
Theory of Computing Systems
https://doi.org/10.1007/s00224-024-10169-9

Pumping Lemmas Can be “Harmful”

Jingnan Xie1 · Harry B. Hunt III2 · Richard E. Stearns2

Accepted: 29 February 2024
© The Author(s) 2024

Abstract
Apumping lemma for a class of languagesC is often used to show particular languages
are not in C. In contrast, we show that a pumping lemma for a class of languages C
can be used to study the computational complexity of the predicate “∈ C” via highly
efficient many-one reductions. In this paper, we use extended regular expressions
(EXREGs, introduced in Câmpeanu et al. (Int. J. Foundations Comput. Sci. 14(6),
1007–1018, 2003)) as an example to illustrate the proof technique and establish the
complexity of the predicate “is an EXREG language” for several classes of languages.
Due to the efficiency of the reductions, both productiveness (a stronger form of non-
recursive enumerability) and complexity results can be obtained simultaneously. For
example,we show that the predicate “is anEXREG language” is productive (hence, not
recursively enumerable) for context-free grammars, and is Co-NEXPTIME-hard for
context-free grammars generating bounded languages. The proof technique is easy to
use and requires only a few conditions. This suggests that for any class of languages C
having a pumping lemma, the language class comparison problems (e.g., does a given
context-free grammar generate a language in C?) are almost guaranteed to be hard.
So, pumping lemmas sometimes could be “harmful” when studying computational
complexity results.

Keywords Extended regular expressions · Pumping lemmas · Undecidability ·
Productiveness · EDT0L · Synchronized regular expressions

B Jingnan Xie
jingnan.xie@millersville.edu

Harry B. Hunt III
hunt@cs.albany.edu

Richard E. Stearns
thestearns2@gmail.com

1 Computer Science, Millersville University of PA, 40 Dilworth Rd, Millersville, PA 17551, USA

2 Computer Science, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-024-10169-9&domain=pdf

Theory of Computing Systems

1 Introduction

Extended regular expressions (EXREGs) introduced by Campeanu et al. [1] are stan-
dard regular expressions augmented with backreferences (as defined in [2]) to match
the same text again. Campeanu et al. showed that EXREGs represent a family of lan-
guages that is larger than the family of regular languages and is incomparable with the
family of context-free languages. So it is desirable to study the language comparison
problem between context-free languages and EXREGs (i.e., does a given context-free
grammar generate an EXREG language?).

Similarly, another extension of regular expressions— synchronized regular expres-
sions (SRE) is defined and studied in [3]. SRE may allow to find if certain
subexpressions are repeated the same number of times in a text. This can be useful for
integrity checks, especially when mixed with other extensions such as backreferences.
Della Penna et al. used SRE to present a formal study of the backreferences extension
and of a new extension called the synchronized exponents proposed by them. In [4],
Carle showed that the family of languages expressed by SRE properly contains the
family of languages expressed byEXREGs. So it is also desirable to study the language
comparison problem between SRE and EXREGs (i.e., does a given synchronized reg-
ular expression generate an EXREG language?)

Lindenmayer systems (L-systems) were introduced by Aristid Lindenmayer in
1968 [5] to model the development of simple multi-cellular organisms in terms of
division, growth, and death of individual cells. EDT0L systems (discussed in [6]) are
a special type of L-systems with great research value (for example, see [7, 8]). How
hard is it to determine whether a given EDT0L system generates an EXREG language?

All these problems can be solved due to the existence of a pumping lemma for
EXREGs. In [1], a pumping lemma for the languages expressed by EXREGs is proven.
Often, a pumping lemma for a class of languagesC is used to showparticular languages
are not inC. In contrast,weuse this pumping lemma to study the complexity of thepred-
icate “is an EXREG language” via highly efficient many-one reductions. Due to the
efficiency of these reductions, both productiveness (a stronger form of non-recursive
enumerability) and complexity results are obtained simultaneously. The proof tech-
nique we illustrate in this paper is easy to use and requires very little. This suggests
that for any class of languages C having a pumping lemma, the predicate “∈ C” is
almost guaranteed to be hard. Since developing pumping lemmas is still an important
research topic in the theory of formal languages (for example, see [9–11]), the proof
technique in this paper has the potential to be used for many classes of languages.

This paper is organized as follows.
In Section 2, we review the definitions of EXREGs, SRE, and EDT0L systems to

make the paper more self-contained. The definition and importance of productiveness
are discussed. Several preliminary definitions and notations are also explained.

In Section 3, we establish our major results on the predicate “is an EXREG
language”. We show that the predicate “is an EXREG language” is productive,
hence non-recursively enumerable for non-deterministic 1-reversal bounded 1-counter
machines, linear context-free grammars, context-free grammars, and SRE. We also
show that the predicate “is an EXREG language” is Co-NEXPTIME-hard for context-
free grammars generating bounded languages, and is PSPACE-hard for EDT0L
systems generating bounded languages. It is worth mentioning that even for a poly-
nomial time recognizable subset whose elements only generate bounded languages,

123

Theory of Computing Systems

the predicate “is an EXREG language” is already hard. This means that the problem
is hard independent of the complexity of testing whether a language is bounded.

2 Definitions and Notations

In this section, we review the definitions of EXREGs, SRE, and EDT0L systems from
[1, 3], and [6], respectively. The importance of productiveness and several preliminary
definitions and notations in language theory are also explained. The reader is referred
to [12] for all unexplained notations and terminologies in language theory.

We use λ to denote the empty string and ∅ to denote the empty set. We use N to
denote the set of natural numbers. Let P denote the class of sets that can be recognized
in polynomial time by a deterministic Turing Machine. Let PSPACE denote the class
of sets that can be recognized using polynomial space by a Turing Machine. Let
NEXPTIME denote the class of sets that can be recognized in exponential time by a
non-deterministic Turing Machine. We use Co-NEXPTIME to denote the set of the
complements of the languages in NEXPTIME. If A is many-one reducible to B, we
write A �m B; if this reduction is polynomial-time bounded, we write A �ptime B.

Let D be a class of language descriptors that describe languages over �. In this
paper, we only consider finite �. Then, ∀d ∈ D, L(d) = {w ∈ �∗ | w is described
by d} and L(D) = {L ⊆ �∗ | ∃d ∈ D such that L = L(d)}. ∀d ∈ D, let |d| denote
the size of d. The size of a context-free grammar is the number of symbols of all its
productions. For example, the following context-free grammar d accepts the language
{0, 1}∗. d = ({s1}, {0, 1}, {(s1, 0s1), (s1, 1s1), (s1, λ)}, s1). The size of d is 8 (denoted
by |d| = 8).

A language class comparison problem is defined as follows: for two classes of
language descriptors D1 and D2, determine for any a ∈ D1, whether L(a) ∈ L(D2)?

Definition 1 An non-deterministic 1-reversal bounded 1-countermachine (denoted by
N 1-rbd 1-CM) is a pushdown automaton where the cardinality of the stack alphabet is
two(including the bottom symbol) and the machine makes at most one single reversal
on the stack. Hence, the class of languages accepted by N 1-rbd 1-CMs is a proper
subset of linear context-free languages. Throughout the paper, we use N11CM to
denote the set of N 1-rbd 1-CMs with input alphabet {0, 1}.
Definition 2 The synchronized regular expressions on an alphabet�, a set of variables
V and a set of exponents X are defined as follows:

∅ ∈ SRE (empty set)

λ ∈ SRE (empty string)

∀a ∈ � : a ∈ SRE (letters)

∀v ∈ V : v ∈ SRE (variables)

If e1, e2 ∈ SRE then:

1. e∗
1 ∈ SRE (star)

123

Theory of Computing Systems

2. ∀x ∈ X : ex1 ∈ SRE (exponentiation)
3. ∀v ∈ V : e1%v ∈ SRE (variable binding)
4. e1e2 ∈ SRE (concatenation)
5. e1 + e2 ∈ SRE (union)

Beyond these basic syntactic definitions, a synchronized regular expression must
meet the following conditions to be considered valid.

Definition 3 The SRE validity test is defined as follows:

1. Each variable occurs in a binding operation no more than once in the expression.
2. Each occurrence of a variable in the expression is preceded by a binding of that

variable somewhere to the left of the occurrence in the expression.

Throughout this paper, let SRE({0, 1}) denote the set of valid synchronized regular
expressions over alphabet {0, 1}.
Unless otherwise specified, any mention of SRE in this paper refers to valid SRE.
The following examples are used in later proofs of this paper and can help the readers
better understand SRE.

Example 2.1 The synchronized regular expression 0x1x specifies the language {0n1n |
n ≥ 0}.
Example 2.2 The synchronized regular expression (0 + 1)x#(0 + 1)x specifies the
language {x#y | x, y ∈ {0, 1}∗, |x | = |y|}.
Example 2.3 The synchronized regular expression (0 + 1)∗%A · A (A is a variable)
specifies the language {ww | w ∈ {0, 1}∗}.

The syntax of extended regular expressions (EXREGs) is defined in [1]. EXREGs
are standard regular expressions augmented with backreferences. The backreference
\n stands for the string previously matched by the regular expression between the
nth left parenthesis and the corresponding right parenthesis. A formal definition of
matching a string with an EXREG is given in [4]. Here we give that definition with a
slight modification. To present the definition, we need to define the following notation.

Definition 4 We use (
i
to denote the i th left parenthesis and)

i
denote its corresponding

right parenthesis. For an EXREG e = α(r)β where (is the i th left parenthesis of e
and) is its corresponding right parenthesis, we use (

i
r)
i
to denote (r).1

As in [1] we assume that any occurrence of a backreference \m in an EXREG is
preceded by)

m
.

Definition 5 Matching a string with an extended regular expression is often defined
as follows:

1. If t is a symbol in the alphabet, then t matches t;

1 If the number of the parenthesis is easily attainable, we may omit the index of the parenthesis.

123

Theory of Computing Systems

2. if r matches a stringw, then (
i
r)
i
matchesw. Once (

i
r)
i
matches a stringw, the string

w is assigned to \i and any occurrence of \i matches w;
3. if r1 and r2 are EXREGs, then r1 + r2 matches any string matched by either r1 or

r2;
4. if r1 and r2 are EXREGs, then r1r2 matches any string of the form xy where r1

matches x and r2 matches y; and
5. if r is an EXREG, then r∗ matches any string of the form x1x2...xn for any n ≥ 0,

where r matches each xi (1 ≤ i ≤ n).

Example 2.4 TheEXREG (0+)(1+)\1\2 specifies the language {0i1 j0i1 j | i, j > 0}.
Example 2.5 The EXREG ((0 + 1)∗) \ 1 specifies the language {ww | w ∈ {0, 1}∗}.
Definition 6 A finite substitution σ over alphabet � is a mapping of �∗ into the set of
all finite nonempty languages (possibly over another alphabet �) defined as follows.
For each letter a ∈ �, σ(a) is a finite nonempty language, σ(λ) = {λ} and for all
w1, w2 ∈ �∗,

σ(w1w2) = σ(w1)σ (w2).

For any language L over �, σ(L) =
⋃

w∈L
σ(w).

If ∀a ∈ �, λ /∈ σ(a), the substitution σ is referred to as λ-free or non-erasing. If each
σ(a) contains a single string, σ is called a morphism.

In this paper, we only consider L-systems over the terminal alphabet {0, 1}. This
restriction has been taken into account in the following definitions.

Definition 7 A 0L system is a triple G = ({0, 1}, σ, s) where σ is a finite substitution
over {0, 1} and s ∈ {0, 1}∗ is the axiom. The 0L system G generates the language

L(G) = {s} ∪ σ(s) ∪ σ(σ(s)) ∪ ... =
⋃

i≥0

σ i (s).

A 0L system is deterministic or a D0L system if and only if σ is a morphism.

The letter E (“extended”) in the name of anL systemmeans that the use of nonterminals
is allowed. Thus, an E0L system is a 0L system augmented with nonterminals.

Definition 8 An E0L system is a 4-tuple G = ({0, 1}, V , σ, s) where V is the set
of nonterminals (disjoint with {0, 1}), σ is a finite substitution over V ∪ {0, 1} and
s ∈ (V ∪ {0, 1})∗ is the axiom. The E0L system G generates the language

L(G) =
⋃

i≥0

σ i (s) ∩ {0, 1}∗.

An E0L system is deterministic or a ED0L system if and only if σ is a morphism.

The letter T (“table”) in the name of an L system means instead of having one finite
substitution, the system has a finite number of finite substitutions.

123

Theory of Computing Systems

Definition 9 A T0L system is a tripleG = ({0, 1}, P, s)where P is a finite set of finite
substitutions such that for each σ ∈ P , ({0, 1}, σ, s) is a 0L system. For a T0L system
G = ({0, 1}, P, s),

1. let X = x1x2...xk (k ≥ 1) where xi (1 ≤ i ≤ k) ∈ {0, 1}. Let σ be a
finite substitution in P and let Y ∈ {0, 1}∗. We write X →σ Y if there exist
y1, y2, ..., yk ∈ {0, 1}∗ such that yi ∈ σ(xi) (1 ≤ i ≤ k) and Y = y1y2...yk . We
write X →P Y if there exists σ ∈ P such that X →σ Y ;

2. →∗
P denotes the transitive and reflexive closure of the binary relation →P ; and

3. L(G) = {w ∈ {0, 1}∗ | s →∗
P w}.

An ET0L system is a 4-tuple G = ({0, 1}, V , P, s) where V is the set of nonterminals
(disjoint with {0, 1}), P is a finite set of finite substitutions over V ∪ {0, 1} and
s ∈ (V ∪ {0, 1})∗ is the axiom. For an ET0L G = ({0, 1}, V , P, s),

1. let X = x1x2...xk (k ≥ 1) where xi (1 ≤ i ≤ k) ∈ (V ∪ {0, 1}). Let σ be a
finite substitution in P and let Y ∈ (V ∪ {0, 1})∗. We write X →σ Y if there exist
y1, y2, ..., yk ∈ (V ∪{0, 1})∗ such that yi ∈ σ(xi) (1 ≤ i ≤ k) and Y = y1y2...yk .
We write X →P Y if there exists σ ∈ P such that X →σ Y ;

2. →∗
P denotes the transitive and reflexive closure of the binary relation →P ; and

3. L(G) = {w ∈ {0, 1}∗ | s →∗
P w}.

An ET0L system is deterministic or an EDTOL system if every finite substitution in
P is a morphism. Throughout this paper, let EDT0L denote the set of EDT0L systems
over terminal alphabet {0, 1}.

For a better understanding of these definitions, we give several examples here.

Example 2.6 Let the D0L system G = ({0, 1}, h, 01) with h(0) = {0} and h(1) =
{01}.
Hence, h(01) = {001}, h(h(01)) = {0001}, h(h(h(01))) = {00001}, ...
Then, L(G) = {0n1 | n ≥ 1}.
Example 2.7 Let the 0L system G = ({0, 1}, h, 0) with h(0) = {λ, 1, 0, 00, 01} and
h(1) = {1, 10, 11}. Then L(G) = {0, 1}∗.
Example 2.8 Let the EDT0L system G = ({0, 1}, {A, B,C, D}, P,CD) where P =
{h1, h2, h3} and
h1(0) = {0}, h1(1) = {1}, h1(A) = {A}, h1(B) = {B}, h1(C) = {ACB}, h1(D) =
{DA};
h2(0) = {0}, h2(1) = {1}, h2(A) = {A}, h2(B) = {B}, h2(C) = {CB}, h2(D) =
{D};
h3(0) = {0}, h3(1) = {1}, h3(A) = {0}, h3(B) = {1}, h3(C) = {λ}, h3(D) = {λ}.
Then L(G) = {0n1m0n | n ≥ 0, m ≥ n}.

At last, we discuss the definition and importance of productiveness. Productive
sets and their properties are a standard topic in mathematical logic/recursion theory
textbooks such as [13] and [14]. Productiveness is a recursion-theoretic abstraction of
what causes Gödel’s first incompleteness theorem to hold. Definition 10 recalls the
definition of a productive set on N, as developed in [13].

123

Theory of Computing Systems

Definition 10 Let W be an effective Gödel numbering of the recursively enumerable
sets. A set A of natural numbers is called productive if there exists a total recursive
function f so that for all i ∈ N, if Wi ⊆ A then f (i) ∈ A − Wi . The function f is
called the productive function for A.

From this definition, we can see that no productive set is recursively enumerable.
It is well-known that the set of all provable sentences in an effective axiomatic system
is always a recursively enumerable set. So for any effective axiomatic system F , if a
set A of Gödel numbers of true sentences in F is productive, then there is at least one
element in A which is true but cannot be proven in F . Moreover, there is an effective
procedure to produce such an element.

Let W be an effective Gödel numbering of the recursively enumerable sets. K
denotes the set {i ∈ N | i ∈ Wi }.K denotes the set {i ∈ N | i /∈ Wi }. Two well-known
facts of productive sets (see [13]) that are necessary for the research developed here
are as follows:

Proposition 1 1. K is productive.
2. For all A ⊆ N, A is productive if and only if K ≤m A.

The following proposition is proven in [15] and is used to prove productiveness
results. It also shows in which way the productiveness is stronger than non-recursive
enumerability, i.e., every productive set A has an infinite recursively enumerable sub-
set, and for any sound proof procedure P, one can effectively construct an element that
is in A, but not provable in P.

Proposition 2 Let A ⊆ �∗, B ⊆ �∗, and A ≤m B. Then, the following hold:

1. If A is productive, then so is B.
2. If A is productive, then there exists a total recursive function� : �∗ → �∗, called

a productive function for A, such that for all x ∈ �∗,

L(Mx) ⊆ A ⇒ �(x) ∈ A − L(Mx), where {Mx | x ∈ �∗} is some Gödel-
numbering of Turing machines over alphabet �.

3. If A is productive, then A is not recursively enumerable (RE). However, A does
have an infinite RE subset.

3 On the Predicate “is an EXREG Language”

In this section, a meta theorem is developed to show the predicate “is an EXREG
language” is as hard as the universality problem (“= {0, 1}∗”) for many classes of
languages under certain conditions. Several authors have investigated the existence
and applicability of analogues of Rice’s Theorem for different classes of languages.
For example, in [15, 16], sufficient conditions are given for a language predicate to be
as hard as the language predicate “= {0, 1}∗” such as requiring the language predicate
to be closed under left or right derivatives. Here, we take a different approach and show
that having a pumping lemma for a class of languagesC could cause the predicate “∈ C”
to be as hard as “= {0, 1}∗”. Besides the predicate “= {0, 1}∗”, the proof technique

123

Theory of Computing Systems

can also be applied to reductions of other sources. Since the proof technique requires
very little to use, we believe it has the potential to have a wide range of applications.

The following lemma is necessary to prove Theorem 3.1. Both productiveness and
complexity results can be derived from Theorem 3.1 due to the high efficiency of the
reduction in its proof.

Lemma 3.1 [17] EXREG languages are closed under intersection with regular sets.

Theorem 3.1 Let D be any class of language descriptors over alphabet {0, 1} such
that

1. L(D) is efficiently closed under union, concatenation with regular sets and a 1-1
homomorphism h : {0, 1}∗ �→ {0, 1}∗ defined by h(0) = 00 and h(1) = 01; and

2. there exists a language L f ∈ L(D) such that ∀w ∈ {0, 1}∗, the language L f · {w}
(or {w} · L f) is not an EXREG language.

Then {d | d ∈ D, L(d) = {0, 1}∗} �ptime {d | d ∈ D, L(d) is an EXREG language}.
Proof For any G ∈ D, we can efficiently construct a H ∈ D such that

L(H) = {0, 1}∗ · {11} · h(L(G))

∪
L f · {11} · {00, 01}∗

∪
{0, 1}∗ · {11} · {00, 01}∗

where h : {0, 1}∗ �→ {0, 1}∗ is the homomorphism defined by h(0) = 00 and h(1) =
01.
If L(G) = {0, 1}∗, it is clear that L(H) = {0, 1}∗ which is an EXREG language.
Otherwise, we want to show the language L(H) is not an EXREG language. Assume
L(H) is an EXREG language. Since L(G) �= {0, 1}∗, there exists a string w /∈ L(G)

such that L(H) ∩ {0, 1}∗ · {11h(w)} = L f · {11h(w)}. Since EXREG languages are
closed under intersectionwith regular sets, L f ·{11h(w)} is an EXREG language. This
is a contradiction. So L(H) is not an EXREG language. Since L f is a fixed language,
the construction of H only depends on G in polynomial time in |G|. ��

Generally, a pumping lemma states that for a language to be in a class of language,
any sufficiently long string in the language must contain a section that can be removed
or repeated any number of times with the resulting string remaining in the language.
So, if we can use a pumping lemma to prove that a language L f is not in a class of
languages, the same proof works for showing that the language L f · {w} or {w} · L f ,
for all w ∈ {0, 1}∗, is not in that class of languages. Hence, to satisfy condition 2 of
Theorem 3.1, the existence of a pumping lemma for EXREGs is sufficient. We use two
examples to illustrate the broad applicability of Theorem3.1 and its ease of use. In [15],
the universality problem is shown to be productive for SRE and N 1-rbd 1-CMs, and
the reductions in the proofs are highly efficient. Hence, K �ptime {d | d ∈ N11CM,
L(d) = {0, 1}∗}, and K �ptime {d | d ∈ SRE{0, 1}, L(d) = {0, 1}∗}. With the

123

Theory of Computing Systems

following pumping lemma for EXREGs, we can get two important productiveness
results.

Lemma 3.2 [1] Let α be an extended regular expression. Then there is a constant
N > 0 such that if w ∈ L(α) and |w| > N, then there is a decomposition w =
x0yx1y · · · yxm for some m ≥ 1, such that

1. |x0y| < N,
2. |y| ≥ 1, and
3. x0yi x1yi · · · yi xm ∈ L(α) for all i > 0.

Using Lemma 3.2, we get the following results.

Lemma 3.3 ∀w ∈ {0, 1}∗, the language Lw = {0n1n | n > 0} · {w} is not an EXREG
language.

Proof Assume Lw is an EXREG language. Consider the string t = 0N1Nw for some
constant N > 0. It is easy to see t ∈ Lw. Hence, t = x0yx1y · · · yxm where |x0y| < N
and |y| ≥ 1. Hence, y ∈ {0}+ which implies x0y2x1y2 · · · y2xm /∈ Lw, which is a
contradiction. ��
Lemma 3.4 ∀w ∈ {0, 1}∗, the language L = {w1#w2# · · · wn# | w1, ..., wn ∈
{0, 1}∗, |w1| = |w2| = ... = |wn|, n ≥ 0} · {w} is not an EXREG language, but can
be expressed by a synchronized regular expression.

Proof The poof can be seen in [4]. ��
Corollary 1 K �ptime {d | d ∈ N11CM, L(d) is an EXREG language}. Hence, the
predicate “is an EXREG language” is productive (not recursively enumerable) for N
1-rbd 1-CMs, linear context-free grammars, and context-free grammars.

Proof Let L f = {0n1n | n > 0}. From Lemma 3.3, we know that ∀w ∈ {0, 1}∗, the
language L f ·{w} is not anEXREG language. This satisfies condition 2 ofTheorem3.1.

��
Corollary 2 K �ptime {d | d ∈ SRE{0, 1}, L(d) is an EXREG language}. Hence, the
predicate “is an EXREG language” is productive (not recursively enumerable) for
SRE.

Proof Let L f = {h(w1) · 11 · h(w2) · 11 · · · h(wn) · 11 | w1, ..., wn ∈ {0, 1}∗, |w1| =
|w2| = ... = |wn|, n ≥ 0} where h is a 1-1 homomorphism defined by h(0) = 00
and h(1) = 01. Here, the string 11 is treated as the special maker # of L defined in
Lemma 3.4. So the proof of Lemma 3.4 can also prove that ∀w ∈ {0, 1}∗, the language
L f · {w} is not an EXREG language. This satisfies condition 2 of Theorem 3.1. ��

Besides the predicate “= {0, 1}∗”, this proof technique can also be applied to
reductions of other sources. For example, one theorem in [18] states that the predicate
“= {0, 1, λ}2cn” is Co-NEXPTIME-hard for context-free grammars generating finite
languages. Here we state that theoremwith a slight modification. The proof is the same
as in [18]. Let CFG f in be the set of context-free grammars over terminal alphabet
{0, 1} generating finite languages.

123

Theory of Computing Systems

Theorem 3.2 [18] There exists a constant c > 0 such that
Co − NEXPTIME �ptime {d | d ∈ CFG f in, L(d) = {0, 1, λ}2cn where n = |d|}.

The following theorem shows that for context-free grammars generating bounded
languages, the predicate “is an EXREG language” is Co-NEXPTIME-hard. Moreover
we show that even for an easily recognizable subset D of CFG({0, 1}) whose ele-
ments only generate bounded languages, the predicate “is an EXREG language” is
already Co-NEXPTIME-hard. This means that the problem is hard independent of the
complexity of testing whether a context-free grammar generates a bounded language.
Results of this type occur throughout this paper and havemany applications, especially
for promise problems. We first give the definition of a bounded language.

Definition 11 A language L is bounded if L ⊆ {w1}∗ · {w2}∗ · · · {wm}∗ for some
strings w1, w2, ..., wm ∈ {0, 1}∗,m ≥ 1.

Theorem 3.3 There exists a subset D of CFG({0,1}) such that

1. D ∈ P;
2. ∀d ∈ D, L(d) is bounded; and
3. Co-NEXPTIME �ptime {d | d ∈ D, L(d) is an EXREG language}.

Proof of 3: L f = {0n1n | n ≥ 0} is not an EXREG language and it is bounded by
{0}∗ · {1}∗. For any g ∈ CFG f in , let c and n be the same as defined in Theorem 3.2.
We can efficiently construct a context-free grammar H such that

L(H) = {0}∗ · {1}∗ · {11} · h(L(g))

∪
L f · {11} · h({0, 1, λ}2cn)

where h : {0, 1}∗ �→ {0, 1}∗ is the homomorphism defined by h(0) = 00 and h(1) =
01. IfL(g) = {0, 1, λ}2cn ,L(H) = {0}∗·{1}∗·{11}·h(L(g))which is regular. SoL(H)

is an EXREG language. Otherwise, assume that L(H) is an EXREG language. There
exists a stringw /∈ L(g) such thatL(H)∩{0, 1}∗ · {11h(w)} = L f · {11h(w)}. Hence,
L f · {11h(w)} is an EXREG since EXREG languages are closed under intersection
with regular sets. From Lemma 3.3, this is a contradiction. So L(H) is not an EXREG
language. ��
Proof of 1, 2: Let H be constructed in a certain way so that H has a special
format. For example, H must contain two non-terminals such that the first non-
terminal generates {0}∗ · {1}∗ · {11} · h(L(g)), and the second non-terminal generates
L f · {11} · h({0, 1, λ}2cn). Let D be the set of H . It is easy to see ∀d ∈ D, L(d)

is bounded. Since L f is fixed and H is constructed with a special format, we can
determine g from H in polynomial time in |H |. CFG f in ∈ P ⇒ D ∈ P. ��

We can also apply the proof technique to reductions from the emptiness problem.
In [19], the emptiness problem for EDT0L systems is shown to be PSPACE-complete.
We modify the proof of this PSPACE-completeness result and get a stronger theorem.
It shows that for a polynomial time recognizable subset D of EDT0Lwhose elements

123

Theory of Computing Systems

only generate ∅ or singleton languages (i.e., {w} where w ∈ {0, 1}∗), the emptiness
problem is already PSPACE-hard.

Theorem 3.4 There exists a subset D of EDT0L such that

1. D ∈ P;
2. ∀d ∈ D, |L(d)| ≤ 1; and
3. PSPACE �ptime {d | d ∈ D, L(d) = ∅}.
Proof In [20] Theorem 3.4, Xie et al. showed that for a polynomial time recognizable
subset R of (∪, ·.∗)-regular expressionswhere each element in R only generates {0, 1}∗
or {0, 1}∗ − {w} where w ∈ {0, 1}∗, the predicate “= {0, 1}∗” is PSPACE-hard. In
this proof, let R be the same as defined in [20]. It is well-known that (∪, ·.∗)-regular
expressions can be transformed into NFAs in polynomial time. Let N be the set of
NFAs transformed from R. For any NFA M = (Q, {0, 1}, σ, q0, F) ∈ N where

1. Q is the finite set of states;
2. F ⊆ Q is the set of accepting states;
3. {0, 1} is the input alphabet;
4. σ : (Q × {0, 1, λ}) �→ 2Q is the transition function; and
5. q0 is the initial state.

Here 2Q denotes the power set of Q. We give every state in Q a distinct name
q0, q1, q2, ..., q|Q|−1 and define the total order < by q0 < q1 < q2 < ... < q|Q|−1.
From M , we can efficiently construct an EDT0L system G = (Q − F, F, P, q0)
where

1. Q − F is the terminal alphabet;
2. F is the nonterminal alphabet;
3. q0 is the axiom; and
4. P = {P0, P1}where P0 and P1 are finite substitutions and for each x ∈ {0, 1},∀q ∈

Q, if σ(q, x) = {qi1, qi2 , ...qik } where qi1 < qi2 < ... < qik , then qi1qi2qi3 ...qik ∈
Px (q).

We define a function σ̂ : (Q × {0, 1}∗) �→ 2Q such that

1. σ̂ (q, λ) = {q};
2. σ̂ (q, wa) =

⋃

q ′∈σ̂ (q,w)

σ (q ′, a).

If L(M) = {0, 1}∗, then for any w ∈ {0, 1}∗, σ̂ (q0, w) contains a state in F . ⇒
P(q0) ∩ (Q − F)∗ = ∅. ⇒ L(G) = ∅. If L(M) = {0, 1}∗ − {t}, then t is the
only string in {0, 1}∗ such that σ̂ (q0, t) contains no state in F . Let t = t1t2t3...tk
where ti (1 ≤ i ≤ k) ∈ {0, 1}. Then L(G) = Ptk (Ptk−1 ...Pt2(Pt1(q0))). Since P0 and
P1 are morphisms, clearly |L(G)| = 1. Let D be the set of G we construct. Then
R ∈ P ⇒ N ∈ P ⇒ D ∈ P. ��

With Theorem 3.4, we can study the predicate “is an EXREG language” for EDT0L
systems and get the following theorem. It shows that even for an easily recognizable
subset E of EDT0L whose elements only generate bounded languages, the predicate

123

Theory of Computing Systems

“is an EXREG language” is already PSPACE-hard. This means that the problem is
hard independent of the complexity of testing whether an EDT0L system generates a
bounded language. Comparing with Theorems 3.1 and 3.3, the proof of Theorem 3.5
is easier and requires less. It suggests that if a class of languages C is effectively closed
under concatenation and there exists a language L f ∈ C such that ∀w ∈ {0, 1}∗, the
language L f · {w} or {w} · L f is not an EXREG language, then the predicate “is an
EXREG language” is as hard as “= ∅” for C. Note that the closure property here
does not need to be efficient, since the construction in Theorem 3.5 only requires
concatenation with a fixed language.

Theorem 3.5 There exists a subset E of EDT0L such that

1. E ∈ P;
2. ∀d ∈ E, L(d) is bounded; and
3. PSPACE �ptime {d | d ∈ E, L(d) is an EXREG language}.

Proof Consider the set D mentioned in Theorem 3.4. Recall that for any G ∈ D,
|L(G)| ≤ 1. For any G ∈ D, we can construct an EDT0L system H such that

L(H) = {0n1n | n > 0} · L(G)

If L(G) = ∅, then L(H) = ∅. So L(H) is an EXREG language. Otherwise, L(G) =
{w}. Then L(H) = {0n1n | n > 0} · {w}. According to Lemma 3.3, L(H) is not an
EXREG language. Let E be the set of H . Clearly, ∀d ∈ E , L(d) is bounded. From H
we can determine the system G efficiently. D ∈ P ⇒ E ∈ P. ��

4 Conclusion

In the theory of formal languages, developing pumping lemmas for classes of lan-
guages remains an important research topic. A pumping lemma for a class of languages
C is often used to show particular languages are not in C. In contrast, we use EXREGs
as an example to show that having a pumping lemma could be “harmful” and lead to
productiveness and complexity results. In this paper, we show that the predicate “is an
EXREG language” is productive, hence not recursively enumerable, for SRE, N 1-rbd
1-CMs, linear context-free grammars, and context-free grammars. We also show that
the predicate “is an EXREG language” is Co-NEXPTIME-hard for a polynomial time
recognizable set of context-free grammars only generating bounded languages, and is
PSPACE-hard for a polynomial time recognizable set of EDT0L systems generating
bounded languages. To obtain these results, a pumping lemma for EXREGs is needed
to show that there exists a language L f such that for any single string w, {w} · L f or
L f · {w} is not an EXREG language. The proof technique used in this paper requires
very little and can be applied to reductions of many sources (for example, “= {0, 1}∗”,
“= ∅”, and “= {0, 1, λ}2cn”). So we believe it has the potential to be used for many
classes of languages.

123

Theory of Computing Systems

Acknowledgements We thank Dr. Paliath Narendran and the anonymous reviewers for their time and
advice. Their valuable input makes this paper more complete.

Funding Not applicable

Declarations

Ethics approval Not applicable

Conflicts of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions. Int. J. Foundations
Comput. Sci. 14(6), 1007–1018 (2003). https://doi.org/10.1142/S012905410300214X

2. Aho,A.V.:Algorithms for finding patterns in strings. In:VanLeeuwen, J. (ed.)Handbook of Theoretical
Computer Science Vol A: Algorithms and Complexity, pp. 255–300. Elsevier, Amsterdam (1990).
https://doi.org/10.1016/B978-0-444-88071-0.50010-2

3. Della Penna, G., Intrigila, B., Tronci, E., Venturini Zilli, M.: Synchronized regular expressions. Acta
Informatica. 39(1), 31–70 (2003). https://doi.org/10.1007/s00236-002-0099-y

4. Carle, B.,Narendran, P.:On extended regular expressions. In:Dediu,A.H., Ionescu,A.M.,Martín-Vide,
C. (eds.) Language and Automata Theory and Applications. LATA 2009. Lecture Notes in Computer
Science, vol. 5457, pp. 279–289. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00982-2_24

5. Lindenmayer, A.: Mathematical models for cellular interactions in development i. filaments with one-
sided inputs. J. Theoretical Biology. 18(3), 280–299 (1968)

6. Kari, L., Rozenberg, G., Salomaa, A.: In: Rozenberg, G., Salomaa, A. (eds.) L Systems, pp. 253–328.
Springer, Berlin, Heidelberg (1997)

7. Levine, A.: Edt0l solutions to equations in group extensions. J. Algebra. 619, 860–899 (2023). https://
doi.org/10.1016/j.jalgebra.2022.11.031

8. Duncan, A., Evetts, A., Holt, D.F., Rees, S.: Using edt0l systems to solve some equations in the solvable
baumslag-solitar groups. J. Algebra. 630, 434–456 (2023). https://doi.org/10.1016/j.jalgebra.2023.04.
020

9. Ghorani, M., Garhwal, S., Moghari, S.: Lattice-valued tree pushdown automata: pumping lemma and
closure properties. Int. J. Approximate Reasoning. 142, 301–323 (2022). https://doi.org/10.1016/j.ijar.
2021.12.002

10. Lucero, J.C.: Pumping lemmas for classes of languages generated by folding systems. Natural Comput.
20, 321–327 (2019). https://doi.org/10.1007/s11047-019-09771-5

11. Chattopadhyay, A., Mazowiecki, F., Muscholl, A., Riveros, C.: Pumping lemmas for weighted
automata. Logical Methods Comput. Sci. 17(3) (2021). https://doi.org/10.46298/lmcs-17(3:7)2021

12. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-
Wesley, Reading, MA (1979)

13. Rogers, H., Jr.: Theory of recursive functions and effective computability. MIT Press, Cambridge, MA,
USA (1987)

14. Soare, R.I.: Recursively enumerable sets and degrees. Springer, Berlin, Heidelberg (1987)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1142/S012905410300214X
https://doi.org/10.1016/B978-0-444-88071-0.50010-2
https://doi.org/10.1007/s00236-002-0099-y
https://doi.org/10.1007/978-3-642-00982-2_24
https://doi.org/10.1007/978-3-642-00982-2_24
https://doi.org/10.1016/j.jalgebra.2022.11.031
https://doi.org/10.1016/j.jalgebra.2022.11.031
https://doi.org/10.1016/j.jalgebra.2023.04.020
https://doi.org/10.1016/j.jalgebra.2023.04.020
https://doi.org/10.1016/j.ijar.2021.12.002
https://doi.org/10.1016/j.ijar.2021.12.002
https://doi.org/10.1007/s11047-019-09771-5
https://doi.org/10.46298/lmcs-17(3:7)2021

Theory of Computing Systems

15. Xie, J., Hunt, H.B., III.: On the undecidability and descriptional complexity of synchronized regular
expressions. Acta Informatica. 60(3), 257–278 (2023). https://doi.org/10.1007/s00236-023-00439-3

16. Hunt, H.B., III., Rosenkrantz, D.J.: Computational parallels between the regular and context-free
languages. SIAM J. Comput. 7(1), 99–114 (1978). https://doi.org/10.1137/0207007

17. Câmpeanu, C., Santean, N.: On the intersection of regex languages with regular languages. Theoretical
Comput. Sci. 410(24), 2336–2344 (2009). https://doi.org/10.1016/j.tcs.2009.02.022

18. Hunt, H.B., III., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, containment, and covering
problems for the regular and context-free languages. J. Comput. Syst. Sci. 12(2), 222–268 (1976).
https://doi.org/10.1016/S0022-0000(76)80038-4

19. Jones, N.D., Skyum, S.: Complexity of some problems concerning L systems. Math. Syst. Theory.
13(1), 29–43 (1979). https://doi.org/10.1007/BF01744286

20. Xie, J., Hunt, H.B., III., Stearns, R. E.: On the computational and descriptional complexity of multi-
pattern languages. Available at SSRN (2023). https://doi.org/10.2139/ssrn.4493700

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00236-023-00439-3
https://doi.org/10.1137/0207007
https://doi.org/10.1016/j.tcs.2009.02.022
https://doi.org/10.1016/S0022-0000(76)80038-4
https://doi.org/10.1007/BF01744286
https://doi.org/10.2139/ssrn.4493700

	Pumping Lemmas Can be ``Harmful''
	Abstract
	1 Introduction*-1pt
	2 Definitions and Notations
	3 On the Predicate ``is an EXREG Language''
	4 Conclusion
	Acknowledgements
	References

