimal and that a suitable pre-pro-
cessing procedure, conducted with the aim of making spectra compatible with one 
another, is desired when FTIR-based predictive models are constructed (see Con-
rad and Bonello 2016 for a review). For instance, a first derivative treatment (Owen 
1995) substantially decreased RMSEP values across response variables in a study by 
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Zhou et al. (2015), in particular in extractives (from 1.19 to 0.34) and in lignin (from 
1.05 to 0.50), with superior results reported by Acquah et al. (2016b) as well. In the 
present case, the standardization accentuated differences in IR absorbance intensi-
ties among individuals at most wavenumbers for the four variables Lig, Cel, Hem 
and Ext in both juvenile and mature woods (Figs. 3 and S1). Therefore, untreated 
spectra were not used for further calibration of the models and one normalization 
method among TAN and AMM1–3 was chosen that performed best for each respec-
tive response variable (Table 2). The differences between the methods in terms or 
the minimum RMSEP were often just marginal (Table S1), on average only 1.2% 
and 2.0% between the first- and second-best methods and 5.1% and 4.4% between 
the best and worst methods in juvenile and mature woods, respectively. Thus, model 
performances would not be severely affected if only one normalization method was 
applied to all response variables and both wood types. It cannot be excluded that 
normalization of FTIR spectra according to other regions than the three tested in 
the present study, or other normalization types (e.g. point maximum or offset) could 
lead to even higher predictive power of the calibration models. However, these were 
not tested, as the results were satisfying (except for arabinose in mature wood) with 
these common and spectroscopically accepted procedures. The performance of the 
four normalization methods remained consistent between models constructed using 
full data sets and after removing outliers. The only exception was variable Hem in 
juvenile wood, where AMM3 provided the best fit using all 70 samples, but turned 
to be inferior when four outliers were removed. In this case, AMM1 attained 17% 
lower RMSEP and 66% higher R2 than AMM3. As to the trimming step, excluding 
data outside of the fingerprint region (i.e. 5200–1870 and 770–400 cm−1) did not 
compromise the predictive ability of the models, similarly to what was reported by 
Acquah et al. (2016b). Nearly all models’ fit further improved when all 109 samples 
(representing the two wood types) were pooled prior to calibration.

The present models had high predictive powers for extractives and lignin, mod-
erate for cellulose and low for hemicelluloses (along with some of their structural 
monosaccharides), which is in congruence with other studies utilizing FTIR spec-
troscopy for similar purposes. For instance, Zhou et al. (2015) obtained robust mod-
els for extractives and lignin (RMSEP = 0.34 and 0.50, respectively) and acceptable 
for cellulose (0.80), but the predictive ability for hemicelluloses was problematic 
(1.90), despite the R2 being very high for this component (0.929), indicating a good 
fit of actual observations. Similarly, the models reported by Acquah et al. (2016b) 
were good for the first three components (RPD = 2.83, 2.04 and 1.61, respectively), 
but unreliable for hemicelluloses (along with mannose and galactose), with RPD 
values remaining below 1.0. Results from some other studies using NIR spectros-
copy (Acquah et al. 2015; Jones et al. 2006), which could be considered as an alter-
native or complementary method to FTIR, also showed that predicting hemicellu-
loses with reasonably high accuracies using rapid, non-destructive spectroscopic 
techniques remains a challenge. In these studies, predictions of hemicelluloses were 
poor too, with RPD values barely reaching 1.0.
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Individual wavenumber diagnostics

Spectral profiles produced by the present wood samples were similar to those 
reported in earlier studies (e.g. Chen et  al. 2010; Müller et  al. 2009; Pandey and 
Pitman 2003; Poletto et al. 2012). Most of the bands were observed at or near (usu-
ally ± 2  cm−1) to previously assigned wavenumbers. However, hereby three extra 
bands at 1453 cm−1, 1058 cm−1 and 1693 cm−1 (Figs. 2, 3) are reported, which have 
not been discussed in connection with major wood components. The 1453  cm−1 
band is related to C–H vibrations (e.g. in methyl or methylene groups), but is rather 
unspecific and can be seen in both polysaccharidic and aromatic compounds (Dok-
ken et al. 2005; Gorzsás and Sundberg 2014). The band at 1058 cm−1 is most likely 
to originate from sugar ring vibrations of polysaccharides (particularly from gluco-
sidic residues) (Gorzsás and Sundberg 2014; Toole et al. 2004; Wilson et al. 2000).

The band at 1693 cm−1 produced the highest variation in absorbance intensities 
among the present samples. This was particularly true for juvenile wood, and the 
high and significant correlations between absorption intensities at this wavenumber 
and the content of extractives (Figure  S1), approaching 1.0 and exceeding 0.8 in 
juvenile and mature woods, respectively, indicate a strong potential association. This 
hypothesis is in accordance with results obtained from wet chemistry analyses pre-
sented in Table 1, where a higher content of extractives was found in juvenile than 
in mature wood (the difference being on average ca 5% or 3.8-fold). In addition, 
a much larger variation in this trait was observed among individual juvenile wood 
samples (range 2.0–19.8% versus 0.7–6.7% in mature wood samples). Furthermore, 
while the four normalization methods tested in the present study differed greatly in 
terms of the predictive power of PLSR models for most regions of the FTIR spectra 
in all four major wood chemical components, the band at 1693 cm−1 consistently 
provided a high and positive correlation with the content of extractives regardless 
of the normalization used (0.907–0.968 and 0.830–0.861 for juvenile and mature 
woods, respectively). Raw spectra performed poorly as single-band predictors of the 
chemical composition over the whole spectral regions. Even the 1693 cm−1 band, 
which produced global correlation maxima in both juvenile and mature woods for 
the extractive content in raw spectra too, yielded much lower values than from stand-
ardized spectra (only 0.206 and 0.460, respectively). To verify the apparent relation-
ship between extractive content and the 1693 cm−1 band, we turned to the only three 
mature wood samples which, like many of the juvenile samples, exhibited this extra 
band (Fig. 2b). It was found that these were indeed relatively rich in extractives, in 
essence being the only ones with extractive content exceeding 4% (6.7%, 5.0% and 
4.8% versus the average value of 1.9% ± 1.25 SD). It is therefore suggested that this 
band could be utilized as a strong indicator of the presence of extractives in wood, at 
least of the group of extractives sensu lato.

The collective predictive power of the band positions that had been earlier 
assigned to lignin and/or cellulose (or at least to polysaccharidic compounds) in 
wood was overall high and, with the exception of hemicelluloses, approached val-
ues attained by the whole fingerprint spectral region for the respective compo-
nents. Thus, these band positions can be collectively regarded as reliable predic-
tors of lignin and cellulose content [descriptions of the chemical bonds and their 
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respective vibration modes for these compounds have been assigned, e.g. by Hergert 
(1971), Faix (1992) and Popescu et  al. (2009)]. However, other positions/regions 
are required for raising the predictive power for hemicellulose content to reasonable 
levels. Unfortunately, in the authors’ experience the reliability of the models was 
questionable for hemicellulose content even when all variables (all 570 wavenum-
bers in the fingerprint region) were included in the PLS regression. Acquah et al. 
(2016b) reported that extending the number of predictor variables included in the 
PLSR models from the fingerprint region to full spectra did not bring any notable 
improvement in predicting this component either; in fact, it resulted in increased 
cross-validation errors and lower RPDs for all models except for lignin.

On the other hand, the content of extractives seems to be highly predictable from 
these bands alone (plus the three bands discussed earlier, in particular the band 
at 1693  cm−1). This result may seem surprising as these bands were previously 
assigned to wood components other than extractives. One key factor can be the 
effect of normalization: Since spectra are scaled, all intensity values (and therefore 
the deduced concentrations) are relative, not absolute (i.e. proportions, not absolute 
concentrations). This in turn means that extractives are explained indirectly, i.e. 
when different polysaccharides and lignin are removed, the remaining proportions 
are assigned to extractives. Thus, precise estimations of lignin and cellulose indi-
rectly help the precision of extractives. Furthermore, when many collinear variables 
are removed whereby the predictive power for the main components improves, the 
remaining proportion indirectly becomes more accurate as well. The impact of this 
“spillover” effect may, however, be limited, especially in cases when normalization 
is not performed by the total area. Thus, the possibility that certain bands previously 
exclusively assigned to lignin and cellulose are in fact not as diagnostic as previ-
ously believed cannot be excluded, i.e. they can originate from a number of other 
compounds included in the large group of extractives too.

Conclusion

This study confirms that FTIR spectroscopy can serve as an effective tool for rapid, 
non-destructive identification of chemical compositional differences between juve-
nile and mature woods in Scots pine. The partial least squares regression models 
constructed using standardized FTIR spectra provided high statistical power for pre-
dicting the content of lignin, cellulose and extractives in juvenile and mature wood 
samples. On the other hand, it appears that FTIR spectroscopy would benefit from 
a complementary technique to improve the prediction accuracy for the content of 
hemicelluloses and some of their structural monosaccharides.

It was observed that the band at 1693 cm−1, in particular among juvenile wood 
samples, was strongly associated with the content of wood extractives. It might be of 
practical interest to investigate this feature in more detail, as wood extractives play an 
important role in many end-uses and serve, for instance, as natural preservatives of 
wood materials, natural fungicides (Hart 1981; Pearce 1996), or might be utilized as 
an appealing source of bioenergy, for example for vehicles (Panithasan et al. 2019).
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