
Theory of Computing Systems
https://doi.org/10.1007/s00224-024-10167-x

How to Hide a Clique?

Uriel Feige1 · Vadim Grinberg1

Accepted: 21 February 2024
© The Author(s) 2024

Abstract
In the well known planted clique problem, a clique (or alternatively, an independent
set) of size k is planted at random in an Erdos-Renyi random G(n, p) graph, and the
goal is to design an algorithm that finds themaximum clique (or independent set) in the
resulting graph.We introduce a variation on this problem,where instead of planting the
clique at random, the clique is planted by an adversarywho attempts tomake it difficult
to find themaximumclique in the resulting graph.We show that for the standard setting
of the parameters of the problem, namely, a clique of size k = √

n planted in a random
G(n, 1

2) graph, the known polynomial time algorithms can be extended (in a non-
trivial way) to work also in the adversarial setting. In contrast, we show that for other
natural settings of the parameters, such as planting an independent set of size k = n

2

in a G(n, p) graph with p = n− 1
2 , there is no polynomial time algorithm that finds an

independent set of size k, unless NP has randomized polynomial time algorithms.

Keywords Planted clique · Semi-random model · Lovasz theta function · Random
graphs

1 Introduction

The planted clique problem, also referred to as hidden clique, is a problem of central
importance in the design of algorithms. We introduce a variation of this problem
where instead of planting the clique at random, an adversary plants the clique. Our
main results are that in certain regimes of the parameters of the problem, the known

The work of Uriel Feige is supported in part by the Israel Science Foundation (grants 1388/16 and
1122/22).

B Vadim Grinberg
vadim.grinberg@weizmann.ac.il

Uriel Feige
uriel.feige@weizmann.ac.il

1 Weizmann Institute of Science, Rehovot, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-024-10167-x&domain=pdf
https://orcid.org/0009-0006-3749-4392
http://orcid.org/0000-0003-4781-1911

Theory of Computing Systems

polynomial time algorithms can be extended to work also in the adversarial settings,
whereas for other regimes, the adversarial planting version becomes NP-hard. We
find the results interesting for three reasons. One is that they concern an extensively
studied problem (planted clique), but from a new direction, and we find that the results
lead to a better understanding of what aspects of the planted clique problem are made
use of by the known algorithms. Another is that extending the known algorithms
(based on semidefinite programming) to the adversarial planted setting involves some
new techniques regarding how semidefinite programming can be used and analysed.
Finally, the NP-hardness results are interesting as they are proven in a semi-random
model in which most of the input instance is random, and the adversary controls only
a relatively small aspect of the input instance. One may hope that this brings us closer
to proving NP-hardness results for purely random models, a task whose achievement
would be a breakthrough in complexity theory.

1.1 The Random Planted CliqueModel

Our starting point is the Erdos-Renyi G(n, p) random graph model, which generates
graphs on n vertices, and every two vertices are connected by an edge independently
with probability p. We start our discussion with the special case in which p = 1

2 ,
and other values of p will be considered later. Given a graph G, let ω(G) denote
the size of the maximum clique in G, and let α(G) denote the size of the maximum
independent set. Given a distribution D over graphs, we use the notation G ∼ D for
denoting a graph sampled at random according to D. The (edge) complement of a
graph G ∼ G(n, 1

2) is by itself a graph sampled from G(n, 1
2), and the complement of

a clique is an independent set, and hence the discussion concerning cliques in G(n, 1
2)

extends without change to independent sets (and vice versa).
It is well known (proved by computing the expectation and variance of the number

of cliques of the appropriate size) that for G ∼ G(n, 1
2), w.h.p. ω(G) � 2 log n (the

logarithm is in base 2). However, there is no known polynomial time algorithm that
can find cliques of size 2 log n in such graphs. A polynomial time greedy algorithm
can find a clique of size (1+o(1)) log n. The existence of ρ > 1 for which polynomial
time algorithms can find cliques of size ρ log n is a longstanding open problem.

In the classical planted clique problem, one starts with a graph G ′ ∼ G(n, 1
2) and

a parameter k. In G ′ one chooses at random a set K of k vertices, and makes this set
into a clique by inserting all missing edges between pairs of vertices in K . We refer to
K as the planted clique, and say that the resulting graph G is distributed according to
G(n, 1

2 , k). Given G ∼ G(n, 1
2 , k), the algorithmic goal can be one of the following

three: find K , find a clique of maximum size, or find any clique of size at least k.
It is not difficult to show that when k is sufficiently large (say, k > 3 log n), then
with high probability K is the unique maximum size clique in G ∼ G(n, 1

2 , k), and
hence all three goals coincide. Hence in the planted clique problem, the goal is simply
to design polynomial time algorithms that (with high probability over the choice of
G ∼ G(n, 1

2 , k)) find the planted clique K . The question is how large should k be (as
a function of n) so as to make this task feasible.

123

Theory of Computing Systems

For some sufficiently large constant c > 0 (throughout, we use c to denote a
sufficiently large constant), if k > c

√
n log n, with high probability the the vertices

of K are simply the k vertices of highest degree in G (see [15]), and hence K can
easily be recovered. Alon, Krivelevich and Sudakov [1] managed to shave the

√
log n

factor, designing a spectral algorithm that recovers K when k > c
√
n. They also

showed that c can be made an arbitrarily small constant, by increased the running time

by a factor of nO(log(1c)) (this is done by “guessing" a set K ′ of O(log(1c)) vertices
of K , and finding the maximum clique in the subgraph induced on their common
neighbors). Subsequently, additional algorithms were developed that find the planted
clique when k > c

√
n. They include algorithms based on the Lovasz theta function,

which is a form of semi-definite programming [8], algorithms based on a “reverse-
greedy" principle [5, 11], and message passing algorithms [6]. There have been many
attempts to find polynomial time algorithms that succeed when k = o(

√
n), but so far

all of them failed (see for example [9, 13, 18]). It is a major open problem whether
there is any such polynomial time algorithm.

Planted clique when p �= 1
2 was not studied as extensively, but it is quite well

understood how results from the G(n, 1
2 , k) model transfer to the G(n, p, k) model.

For p much smaller that 1
2 , say p = nδ−1 for some 0 < δ < 1 (hence average degree

nδ), the problem changes completely. Even without planting, with high probability
over the choice of G ∼ G(n, p) (with p = nδ−1) we have that ω(G) = O(1

1−δ
), and

the maximum clique can be found in polynomial time. This also extends to finding
maximum cliques in the planted setting, regardless of the value of k. (We are not aware
of such results being previously published, but they are not difficult. See Section 3.)
For p > 1

2 , it is more convenient to instead look at the equivalent problem in which
p < 1

2 , but with the goal of finding a planted independent set instead of a planted
clique. We refer to this model as Ḡ(n, p, k). For G ∼ G(n, p) (with p = nδ−1)
we have that with high probability α(G) = �(n1−δ log n). For G ∼ Ḡ(n, p, k) the

known algorithms extend to finding planted independent sets of size k = cn1− δ
2 in

polynomial time. We remark that the approach of [1] of making c arbitrarily small
does not work for such sparse graphs.

1.2 The Adversarial Planted CliqueModel

In this paper we introduce a variation on the planted clique model (and planted inde-
pendent set model) that we refer to as the adversarial planted clique model. As in the
random planted clique model, we start with a graph G ′ ∼ G(n, p) and a parameter k.
However, now a computationally unbounded adversary may inspect G ′, select within
it a subset K of k vertices of its choice, and make this set into a clique by inserting all
missing edges between pairs of vertices in K . We refer to this model as AG(n, p, k)
(and the corresponding model for planted independent set as AḠ(n, p, k)). As short-
hand notation shall use G ∼ AG(n, p, k) to denote a graph generated by this process.
Let us clarify that AG(n, p, k) is not a distribution over graphs, but rather a family
of distributions, where each adversarial strategy (where a strategy of an adversary is
a mapping from G ′ to a choice of K) gives rise to a different distribution.

123

Theory of Computing Systems

In the adversarial planted model, it is no longer true that the planted clique is
the one of maximum size in the resulting graph G. Moreover, finding K itself may
be information theoretically impossible, as K might be statistically indistinguishable
from some other clique of size k (that differs from K by a small number of vertices).
The three goals, that of finding K , finding a clique of maximum size, or finding any
clique of size at least k, are no longer equivalent. Consequently, for our algorithmic
results we shall aim at the more demanding goal of finding a clique of maximum
size, whereas for our hardness results, we shall want them to hold even for the less
demanding goal of finding an arbitrary clique of size k.

1.3 Our Results

Our results cover a wide range of values of 0 < p < 1, where p may be a function
of n. For simplicity of the presentation and to convey the main insights of our results,
we present here the results for three representative regimes: p = 1

2 , p = nδ−1 for
0 < δ < 1, and p = 1 − nδ−1. For the latter regime, it will be more convenient to
replace it by the equivalent problem of finding adversarially planted independent sets
when p = nδ−1.

The term almost surely denotes a probability that tends to 1 as n grows. The term
extremely high probability denotes a probability of the form 1− e−nr for some r > 0.
By exp(x) for some expression x we mean ex .

Informally, our results show the following phenomenon. We consider only the
case that p ≤ 1

2 , but consider both the planted clique and the planted independent
set problems, and hence the results can be translated to p > 1

2 as well. For clique,
we show (Theorems 1.1 and 1.2) how to extend the algorithmic results known for
the random planted clique setting to the adversarial planted clique setting. However,
for independent set, we show that this is no longer possible. Specifically, when p is
sufficiently small, we prove (Theorem 1.3) that finding an independent set of size
k (any independent set, not necessarily the planted one) in the adversarial planted
independent set setting is NP-hard. Moreover, the NP-hardness result holds even for
large values of k for which finding a random planted independent set is trivial.

In statements of our theorems, we refer to probabilities with which an algorithm
finds amaximumclique in an input graphG ∼ AG(n, p, k). The probability of success
is taken over the choice of G ′ ∼ G(n, p), the random graph in which the adversary
later plants a clique of size k. For positive results, success needs to hold for every
adversarial planting strategy, namely, for every possible choice of k vertices as the
planted clique K . For negative results, it suffices that there is one adversarial planting
strategy that causes the algorithm to fail. If this adversarial strategy is randomized, then
the probability of failure is taken also over the random choices of the adversary. (This
explanation holds in an analogous way also for the planted independent set problem.)

Theorem 1.1 For every fixed ε > 0 and for every k ≥ ε
√
n, there is an explicitly

described algorithm running in time nO(log(1
ε
)) which almost surely finds the maximum

clique in a graph G ∼ AG(n, 1
2 , k).

123

Theory of Computing Systems

Theorem 1.2 Let p = nδ−1 for 0 < δ < 1. Then for every k, there is an explicitly

described algorithm running in time nO(1
1−δ

) which almost surely finds the maximum
clique in a graph G ∼ AG(n, p, k).

Theorem 1.3 For 0 < γ < 1, 0 < δ < 1, p = nδ−1 and cn1−δ log n ≤ k ≤ 2
3n,

where c is a sufficiently large constant, the following holds. There is no polynomial
time algorithm that has probability at least γ of finding an independent set of size k in
G ∼ AḠ(n, p, k), unless NP has randomized polynomial time algorithms (NP=RP).

The constant 2
3 in Theorem 1.3 was chosen for concreteness – any other constant

smaller than 1 will work as well.

1.4 RelatedWork

Some related work was already mentioned in Section 1.1.
Our algorithm for Theorem 1.1 is based on an adaptation of the algorithm of [8]

that applied to the random planted clique setting. In turn, that algorithm is based on
the theta function of Lovasz [16].

A work that is closely related to ours and served as an inspiration both to the model
that we study, and to the techniques that are used in the proof of the NP-hardness result
(Theorem 1.3) is the work of David and Feige [4] on adversarially planted 3-colorings.
That work uncovers a phenomenon similar to the one displayed in the current work.
Specifically, for the problem of 3-coloring (rather than clique or independent set) it
shows that for certain values of p, algorithms that work in the random planted setting
can be extended to the adversarial planted setting, and for other values of p, finding
a 3-coloring in the adversarial planted setting becomes NP-hard. However, there are
large gaps left open in the picture that emerges from the work of [4]. For large ranges
of the values of p, specifically, n−1/2 < p < n−1/3 and p < n−2/3, there are neither
algorithmic results nor hardness results in the work of [4]. Unfortunately, the most
interesting values of p for the 3-coloring problem, which are p ≤ c log n

n , lie within
these gaps, and hence the results of [4] do not apply to them. Our work addresses a
different problem (planted clique instead of planted 3-coloring), and for our problem,
our analysis leaves almost no such gaps. We are able to determine for which values
of p the problem is polynomial time solvable, and for which values it is NP-hard. See
Section 5 for more details.

Our model is an example of a semi-random model, in which part of the input is
determined at random and part is determined by an adversary. There are many other
semi-random models, both for the clique problem and for other problems. Describing
all these models is beyond the scope of this paper, and the interested reader is referred
to [7] and references therein for additional information.

2 Finding Cliques Using the Theta Function

In this section we prove Theorem 1.1. We start with an overview of the proof, and then
provide more details in Sections 2.1 and 2.2.

123

Theory of Computing Systems

Our algorithm is an adaptation of the algorithm of [8] that finds themaximum clique
in the random planted model. We shall first review that algorithm, then describe why
it does not apply in our setting in which an adversary plants the clique, and finally
explain howwemodify that algorithm and its analysis so as to apply it in the adversarial
planted setting.

The key ingredient in the algorithm of [8] is the theta function of Lovasz, denoted
by ϑ . Given a graph G, ϑ(G) can be computed in polynomial time (up to arbitrary
precision, using semidefinite programming (SDP)), and satisfies ϑ(G) ≥ α(G). As
we are interested here in cliques and not in independent sets, we shall consider Ḡ,
the edge complement of G, and then ϑ(Ḡ) ≥ ω(G). The theta function has several
equivalent definitions, and the one that we shall use here (referred to as ϑ4 in [16]) is
the following.

Given a graph G = G(V , E), a collection of unit vectors si ∈ R
n (one vector for

every vertex i ∈ V) is an orthonormal representation of G, if si and s j are orthogonal
(si · s j = 0) whenever (i, j) ∈ E . The theta function is the maximum value of the
following expression, where maximization is over all orthonormal representations {si }
of G and over all unit vectors h (h is referred to as the handle):

ϑ(G) = max
h,{si }

∑

i∈V
(h · si)2 (1)

The optimal orthonormal representation and the associated handle that maximize
the above formulation for ϑ can be found (up to arbitrary precision) in polynomial
time by formulating the problem as an SDP (details omitted). Observe that for any
independent set S the following is a feasible solution for the SDP: choose si = h for
all i ∈ S, and choose all remaining vectors s j for j /∈ S to be orthogonal to h and to
each other. Consequently, ϑ(G) ≥ α(G), as claimed.

The main content of the algorithm of [8] is summarized in the following theorem.
We phrased it in a way that addresses cliques rather than independent sets, implicitly
using α(Ḡ) = ω(G). We also remind the reader that in the random planted model, the
planted clique K is almost surely the unique maximum clique.

Theorem 2.1 (Results of [8]) Consider G ∼ G(n, 1
2 , k), a graph selected in the ran-

dom planted clique model, with k ≥ c
√
n for some sufficiently large constant c. Then

with extremely high probability (over choice of G) it holds that ϑ(Ḡ) = ω(G).
Moreover, for every vertex i that belongs to the planted clique K , the corresponding

vector si has inner product larger than 1 − 1
n with the handle h, and for every other

vertex, the corresponding inner product is at most 1
n .

Given Theorem 2.1, the following algorithm finds the planted clique when G ∼
G(n, 1

2 , k), and k ≥ c
√
n for some sufficiently large constant c. Solve the optimiza-

tion problem (1) (on Ḡ) to sufficiently high precision, and output all vertices whose
corresponding inner product with h is at least 1

2 .
The algorithm above does not apply to G ∼ AG(n, 1

2 , k), a graph selected in the
adversarial planted clique model, for the simple reason that Theorem 2.1 is incorrect
in that model. The following example illustrates what might go wrong,

123

Theory of Computing Systems

Example 2.1 Consider a graph G ′ ∼ G(n, 1
2). In G ′ first select a random vertex set

T of size slightly smaller than 1
2 log n. Observe that the number of vertices in G ′ that

are in the common neighborhood of all vertices of T is roughly 2−|T |n >
√
n. Plant

a clique K of size k in the common neighborhood of T . In this construction, K is no
longer the largest clique in G. This is because T (being a random graph) is expected
to have a clique K ′ of size 2 log |T | � 2 log log n, and K ′ ∪ K forms a clique of
size roughly k + 2 log log n in G. Moreover, as T itself is a random graph with edge
probability 1

2 , the value of the theta function on T is roughly
√|T | (see [14]), and

consequently one would expect the value of ϑ(Ḡ) to be roughly k + √
log n.

Summarizing, it is not difficult to come up with strategies for planting cliques of
size k that result in the maximum clique having size strictly larger than k, and the value
of ϑ(Ḡ) being even larger. Consequently, the solution of the optimization problem (1)
by itself is not expected to correspond to the maximum clique in G.

We now explain how we overcome the above difficulty. A relatively simple, yet
important, observation is the following.

Proposition 2.1 Let G ∼ AG(n, p, k) with p = 1/2 and k >
√
n, and let K ′ be

the maximum clique in G (which may differ from the planted clique K). Then with
extremely high probability over the choice of G ′ ∼ G(n, 1

2), for every possible choice
of k vertices by the adversary, K ′ contains at least k − O(log n) vertices from K , and
at most O(log n) additional vertices.

Proof (Sketch) Standard probabilistic arguments show that with extremely high prob-
ability, the largest clique in G ′ (prior to planting a clique of size k) is of size at most
k
2 . When this holds, K ′ contains at least k

2 vertices from K . Each of the remaining
vertices of K ′ needs to be connected to all vertices in K ′ ∩ K . Consequently, with
extremely high probability, K ′ contains at most 2 log n vertices not from K . This is
because a G ′ ∼ G(n, 1

2) graph, with extremely high probability, does not contain two
sets of vertices A and B, with |A| = 2 log n, |B| =
(

√
n), such that all pairs of

vertices in A × B induce edges in G.
As |K ′| ≥ k, we further conclude that all but O(log n) vertices of K must be

members of K ′. �
A key theorem that we prove is:

Theorem 2.2 Let G ∼ AG(n, p, k) with p = 1/2 and k = k(n) ≥ 10
√
n. Then

k ≤ ϑ(Ḡ) ≤ k + O(log n) with extremely high probability over the choice of G ′ ∼
G(n, 1

2), for every possible choice of k vertices by the adversary.

We now explain how Theorem 2.2 is proved. The bound ϑ(Ḡ) ≥ k was already
explained above. Hence it remains to show that ϑ(Ḡ) ≤ k + O(log n). In general,
to bound ϑ(G) from above for a graph G(V , E), one considers the following dual
formulation of ϑ , as a minimization problem.

ϑ(G) = min
M

[λ1(M)] (2)

123

Theory of Computing Systems

Here M ranges over all n by n symmetric matrices in which Mi j = 1 whenever
(i, j) /∈ E , and λ1(M) denotes the largest eigenvalue of M . (Observe that if G has an
independent set S of size k, then M contains a k by k block of 1 entries. A Rayleigh
quotient argument then implies that λ1(M) ≥ k, thus verifying the inequality ϑ(G) ≥
α(G).) To prove Theorem 2.2 we exhibit a matrix M as above (for the graph Ḡ) for
which we prove that λ1(M) ≤ k + O(log n).

We first review how a matrix M was chosen by [8] in the proof of Theorem 2.1.
First, recall that we consider Ḡ, and let E be the set of edges of Ḡ (non-edges of
G). We need to associate values with the entries Mi j for (i, j) ∈ E (as other entries
are 1). The matrix block corresponding to the planted clique K (planted independent
set in Ḡ) is all 1 (by necessity). For every (i, j) ∈ E where both vertices are not in
K one sets Mi j = −1. For every pair (i, j) ∈ E with i ∈ K and j /∈ K , one sets

Mi, j = Mj,i = − k−d j,K
d j,K

, where d j,K is the number of neighbors that vertex j has in

the set K (in Ḡ). In order to show that λ1(M) = k, one first observes that the vector
xK (with value 1 at entries that correspond to vertices of K , and value 0 elsewhere)
is an eigenvector of M with eigenvalue k. Then one proves that λ2(M), the second
largest eigenvalue of M , has value smaller than k. This is done by decomposing M
into a sum of several matrices, bounding the second largest eigenvalue for one of these
matrices, and the largest eigenvalue for the other matrices. By Weyl’s inequality, the
sum of these eigenvalues is an upper bound on λ2(M). This upper bound is not tight,
but it does show that λ2(M) < k. It follows that the eigenvalue k associated with xK
is indeed λ1(M). Further details are omitted.

We now explain how to choose a matrix M so as to prove the bound ϑ(Ḡ) ≤
k+O(log n) in Theorem 2.2. Recall (see Example 2.1) that we might be in a situation
in which ϑ(Ḡ) > α(Ḡ) > k (with all inequalities being strict). In this case, let
K ′ denote the largest independent set in Ḡ, and note that K ′ is larger than K . In
M , the matrix block corresponding to K ′ is all 1. One may attempt to complete the
construction of M as described above for the random planting case, by replacing K
with K ′ everywhere in that construction. If one does so, the vector xK ′ (with value 1 at
entries that correspond to vertices of K ′, and value 0 elsewhere) is an eigenvector ofM
with eigenvalue α(Ḡ) > k. However, M would necessarily have another eigenvector
with a larger eigenvalue, because ϑ(Ḡ) > α(Ḡ). Hence we are still left with the
problem of bounding λ1(M), rather than bounding λ2(M). Having failed to identify
an eigenvector for λ1(M), we may still obtain an upper bound on λ1(M) by using
approaches based on Weyl’s inequality (or other approaches). However, these upper
bounds are not tight, and it seems difficult to limit the error that they introduce to be as
small as O(log n), which is needed for proving the inequality λ1(M) ≤ k + O(log n).

For the above reason, we choose M differently. For some constant 1
2 < ρ < 1,

we extend the clique K to a possibly larger clique Q, by adding to it every vertex
that has ρk neighbors in K . (In Example 2.1, the corresponding clique Q will include
all vertices of K ∪ T . In contrast, if K is planted at random and not adversarially,
then we will simply have Q = K .) Importantly, we prove (see Corollary 2.2) that if
G ′ ∼ G(n, 1

2), then with high probability |Q| < k + O(log n) (for every possible
choice of planting a clique of size k by the adversary). For the resulting graph GQ ,
we choose the corresponding matrix M in the same way as it was chosen for the

123

Theory of Computing Systems

random planting case. Now we do manage to show that the eigenvector xQ (with
eigenvalue |Q|) associated with this M indeed has the largest eigenvalue. This part
is highly technical, and significantly more difficult than the corresponding proof for
the random planting case. The reason for the added level of difficulty is that, unlike
the random planting case in which we are dealing with only one random graph, here
the adversary can plant the clique in any one of

(n
k

)
locations, and our analysis needs

to hold simultaneously for all
(n
k

)
graphs that may result from such plantings. Further

details can be found in Section 2.1.
Having established that ϑ(ḠQ) = |Q| ≤ k+O(log n), we use monotonicity of the

theta function to conclude that ϑ(Ḡ) ≤ k + O(log n). This concludes our overview
for the proof of Theorem 2.2.

Given Theorem 2.2, let us now explain our algorithm for finding a maximum clique
in G ∼ AG(n, 1

2 , k).
Given a graph G ∼ AG(n, 1

2 , k), the first step in our algorithm is to solve the
optimization problem (1) on the complement graph Ḡ. By Theorem 2.2, we will
have ϑ(Ḡ) ≤ k + c log n for some constant c > 0. Let {si } denote the orthonormal
representation found by our solution, and let h be the corresponding handle.

The second step of our algorithm it to extract from G a set of vertices that we shall
refer to as H , that contains all those vertices i for which (h · si)2 ≥ 3

4 .

Lemma 2.1 For H as defined above, with extremely high probability, at least k −
O(log n) vertices of K are in H, and most O(log n) vertices not from K are in H.

Proof Let T denote the set of those vertices in K for which (h · si)2 < 3
4 . Remove T

fromG, thus obtaining the graphGT . We have that ϑ(ḠT) ≥ ϑ(Ḡ)−∑
i∈T (h ·si)2 ≥

k − 3
4 |T |.

The exact same graph GT could also be generated by switching the order of oper-
ations. Given G ′ ∼ G(n, 1

2), first the adversary removes T from G ′, thus obtaining
a graph G ′

T which is a subgraph of the random graph G ′. Then the adversary plants
the clique K \ T of size k − |T | in G ′

T , so as to obtain GT . By Theorem 2.2 we have
that ϑ(ḠT) ≤ k − T + O(log n), with extremely high probability. This last claim is
based on applying Theorem 2.2 on each of the

(n
|T |

)
possible choices of T , and taking

a union bound over their probabilities of failure.
By comparing the lower bound on ϑ(ḠT) with the upper bound, we get that k −

3
4 |T | ≤ k − T + O(log n), implying that |T | ≤ O(log n).

Having established that T is small, let R be the set of vertices not in K for which
(h · si)2 ≥ 3

4 . We claim that every such vertex i ∈ R is a neighbor of every vertex
j ∈ K \ T . This is because in the orthogonal representation (for Ḡ), if i and j are not
neighbors we have that si · s j = 0, and then the fact that si , s j and h are unit vectors
implies that (h · si)2 < 1 − (h · s j)2 ≤ 1

4 . Having this claim and using the fact that
|K \ T | >

√
n, it follows that |R| ≤ 2 log n. This is because a G ′ ∼ G(n, 1

2) graph,
with extremely high probability, does not contain two sets of vertices A and B, with
|A| = 2 log n, |B| = √

n, such that all pairs of vertices in A× B induce edges in G.�
The third step of our algorithm constructs a set F that contains all those vertices

that have at least 3k
4 neighbors in H .

123

Theory of Computing Systems

Lemma 2.2 With extremely high probability, the set F described above contains the
maximum clique in G, and at most O(log n) additional vertices.

Proof (Sketch)Wemay assume that H satisfies the properties of Lemma 2.1. Proposi-
tion 2.1 then implies thatwith extremely high probability, every vertex of themaximum
clique inG has at least 3k4 neighbors in H , and hence is contained in F . A probabilistic
argument (similar to the end of the proof of Lemma 2.1) establishes that F has at most
O(log n) vertices not from K . As K itself has at most O(log n) vertices not from the
maximum clique (by Proposition 2.1), the total number of vertices in F that are not
members of the maximum clique is at most O(log n). �

Finally, in the last step of our algorithmwe find amaximum clique in F , and this is a
maximumclique inG. This last step can be performed in polynomial time by a standard
algorithm (used for example to show that vertex cover is fixed parameter tractable).
For every non-edge in the subgraph induced on F , at least one of its end-vertices needs
to be removed. Try both possibilities in parallel, and recurse on each subgraph that
remains. The recursion terminates when the graph is a clique. The shortest branch in
the recursion gives themaximum clique. As only O(log n) vertices need to be removed
in order to obtain a clique, the depth of the recursion is at most O(log n), consequently
the running time (which is exponential in the depth) is polynomial in n.

This completes our overview of our algorithm for finding a clique in G ∼
AG(n, 1

2 , k) when k > c
√
n for a sufficiently large constant c > 0. To complete

the proof of Theorem 1.1 we need to also address the case that k > ε
√
n for arbitrarily

small constant ε. This we do (as in [1]) by guessing t � 2 log c
ε
vertices from K

(try all nt possibilities), and considering the subgraph of G induced on their common
neighbors. This subgraph corresponds to a subgraph of G ′ � G(n, 1

2) with roughy
n′ � 2−t n vertices, and a planted clique of size ε

√
n − t � c

√
n′. Now on this new

graph G ′′ we can invoke the algorithm based on the theta function. The proof that
ϑ(Ḡ ′′) ≤ k + O(log n) uses the fact that Theorem 2.2 holds with extremely high
probability (see more details in Section 2.2).

The many details that were omitted from the above overview of the proof of
Theorem 1.1 can be found in the upcoming sections. Specifically, in Section 2.1 we
present the proof of Theorem 2.2, generalized to values of p other than 1/2, and
k ≥ c

√
np. In Section 2.2 we present the proof of Theorem 1.1, first addressing the

case that c is sufficiently large, and then extending the results to the case that c can be
arbitrarily small.

2.1 Bounding the Theta Function

In this section we will prove Theorem 2.2, which is stated here again for convenience,
with slightly more details.

Theorem 2.3 (Theorem 2.2 restated) Let G ∼ AG(n, p, k) with p = 1/2 and
k = k(n) = 10

√
n. Then k ≤ ϑ(Ḡ) ≤ k + 96 log n with probability at least

1 − exp(−2k log n), for every possible choice of k vertices by the adversary.

Instead of proving exactly this theorem, we will prove a generalization to other values
of p. Let c ∈ (0, 1) be an arbitrary constant.

123

Theory of Computing Systems

Theorem 2.4 Consider an arbitrary function w(n), such that n2/3 � w(n) ≤ cn. Let
G ∼ AG(n, p, k), where p = w(n)/n and k = Cw(n)1/2 for constant C ≥ 5

1−p . Let

a(n, p) := 48
(1−p)2

p log n. Then k ≤ ϑ(Ḡ) ≤ k + a(n, p), for every possible choice

of k vertices by the adversary, with probability at least 1 − exp(−2k log n).

This theorem has an important corollary, which follows from the Lipschitz property
of Lovasz theta function [16].

Corollary 2.1 Let p and k be as in Theorem 2.4, and let K ⊂ V be the vertices
belonging to the planted clique of G ∼ AG(n, p, k). Then, with probability at least
1 − exp(−2k log n),

(i) for every subset T ⊂ K,

k − |T | ≤ ϑ(G \ T) ≤ k − |T | + a(n, p),

where G \ T denotes the graph G with vertices from T deleted;
(ii) for every subset S ⊂ V \ K, if we “add” S to the planted clique by drawing all

edges between S and S ∪ K, for the resulting graph GS

k + |S| ≤ ϑ(GS) ≤ k + |S| + a(n, p).

We now prove Theorem 2.4. For G ∼ AG(n, p, k), its complement graph Ḡ
contains a planted independent set of size k, so ϑ(Ḡ) ≥ α(Ḡ) ≥ k. It remains to prove
the upper bound. We will use the formulation of the theta function as an eigenvalue
minimization problem:

ϑ(G) = min
M

[λ1(M)] (3)

Here M ranges over all n by n symmetric matrices in which Mi j = 1 whenever
(i, j) /∈ E , and λ1(M) denotes the largest eigenvalue of M .

The following proposition will be used in the proof of Theorem 2.4.

Proposition 2.2 Let k and p be as in Theorem 2.4. Let G ′ ∼ G(n, p), G ′ = (V , E).
Let μp < ν ≤ μ ∈ (0, 1] be arbitrary constants. For any t ≥ 0, for every set Q ⊂ V

of size (μ + o(1))k, there are at most g(n, p, μ, ν, t) := 6μ2

(ν−pμ)2
p log n + t vertices

from V \ Q that have at least (ν − o(1))k neighbors in Q, with probability at least

1 − exp
(
− (ν−pμ)2tk

3μp

)
. Here o(1) is any function of n tending to 0.

Proof For convenience, we will consider the size of Q to be exactly μk, and consider
the set of vertices that have at least νk neighbors in Q, as addition of o(1)-function
does not affect anything in the proof.We shall also use g(n, p, t) as shorthand notation
for g(n, p, μ, ν, t).

Fix some set Q ⊂ V of size μk, and a set I ⊂ V \ Q of size m. Let T (I , Q)

denote the event that every vertex in I has at least νk neighbors in Q. Consider a
random bipartite graph with parts I and Q and edge probability p, and let e(I , Q) be

123

Theory of Computing Systems

the number of edges between I and Q. It is clear that E[e(I , Q)] = mμkp, and the
event T (I , Q) implies the event {e(I , Q) ≥ mνk}. Hence

P[T (I , Q)] ≤ P[e(I , Q) ≥ mνk] =
= [e(I , Q) ≥ E[e(I , Q)] + m · (ν − pμ)k] ≤

≤ 2 exp

(
− (ν − pμ)2 mk

2μp

)
.

There are
(n
m

) ≤ (ne
m

)m ≤ exp(2m log n) possible vertex sets I , and
(n
μk

) ≤
exp(2μk log n) possible subsets Q. Let Tm be the event that for at least one such
choice of I and Q the event T (I , Q) holds. By union bound,

P[Tm] ≤ 2 exp

(
2μk log n + m ·

(
2 log n − (ν − pμ)2k

2μp

))
.

Since k = Cw(n)1/2, p = w(n)/n and w(n) = O(n), k
p =
(

√
n), so 2 log n

− (ν−pμ)2k
2μp ≤ − (ν−pμ)2k

3μp , and P[Tm] ≤ exp
(
2μk log n − m · (ν−pμ)2k

3μp

)
. It is clear

that 2μk log n − m · (ν−pμ)2k
3μp < 0 if and only if m >

6μ2

(ν−pμ)2
p log n, so if

m > g(n, p, t) := 6μ2

(ν−pμ)2
p log n + t , then P[Tm] ≤ exp

(
− (ν−pμ)2tk

3μp

)
n→∞−−−→ 0.

Therefore, with probability at least 1− exp
(
− (ν−pμ)2tk

3μp

)
for every set Q of size μk,

there are at most g(n, p, t) = g(n, p, μ, ν, t) vertices from V \ Q that have at least
νk neighbors in Q. �

By settingμ = 1 and ν = 1+p
2 and choosing t = 24p

(1−p)2
log n we get an immediate

corollary.

Corollary 2.2 Let k and p be as in Theorem 2.4. With probability at least 1 −
exp(−2k log n) over choice of G ′, for every S ⊂ V , |S| = k, there are at most
a(n, p) := 48

(1−p)2
p log n vertices from V \ S with at least 1+p

2 k neighbors in S.

In order to upper bound ϑ(Ḡ) for every possible adversarial strategy, we fix some
particular set K of k vertices in advance, and prove that the bound holdswith extremely
high probability for the case that K is the chosen planted clique. Theorem 2.4 follows
by a union bound over all possible choices of K .

The graph G, with V (G) = [n] and E = E(G), is generated by first drawing
a random G ′ ∼ G(n, p), and then adding edges between all vertices in K . Let Q
be the set of all vertices with at least 1+p

2 k neighbors in the planted clique K . By
Corollary 2.2 k′ := |Q| ≤ k + a(n, p). We number the vertices of V (G) in such a
way that Q = [k′], and the planted k-clique of G is [k].

We derive an upper bound on ϑ(Ḡ) by presenting a particular matrix M , for which
ϑ(Ḡ) ≤ λ1(M) ≤ k′ ≤ k + a(n, p). We use d(i, Q) to denote the number of edges
between the vertex i ∈ [n] \ [k′] and the set Q = [k′]. The symmetric matrix M we
choose is as follows.

123

Theory of Computing Systems

– The upper left k′ × k′ block is all-ones matrix of order k′.
– The lower right block of size (n − k′) × (n − k′), denoted by C , is defined as
ci j = 1 if (i, j) ∈ E and ci j = − p

1−p if (i, j) /∈ E .
– The lower left block is an (n − k′) × k′ matrix B. For this matrix, bi j = 1 if

(i, j) ∈ E , and bi j = −d(i, Q)/(k′ − d(i, Q)) if (i, j) /∈ E . Observe that that
every row of B sums up to zero.

– The upper right block is the transpose of the lower right block B.

We rewrite bi j for (i, j) /∈ E in the following way:

bi j = xi − p

1 − p
, xi = k′ p − d(i, Q)

(1 − p)(k′ − d(i, Q))
.

The vector with 1 in its first k′ entries and 0 in other n − k′ coordinates is an
eigenvector of M with eigenvalue k′. To show that k′ is the largest eigenvalue, it
suffices to prove that λ2(M) < k′. We represent M as a sum of three symmetric
matrices M = U + V + W , and apply Weyl theorem [12]:

λ2(M) ≤ λ1(U) + λ2(V + W) ≤ λ1(U) + λ2(V) + λ1(W).

Matrices U , V and W are as follows.

– The matrix U is derived from the adjacency matrix of the original graph G ′ ∼
G(n, p). Uii = 0 for all i , Ui j = 1 if (i, j) ∈ E (in G ′), and Ui j = −p/(1 − p)
for all other i �= j .

– Matrix V describes the difference between M and U on the top k′ by k′ block.
This difference is due to the modification that G ′ undergoes by planting the clique
K and extending it to Q, and also to the change of diagonal entries from 0 to 1.
For i, j ≤ k′ we have Vi j = 1 − Ui j , which is 1/(1 − p) if i �= j and (i, j) was
not an edge of G ′. All other entries are 0.

– The matrix W is the correction matrix for having the row sums of B equal to 0.
In its lower left block (i > k′ and j ≤ k′), Wi j = 0 if bi j = 1 and Wi j = xi if
bi j = xi − p/(1− p). Its upper right block is the transpose of the lower left block.
All other entries are 0.

Claim With probability at least 1 − exp(−k log n), for every possible choice of k
vertices by adversary, we have

λ1(U) ≤ 2 + o(1)√
1 − p

w(n)1/2, λ2(V) = o(k′), λ1(W) ≤ 2 + o(1)

1 − p
w(n)1/2.

To bound the eigenvalues ofU , V and W , we shall use upper bounds on the eigen-
values of random matrices, as appear in [19]

Theorem 2.5 There are constants C ′ and C ′′ such that the following holds. Let ai j ,
i, j ∈ [n] be independent random variables, each of which has mean 0 and variance

123

Theory of Computing Systems

at most σ 2 and is bounded in absolute value by L, where σ ≥ C ′′L log2 n√
n
. Let A be the

corresponding n × n matrix. Then with probability at least 1 − O(1/n3),

λ1(A) ≤ 2σ
√
n + C ′(Lσ)1/2n1/4 log n.

Theboundholds regardless ofwhat the diagonal elements of A are, since by subtracting
the diagonal we may decrease the eigenvalues at most by L.

The matrix U is a random matrix, as it is generated from the graph G ′ ∼ G(n, p).
The entries of matrixU have mean zero, |Ui j | = O(1) since p is bounded by constant
c < 1, and the variance isσ 2(Ui j) = E[U 2

i j] = p/(1−p) � n−1/3, so byTheorem2.5
we have

λ1(U) ≤ 2
√

np

1 − p
+ O

((
np

1 − p

)1/4

log n

)
≤

≤ 2√
1 − p

w(n)1/2 + O
(
w(n)1/4 log n

)
=: �U

with probability at least 1−O(1/n3). Since |Ui j | = O(1) for all i, j ∈ [n], λ1(U) is at
most O(n2). Then, the expected value of λ1(U) is at mostE[λ1(U)] ≤ �U +O(1/n).
It follows thatP[λ1(U) ≥ �U + t] ≤ P[λ1(U) ≥ E[λ1(U)]+ t] for all non-negative
t . Hence, to show that λ1(U) does not exceed λU by too much with extremely high
probability, it suffices to show that the probability of λ1(U) to deviate from its mean
is exponentially small in k log n � w(n)1/2 log n. The result by Alon, Krivilevich and
Vu [2] ensures that eigenvalues of U are well-concentrated around their means.

Theorem 2.6 (Concentration of eigenvalues) For 1 ≤ i ≤ j ≤ n, let ai j be inde-
pendent, real random variables with absolute value at most 1. Define a ji = ai j
for all i, j , and let A be the n × n matrix with A(i, j) = ai j , i, j ∈ [n]. Let
λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) be the eigenvalues of A. For all s ∈ [n] and for
all t = ω(

√
s):

P[|λs(A) − E[λs(A)]| ≥ t] ≤ exp

(
− (1 − o(1))t2

32s2

)
.

The same estimate holds for λn−s+1(A).

Taking t = �(w(n)1/4 log n), from Theorem 2.6 we get

P

[
λ1(U) ≥ 2√

1 − c
w(n)1/2 + �

(
w(n)1/4 log n

)]
≤

≤P
[
λ1(U) ≥ E[λ1(U)] + �

(
w(n)1/4 log n

)]
≤ exp

(−

(
w(n)1/2 log2 n

))
,

so λ1(U) ≤ 2√
1−c

w(n)1/2 + O
(
w(n)1/4 log n

)
with probability at least 1 − exp

(−

(
k log2 n

))
. Note that the bound holds for any choice of the adversary, as matrix U

123

Theory of Computing Systems

does not depend on the vertices of the planted clique and is determined by initial graph
G(n, p) only.

Moving to V , recall that matrix V captures the difference between M and U on
the vertices of Q. In order to simplify the analysis, we will treat the set Q as a fixed
vertex set of size k′ ≤ k + a(n, p) chosen in advance, and establish probabilistic
bounds for this fixed Q. Taking a union bound over all possible sets of size k′, we
will guarantee that the established properties hold for the case when Q is the set of
all vertices with at least 1+p

2 k neighbors in K , as originally desribed. Note that for
fixed Q, the entries of matrix V are independent. It is convenient for our analysis to
consider a modified matrix V ′, obtained from V as follows.For all i, j > k′ we have
V ′
i j = Vi j = 0, for i ∈ [k′] we have V ′

i i = 0 = Vii − 1, and for i < j ≤ k′ we
have V ′

i j = V ′
j i = Vi j − 1. Consequently, for i �= j satisfying i, j ≤ k′, it holds that

V ′
i j = −1 with probability p and V ′

i j = p/(1− p)with probability (1− p), where the
probability is taken over the original choice of G ′ ∼ G(n, p) (that was followed by
planting a clique on the set K of first k vertices, and extending the clique to Q). Since
V ′ is obtained from V by subtracting a matrix with an all-one k′ × k′ block and zeroes
elsewhere, λ2(V) ≤ λ1(V ′), and we can obtain the bounds for λ2(V) by applying

Theorem 2.5 to the matrix V ′. The variance is σ 2(V ′
i j) = p/(1− p) � log4 n

n , so with

probability at least 1 − O(1/k′3)

λ1(V
′) ≤ 2

√
k′ p
1 − p

+ O

((
k′ p
1 − p

)1/4

log k′
)

≤

≤ C ′w(n)3/4√
n

+ O

(
w(n)3/8

n1/4
log n

)

for some C ′ > 0, we denote this bound by �V ′ . Similarly to λ1(U), λ1(V ′) ≤
O(k′2) and E[λ1(V ′)] ≤ (1 + o(1))�V ′ . Applying Theorem 2.5 to λ1(V ′) with t �
w(n)3/8

n1/4
log n, we get P

[
λ1(V ′) >

C ′w(n)3/4√
n

+ t
]

≤ exp
(−

(
t2

))
.

We would like these bounds to hold for any choice of the adversarial k-

clique, and any extension to Q. There are
(n
k′
) ≤ (ne

k′
)k′ ≤ exp(2k′ log n) ≤

exp(O(w(n)1/2 log n)) possible choices, so by setting t = �(w(n)1/4 log n) in the
bound above and applying union bound over all possible choices of the set Q, we
prove

λ2(V) ≤ C ′w(n)3/4√
n

+ O
(
w(n)1/4 log n

)
= o(k′)

for any choice of the adversary with probability at least 1 − exp
(−

(
k log2 n

))
.

It remains to bound λ1(W). We will use the trace of W 2.

λ1(W)2 ≤ tr(W 2) = 2
∑

i< j

W 2
i j = 2

n∑

i=k′+1

(k′ − d(i, Q))x2i =

123

Theory of Computing Systems

= 2
n∑

i=k′+1

(
d(i, Q) − k′ p

)2

(1 − p)2(k′ − d(i, Q))
.

By definition of set Q, for every k′ + 1 ≤ i ≤ n we have d(i, Q) ≤ 1+p
2 k, so

k′ − d(i, Q) ≥ 1−p
2 k and

2
n∑

i=k′+1

(
d(i, Q) − k′ p

)2

(1 − p)2(k′ − d(i, Q))
≤ 4

(1 − p)3k

n∑

i=k′+1

(
d(i, Q) − k′ p

)2
.

It turns out that we can always bound the sum above.

Theorem 2.7 With probability at least 1 − exp(−2k log n),

n∑

i=k′+1

(
d(i, Q) − k′ p

)2 ≤ (n − k′)k′ p(1 − p) + o(nk′ p(1 − p))

for every possible choice of k vertices by the adversary,

The proof is rather technical and is presented in Section B. From Theorem 2.7 we get

λ1(W)2 ≤ 4 + o(1)

(1 − p)3k
(n − k′)k′ p(1 − p) ≤ 4 + o(1)

(1 − p)2
(n − k′)p,

so

λ1(W) ≤ 2 + o(1)

1 − p

√
(n − k′)p ≤ 2 + o(1)

1 − p
w(n)1/2.

Combining the bounds for λ1(U), λ2(V) and λ1(W), the following sequence of
inequalities holds with probability at least 1 − exp(−2k log n):

λ2(M) ≤ λ1(U) + λ2(V) + λ1(W) ≤
≤ 2√

1 − p
w(n)1/2 + 2

1 − p
w(n)1/2 + o(k′) ≤ 4

1 − p
w(n)1/2 + o(k′).

By choosingC ≥ 5
1−p in k = Cw(n)1/2, we guarantee that the expression above is less

than k′. Therefore, k′ is indeed the largest eigenvalue of matrix M , and ϑ(Ḡ) ≤ k′ ≤
k + a(n, p) for every choice of adversarial k-clique with extremely high probability.
This finishes the proof of Theorem 2.4.

2.2 Main Algorithm

In this section we prove Theorem 1.1 in its generalized version, considering G ∼
AG(n, p, k) for a wide range of values of p, and not just p = 1

2 .

123

Theory of Computing Systems

Theorem 2.8 (Theorem 1.1 restated) Let c ∈ (0, 1) be an arbitrary constant. For
every fixed ε > 0 and for every n−1/3 � p ≤ c and k ≥ ε

√
np, there is an (explicitly

described) algorithm running in time nO(log(1
ε
)) which almost surely finds themaximum

clique in a graphG ∼ AG(n, p, k). The statement holds for every adversarial planting
strategy, and the probability of success is taken over the choice of G ′ ∼ G(n, p).

We first prove such a theorem when k ≥ C
√
np for a sufficiently large constant C .

Afterwards, we shall extend the proof to the case that C can be an arbitrarily small
constant.

Theorem 2.9 Let c ∈ (0, 1) be an arbitrary constant. Consider an arbitrary function
w(n), such that n2/3 � w(n) ≤ cn. Let G ∼ AG(n, p, k), where p = w(n)/n and
k ≥ 5

1−pw(n)1/2. There is an (explicitly described) algorithm running in time nO(1)

which almost surely finds the maximum clique in G, for every adversarial planting
strategy.

Proof As described in Section 2, we solve the optimization problem

ϑ(G) = max
h,{si }

∑

i∈V
(h · si)2, (4)

finding the optimal orthonormal representation {si } and handle h, using the SDP for-
mulation.

Suppose that we solved ϑ(Ḡ) in (4) for G ∼ AG(n, p, k) (with p and k as in
Theorem 2.9). By Theorem 2.4, k ≤ ϑ(Ḡ) ≤ k + a(n, p). Let G = (V , E), let K
denote the set of vertices chosen by the adversary.

As h and si are unit vectors, we have that for all i ∈ V , (h · si)2 ≤ 1. Let T be the
set of vertices i ∈ K with (h · si)2 < 3/4. We claim that |T | ≤ 4a(n, p). Suppose the
contrary, so |T | > 4a(n, p). Delete |T | from the graph G and consider ϑ(G \ |T |).
We get

ϑ(G \ T) ≥
∑

i∈V \T
(h · si)2 = ϑ(Ḡ) −

∑

j∈T
(h · s j)2,

hence by applying Corollary 2.1 to G \ T we get

ϑ(Ḡ) ≤ ϑ(G \ T) +
∑

j∈T
(h · s j)2 ≤ k − |T | + a(n, p) + (3/4)|T | =

= k + a(n, p) − (1/4)|T | < k + a(n, p) − a(n, p) = k,

a contradiction. So, there are at most 4a(n, p) vertices j ∈ K with (h · s j)2 < 3/4,
implying that there are at least k−4a(n, p) vertices in K with (h · s j)2 ≥ 3/4. Denote
this set by K3/4.

Observe that if i ∈ V \ K is not connected to some j ∈ K3/4, then (h · si)2 ≤ 1/4.
Indeed, (i, j) /∈ E implies si · s j = 0, so (h · si)2 + (h · s j)2 ≤ 1 and therefore
(h · si)2 ≤ 1/4. Hence, if i ∈ V \ K has (h · si)2 ≥ 3/4, it must be connected to the
whole set K3/4. The set K3/4 has size at least k − 4a(n, p), so by Corollary 2.2 there

123

Theory of Computing Systems

are less than a(n, p) vertices i ∈ V \ K with (h · si)2 ≥ 3/4. As a result, for the set
H of vertices i ∈ V with (h · si)2 ≥ 3/4, we have k − 4a(n, p) ≤ |H | ≤ k + a(n, p).

Let F ⊂ V be the set of all vertices that have at least 3k/4 neighbors in H . Similarly
to Lemma 2.2, with extremely high probability F contains the maximum clique in G.
Moreover, by Proposition 2.2 there are at most O(a(n, p)) vertices from V \ H that
have at least 3/4k neighbors in H , implying |F | ≤ k + O(a(n, p)).

It follows that the maximum clique ofG[F], the subgraph ofG induced on F , is the
maximum clique ofG. Moreover, K ⊆ F , so F contains a clique of size at least k, and
|F | ≤ k+O(a(n, p)). The maximum clique inG[F] can be found in polynomial time
by a standard algorithm (used for example to show that vertex cover is fixed parameter
tractable). For every non-edge in the subgraph induced on F , at least one of its end-
vertices needs to be removed, so we try both possibilities in parallel, and recurse on
each subgraph that remains. Each branch of the recursion is terminated either when
the graph is a clique, or when k vertices remain (whichever happens first). At least one
of the branches of the recursion finds the maximum clique. The depth of the recursion

is at most O(a(n, p)) = O
(

p
(1−p)2

log n
)
. Consequently the running time (which

is exponential in the depth) is in the order of nO(1)2O(a(n,p)) = nO(1/(1−p)2). This
running time is polynomial if p is upper bounded by a constant smaller than 1. This
finishes the description of the algorithm, proving Theorem 2.9. �

Returning to Theorem 1.1, which considers G ∼ AG(n, 1
2 , k) and k ≥ ε

√
n,

we prove it when ε ≥ 10√
2
by plugging in p = 1

2 in Theorem 2.9, as Theorem 2.9

assumes the condition k ≥ 5
1−pw(n)1/2 (where w(n) = np). To complete the proof

of Theorem 1.1 (and Theorem 2.8) we need to handle arbitrarily small constant ε > 0.
Now we will work with the case k ≥ εw(n)1/2 for arbitrary ε > 0

Suppose that k = ε
√
np for 0 < ε < 5

1−p . Similar to the approach of [1], we can

use the algorithm that works for the case k ≥ 5
1−p

√
np in order to obtain the algorithm

for k = ε
√
np.

Let s be the smallest integer satisfying k = ε
√
np > 2 · 5

1−p
√
np · ps/2. This gives

s >
2 log 10

(1−p)ε
log(1/p) , which is a constant for constant ε > 0 and p bounded away from 1.

Observe that if p < ε2

100 then s = 1. Given graph G ∼ AG(n, p, k), we try all
(n
s

)

possible choices for sets S ⊂ V of size s. For each such choice, if S is a clique in G,
then we apply the algorithm of Theorem 2.9 on G[N (S)], the subgraph induced on
the common neighborhood of S (not including S itself). The size of this subgraph is
at most roughly psn + k, and we chose the value of s so that k − s ≥ 5

1−p

√|N (S)p|.
As we show below, for all

(k
s

)
choices in which S ⊂ K , the algorithm will return the

largest clique in G[N (S)]. As the largest clique K ∗ of G contains at least s vertices
of K , for at least one choice of S ⊂ K we also have S ⊂ K ∗. For this case, the union
of S and the largest clique in G[N (S)] is the largest clique of G, as desired.

It remains to show that if S ⊂ K , then the algorithm of Theorem 2.9 finds the
maximum clique in G[N (S)]. In more details, what we need to show is that with high
probability over the choice of G ′ ∼ G(n, p), for every choice of k vertices as the

123

Theory of Computing Systems

adversarial planted clique K (giving the graph G), and for every choice of S ⊂ K of
size s, the algorithm succeeds on G[N (S)].

We shall employ a union bound over all possible choices of S and K . Given that
we consider all possible K (and not just the one selected by the adversary), we may
describe the generation of G[N (S)] in the following way.

1. Start with the empty graph on a set V of n vertices.
2. Pick a set K ⊂ V of k vertices, and a set S ⊂ K of s vertices.
3. Generate G ′ ∼ G(n, p) in a need to know basis. First reveal only those edges

between S and V \ S. Let V ′ denote the set of vertices that each has all of S as its
neighbors. Observe that the expected size of V ′ is exactly E[|V ′|] = (n − k)ps .

4. Form the set N (S) = V ′ ∪ (K \ S). We now reveal the edges of G ′ inside the set
N (S), giving a graph that we call G ′

S,K . Crucially, this graph is distributed exactly
like G(|N (S)|, p).

5. Turn K \ S into a clique in G ′
S,K , effectively planting a clique of size k − s =

k − O(1).

Claim With probability at least 1− exp(−2k log n) over the choice of G ′ ∼ G(n, p),
for all possible choices of K ⊂ V and S ⊂ K it holds simultaneously that |N (S)| =
(1 + o(1))nps .

Proof Fix some particular choices of K and S. By construction, set N (S) is a union
of V ′ and vertices from K \ S. We are going to show that

– for k = ε
√
np, it holds k log n = o (nps);

– with probability ≥ 1 − exp(−2k log n), |N (S)| ≤ nps + k + 3
√
npsk log n.

Given these two statements, the claim follows directly.
First consider the case p < ε2/100, so s = 1. We can assume that p � n−1/3, as

when p = O(n−1/3)wecanfind themaximumclique using the enumeration algorithm
fromSection 3. Then k = O(

√
np) = O(n1/2), while nps = np =
(n2/3), therefore

k log n = o(nps) holds. SinceE[|V ′|] = (n−k)ps , by Chernoff bound the probability
of |V ′| > (n − k)ps + 3

√
(n − k)psk log n is at most exp(−2k log n), and we get the

desired.
Now consider the case ε2/100 ≤ p ≤ c, so p is a constant. But then k log n =

O(
√
n log n) = o(n) = o(nps) since s is a constant, and Chernoff bound again gives

us |V ′| ≤ nps + 3
√
npsk log n with probability at least 1 − exp(−2k log n).

Uniting V ′ with K \ S cannot add more than |K | = k vertices, therefore |N (S)| ≤
|V ′| + |K | ≤ nps + k + 3

√
npsk log n, with probability at least 1− exp(−2k log n).�

By the above claim and our choice of s we now have that
k − s > 5

1−p

√|N (S)|p, where k − s is the size of the clique planted in G ′
S,K .

Consequently, we are in a position to apply Theorem 2.9 on G[N (S)], and conclude
that the algorithm given in the proof of the theorem finds the maximum clique in
G[N (S)]. This indeed holds almost surely for every particular choice of K ⊂ V and
S ⊂ K , but we are not done yet, as we want this to hold for all choices of K and S in
G ′ ∼ G(n, p). To reach such a conclusion we need to analyse the failure probability
of Theorem 2.9 more closely, so as to be able to take a union bound over all choices

123

Theory of Computing Systems

of K and S. This union bound involves
(n
k

) · (ks
) � exp(k log n) events (the term

(k
s

)
is

negligible compared to
(n
k

)
, because s is a constant).

Indeed the failure probability for Theorem 2.9 can withstand such a union bound.
This is because the proof of Theorem 2.9 is based on earlier claims whose failure
probability is at most exp(−2k log n). This upper bound on the failure probability is
stated explicitly in Theorem 2.4 and Corollary 2.2, and can be shown to also hold
in claims that do not state it explicitly (such as Proposition 2.1, Lemma 2.1 and
Lemma 2.2, and versions of them generalized to arbitrary p), using analysis similar
to that of the proof of Proposition 2.2.

3 Finding Cliques by Enumeration

In this section we prove Theorem 1.2.

Theorem 3.1 (Theorem 1.2 restated) Let p = nδ−1 for 0 < δ < 1. Then for every k,

there is an explicitly described algorithm running in time nO(1
1−δ

) which almost surely
finds the maximum clique in a graph G ∼ AG(n, p, k).

Let p = nδ−1 for 0 < δ < 1, and consider first G ′ ∼ G(n, p) (hence G ′ has
average degree roughly nδ). For every size t ≥ 1, let Nt denote the number of cliques
of size t in G ′. The expectation (over choice of G ′ ∼ G(n, p)) satisfies:

E[Nt] =
(
n

t

)
p(

t
2) ≤ 1

t !n
δ−1
2 t2+ 3−δ

2 t

The exponent is maximized when t = 3−δ
2(1−δ)

. For the maximizing (not necessarily

integer) t , the exponent equals (3−δ)2

8(1−δ)
. We denote this last expression by eδ , and note

that eδ ≤ 1.3 · 1
1−δ

. The expected number of cliques of all sizes is then:

∑

t≥1

E[Nt] ≤ n +
∑

t≥2

1

t !n
δ−1
2 t2+ 3−δ

2 t ≤ neδ

(The last inequality holds for sufficiently large n.) By Markov’s inequality, with prob-
ability at least 1 − 1

n , the actual number of cliques in G ′ is at most neδ+1. Note that
stronger concentration results can be used here, but are not needed for the proof of
Theorem 1.2.

Now, for arbitrary 1 ≤ k ≤ n, let the adversary plant a clique K of size k in G ′,
thus creating the graph G ∼ AG(n, p, k). As every subgraph of K is a clique, the
total number of cliques in G is at least 2k , which might be exponential in n (if k is
large). However, the number of maximal cliques in G (a clique is maximal if it is
not contained in any larger clique) is much smaller. Given a maximal clique C in G,
consider C ′, the subgraph of C not containing any vertex from K . C ′ is a clique in G ′
(which is nonempty, except for one special case of C = K). C ′ uniquely determines
C , as the remaining vertices in C are precisely the set of common neighbors of C ′ in

123

Theory of Computing Systems

K (this is because the clique C is maximal). Consequently, the number of maximal
cliques in G is not larger than the number of cliques in G ′.

As all maximal cliques in a graph can be enumerated in time linear in their number
times some polynomial in n (see e.g. [17] and references therein), one can list all
maximal cliques in G in time neδ+O(1) (this holds with probability at least 1− 1

n , over
the choice of G ′, regardless of where the adversary plants clique K), and output the
largest one.

This completes the proof of Theorem 1.2.

4 Proving NP-hardness Results

In this section we prove Theorem 1.3.

Theorem 4.1 (Theorem 1.3 restated) For p = nδ−1 with 0 < δ < 1, 0 < γ < 1, and
cn1−δ log n ≤ k ≤ 2

3n, where c is a sufficiently large constant, the following holds.
There is no polynomial time algorithm that has probability at least γ of finding an
independent set of size k in G ∼ AḠ(n, p, k), unless NP has randomized polynomial
time algorithms (NP=RP).

Our proof is an adaptation to our setting of a proof technique developed in [4]. We
first present an overview of the proof, and then provide more details in later sections.

Recall that we are considering a graph G ∼ AḠ(n, p, k) (adversarial planted
independent set) with p = nδ−1 and 0 < δ < 1. Let us first explain why the algorithm

described in Section 2 fails when k = cn1− δ
2 (whereas if the independent set is planted

at random, algorithms based on the theta function are known to succeed). The problem
is that the bound in Theorem 2.2 is not true anymore, and instead one has the much
weaker bound of ϑ(G) ≤ k + n1−δ log n. Following the steps of the algorithm of
Section 2, in the final step, we need to remove a minimum vertex cover from F .
However, now the upper bound on the size of this vertex cover is O(n1−δ log n) rather
than O(log n). Consequently, we do not know of a polynomial time algorithm that
will do so. It may seem that we also do not know that no such algorithm exists. After
all, F is not an arbitrary worst case instance for vertex cover, but rather an instance
derived from a random graph. However, our NP-hardness result shows that indeed this
obstacle is insurmountable, unless NP has randomized polynomial time algorithms.
We remark that using an approximation algorithm for vertex cover in the last step
of the algorithm of Section 2 does allow one to find in G an independent set of size
k − O(n1−δ log n) = (1 − o(1))k, and the NP-hardness result applies only because
we insist on finding an independent set of size at least k.

Let us proceed now with an overview of our NP hardness proof. We do so for the
case that k = n

3 (for which we can easily find the maximum independent set if the
planted independent set is random). Assume for the sake of contradiction that ALG is
a polynomial time algorithm that with high probability over choice of G ′ ∼ G(n, p),
for every planted independent set of size k = n

3 , it finds in the resulting graph G an
independent set of size k.

We now introduce a class H of graphs that, in anticipation of the proofs that will
follow, is required to have the following three properties. (Two of the properties are

123

Theory of Computing Systems

stated below in a qualitative manner, but they have precise quantitative requirements
in the proofs that follow.)

1. Solving maximum independent set on graphs from this class is NP-hard.
2. Graphs in this class are very sparse.
3. The number of vertices in each graph is small.

To satisfy the above requirements, we consider graphs that are balanced.

Definition 4.1 Given a graph H , denote its average degree byα. A graph H is balanced
if every induced subgraph of H has average degree at most α.

We choose 0 < ε < min[δ
2 , 1 − δ], and let H be the class of balanced graphs on

nε vertices, and of average degree 2 + δ.
Given a graph H ∈ H and a parameter k′, it is NP-hard to determine whether H

has an independent of size at least k′ or not.

Theorem 4.2 For any 0 < η ≤ 1, determining the size of the maximum independent
set in a balanced graph with average degree 2 < α < 2 + η is NP-hard.

The proof of Theorem 4.2 is provided in Section A.
In our proofs, we view G ′ ∼ G(n, p) as an n vertex graph with vertices numbered

from 1 to n, and H ∈ H as anm vertex graph with vertices numbered from 1 tom. For
simplicity, we assume that m divides n (this assumption can easily be removed with
only negligible effect on the results). As part of subsequent proofs, we shall consider
the question ofwhetherG ′ is likely to have H as an induced subgraph. So as to simplify
the analysis of this question, we shall only consider induced subgraphs of G ′ that are
said to obey a given partition. We now explain this concept. Given an n-vertex graph
G ′, we fix the following partition of the vertex set of G ′ into m disjoint subsets of
vertices, each of size n

m . Part i for 1 ≤ i ≤ m contains the vertices [(i −1) n
m +1, i nm].

A vertex set M of size m that contains one vertex in each part is said to obey the
partition. If M is ordered, then to obey the partition we require vertex i of M to be in
part i of the partition, for every 1 ≤ i ≤ m.

We will reach a contradiction to the existence of ALG by showing how ALG could
be used in order to find in H an independent set of size k′, if one exists. For this, we
use the following randomized algorithm ALGRAND.

1. Generate a random graph G ′ ∼ G(n, p), with p = nδ−1.
2. Plant in G ′ a random copy of H that obeys the partition. That is, pick a random

set M of m vertices that obeys the partition, associate the i th vertex of H with the
vertex of M that is in the i th part, and replace the subgraph of G ′ induced on M by
H . We refer to the resulting distribution as GH (n, p), and to the graph sampled
from this distribution as GH . Observe that the number of vertices in GH that have
a neighbor in H is with high probability not larger than |H |nδ ≤ n

2 .
3. Within the non-neighbors of H , plant at random an independent set I ′ of size k−k′.

We refer to the resulting distribution asGH (n, p, k), and to the graph sampled from
this distribution as G̃H .Observe thatwith extremelyhighprobability,α(G̃H\H) =
k − k′. Hence we may assume that this indeed holds. If furthermore α(H) ≥ k′,
then α(G̃H) ≥ k.

123

Theory of Computing Systems

4. Run ALG on G̃H . We say that ALGRAND succeeds if ALG outputs an indepen-
dent set I S of size k. Observe that then at least k′ vertices of H are in I S, and
hence ALGRAND finds an independent set of size k′ in H .

If H does not have an independent set of size k′, ALGRAND surely fails to output
such an independent set. But if H does have an independent set of size k′, why should
ALGRAND succeed? This is because ALG (which is used in ALGRAND) is fooled to
think that the graph G̃H generated by ALGRAND was generated from AḠ(n, p, k),
and on such graphs ALG does find independent sets of size k. Andwhy is ALG fooled?
This is because the distribution of graphs generated by ALGRAND is statistically
close to a distribution that can be created by the adversary in the AḠ(n, p, k) model.
Specifically, consider the following distribution that we refer to as AH (n, p, k).

1. Generate G ′ ∼ G(n, p), with p = nδ−1.
2. The computationally unbounded adversary finds within G ′ all subsets of vertices

of size m = |H | that obey the partition, such that the subgraph induced on them
is H , with vertex i of H in the i th part of the partition. (If there is no such subset,
fail.) Choose one such copy of H uniformly at random.

3. As H is assumed to have an independent set of size k′, plant an independent set
K of size k as follows. k′ of the vertices of K are vertices of an independent set in
the selected copy of H . The remaining k − k′ vertices of K are chosen at random
among the vertices of G ′ that have no neighbor at all in the copy of H . Observe
that we expect there to be at least roughly n − |H |nδ ≥ n

2 such vertices, and with
extremely high probability the actual number will be at least n

3 > k − k′. We refer
to the resulting graph with planted independent set as G̃.

We shall show that the distribution G̃H ∼ GH (n, p, k) generated by ALGRAND is
“statistically similar" to the distribution G̃ ∼ AH (n, p, k) generated by the adversary.
The notion of statistical similarity that we use is presented in the following definition.

Definition 4.2 Let A, B be two probability distributions on the same domain X . For
fixed x ∈ X , let pA(x) denote the probability that a random sample from A gives x ,
and let pB(x) denote the probability that a random sample from B gives x . We say
that A is (β, η)-close to B for constants β, η ∈ (0, 1), if pA(x) ≥ β · pB(x) with
probability at least 1 − η over x ∼ B.

Proposition 4.1 below follows immediately from Definition 4.2.

Proposition 4.1 Let f be an arbitrary function that gets x ∈ X as input and outputs
either 0 or 1. If probability distribution A is (β, η)-close to probability distribution B,
then

P
x∼A

[f (x) = 1] ≥ β

(
P

x∼B
[f (x) = 1] − η

)
.

The following theorem will play a central part in the proof of Theorem 1.3.

Theorem 4.3 Let p, k be as in Theorem 1.3. There exist universal constants β, η ∈
(0, 1), such that for large enough n, for every H ∈ H, the distribution G̃H ∼
GH (n, p, k) generated by ALGRAND is (β, η)-close to the distribution G̃ ∼
AH (n, p, k) generated by the adversary.

123

Theory of Computing Systems

The proof of Theorem 4.3 appears in Section 4.2. Here we explain the main ideas
in the proof.

For a graph G and a given partition, let XH (G) denote the number of sets S of size
m obeying the partition, such that the subgraph of G induced on S is H (with vertex i
of H in part i of the partition, for every 1 ≤ i ≤ m). For a graph G chosen at random
from some distribution, XH (G) is a random variable.

A minimum requirement for Theorem 4.3 to hold is that with sufficiently high
probability, XH (G ′) ≥ 1 for G ′ ∼ G(n, p), as otherwise AHG(n, p, k) fails to
produce any output. But this by itself does not suffice. Intuitively, the conditionwe need
is that XH (G ′) is typically “large". Then the fact that GH (n, p) of ALGRAND adds
another copy of H to G ′ does not appear to make much of a difference to G ′, because
G ′ anyway has many copies of H . Hopefully, this will imply that G ′ ∼ G(n, p) and
GH ∼ GH (n, p) come from two distributions that are contiguous. This intuition is
basically correct, though another ingredient (a concentration result) is also needed.
Specifically, we need the following lemma (stated informally).

Lemma 4.1 (Informal) For every H ∈ H, for G ′ ∈ G(n, p) with p as above, the
expected number of copies of H that obey the partition in G ′ is high. Specifically,
E[XH (G ′)] ≥ 2n

η
for some η > 0 that depends on δ and ε. Moreover, with high

probability over choice of G ′, XH (G ′) is not much lower than its expectation.

The proof of Lemma 4.1 is based on known techniques (first and second moment
methods). It uses in an essential way the fact that the graph H is sparse (average degree
barely above 2) and does not have many vertices (these properties hold by definition of
the class H). See more details in Section 4.1. Armed with Lemma 4.1, we first prove
the closeness of distributions on graphs without the planted independent set.

Lemma 4.2 Let p, k be as in Theorem 1.3. There exist universal constants β, η ∈
(0, 1), such that for large enough n, for every H ∈ H, the distribution GH (n, p) is
(β, η)-close to the distribution G(n, p).

Lemma 4.2 is proved by considering graphs G ′ ∼ G(n, p) that do contain a copy
of H that obeys the partition (Lemma 4.1 establishes that this is a typical case), and
comparing for each such graph the probability of it being generated by GH (n, p)with
the probability of it being generated byG(n, p). Conveniently, the ratio between these
probabilities is the same as the ratio between XH (G ′) and E[XH (G ′)]. By Lemma 4.1,
for most graphs, this ratio is close to 1. For more details, see Section 4.2.

Theorem 4.3 follows quite easily from Lemma 4.2. Consequently, ALG’s perfor-
mance on the distributionsGH (n, p, k) and AH (n, p, k) is similar. By our assumption,
ALG finds (with high probability) an independent set of size k in G̃ ∼ AH (n, p, k),
which now implies that it also does so for G̃H ∼ GH (n, p, k). But as argued above,
finding an independent set of size k in G̃H ∼ GH (n, p, k) implies that ALGRAND
finds an independent set of size k′ in H ∈ H, thus solving an NP-hard problem. Hence
the assumption that there is a polynomial time algorithm ALG that can find indepen-
dent sets of size k in G ∼ AḠ(n, p, k) implies that NP has randomized polynomial
time algorithms.

In the upcoming sectionsweprovide the details thatwere omitted fromour overview
of the proof of Theorem 1.3.

123

Theory of Computing Systems

4.1 Proof of Lemma 4.1

Recall that the randomvariable XH (G) denotes the number of induced copies of H that
obey the partition in the random graph G. The main technical content of Lemma 4.1
is handled by the following lemma.

Lemma 4.3 Let G ∼ G(n, p) be a random graph with p ∈ (0, 1). Let H be
a balanced graph on m vertices with average degree 2 < α < 3, and let

0 < ε < 1/7 be a constant. If ε > m2 p and ε2 > 2 m4

n2 pα (or equivalently,

m ≤ min[√ε/p, 2−1/4 pα/4√εn]), then for every β ∈ [0, 1)

P[XH (G) ≤ βE[XH (G)]] ≤ 4ε

(1 − β)2
.

Proof Let w(n) := np, so p = w(n)/n. Let YH (G) be a random variable counting
the number of sets S obeying the partition that have H as an edge induced subgraph
of G, but may have additional internal edges. By definition, XH (G) ≤ YH (G) and

E[YH (G)] =
(n

m

)m
p

αm
2 =

(n

m

)m ·
(

w(n)

n

) αm
2 =

(
w(n)α

m2nα−2

)m
2

.

A set S in YH (G) contributes to XH (G) if it has no internal edges beyond those of H .
This happens with probability

(1 − p)(
m
2)− αm

2 ≥ 1 −
(
m

2

)
w(n)

n
≥ 1 − m2w(n)

n
≥ 1 − ε,

as ε > m2 p, so

E[XH (G)] ≥ (1 − p)(
m
2)− αm

2 E[YH (G)] ≥ (1 − ε)E[YH (G)].

Note that if E[YH (G)2] ≤ (1 + ε)E[YH (G)]2, the inequality above gives us
E[XH (G)2] ≤ 1+ε

(1−ε)2
E[XH (G)]2. We will now compute E[YH (G)2]. Given the

occurrence of H , consider another potential occurrence H ′ that differs from it by
t vertices. Since H is balanced graph,

|E(G[H ′])| − |E(G[H ′ ∩ H])| ≥ α|V (G[H ′])|
2

− α|V (G[H ∩ H ′])|
2

≥ αt

2
.

Hence, the probability that H ′ is realized conditioned on H being realized is at most
p

αt
2 . The number of ways to choose t other vertices is

(m
t

) (n
m

)t (first choose t groups
out of m in the partition, then choose one vertex in each group). Hence, the expected
number of such occurrences is

μt ≤
(
m

t

) (n

m

)t
p

αt
2 =

(
m

t

) (
w(n)α

m2nα−2

) t
2

.

123

Theory of Computing Systems

It follows that μm ≤ E[YH (G)]. Moreover,

m/2∑

t=1

μt

E[YH (G)] ≤
m/2∑

t=1

(
m

t

) (
w(n)α

m2nα−2

) t−m
2 ≤ 2m

(
w(n)α

m2nα−2

)−m
4 =

=
(
16m2nα−2

w(n)α

)m
4

.

By assumption, ε2 > 2 m4

n2 pα where 0 < ε < 1/7, and substituting p = w(n)/n gives

w(n)α > 2m4nα−2 and w(n)α � m2nα−2. As a result, the expression above is o(1).
Furthermore,

m−1∑

t=m/2

μt

E[YH (G)] ≤
m−1∑

t=m/2

mm−t
(

w(n)α

m2nα−2

) t−m
2 =

m−1∑

t=m/2

(
w(n)α

m4nα−2

) t−m
2

.

When w(n)α > 2m4nα−2 the term t = m − 1 dominates, and hence the sum is at

most roughly
√

m4nα−2

w(n)α
. Since ε2 > 2m4nα−2

w(n)α
we have

m−1∑

t=1

μt

E[YH (G)] ≤
(
16m2nα−2

w(n)α

)m
4

+ (1 + o(1))

√
m4nα−2

w(n)α
≤

≤ o(1) + (1 + o(1))

√
m4nα−2

w(n)α
≤ ε

and
∑m

t=1 μt ≤ (1 + ε)E[YH (G)]. Hence can bound E[YH (G)2] ≤
E[YH (G)] ∑m

t=1 μt ≤ (1 + ε)E[YH (G)]2, and

E[XH (G)2] ≤ E[YH (G)2] ≤ (1 + ε)E[YH (G)]2 ≤
≤ 1 + ε

(1 − ε)2
E[XH (G)]2 ≤ (1 + 4ε)E[XH (G)]2.

The last inequality holds as ε < 1/7. We get that V[XH (G)] = E[XH (G)2] −
E[XH (G)]2 ≤ 4εE[XH (G)]2. By Chebyshev’s inequality we conclude that

P[XH (G) ≤ βE[XH (G)]] = P[XH (G) ≤ E[XH (G)] − (1 − β)E[XH (G)]] ≤
≤ V[XH (G)]

(1 − β)2E[XH (G)]2 ≤ 4ε

(1 − β)2
,

as desired. �
Corollary 4.1 (Lemma 4.1 restated) For every constants 0 < δ < 1, 2 < α <

min(2
1−δ

, 3), 0 < ρ < min[1−δ
2 ,

2−α(1−δ)
4] and 0 < ε < 1/2 the following holds

123

Theory of Computing Systems

for large enough n. Let G ∼ G(n, p) be a random graph with p = nδ−1, and
let H be a balanced graph on m = nρ vertices and with average degree α. Then

E[XH (G)] n→∞−−−→ +∞, and for every β ∈ [0, 1)

P[XH (G) ≤ βE[XH (G)]] ≤ ε

(1 − β)2
.

Proof We first note that α < 2
1−δ

implies that 2 − α(1 − δ) > 0, and hence we can
take ρ > 0 in the above Corollary. The inequality ρ < (1−δ)/2 implies that for every
constant ε ∈ (0, 1

8), for large enough n,

m = nρ <

√
ε

nδ−1 =
√

ε

p

Likewise, ρ < (2 − α(1 − δ))/4 implies that for large enough n, for all ε ∈ (0, 1
8)

2m4 < ε2n2−α(1−δ) = ε2n2 pα

The above bounds on m satisfy the requirements of Lemma 4.3, with ε serving as ε

of the statement Lemma 4.3. Hence,

P[XH (G) ≤ βE[XH (G)]] ≤ 4ε

(1 − β)2
.

To show that E[XH (G)] n→∞−−−→ +∞, recall the notation w(n) = np and the
following bound from the proof of Lemma 4.3

E[XH (G)] ≥ (1 − ε)

(
w(n)α

m2nα−2

)m
2

.

As w(n) = nδ and m = nρ ,

w(n)α

m2nα−2 = n2−2ρ−α(1−δ).

The inequality ρ < (2 − α(1 − δ))/4 implies that 2 − 2ρ − α(1 − δ) > 2ρ. Hence,

E[XH (G)] ≥ (1 − ε)
(
n2−2ρ−α(1−δ)

)m
2 ≥ (1 − ε)nmρ n→∞−−−→ +∞.

Setting ε = 4ε finishes the proof. �

123

Theory of Computing Systems

4.2 Proofs of Lemma 4.2 and Theorem 4.3

We can give now the full statement of Lemma 4.2.

Lemma 4.4 (Lemma 4.2 restated) Let constants δ, α, ρ, ε be as in Corollary 4.1. The
following holds for large enough n. Let G ∼ G(n, p) be a random graph with p =
nδ−1, and let H be a balanced graph on m = nρ vertices and with average degree α.
For every constant β ∈ (0, 1), the distribution GH (n, p) is (β, ε/(1 − β)2)-close to
the distribution G(n, p).

Proof Fix H ∈ H. For an n vertex graph G, let p(G) denote the probability that a
random sample from G(n, p) gives G, and let pH (G) denote the probability that a
random sample from GH (n, p) gives G. Consider pH (G). Out of the

(n
m

)m options
to choose a subset M in GH (n, p), only XH (G) options are such that the subgraph
induced onM is H , so that the resulting graph could beG. Since H has average degree
α, it has exactly αm/2 edges. Note that

E[XH (G)] =
(n

m

)m
p

αm
2 (1 − p)(

m
2)− αm

2 .

Let e be the number of edges in G. Given that we chose a suitable M , the rest of the
edges (e − αm

2) of GH (n, p) should agree with G. It follows that

pH (G) = XH (G)
(n
m

)m pe−
αm
2 (1 − p)(

n
2)−((m2)+e− αm

2) =

= XH (G)
(n
m

)m
p

αm
2 (1 − p)(

m
2)− αm

2
pe(1 − p)(

n
2)−e =

= XH (G)

E[XH (G)] p
e(1 − p)(

n
2)−e = XH (G)

E[XH (G)] p(G).

By Corollary 4.1, for every β ∈ [0, 1),

P
G∼G(n,p)

[XH (G) ≤ βE[XH (G)]] ≤ ε

(1 − β)2
.

It follows that for every G with XH (G) ≥ βE[XH (G)] we have

pH (G) = XH (G)

E[XH (G)] p(G) ≥ βE[XH (G)]
E[XH (G)] p(G) = β p(G).

Therefore, by Corollary 4.1, for every β ∈ [0, 1), for at least 1− ε
(1−β)2

fraction of all
graphs G ∼ G(n, p) we will have pH (G) ≥ β p(G). �

We now restate and prove Theorem 4.3.

Theorem 4.4 (Theorem 4.3 restated) Let constants δ, α, ρ, ε be as in Corollary 4.1.
The following holds for large enough n. Let p = nδ−1, let cn1−δ log n ≤ k ≤ 2

3n where

123

Theory of Computing Systems

c is a sufficiently large constant, and let H be a balanced graph on m = nρ vertices
and with average degree α. For every constant β ∈ (0, 1), the distribution G̃H ∼
GH (n, p, k) generated by ALGRAND is (β, ε/(1 − β)2)-close to the distribution
G̃ ∼ AH (n, p, k) generated by the adversary.

Proof We will break the generations of G̃ ∼ AH (n, p, k) and G̃H ∼ GH (n, p, k)
into small steps. Recall that these generation processes use a parameter k′. For us (the
readers), k′ represents a conjectured value for the size of the maximum independent
set in the given graph H . However, for the generation algorithms, k′ is a parameter
with no special meaning, and they produce an output regardless of the true size of the
maximum independent set in H .

The graph G̃ ∼ AH (n, p, k) is created as follows:

1. Generate a graph G ∼ G(n, p).
2. Choose in G uniformly at random an induced copy of H that obeys the partition.

If there is no such induced copy this step is said to fail, and one invokes the default
(explained in item 4).

3. Plant uniformly at random an independent set of size k − k′ among the non-
neighbors of the chosen induced copy of H , giving the graph G̃. If this induced
copy has fewer than k − k′ non-neighbors, this step is said to fail, and one invokes
the default (explained in item 4).

4. If the default is invoked, plant at random an independent set of size k in G, giving
the graph G̃.

The generation of G̃H ∼ GH (n, p, k) by ALGRAND is identical to the above,
except that step 2 is replaced by the following:

– Plant in G uniformly at random an induced copy of H that obeys the partition,
giving the graph GH ∼ GH (n, p);

Graph G̃H is obtained from GH by planting an independent set in the exact same way
as described in steps 3 and 4.

Fixing some β > 0, call a graph G typical if the probability of generating G under
GH (n, p) is at least β times the probability of generating G under G(n, p). Observe
that if G ∼ G(n, p) is typical, then step 2 of the AH (n, p, k) process does not fail,
since there is at least one copy of H present in the graph.

Suppose that graph G is typical. Let pA denote the probability that G is generated
under G(n, p), and let pH denote the probability that G is generated under GH (n, p).
Then pH ≥ β pA. Now consider a set M of m vertices in G that obeys the partition
and on which the induced subgraph is H . We refer to such a set M as a feasible set.
Let pA,M denote the probability that the pair (G, M) is generated by the adversary,
in the sense that M is the m-vertex set containing the chosen random copy of H in
step 2 of the AH (n, p, k) process above. Similarly, let pH ,M denote the probability
that (G, M) is the pair generated by ALGRAND, by the end of its step 2. We will
show that pH ,M ≥ β pA,M . Let t denote the number of feasible sets in G. Then,
as the adversary chooses one such feasible set uniformly at random, we have that
pA,M = 1

t pA. So, to establish pH ,M ≥ β pA,M it remains to show that pH ,M = 1
t pH .

Observe that pH = ∑
M ′ pH ,M ′ , where M ′ ranges over the t feasible sets. Then, if for

123

Theory of Computing Systems

any two feasible choices of M , say, M1 and M2, it holds pH ,M1 = pH ,M2 , the equality
pH ,M = 1

t pH follows immediately. To prove pH ,M1 = pH ,M2 for feasible sets
M1, M2, we may think of the generation of (G, M) by ALGRAND as first choosing
M and planting a copy of H there, and then completing at random the rest of the graph
G. Both M1 and M2 have the exact same probability of being chosen by ALGRAND.
Likewise, both have the exact same probability of being completed to G, which is
precisely

p|E(G)|−|E(H)|(1 − p)(
n
2)−(m2)−|E(G)|.

Hence, pH ,M1 = pH ,M2 for every feasible M1 and M2, implying that pH ,M = 1
t pH ,

and consequently, pH ,M ≥ β pA,M .
As a result, when graph G is typical, for every feasible set M the probability to

generate (G, M) by ALGRAND is at least β times the probability to generate (G, M)

by the adversary. By Lemma 4.2, the probability of G ∼ G(n, p) being typical is at
least 1− ε

(1−β)2
. Hence the distribution DH over pairs (GH , MH) generated by step 2

of ALGRAND is (β, ε/(1 − β)2)-close to the distribution DA over pairs (G, M)

generated by step 2 of the adversary.
Now, given the pair (GH , MH) of the graph GH ∼ GH (n, p) and the vertex set

MH of the planted copy of H , the process of generating G̃H ∼ GH (n, p, k) from
(GH , MH) is identical to the process of generating G̃ ∼ AH (n, p, k) from the pair
(G, M) of the graph G ∼ G(n, p) and the vertex set M of the induced copy of H –
steps 3 and 4. But then, since the distribution (GH , MH) is (β, ε/(1−β)2)-close to the
distribution (G, M), we conclude that the distributionGH (n, p, k) is (β, ε/(1−β)2)-
close to the distribution AH (n, p, k). �

Together Theorem 4.3 and Proposition 4.1 give us the following Corollary.

Corollary 4.2 Let f be an arbitrary function that gets an n vertex graph as input and
outputs either 0 or 1. Let constants δ, α, ρ, ε be as in Corollary 4.1. The following
holds for large enough n. Let p = nδ−1, let cn1−δ log n ≤ k ≤ 2

3n where c is a
sufficiently large constant, and let H be a balanced graph on m = nρ vertices and
with average degree α. For every constant β ∈ (0, 1),

P
G̃H∼GH (n,p,k)

[
f (G̃H) = 1

]
≥ β

(
P

G̃∼AH (n,p,k)

[
f (G̃) = 1

]
− ε

(1 − β)2

)
.

4.3 Proof of Theorem 1.3

To prove Theorem 1.3 we shall use Theorem 4.2 together with a few relatively simple
lemmas. Lemma 4.5 implies that the probability that GH (n, p, k) fails to produce an
output graph is negligible. (For AH (n, p, k), the same is implied by the combination
of Lemma 4.5 and Theorem 4.3.)

Lemma 4.5 Let δ ∈ (0, 1) and 0 < ρ < (1 − δ)/2. Let G ∼ G(n, p) be a random
graph with p = nδ−1. For every set S of nρ vertices of G the size of the common
non-neighborhood of S is at least n− 2nδ+ρ with probability at least 1− exp(− 1

4n
δ).

123

Theory of Computing Systems

Proof We clearly have ρ + δ < 1. By Chernoff bound, the maximum degree of G is at
most 2nδ with probability at least 1−exp(− 1

4n
δ). Hence, any set S of nρ vertices has at

most 2nδ+ρ neighbors. Then, for any set S of this size the common non-neighborhood
of S has size at least n − 2nδ+ρ with probability at least 1 − exp(− 1

4n
δ). �

Recall that given graph H with independent set of size k′, the algorithmALGRAND
uses it to generate two random graphs. First, it creates GH ∼ GH (n, p) by planting
in G ∼ G(n, p) a random copy of H that obeys the partition. We denote by M the
set of vertices of G on which H is planted. Second, it generates G̃H ∼ GH (n, p, k)
by planting a random independent set I ′ of size k − k′ within the non-neighbors of
the planted copy of H . The following lemmas establish that with high probability the
graph G̃H has no independent set that has more than k−k′ vertices outside the induced
copy of H , implying that the maximum independent set in G̃H is a combination of
the planted I ′ and the original independent set of size k′ in H . In Lemma 4.6 we show
that with extremely high probability, there is no independent set of size k−k′

2 in G. In

Lemma 4.7 we show that with high probability, any subset Q of size t ≤ k−k′
2 outside

of both H and independent set I ′ has at least t + 1 neighbors in I ′, implying that
I ′ is the maximum independent set in GH [V \ M] (vertices outside of I ′ will have
too many neighbors in I ′, so combining them with I ′ will not increase the size of the
independent set beyond k − k′).

Lemma 4.6 Let p = nδ−1 and k − k′ ≥ 4n1−δ log n. With probability at least 1 −
exp(− 1

2n
1−δ log2 n), there is no independent set of size k−k′

2 in G ∼ G(n, p).

Proof By first moment method the probability that there exists an independent set of
size t in G is at most

(
n

t

)
(1 − p)

t(t−1)
2 ≤ exp

(
t log n + t − t log t − t(t − 1)

2
nδ−1

)
=

= exp

(
log n + 1 − log t − t − 1

2
nδ−1

)t

,

which for t ≥ k−k′
2 ≥ 2n1−δ log n is at most exp(− 1

2n
1−δ log2 n)

n→∞−−−→ 0. �
Lemma 4.7 Let p = nδ−1 and k − k′ ≥ 6n1−δ log n. Consider the graph GH ∼
GH (n, p) (with M denoting the set of vertices on which H is planted), and let W ⊆
V \ M be the non-neighbors of the planted copy of H. Let I ′ be a random subset of
W of size k − k′. For every integer t satisfying 1 ≤ t ≤ k−k′

2 , with probability at least
1− 2/n every subset Q ⊂ V \ (M ∪ I ′) = W \ I ′ of t vertices of graph GH [V \ M]
has at least t + 1 neighbors in I ′.

Proof To prove this, view the process of generating G̃H in a following way. Initially,
we have the graph H (on the set M of m vertices) and n − m isolated vertices. Then,
for every pair of vertices u, v where u ∈ M and v ∈ V \ M , draw an edge (u, v) with

123

Theory of Computing Systems

probability p. By doing so, we determine the set W ⊆ V \ M of vertices that have
no neighbors in H . Select a random subset I ′ ⊂ W of size k − k′. For every pair of
vertices from V \ M , if at least one of them does not belong to I ′, draw an edge with
probability p.

There are at most
(n
t

) ≤ nt possible choices for the set Q. There are at most
(k−k′

t

) ≤ kt ≤ nt possible choices for the set Y of at most t neighbors of Q within I ′.
The probability that Q has no neighbors in I ′\Y is (1−p)t(k−k′−t) ≤ (1−p)t(k−k′)/2 ≤
n−3t . By a union bound the probability that some subset Q ⊂ V \ (M ∪ I ′) of size
t has at most t neighbors in I ′ is at most n−t . The probability of this happening for

some value t ≤ k−k′
2 is at most

∑(k−k′)/2
t=1 n−t ≤ 2

n , as desired. �
Combining the above lemmas we have the following Corollary.

Corollary 4.3 Let p = nδ−1 and 6n1−δ log n ≤ k − k′ ≤ 2n
3 . Then with probability

at least 1 − 4/n over the choice of graph G ∼ GH (n, p, k), every independent set of
size k in G contains at least k′ vertices in the planted copy of H.

Proof There are three events that might cause the Corollary to fail.

– GH (n, p, k) fails to produce an output. By Lemma 4.5 and the upper bound on k,
the probability of this event is smaller than 1

n .

– Even before planting I ′, there is an independent set larger than k−k′
2 inGH [V \M].

By Lemma 4.6 the probability of this event is smaller than 1
n .

– After planting I ′, one can obtain an independent set larger than I ′ in GH [V \ M]
by combining an independent set Q ⊂ V \ (M ∪ I ′) with some of the vertices of
I ′. As we already assume that Lemma 4.6 holds, Q can be of size at most k−k′

2 .
Lemma 4.7 then implies that the probability of this event is at most 2

n .

The sum of the above three failure probabilities is at most 4
n . �

Now we restate and prove Theorem 1.3.

Theorem 4.5 (Theorem 1.3 restated) For p = nδ−1 with 0 < δ < 1, 0 < γ < 1, and
6n1−δ log n ≤ k ≤ 2

3n the following holds. There is no polynomial time algorithm that
has probability at least γ of finding an independent set of size k in G ∼ AḠ(n, p, k),
unless NP has randomized polynomial time algorithms (NP=RP).

Proof Suppose for the sake of contradiction that algorithm ALG has probability at
least γ of finding an independent set of size k in the setting of the Theorem. Choose
2 < α < min[2

1−δ
, 3] and 0 < ρ < min[1−δ

2 ,
2−α(1−δ)

4]. Let H be the class of
balanced graphs of average degree α on m = nρ vertices. By Theorem 4.2, given
a graph H ∈ H and a parameter k′, it is NP-hard to determine whether H has an
independent set of size k′. We now show how ALG can be leveraged to design a
randomized polynomial time algorithm that solves this NP-hard problem with high
probability.

123

Theory of Computing Systems

Repeat the following procedure 5 log n
γ

times.

– Sample a graph G ∼ GH (n, p, k).
– Run ALG on G. If ALG returns an independent set of size k that has at least k′
vertices in the planted copy of H , then answer yes (H has an independent set of
size k′) and terminate.

If 5 log n
γ

iterations are completed without answering yes, then answer no (H prob-
ably does not have an independent set of size k′).

Clearly, the above algorithm runs in random polynomial time. Moreover, if it
answers yes then its answer is correct, because it actually finds an independent set
of size k′ in H . It remains to show that if H has an independent set of size k′, the
probability of failing to give a yes answer is small.

We now lower bound the probability that a single run of ALG on G ∼ GH (n, p, k)
fails to output yes. Recall that ALG succeeds (finds an independent set of size k) with
probability at least γ over graphs with adversarially planted independent sets, and in
particular, over the distribution AH (n, p, k).

Choose ε = γ
9 and β = 1

3 . Our choices of α, ρ, ε and m = nρ satisfy the require-
ments of Corollary 4.1, and hence we can apply Corollary 4.2. In Corollary 4.2
use the function f that has value 1 if ALG succeeds on G. It follows from Corol-
lary 4.2 that ALG succeeds with probability at least β(γ − ε

(1−β)2
) = γ

4 over graphs

G ∼ GH (n, p, k). Corollary 4.3 implies that there is probability at most 4
n that there

is an independent set of size k in G that does not contain k′ vertices in the induced
copy of H . Hence a single iteration returns yes with probability at least γ

4 − 4
n ≥ γ

5
(for sufficiently large n).

Finally, as we have 5 log n
γ

iterations, the probability that none of the iterations finds

an independent set of size k is at most (1 − γ
5)

5 log n
γ � 1

n . �

5 Discussion

Our results show that for some ranges of parameters there are polynomial time algo-
rithms that find the maximum independent set in G ∼ AḠ(n, p, k), whereas for other
ranges of parameters the problem is NP-hard (under randomized reductions).

An interesting range of parameters that remains open is that of p = d
n for some

large constant d. The case of a random planted independent set of size
√

c
d n (for

some sufficiently large constant c > 0 independent of d) was addressed in [10].
In such sparse graphs, the planted independent set is unlikely to be the maximum
independent set. The main result in [10] is a polynomial time algorithm that with high
probability finds themaximum independent set in that range of parameters. It would be
interesting to see whether the positive results extend to the case of adversarial planted
independent set. We remark that neither Theorem 1.1 nor Theorem 1.3 apply in this
range of parameters.

123

Theory of Computing Systems

Appendix

AMaximum Independent Set in Balanced Graphs

In this section we restate and prove Theorem 4.2.

Theorem A.1 (Theorem 4.2 restated) For any 0 < η ≤ 1, determining the size of the
maximum independent set in a balanced graph with average degree 2 < α < 2+ η is
NP-hard.

Proof It is well known that given a parameter k and a 3-regular graph H , determining
whether H has an independent set of size k is NP-hard. For simplicity of upcoming
notation, let 2n denote the number of vertices in H . Given a positive integer parameter
t , we describe a polynomial time reduction R such that given a 3-regular graph H it
holds that:

– R(H) is a balanced graph with average degree 2 + 1
3t+1 .

– R(H) has an independent set of size k + 3nt if and only if H has an independent
set of size t .

By choosing t > 1
3η−6 , the theorem is proved.

Let H be a 3-regular graph on 2n vertices. The graphR(H) is obtained from H by
replacing every edge (u, v) of H by a path with 2t intermediate vertices that connects
between u and v. There are 3n edges in H , so by doing so we add 2t · 3n vertices of
degree 2. The average degree of the resulting graphR(H) is

α = 2t · 3n · 2 + 2n · 3
2t · 3n + 2n

= 6t + 3

3t + 1
= 2 + 1

3t + 1

as desired.
To see that the graphR(H) is balanced, consider a subset of vertices S∗ ⊆ R(H),

and let α∗ > 2 denote the average degree of the induced subgraphR(H)[S∗]. W.l.o.g.,
we can assume thatR(H)[S∗]hasminimumdegree at least 2 (because ifR(H)[S∗]has
a vertex of degree at most 1, removing it would result in a subgraph of higher average
degree). Let V3 be the set of vertices of degree 3 inR(H)[S∗]. All remaining vertices
of R(H)[S∗] have degree 2. As no two degree 3 vertices in R(H) are neighbors,
R(H)[S∗] is composed of degree 3 vertices, and non-empty disjoint paths connecting
between them. As no path connecting two degree 3 vertices inR(H) has fewer than 2t
vertices (it may have more than 2t vertices, if it goes through original vertices of H),
the number of degree 2 vertices inR(H)[S∗] is at least 3|V3|2 ·2t . Hence α∗ ≤ 2+ 1

3t+1 ,
as desired.

Every independent set I of size k in H gives rise to an independent set of size
k + 3nt inR(H), because inR(H) we can take the vertices of I and t vertices from
each of the 3n length t paths (at least one of the two end vertices of each path is not
adjacent to a vertex in I). Likewise, every independent set of size k + 3nt in R(H)

gives rise to an independent set of size k in R(H). Note that I contains at most t
vertices from any single path of R(H), and moreover, can be assumed to contain
exactly t vertices from any single path of R(H) (if I contains fewer than t vertices

123

Theory of Computing Systems

from the path connecting u and v, then by taking all even vertices of the path one gains
a vertex, and this compensates for the at most one vertex that is lost from I due to the
possible need to remove v from I). As I contains 3nt path vertices, its remaining k
vertices are from H . Moreover, they form an independent set in H (no two vertices u
and v adjacent in H can be in this set, because then the path connecting them inR(H)

cannot contribute t vertices to I). �

B Probabilistic bound

In this section we prove Theorem 2.7.
Let c ∈ (0, 1) and C > 0 be arbitrary constants. Let G ∼ G(n, p), G = (V , E),

where p = w(n)/n for log4 n � w(n) < cn, and let k = Cw(n)1/2. Let K ⊂ V
be arbitrary, |K | = k. We number the vertices of G so that V = [n], K = [k] and
V \ K = [n] \ [k]. For k + 1 ≤ i ≤ n let Xi be a random variable equal to the number
of edges from i to vertices in K . It is clear that Xi ∼ Bin(k, p), so E[Xi] = kp and
the variance V[Xi] = E[(Xi − kp)2] = kp(1 − p). Since for i �= j , Xi and X j are
independent,

V

[
n∑

i=k+1

Xi

]
=

n∑

i=k+1

V[Xi] = (n − k)kp(1 − p) = E

[
n∑

i=k+1

(Xi − kp)2
]

.

Our goal is to show that the sum
∑n

i=k+1 (Xi − kp)2 does not exceed its mean too
much. TheoremB.1 is a restatement of Theorem2.7, with somewhat different notation.

Theorem B.1 With probability at least 1 − exp (−2k log n),

n∑

i=k+1

(Xi − kp)2 ≤ (n − k)kp(1 − p) + o(nkp(1 − p))

for every possible choice of the set K ⊂ V .

We prove Theorem B.1 in several steps. LetUi = (Xi − kp)2,E[Ui] = kp(1− p).
We need to prove that the value

∑n
i=k+1Ui doesn’t deviate from its mean, (n −

k)kp(1 − p), too much. However, the maximum possible value of Ui is k2(1 − p)2,
which can be close to k2.

Partition all vertices k + 1 ≤ i ≤ n into R groups, defined by the following rules.
For r ≤ R−1 the vertex i belongs to the group Mr , if k2

2r ≤ Ui ≤ k2

2r−1 . IfUi is at least

k2 ·2−r , then Xi differs from kp by at least k2−r/2, and ifUi is at most k2 ·2−r+1, then
Xi differs from kp by at most k2−(r−1)/2. This means that if i ∈ Mr for r ≤ R − 1,
either

k
(
p + 2−r/2

)
≤ Xi ≤ k

(
p+2−(r−1)/2

)
or k

(
p−2−(r−1)/2

)
≤ Xi ≤k

(
p−2−r/2

)

123

Theory of Computing Systems

must hold. For r = R the group MR contains all the remaining vertices, those i for
which Ui ≤ k2

2R−1 . The exact value of R will be determined later, and will depend on
w(n) = np.

We can rewrite the sum above based on the group partitioning:

n∑

i=k+1

(Xi − kp)2 =
n∑

i=k+1

Ui =
R∑

r=1

∑

i∈Mr

Ui ≤
∑

i∈MR

Ui +
R−1∑

r=1

|Mr | · k2

2r−1

where the last inequality follows from the definition of Mr . We will show that∑
i∈MR

Ui ≤ (n − k)kp(1− p) + o(nkp(1− p)), and that
∑R

r=1 |Mr | · k22−(r−1) ≤
o(nkp(1 − p)), with high probability.

We start with the second sum. Since k = O(
√
np) and 1− p = O(1), it suffices to

show that for any choice of K ,
∑R−1

r=1
|Mr |
2r−1 = o (k). Note that the failure probability

exp
(−
(nw(n)−1/4)

)
in Lemma B.1 is negligible compared to the error probability

exp (−2k log n) allowed in Theorem B.1 (for our choice of w(n) and k).

Lemma B.1 Denote R̃ := logCn − log(w(n)1/2 log n). For all r ≤ R̃ − 1,

|Mr | ≤ 2r+2w(n)1/4

with probability at least 1 − exp
(−
(nw(n)−1/4)

)
, for every choice of K .

Proof Let Mr = M ′
r M ′′

r , where i ∈ M ′
r if k

(
p + 2−(r−1)/2

) ≥ Xi ≥ k
(
p + 2−r/2

)

and i ∈ M ′′
r if k

(
p − 2−(r−1)/2

) ≤ Xi ≤ k
(
p − 2−r/2

)
. Fixing |Mr | = mr is

equivalent to fixing |M ′
r | = m′

r and |M ′′
r | = m′′

r wherem
′
r +m′′

r = mr . For the sake of
simplicity, m′′

r = 0 and m′
r = mr , so M ′

r = Mr . Let Ir be a fixed set of vertices from
[n] \ [k], of size mr . We are going to bound the probability P[Mr = Ir]. Consider a
random bipartite subgraph B(Ir , K , p), where one part is Ir and another part is K .
Let er be the number of edges in B(Ir , K , p), it is clear that E[er] = mrkp. Since
Mr = M ′

r , by definition of M
′
r , er ≥ mrk

(
p + 2−r/2

)
. So, the event Mr = Ir implies

in the event er ≥ m′
r k

(
p + 2−r/2

)
, hence by Chernoff bound

P[Mr = Ir]≤P
[
er ≥ mrk

(
p+2−r/2

)]
≤2 exp

(
− (mrk)2

2r+1mrkp

)
≤

≤2 exp

(
− Cmrn

2r+1w(n)1/2

)
.

There are
(n−k
mr

)
possible choices of the set Ir , so by union bound P[|Mr | = mr] is at

most
(
n − k

mr

)
P[Mr = Ir] ≤

≤ exp (mr log(n − k) + mr − mr logmr) · 2 exp
(

− Cmrn

2r+1w(n)1/2

)
≤

123

Theory of Computing Systems

≤ 2 exp

(
mr ·

(
log n+1−logmr − Cn

2r+1w(n)1/2

))
.

Observe that when r ≤ R̃ − 1 = logCn − log(w(n)1/2 log n) − 1 the value under the
exponent, log n + 1 − logmr − Cn

2r+1w(n)1/2
, is at most 1 − logmr , which approaches

−∞ as long as mr → +∞.
Let’s find the largest possible value of mr for which the event |Mr | = mr might

happen at least for one choice of K , at least for some value of r ≤ R̃ − 1. There are
exactly

(n
k

)
possible choices of the set K and the total of R̃ − 1 groups, so by union

bound we need to find the biggest mr for which (R̃ − 1)
(n
k

)
P[|Mr | = mr] does not

converge to zero. Since
(n
k

) ≤ (ne
k

)k ≤ exp(2k log n) and R̃ − 1 ≤ exp(log logCn), it
is enough to find the smallest mr for which

3k log n ≤ O(w(n)1/2 log n) � mr ·
(

n

2r+1w(n)1/2
+ logmr − log n − 1

)
.

Suppose that mr > 2r+1w(n)1/4 for r ≤ R̃ − 1. For r = 1, mr > 4w(n)1/4, and:

mr ·
(

n

2r+1w(n)1/2
+ logmr − log n − 1

)
>

> 4w(n)1/4
(

n

4w(n)1/2
+ 1

4
log logw(n) − log n

)
=

= n

w(n)1/4
+w(n)1/4 log logw(n)−4w(n)1/4 log n�w(n)1/2 log n,

as w(n) = O(n), so n
w(n)1/4

=
(n3/4). For r = R̃ − 1 = logCn − log(w(n)1/2

log n) − 1, mr > w(n)1/4 · Cn
w(n)1/2 log n

= Cn
w(n)1/4 log n

and (by the bound above)

mr ·
(

n

2r+1w(n)1/2
+ logmr − log n − 1

)
> mr (logmr − 1) >

>
Cn

w(n)1/4 log n
·
(
logCn− 1

4
logw(n)−log log n−1

)
�w(n)1/2 log n,

since w(n)=O(n) and w(n) < n, so n
w(n)1/4 log n

· (log n − 1
4 logw(n)−log log n−1

)

=
(n3/4). Since 2r+1w(n)1/4 is monotone and continuous in r , we get that for all
1 ≤ r ≤ R̃ − 1 if mr > 2r+1w(n)1/4 then

k log n+k−k log k+log log n≤3k log n�mr ·
(

n

2r+1w(n)1/2
+logmr − log n−1

)
,

which means that (R̃ − 1)
(n
k

)
P[|Mr | = mr] ≤ exp

(−
(nw(n)−1/4)
) n→∞−−−→ 0.

In other words, the probability that there exists such choice of k-subset and such

123

Theory of Computing Systems

1 ≤ r ≤ R̃ − 1 that for the corresponding set of vertices Mr we have |Mr | = |M ′
r | >

2r+1w(n)1/4 tends to zero.
Earlier we assumed that Mr = M ′

r , but in general Mr = M ′
r M ′′

r , and mr =
m′

r + m′′
r . The opposite case is Mr = M ′′

r , and the analysis transfers without any
changes, and |M ′′

r | ≤ 2r+1w(n)1/4 with probability at least 1−exp
(−
(nw(n)−1/4)

)
.

Hence, with probability of at least 1− exp
(−
(nw(n)−1/4)

)
for every choice of K

and every 1 ≤ r ≤ R̃ − 1 we have |Mr | = |M ′
r | + |M ′′

r | ≤ 2r+2w(n)1/4. �

Since w(n) � log4 n, log n � w(n)1/4, and we set the group number R = R̃ =
logCn − log(w(n)1/2 log n). By Lemma B.1, with probability at least 1 − exp

(−

(nw(n)−1/4)

)
,

R−1∑

r=1

|Mr |
2r−1 ≤

R−1∑

r=1

2r+2w(n)1/4

2r−1 ≤ 8R · w(n)1/4 = O(log n · w(n)1/4) = o
(
w(n)1/2

)

= o (k) .

Now we move to the first sum, for i ∈ MR with R = R̃ we have Ui ≤ k2

2R−1 =
2 k2w(n)1/2 log n

Cn = 2 k·Cw(n) log n
Cn = 2kp log n.We need to prove thatwith extremely high

probability for any choice of k-subset
∑

i∈MR
Ui ≤ (n−k)kp(1− p)+o(nkp(1− p)).

We will do this by applying the Bernstein inequality [3].

Theorem B.2 (Simple form of Bernstein inequality) Let Z1, . . . , Zn be independent
random variables,E[Zi] = 0 for 1 ≤ i ≤ n. Suppose that |Zi | ≤ L for all 1 ≤ i ≤ n.
Then, for all t > 0,

P

[
n∑

i=1

Zi > t

]
≤ 2 exp

(
−

1
2 t

2

∑n
i=1E[Z2

i] + 1
3 Lt

)
.

By definition of MR ,
∑

i∈MR
Ui ≤ ∑n

i=k+1 min (Ui , 2kp log n). It is clear
that for all i ∈ MR , E[min(Ui , 2kp log n)] ≤ E[Ui] = kp. Also, since 0 ≤
min(Ui , 2kp log n) ≤ Ui almost surely,

V[min(Ui , 2kp log n)] ≤ E[min(Ui , 2kp log n)2] ≤ E[U 2
i] = E[(Xi −kp)4] ≤ k2 p.

The last inequality holds because E[(Xi − kp)4] is the fourth central moment of a
binomial random variable, and as such its value is known to be kp(1 − p)(1 + (3k −
6)p(1 − p)) ≤ kp(1 − p)(1 + 3k−6

4).
Let Zi := min(Ui , 2kp log n) −E[min(Ui , 2kp log n)] for all k + 1 ≤ i ≤ n, then

E[Zi] = 0 and E[Z2
i] = V[min(Ui , 2kp log n)] ≤ k2 p. Moreover, |Zi | ≤ 2kp log n.

123

Theory of Computing Systems

Recall that w(n) � log4 n, let γ (n) :=
√

w(n)1/2

13C log n . By Theorem B.2:

P

[
n∑

i=k+1

min (Ui , 2kp log n) > (n − k)kp(1 − p) + (n − k)kp(1 − p)

γ (n)

]
=

= P

[
n∑

i=k+1

min (Ui , 2kp log n) >

n∑

i=k+1

E[Ui] + (n − k)kp(1 − p)

γ (n)

]
≤

≤P

[
n∑

i=k+1

min (Ui , 2kp log n)>

n∑

i=k+1

E[min(Ui , 2kp log n)]+ (n−k)kp(1− p)

γ (n)

]
=

= P

[
n∑

i=k+1

Zi >
(n − k)kp(1 − p)

γ (n)

]
≤

≤ 2 exp

⎛

⎝− (n − k)2k2 p2(1 − p)2

2γ (n)2
(∑n

i=k+1E[Z2
i] + kp log n · (n−k)kp(1−p)

3γ (n)

)

⎞

⎠ ≤

≤ 2 exp

⎛

⎝− (n − k)2k2 p2

2γ (n)2
(
(n − k)k2 p + (n − k)k2 p2 log n

3γ (n)

)

⎞

⎠ =

= 2 exp

⎛

⎝− (n − k)p

2γ (n)2
(
1 + p log n

3γ (n)

)

⎞

⎠ .

As p log n
3γ (n)

= O
(

w(n)3/4 log3/2

n

)
= o(1), (n − k)p � w(n), γ (n) =

√
w(n)1/2

13C log n , and

k = Cw(n)1/2, we have:

(n − k)p

2γ (n)2
(
1 + p log n

3γ (n)

) ≥ (n − k)p

4γ (n)2
� 13C log n · w(n)

4
√

w(n)
> 3k log n.

There are
(n
k

) ≤ exp(k log n) choices of k vertices, so the probability that at least
for one choice of adversarial k-subset

∑n
i=k+1 min(Ui , 2kp log n) > (n − k)kp(1 −

p) + (n−k)kp(1−p)
γ (n)

is at most

(
n

k

)
P

[
n∑

i=k+1

min (Ui , 2kp log n) > (n − k)kp(1 − p) + (n − k)kp(1 − p)

γ (n)

]
≤

≤
(
n

k

)
· 2 exp(−3k log n) < exp(−2k log n).

123

Theory of Computing Systems

Thus, with probability at least 1 − exp(−2k log n), for every choice of the k-subset
we get

n∑

i=k+1

min (Ui , 2kp log n) ≤ (1 + o(1))(n − k)kp(1 − p),

which finishes the proof of Theorem B.1.

Acknowledgements We are very grateful to Danila Kutenin for suggesting using the Bernstein inequality
in Theorem B.1 to significantly simplify the proof.

Funding Open access funding provided by Weizmann Institute of Science.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alon, N., Krivelevich, M., Sudakov, B.: Finding a large hidden clique in a random graph. Random
Struct. Algorithms 13(3–4), 457–466 (1998)

2. Alon,N.,Krivelevich,M.,Vu,V.H.:On the concentration of eigenvalues of randomsymmetricmatrices.
Isr. J. Math. 131, 259–267 (2002). https://doi.org/10.1007/BF02785860

3. Bernstein, S.: Probability theory (In Russian), 4 edn. (1946)
4. David, R., Feige, U.: On the effect of randomness on planted 3-coloring models. In: Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pp. 77–90
(2016)

5. Dekel, Y., Gurel-Gurevich, O., Peres, Y.: Finding hidden cliques in linear time with high probability.
Combinatorics, Probability & Computing 23(1), 29–49 (2014)

6. Deshpande, Y., Montanari, A.: Finding hidden cliques of size
√
N/e in nearly linear time. Found.

Comput. Math. 15(4), 1069–1128 (2015)
7. Feige, U.: Introduction to semi-random models. In: Roughgarden, T. (ed.) Beyond the Worst-Case

Analysis of Algorithms. Cambridge University Press (2020). https://doi.org/10.1017/9781108637435
8. Feige, U., Krauthgamer, R.: Finding and certifying a large hidden clique in a semirandom graph.

Random Struct. Algorithms 16(2), 195–208 (2000)
9. Feige, U., Krauthgamer, R.: The probable value of the Lovász-Schrijver relaxations for maximum

independent set. SIAM J. Comput. 32(2), 345–370 (2003)
10. Feige, U., Ofek, E.: Finding a maximum independent set in a sparse random graph. SIAM J. Discrete

Math. 22(2), 693–718 (2008)
11. Feige, U., Ron, D.: Finding hidden cliques in linear time. In: 21st International Meeting on Probabilis-

tic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA’10), pp. 189–204
(2010)

12. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2 edn. Cambridge University Press (2012). https://doi.
org/10.1017/9781139020411

13. Jerrum, M.: Large cliques elude the metropolis process. Random Struct. Algorithms 3(4), 347–360
(1992)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02785860
https://doi.org/10.1017/9781108637435
https://doi.org/10.1017/9781139020411
https://doi.org/10.1017/9781139020411

Theory of Computing Systems

14. Juhász, F.: The asymptotic behaviour of Lovász’ ϑ function for random graphs. Combinatorica 2,
153–155 (1982)

15. Kucera, L.: Expected complexity of graph partitioning problems. Discrete Appl. Math. 57, 193–212
(1995)

16. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1), 1–7 (1979)
17. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: SWAT, pp. 260–272

(2004). https://doi.org/10.1007/978-3-540-27810-8_23
18. Meka, R., Potechin, A., Wigderson, A.: Sum-of-squares lower bounds for planted clique. In: Proceed-

ings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pp. 87–96
(2015). https://doi.org/10.1145/2746539.2746600

19. Vu, V.H.: Spectral norm of random matrices. Combinatorica 27, 721–736 (2007). https://doi.org/10.
1007/s00493-007-2190-z

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-540-27810-8_23
https://doi.org/10.1145/2746539.2746600
https://doi.org/10.1007/s00493-007-2190-z
https://doi.org/10.1007/s00493-007-2190-z

	How to Hide a Clique?
	Abstract
	1 Introduction
	1.1 The Random Planted Clique Model
	1.2 The Adversarial Planted Clique Model
	1.3 Our Results
	1.4 Related Work

	2 Finding Cliques Using the Theta Function
	2.1 Bounding the Theta Function
	2.2 Main Algorithm

	3 Finding Cliques by Enumeration
	4 Proving NP-hardness Results
	4.1 Proof of Lemma 4.1
	4.2 Proofs of Lemma 4.2 and Theorem 4.3
	4.3 Proof of Theorem 1.3

	5 Discussion
	Appendix
	A Maximum Independent Set in Balanced Graphs
	B Probabilistic bound

	Acknowledgements
	References

