
Theory of Computing Systems
https://doi.org/10.1007/s00224-024-10164-0

Imperative Process Algebra andModels of Parallel
Computation

Cornelis A. Middelburg1

Accepted: 18 January 2024
© The Author(s) 2024

Abstract
Studies of issues related to computability and computational complexity involve the
use of a model of computation. Central in such a model are computational processes.
Processes of this kind can be described using an imperative process algebra based on
ACP (Algebra of Communicating Processes). In this paper, it is investigated whether
the imperative process algebra concerned can play a role in the field of models of
computation. It is demonstrated that the process algebra is suitable to describe in a
mathematically precise way models of computation corresponding to existing models
based on sequential, asynchronous parallel, and synchronous parallel random access
machines as well as time and work complexity measures for those models.

Keywords Imperative process algebra · Computational process · Parallel random
access machine · Parallel time complexity · Parallel computation thesis

1 Introduction

Central in amodel of computation are computational processes, i.e. processes that solve
a computational problem. A computational process is applied to a data environment
that consists of data organized and accessible in a specific way. Well-known examples
of data environments are the tapes found in Turing machines and the memories found
in random access machines. The application of a computational process to a data
environment yields another data environment. The data environment to which the
process is applied represents an instance of the computational problem that is solved
by the process and the data environment yielded by the application represents the
solution of that instance. A computational process is divided into simple steps, each of

B Cornelis A. Middelburg
C.A.Middelburg@uva.nl; https://staff.fnwi.uva.nl/c.a.middelburg/

1 Informatics Institute, Faculty of Science, University of Amsterdam, Science Park 900, 1098 XH
Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-024-10164-0&domain=pdf
https://orcid.org/0000-0002-8725-0197


Theory of Computing Systems

which depends on and has an impact on only a small portion of the data environment
to which the process is applied.

Abasic assumption in this paper is that amodel of computation is fully characterized
by: (a) a set of possible computational processes, (b) for each possible computational
process, a set of possible data environments, and (c) the effect of applying such pro-
cesses to such environments. The set of possible computational processes is usually
given indirectly, mostly by means of abstract machines that have a built-in program
that belongs to a set of possible programs which is such that the possible computa-
tional processes are exactly the processes that are produced by those machines when
they execute their built-in program. The abstract machines with their built-in programs
emphasize the mechanical nature of the possible computational processes. However,
in this way, details of how possible computational processes are produced become part
of the model of computation. To the best of my knowledge, all definitions that have
been givenwith respect to amodel of computation and all results that have been proved
with respect to a model of computation can do without reference to such details.

In [29], an extension ofACP (Algebra ofCommunicatingProcesses) [5] is presented
whose additional features include assignment actions to change data in the course of
a process, guarded commands to proceed at certain stages of a process in a way
that depends on changing data, and data parameterized actions to communicate data
between processes. The extension concerned is called ACPτ

ε -I.
The term imperative process algebra was coined in [13] for process algebras

like ACPτ
ε -I. Some examples of other imperative process algebras are VPLA [22],

IPAL [13], CSPσ [11], AWN [15], and the nameless process algebra proposed in [9].
In [29], it is discussed what qualities of ACPτ

ε -I distinguish it from imperative pro-
cess algebras such as the above-mentioned ones, how its distinguishing qualities are
achieved, and what its relevance is to the verification of properties of processes carried
out by contemporary computer-based systems. Moreover, that paper goes into one of
the application areas of ACPτ

ε -I, namely the area of information-flow security analysis.
The current paper studies whether ACPτ

ε -I can play a role in the field of models
of computation. The idea of this study originates from the experience that definitions
of models of computation and results about them in the scientific literature tend to
lack preciseness, in particular if it concerns models of parallel computation. The study
takes for granted the basic assumption about the characterization of models of com-
putation mentioned above. Moreover, it focuses on models of computation that are
intended for investigation of issues related to computability and computational com-
plexity. It does not consider models of computation geared to computation as it takes
place on concrete computers or computer networks of a certain kind. Such models are
left for follow-up studies. Outcomes of this study are among other things mathemati-
cally precise definitions of models of computation corresponding to models based on
sequential random access machines, asynchronous parallel random access machines,
and synchronous parallel random access machines.

This paper is organized as follows. First, a survey of the imperative process algebra
ACPτ

ε -I and its extension with recursion is given (Section 2). Next, it is explained
in this process algebra what it means that a given process computes a given func-
tion (Section 3). After that, a version of the sequential random access machine model
of computation is described in the setting introduced in the previous two sections

123



Theory of Computing Systems

(Section 4). Following that, an asynchronous parallel random access machine model
of computation and a synchronous parallel random access machine model of com-
putation are described in that setting as well (Sections 5 and 6, respectively). Then,
complexity measures for the models of computation presented in the previous three
sections are introduced (Section 7). Thereafter, the question whether the presented
synchronous parallel random access machine model of computation is a reasonable
model of computation is treated (Section 8). Finally, some concluding remarks are
made (Section 9).

Section 2 is an abridged version of [29]. Portions of Sections 2-4 of that paper have
been copied verbatim or slightly modified.

2 The Imperative Process Algebra ACP�
�-I

The imperative process algebra ACPτ
ε -I is an extension of ACPτ

ε , the version of ACP
with empty process and silent step constants that was first presented in [4, Section 5.3].
In this section, first a survey of ACPτ

ε is given and then ACPτ
ε -I is introduced as an

extension of ACPτ
ε . Moreover, recursion in the setting of ACPτ

ε -I is treated and some
relevant results about ACPτ

ε -I with recursion are presented.

2.1 ACP with Empty Process and Silent Step

The survey ofACPτ
ε given in this section is kept brief.Amore comprehensive treatment

of this process algebra can be found in [4, Section 5.3].
In ACPτ

ε , it is assumed that a fixed but arbitrary finite set A of basic actions, with
τ, δ, ε /∈ A, and a fixed but arbitrary commutative and associative communication
function γ : (A ∪ {τ, δ}) × (A ∪ {τ, δ}) → (A ∪ {τ, δ}), such that γ (τ, a) = δ and
γ (δ, a) = δ for all a ∈ A ∪ {τ, δ}, have been given. Basic actions are taken as atomic
processes. The function γ is regarded to give the result of simultaneously performing
any two basic actions for which this is possible, and to be δ otherwise. Henceforth,
we write Aτ for A ∪ {τ } and Aτδ for A ∪ {τ, δ}.

The algebraic theory ACPτ
ε has one sort: the sort P of processes. This sort is made

explicit to anticipate the need formany-sortedness later on. The algebraic theoryACPτ
ε

has the following constants and operators to build terms of sort P:

• a basic action constant a : P for each a ∈ A;
• a silent step constant τ : P;
• an inaction constant δ : P;
• an empty process constant ε : P;
• a binary alternative composition or choice operator + : P × P→ P;
• a binary sequential composition operator · : P × P→ P;
• a binary parallel composition or merge operator ‖ : P × P→ P;
• a binary left merge operator �� : P × P→ P;
• a binary communication merge operator | : P × P→ P;
• a unary encapsulation operator ∂H : P→ P for each H ⊆ A and for H = Aτ ;
• a unary abstraction operator τI : P→ P for each I ⊆ A.

123



Theory of Computing Systems

It is assumed that there is a countably infinite setX of variables of sortP, which contains
x , y and z. Terms are built as usual. Infix notation is used for the binary operators.
The following precedence conventions are used to reduce the need for parentheses:
the operator · binds stronger than all other binary operators and the operator + binds
weaker than all other binary operators.

The constants a (a ∈ A), τ , ε, and δ can be explained as follows:

• a denotes the process that first performs the observable action a and then terminates
successfully;

• τ denotes the process that first performs the unobservable action τ and then ter-
minates successfully;

• ε denotes the process that terminates successfully without performing any action;
• δ denotes the process that cannot do anything, it cannot even terminate successfully.

Let t and t ′ be closed ACPτ
ε terms denoting processes p and p′, respectively. Then

the operators +, ·, ‖, ∂H (H ⊆ A or H = Aτ ), and τI (I ⊆ A) can be explained as
follows:

• t + t ′ denotes the process that behaves as either p or p′;
• t · t ′ denotes the process that behaves as p and p′ in sequence;
• t ‖ t ′ denotes the process that behaves as p and p′ in parallel;
• ∂H (t) denotes the process that behaves as p, except that actions from H are blocked
from being performed;

• τI (t) denotes the process that behaves as p, except that actions from I are turned
into the unobservable action τ .

Here “behaves as p and p′ in parallel” means that (a) each time an action is performed,
either a next action of p is performed or a next action of p′ is performed or a next
action of p and a next action of p′ are performed synchronously and (b) successful
termination may take place at any time that both p and p′ can terminate successfully.

The operators �� and | are of an auxiliary nature. They make a finite axiomatization
of ACPτ

ε possible.
The axioms of ACPτ

ε are presented in Table 1. In this table, a, b, and α stand for
arbitrary members of Aτδ , H stands for an arbitrary subset of A or the set Aτ , and I
stands for an arbitrary subset ofA. So, CM3,CM7,D0–D4, T0–T4, andBE are actually
axiom schemas. In this paper, axiom schemas are usually referred to as axioms.

The term ∂Aτ(x) · ∂Aτ(y) occurring in axiom CM1E is needed to handle successful
termination in the presence of ε: it stands for the process that behaves the same as ε

if both x and y stand for a process that has the option to behave the same as ε and it
stands for the process that behaves the same as δ otherwise. In [4, Section 5.3], the
symbol

√
is used instead of ∂Aτ .

Notice that the equation α · δ = α would be derivable from the axioms of ACPτ
ε if

operators ∂H where H 
= Aτ and τ ∈ H were added to ACPτ
ε .

The notation
∑n

i=1 ti , where n ≥ 1, is used for right-nested alternative composi-
tions. For each n ∈ N

+,1 the term
∑n

i=1 ti is defined by induction on n as follows:
∑1

i=1 ti = t1 and
∑n+1

i=1 ti = t1 + ∑n
i=1 ti+1. In addition, the convention is used

1 We write N
+ for the set {n ∈ N | n ≥ 1} of positive natural numbers.

123



Theory of Computing Systems

Table 1 Axioms of ACPτ
ε

x + y = y + x A1

(x + y)+ z = x + (y + z) A2

x + x = x A3

(x + y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x + δ = x A6

δ · x = δ A7

x · ε = x A8

ε · x = x A9

x ‖ y = x �� y + y �� x +x | y + ∂Aτ(x) · ∂Aτ(y) CM1E

ε �� x = δ CM2E

α · x �� y = α · (x ‖ y) CM3

(x + y) �� z = x �� z + y �� z CM4

ε | x = δ CM5E

x | ε = δ CM6E

a · x | b · y = γ (a, b) · (x ‖ y) CM7

(x + y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

∂H (ε) = ε D0

∂H (α) = α if α /∈ H D1

∂H (α) = δ if α ∈ H D2

∂H (x + y) = ∂H (x)+ ∂H (y) D3

∂H (x · y) = ∂H (x) · ∂H (y) D4

τI (ε) = ε T0

τI (α) = α if α /∈ I T1

τI (α) = τ if α ∈ I T2

τI (x + y) = τI (x)+ τI (y) T3

τI (x · y) = τI (x) · τI (y) T4

α · (τ · (x + y)+ x) = α · (x + y) BE

that
∑0

i=1 ti = δ. Moreover, we write ∂a and τa , where a ∈ A, for ∂{a} and τ{a},
respectively.

2.2 Imperative ACP�
�-I

This section concerns ACPτ
ε -I, imperative ACPτ

ε . ACP
τ
ε -I extends ACP

τ
ε with features

to communicate data between processes, to change data involved in a process in the
course of the process, and to proceed at certain stages of a process in a way that
depends on the changing data. A more comprehensive treatment of this imperative
process algebra than that given in this section can be found in [29], the paper in which
ACPτ

ε -I was first presented.

123



Theory of Computing Systems

In ACPτ
ε -I, it is assumed that the following has been given with respect to data:

• a many-sorted signature 	D that includes:

– a sort D of data and a sort B of bits;
– constants of sort D and/or operators with result sort D;
– constants 0 and 1 of sort B and operators with result sort B;

• a minimal algebra D of the signature 	D in which the carrier of sort B has
cardinality 2 and the equation 0 = 1 does not hold.

The sort B is assumed to be given in order to make it possible for operations to serve
as predicates.

In ACPτ
ε -I, it is moreover assumed that a finite or countably infinite set V of flexible

variables has been given. A flexible variable is a variable whose value may change in
the course of a process. The term flexible variable is used for this kind of variables in
e.g. [26, 35].

We write D for the set of all closed terms over the signature 	D that are of sort D.
A flexible variable valuation is a function from V to D. We write VVal for the set

of all flexible variable valuations.
Flexible variable valuations are intended to provide the data values — which are

members of D’s carrier of sort D — assigned to flexible variables when an ACPτ
ε -I

term of sort D is evaluated. To fit better in an algebraic setting, they provide closed
terms from D that denote those data values instead.

Because D is a minimal algebra, for each sort S that is included in 	D, each
member of D’s carrier of sort S can be represented by a closed term over 	D that is
of sort S.

In the rest of this paper, for each sort S that is included in 	D, let ctS be a function
from D’s carrier of sort S to the set of all closed terms over 	D that are of sort S
such that, for each member d of D’s carrier of sort S, the term ctS(d) represents d.
We write d, where d is a member ofD’s carrier of sort S, for ctS(d) if it is clear from
the context that d stands for a closed term of sort S representing d.

Flexible variable valuations are used in Sections 4–6 to represent the data enviro-
ments referred to in Section 1.

Let V ⊆ V. Then a V -indexed data environment is a function from V toD’s carrier
of sortD. Letμ be a V -indexed data environment and ρ be a flexible variable valuation.
Then ρ represents μ if ρ(v) = ctD(μ(v)) for all v ∈ V .

Below, the sorts, constants and operators of ACPτ
ε -I are introduced. The operators

of ACPτ
ε -I include two variable-binding operators. The formation rules for ACPτ

ε -I
terms are the usual ones for the many-sorted case (see e.g. [34, 38]) and in addition
the following rule:

• if O is a variable-binding operator O : S1× . . .× Sn → S that binds a variable of
sort S′, t1, . . . , tn are terms of sorts S1, . . . , Sn , respectively, and X is a variable
of sort S′, then OX(t1, . . . , tn) is a term of sort S.

An extensive formal treatment of the phenomenon of variable-binding operators can
be found in [33].

ACPτ
ε -I has the following sorts: the sorts included in 	D, the sort C of conditions,

and the sort P of processes.

123



Theory of Computing Systems

For each sort S included in 	D other than D, ACPτ
ε -I has only the constants and

operators included in 	D to build terms of sort S.
ACPτ

ε -I has, in addition to the constants and operators included in 	D to build
terms of sorts D, the following constants to build terms of sort D:

• for each v ∈ V, the flexible variable constant v : D.
We write D for the set of all closed ACPτ

ε -I terms of sort D.
ACPτ

ε -I has the following constants and operators to build terms of sort C:

• a binary equality operator = : B× B→ C;
• a binary equality operator = : D× D→ C;2

• a truth constant t : C;
• a falsity constant f : C;
• a unary negation operator ¬ : C→ C;
• a binary conjunction operator ∧ : C× C→ C;
• a binary disjunction operator ∨ : C× C→ C;
• a binary implication operator⇒ : C× C→ C;
• a unary variable-binding universal quantification operator ∀ :C→ C that binds a
variable of sort D;

• a unary variable-binding existential quantification operator ∃ : C→ C that binds
a variable of sort D.

We write C for the set of all closed ACPτ
ε -I terms of sort C.

ACPτ
ε -I has, in addition to the constants and operators of ACPτ

ε , the following
operators to build terms of sort P:

• an n-ary data parameterized action operator a :Dn → P for each a ∈ A, for each
n ∈ N;

• a unary assignment action operator v:= : D→ P for each v ∈ V;
• a binary guarded command operator :→ : C× P→ P;
• a unary evaluation operator Vρ : P→ P for each ρ ∈ VVal.

We write P for the set of all closed ACPτ
ε -I terms of sort P.

It is assumed that there are countably infinite sets of variables of sort D and C and
that the sets of variables of sort D, C, and P are mutually disjoint and disjoint from V.

The same notational conventions are used as before. Infix notation is also used for
the additional binary operators. Moreover, the notation [v := e], where v ∈ V and e is
a ACPτ

ε -I term of sort D, is used for the term v := (e).
Each term from C can be taken as a formula of a first-order languagewith equality of

D by taking the flexible variable constants as variables of sortD. The flexible variable
constants are implicitly taken as variables of sort D wherever the context asks for a
formula. In this way, each term from C can be interpreted in D as a formula.

The notation φ ⇔ ψ , where φ and ψ are ACPτ
ε -I terms of sort C, is used for the

term (φ ⇒ ψ)∧ (ψ ⇒ φ). The axioms of ACPτ
ε -I (given below) include an equation

φ = ψ for each two terms φ and ψ from C for which the formula φ ⇔ ψ holds inD.

2 The overloading of = can be trivially resolved if 	D is without overloaded symbols.

123



Theory of Computing Systems

Let a be a basic action from A, e1, …, en , and e be terms fromD, φ be a term from
C, and t be a term from P denoting a process p. Then the additional operators to build
terms of sort P can be explained as follows:

• the term a(e1, . . . , en) denotes the process that first performs the data parameter-
ized action a(e1, . . . , en) and then terminates successfully;

• the term [v := e] denotes the process that first performs the assignment action
[v := e], whose intended effect is the assignment of the result of evaluating e to
flexible variable v, and then terminates successfully;

• the term φ :→ t denotes the process that behaves as p if condition φ holds and as
δ otherwise;

• the term Vρ(t) denotes the process that behaves as p, except that each subterm
of t that belongs to D is evaluated using flexible variable valuation ρ updated
according to the assignment actions that have taken place at the point where the
subterm is encountered.

Evaluation operators are a variant of state operators (see e.g. [3]).
The following closed ACPτ

ε -I term is reminiscent of a program that computes the
difference d between two integers i and j by subtracting the smaller one from the
larger one (i, j, d ∈ V):3

[d := i] · ((d ≥ j = 1) :→ [d := d − j] + (d ≥ j = 0) :→ [d := j − d]) .

That is, the final value of d is the absolute value of the result of subtracting the initial
value of i from the initial value of j . Let ρ be a flexible variable valuation such that
ρ(i) = 11 and ρ( j) = 3. Then the following equation can be derived from the axioms
of ACPτ

ε -I given below:

Vρ([d := i] · ((d ≥ j = 1) :→ [d := d − j] + (d ≥ j = 0) :→ [d := j − d])) = [d := 11] · [d := 8] .

This equation shows that in the case where the initial values of i and j are 11 and 3 the
final value of d is 8, which is the absolute value of the result of subtracting 11 from 3.

A flexible variable valuation ρ can be extended homomorphically from flexible
variables toACPτ

ε -I termsof sortD andACPτ
ε -I termsof sortC. Below, these extensions

are denoted by ρ as well. Moreover, we write ρ[v �→ e] for the flexible variable
valuation ρ′ defined by ρ′(v′) = ρ(v′) if v′ 
= v and ρ′(v) = e.

The subsets Apar, Aass, and A of P referred to below are defined as follows:

Apar =
⋃

n∈N+
{a(e1, . . . , en) | a ∈ A ∧ e1, . . . , en ∈ D} ,

Aass = {[v := e] | v ∈ V ∧ e ∈ D} ,

A = A ∪Apar ∪Aass .

3 Here and in the next example, the carrier ofD is assumed to be the set of all integers. Moreover, the usual
integer constants, operators on integers, and predicates on integers are assumed (where operators with result
sort B serve as predicates).

123



Theory of Computing Systems

The elements ofA are the terms from P that denote the processes that are considered
to be atomic. Henceforth, we write Aτ for A ∪ {τ }, Aδ for A ∪ {δ}, and Aτδ for
A ∪ {τ, δ}.

The axioms of ACPτ
ε -I are the axioms presented in Tables 1 and 2, where α stands

for an arbitrary term fromAτδ , H stands for an arbitrary subset ofA or the setAτ , I
stands for an arbitrary subset of A, e, e1, e2, . . . and e′, e′1, e′2, . . . stand for arbitrary
terms from D, φ and ψ stand for arbitrary terms from C, v stands for an arbitrary
flexible variable from V, and ρ stands for an arbitrary flexible variable valuation from
VVal. Moreover, a, b, and c stand for arbitrary members of Aτδ in Table 1 and for
arbitrary members of A in Table 2.

Table 2 Additional axioms of ACPτ
ε -I

e = e′ ifD |� e = e′ IMP1

φ = ψ ifD |� φ ⇔ ψ IMP2

t :→ x = x GC1

f :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x + y) = φ :→ x + φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ ∧ ψ) :→ x GC6

(φ ∨ ψ) :→ x = φ :→ x + ψ :→ x GC7

(φ :→ x) �� y = φ :→ (x �� y) GC8

(φ :→ x) | y = φ :→ (x | y) GC9

x | (φ :→ y) = φ :→ (x | y) GC10

∂H (φ :→ x) = φ :→ ∂H (x) GC11

τI (φ :→ x) = φ :→ τI (x) GC12

Vρ(ε) = ε V0

Vρ(α · x) = α · Vρ(x) if α /∈ Apar ∪Aass V1

Vρ(a(e1, . . . , en) · x) = a(ρ(e1), . . . , ρ(en)) · Vρ(x) V2

Vρ([v := e] · x) = [v := ρ(e)] · Vρ[v �→ρ(e)](x) V3

Vρ(x + y) = Vρ(x)+ Vρ(y) V4

Vρ(φ :→ y) = ρ(φ) :→ Vρ(x) V5

a(e1, . . . , en) · x | b(e′1, . . . , e′n) · y =
(e1 = e′1 ∧ . . . ∧ en = e′n) :→ c(e1, . . . , en) · (x ‖ y) if γ (a, b) = c CM7Da

a(e1, . . . , en) · x | b(e′1, . . . , e′m ) · y = δ if γ (a, b) = δ or n 
= m CM7Db

a(e1, . . . , en) · x | α · y = δ if α /∈ Apar CM7Dc

α · x | a(e1, . . . , en) · y = δ if α /∈ Apar CM7Dd

[v := e] · x | α · y = δ CM7De

α · x | [v := e] · y = δ CM7Df

α · (φ :→ τ · (x + y)+ φ :→ x) = α · (φ :→ (x + y)) BED

123



Theory of Computing Systems

2.3 ACP�
�-I with Recursion

In this section, recursion in the setting of ACPτ
ε -I is treated. A closed ACPτ

ε -I term of
sort P denotes a process with a finite upper bound to the number of actions that it can
perform. Recursion allows the description of processes without a finite upper bound
to the number of actions that it can perform.

A recursive specification over ACPτ
ε -I is a set {Xi = ti | i ∈ I }, where I is a

set, each Xi is a variable from X, each ti is a ACPτ
ε -I term of sort P in which only

variables from {Xi | i ∈ I } occur, and Xi 
= X j for all i, j ∈ I with i 
= j . We write
vars(E), where E is a recursive specification over ACPτ

ε -I, for the set of all variables
that occur in E . Let E be a recursive specification and let X ∈ vars(E). Then there
exists a unique equation in E whose left-hand side is X . This equation is called the
recursion equation for X in E .

Below, guarded linear recursive specifications over ACPτ
ε -I are introduced. The set

L of linear ACPτ
ε -I terms is inductively defined by the following rules:

1. δ ∈ L;
2. if φ ∈ C, then φ :→ ε ∈ L;
3. if φ ∈ C, α ∈ Aτ , and X ∈ X, then φ :→ α · X ∈ L;
4. if t, t ′ ∈ L \ {δ}, then t + t ′ ∈ L.

Let t ∈ L. Then we refer to the subterms of t that have the form φ :→ ε or the form
φ :→ α · X as the summands of t .

Let X be a variable from X and let t be an ACPτ
ε -I term in which X occurs. Then

an occurrence of X in t is guarded if t has a subterm of the form α · t ′ where α ∈ A
and t ′ contains this occurrence of X .

An occurrence of a variable X in a linear ACPτ
ε -I term may be not guarded because

a linear ACPτ
ε -I term may have summands of the form φ :→ τ · X .

A guarded linear recursive specification over ACPτ
ε -I is a recursive specification

{Xi = ti | i ∈ I } over ACPτ
ε -I where each ti is a linear ACPτ

ε -I term and there does
not exist an infinite sequence i0 i1 . . . over I such that, for each k ∈ N, there is an
occurrence of Xik+1 in tik that is not guarded.

A solution of a guarded linear recursive specification E over ACPτ
ε -I in some

model of ACPτ
ε -I is a set {pX | X ∈ vars(E)} of elements of the carrier of sort

P in that model such that each equation in E holds if, for all X ∈ vars(E), X is
assigned pX . A guarded linear recursive specification has a unique solution under
the equivalence defined in [29] for ACPτ

ε -I extended with guarded linear recursion. If
{pX | X ∈ vars(E)} is the unique solution of a guarded linear recursive specification
E , then, for each X ∈ vars(E), pX is called the X-component of the unique solution
of E .

ACPτ
ε -I is extended with guarded linear recursion by adding constants for solutions

of guarded linear recursive specifications over ACPτ
ε -I and axioms concerning these

additional constants. For each guarded linear recursive specification E over ACPτ
ε -I

and each X ∈ vars(E), a constant 〈X |E〉 of sort P, that stands for the X -component of
the unique solution of E , is added to the constants of ACPτ

ε -I. The equation RDP and
the conditional equation RSP given in Table 3 are added to the axioms of ACPτ

ε -I. In
this table, X stands for an arbitrary variable from X, t stands for an arbitrary ACPτ

ε -I

123



Theory of Computing Systems

Table 3 Axioms for guarded
linear recursion 〈X |E〉 = 〈t |E〉 if X= t ∈ E RDP

E ⇒ X = 〈X |E〉 if X ∈ vars(E) RSP

term of sort P, E stands for an arbitrary guarded linear recursive specification over
ACPτ

ε -I, and the notation 〈t |E〉 is used for t with, for all X ∈ vars(E), all occurrences
of X in t replaced by 〈X |E〉. Side conditions restrict what X , t and E stand for.

We write ACPτ
ε -I +REC for the resulting theory. Furthermore, we write Prec for

the set of all closed ACPτ
ε -I+REC terms of sort P.

RDP and RSP together postulate that guarded linear recursive specifications over
ACPτ

ε -I have unique solutions.
Because RSP introduces conditional equations in ACPτ

ε -I +REC, it is understood
that conditional equational logic is used in deriving equations from the axioms of
ACPτ

ε -I +REC. A complete inference system for conditional equational logic can for
example be found in [4, 18].

The following closedACPτ
ε -I +REC term is reminiscent of a program that computes

by repeated subtraction the quotient q and remainder r of dividing a non-negative
integer i by a positive integer j (i, j, q, r ∈ V):

[q := 0] · [r := i] · 〈Q|E〉 ,

where E is the guarded linear recursive specification that consists of the following two
equations (Q, R ∈ X):

Q = (r ≥ j = 1) :→ [q := q + 1] · R + (r ≥ j = 0) :→ ε ,

R = t :→ [r := r − j] · Q .

Let ρ be a flexible variable valuation such that ρ(i) = 11 and ρ( j) = 3. Then the
following equation can be derived from the axioms of ACPτ

ε -I +REC:

Vρ([q := 0] · [r := i] · 〈Q|E〉)
= [q := 0] · [r := 11] · [q := 1] · [r := 8] · [q := 2] · [r := 5] · [q := 3] · [r := 2] .

This equation shows that in the case where the initial values of i and j are 11 and 3 the
final values of q and r are 3 and 2, which are the quotient and remainder of dividing
11 by 3.

In [29], an equational axiom schemaCFAR (Cluster Fair Abstraction Rule) is added
to ACPτ

ε -I +REC. CFAR expresses that every cluster of τ actions will be exited sooner
or later. This is a fairness assumption made in the verification of many properties
concerning the external behaviour of systems. We write ACPτ

ε -I +REC+CFAR for the
theory ACPτ

ε -I +REC extended with CFAR.
We write T � t = t ′, where T is ACPτ

ε -I +REC or ACPτ
ε -I +REC+CFAR, to

indicate that the equation t = t ′ is derivable from the axioms of T using a complete
inference system for conditional equational logic.

123



Theory of Computing Systems

2.4 Results about ACP�
�-I with Recursion

In [29], a structural operational semantics of ACPτ
ε -I +REC is presented and an equiv-

alence relation↔rb on Prec based on this structural operational semantics is defined.
This equivalence relation reflects the idea that two processes are equivalent if they
can simulate each other insofar as their observable potentials to make transitions by
performing actions and to terminate successfully are concerned, taking into account
the assignments of data values to flexible variables under which the potentials are
available.

Soundness and semi-completeness results for the axiom system of ACPτ
ε -I +REC+

CFAR with respect to↔rb are proved in [29]. The axiom system of ACPτ
ε -I +REC+

CFAR is incomplete with respect to↔rb for equations between terms from Prec and
there is no straightforward way to rectify this. However, the axiom system of ACPτ

ε -I +
REC+CFAR is complete with respect to↔rb for equations between abstraction-free
terms from Prec and for equations between bool-conditional terms from Prec.

A term t ∈ Prec is called abstraction-free if no abstraction operator occurs in t . A
term t ∈ Prec is called bool-conditional if, for eachφ ∈ C that occurs in t ,D |� φ ⇔ t
or D |� φ ⇔ f.

The following auxiliary results about abstraction-free terms and bool-conditional
terms are proved in [29]:

• for all abstraction-free t ∈ Prec, there exists a guarded linear recursive specification
E and X ∈ vars(E) such that ACPτ

ε -I+REC � t = 〈X |E〉;
• for all bool-conditional t ∈ Prec, there exists a guarded linear recursive specifica-
tion E and X ∈ vars(E) such that ACPτ

ε -I+REC+CFAR � t = 〈X |E〉.
The soundness and semi-completeness results referred to above are as follows:

• for all terms t, t ′ ∈ Prec, ACPτ
ε -I+REC+CFAR � t = t ′ only if t↔rb t ′;

• for all abstraction-free t, t ′ ∈ Prec, ACPτ
ε -I+REC � t = t ′ if t↔rb t ′;

• for all bool-conditional t, t ′ ∈ Prec, ACPτ
ε -I+REC+CFAR � t = t ′ if t↔rb t ′.

For a better understanding of the evaluation operators, some results about these
rather unfamiliar operators are given below.

The following lemma tells us that a closed term of the form Vρ(t) equals a bool-
conditional closed term.

Lemma 1 For all t ∈ Prec and ρ ∈ VVal, there exists a bool-conditional t ′ ∈ Prec
such that ACPτ

ε -I+REC+CFAR � Vρ(t) = t ′.

Proof This is straightforwardly proved by induction on the length of t , case distinction
on the structure of t , and in the case of the constants for solutions of guarded linear
recursive specifications additionally by induction on the structure of the right-hand
side of a recursion equation. ��

As a corollary of Lemma 1 and the soundness and completeness result mention
above, we have:

for all t, t ′ ∈ Prec and ρ ∈ VVal, ACPτ
ε -I+REC+CFAR � Vρ(t) = Vρ(t ′) iff

Vρ(t)↔rb Vρ(t ′).

123



Theory of Computing Systems

Below, an elimination theorem for closed terms of the form Vρ(t) is presented. In
preparation, the subsets B and Bcf of P are introduced.

The set B of basic ACPτ
ε -I terms is inductively defined by the following rules:

1. δ ∈ B;
2. if φ ∈ C, then φ :→ ε ∈ B;
3. if φ ∈ C, α ∈ Aτ , and t ∈ B, then φ :→ α · t ∈ B;
4. if t, t ′ ∈ B \ {δ}, then t + t ′ ∈ B.

The set Bcf of condition-free basic ACPτ
ε -I terms is inductively defined by the

following rules:

1. δ ∈ Bcf ;
2. ε ∈ Bcf ;
3. if α ∈ Aτ , and t ∈ Bcf , then α · t ∈ Bcf ;
4. if t, t ′ ∈ Bcf \ {δ}, then t + t ′ ∈ Bcf .

Lemma 2 For all bool-conditional t ∈ P, there exists a bool-conditional t ′ ∈ B such
that ACPτ

ε -I � t = t ′.

Proof This is straightforwardly proved by induction on the length of t and case dis-
tinction on the structure of t . ��

Lemma 3 For all bool-conditional t ∈ B, there exists a t ′ ∈ Bcf such that ACPτ
ε -I �

t = t ′.

Proof This is easily proved by induction on the structure of t . ��

A term t ∈ Prec is called a finite-process term if there exists a term t ′ ∈ P such that
ACPτ

ε -I+REC+CFAR � t = t ′.
The following theorem tells us that a finite-process term of the form Vρ(t) equals

a condition-free basic term.

Theorem 1 For all t ∈ Prec and ρ ∈ VVal for which Vρ(t) is a finite-process term,
there exists a t ′ ∈ Bcf such that ACPτ

ε -I+REC+CFAR � Vρ(t) = t ′.

Proof This follows immediately from Lemmas 1, 2, and 3. ��

The terms from Bcf are reminiscent of computation trees. In Section 3, use is made
of the fact that each finite-process term of the form Vρ(t) equals such a term.

Not every term from Bcf corresponds to a computation tree of which each path
represents a computation that eventually halts, not evenwhen it concerns a computation
tree with a single path.

A term t ∈ Prec is called a terminating-process term if there exists a term t ′ ∈ Bcf
such that ACPτ

ε -I+REC+CFAR � t = t ′ and t ′ can be formed by applying only the
formation rules 2, 3, and 4 of Bcf .

123



Theory of Computing Systems

Table 4 Axioms for the
projection operators πn(ε) = ε PR1

π0(α · x) = ε PR2

πn+1(α · x) = α · πn(x) PR3

πn(x + y) = πn(x)+ πn(y) PR4

πn(φ :→ x) = φ :→ πn(x) PR5

πn(τ · x) = τ · πn(x) PR6

2.5 Extensions

This section concerns two extensions of ACPτ
ε -I that are relevant to this paper, namely

an extensionwith projection and an extensionwith action renaming. It is not unusual to
come across these extensions in applications of ACP-style process algebras. The first
extension is treated here because projections can be used to determine the maximum
number of actions that a finite process can perform. The second extension is treated
here because action renaming enables to easily define the synchronous variant of the
parallel composition operator of ACPτ

ε -I needed later in this paper.
ACPτ

ε -I, ACP
τ
ε -I +REC, andACP

τ
ε -I +REC+CFAR can be extendedwith projection

by adding, for each n ∈ N, a unary projection operator πn :P→ P to the operators of
T and adding the axioms given in Table 4 to the axioms of T . In this table, n stands
for an arbitrary natural number, α stands for an arbitrary term from Aδ , and φ stands
for an arbitrary term from C.

Let t be a closed term of the extended theory. Then the projection operator πn

can be explained as follows: πn(t) denotes the process that behaves the same as the
process denoted by t except that it terminates successfully after n actions have been
performed.

Let T beACPτ
ε -I, ACP

τ
ε -I +RECorACPτ

ε -I +REC+CFAR. Thenwewrite T+PR for
T extended with the projection operators πn and the axioms PR1–PR6 from Table 4.

ACPτ
ε -I, ACP

τ
ε -I +REC, and ACPτ

ε -I +REC+CFAR can be extended with action
renaming by adding, for each function f : A → A such that f (α) = α for all
α ∈ Aass, a unary action renaming operator ρ f : P → P to the operators of T and
adding the axioms given in Table 5 to the axioms of T . In this table, f stands for an

Table 5 Axioms for the action
renaming operators ρ f (ε) = ε RN1

ρ f (δ) = δ RN2

ρ f (α) = f (α) RN3

ρ f (x + y) = ρ f (x)+ ρ f (y) RN4

ρ f (x · y) = ρ f (x) · ρ f (y) RN5

ρ f (φ :→ x) = φ :→ ρ f (y) RN6

ρ f (τ ) = τ RN7

123



Theory of Computing Systems

arbitrary function f : A → A such that f (α) = α for all α ∈ Aass, α stands for an
arbitrary term from A, and φ stands for an arbitrary term from C.

Let t be a closed term of the extended theory. Then the action renaming operator
ρ f can be explained as follows: ρ f (t) denotes the process that behaves the same as
the process denoted by t except that, where the latter process performs an action α,
the former process performs the action f (α).

Let T be ACPτ
ε -I, ACP

τ
ε -I +REC, ACPτ

ε -I +REC+CFAR or ACPτ
ε -I +REC+

CFAR+PR. Then we write T+RN for T extended with the action renaming opera-
tors ρ f and the axioms RN1–RN7 from Table 5.

3 Computation and the RAM Conditions

In order to investigate whether ACPτ
ε -I +REC can play a role in the field of models

of computation, it has to be explained in the setting of ACPτ
ε -I +REC what it means

that a given process computes a given function. This requires that assumptions about
D have to be made. The assumptions concerned are given in this section. They are
based on the idea that the data environment of a computational process consists of
one or more RAM (Random Access Machine) memories. Because the assumptions
amount to conditions to be satisfied by D, they are called the RAM conditions on
D. It is also made precise in this section what it means, in the setting of ACPτ

ε -I +
REC where D satisfies the RAM conditions, that a given process computes a given
partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N).

3.1 The RAM Conditions

The memory of a RAM consists of a countably infinite number of registers which
are numbered by natural numbers. Each register is capable of containing a bit string
of arbitrary length. The contents of the registers constitute the state of the memory
of the RAM. The execution of an instruction by the RAM amounts to carrying out
an operation on its memory state that changes the content of at most one register or
to testing a property of its memory state. The RAM conditions are presented in this
section using the notions of a RAM memory state, a RAM operation, and a RAM
property.

A RAM memory state is a function σ :N → {0, 1}∗ that satisfies the condition that
there exists an i ∈ N such that, for all j ∈ N, σ(i + j) = λ.4 We write 	ram for the
set of all RAM memory states.

Let σ be a RAM memory state. Then, for all i ∈ N, σ(i) is the content of the
register with number i in memory state σ . The condition on σ expresses that the part
of the memory that is actually in use remains finite.

4 We write λ for the empty bit string.

123



Theory of Computing Systems

The input region and output region of a function o :	ram → 	ram, written I R(o)
and OR(o), respectively, are the subsets of N defined as follows:

OR(o) = {i ∈ N | ∃σ ∈ 	ram • σ(i) 
= o(σ )(i)} ,

I R(o) = {i ∈ N | ∃σ1, σ2 ∈ 	ram • (∀ j ∈ N \ {i} • σ1( j) = σ2( j) ∧
∃ j ∈ OR(o) • o(σ1)( j) 
= o(σ2)( j))} .

Let o :	ram → 	ram. Then OR(o) consists of the numbers of all registers that can
be affected by o; and I R(o) consists of the numbers of all registers that can affect the
registers whose numbers are in OR(o) under o.

A basic RAM operation is a function o :	ram → 	ram that satisfies the condition
that I R(o) is finite and OR(o) has cardinality 0 or 1. We write Oram for the set of all
basic RAM operations.

Let o be a basic RAM operation and σ be a RAMmemory state. Then carrying out
o on a RAMmemory in state σ changes the state of the RAMmemory into o(σ ). The
condition on o expresses that the content of at most one register can be affected and
that, if there is such a register, only a finite number of registers can affect it.

The following theorem states that each basic RAM operation transforms states of
a RAM memory that coincide on its input region to states that coincide on its output
region.

Theorem 2 Let σ1, σ2 ∈ 	ram and o ∈ Oram. Then σ1 � I R(o) = σ2 � I R(o) implies
o(σ1) � OR(o) = o(σ2) � OR(o).5

Proof It is easy to see that the 4-tuple (N, {0, 1}∗, 	ram, Oram) is a computer according
to Definition 3.1 from [28]. From this and Theorem 3.1 from [28], the theorem follows
immediately. ��

The input region of a function p :	ram → {0, 1}, written I R(p) is the subset of N

defined as follows:

I R(p) = {i ∈ N | ∃σ1, σ2 ∈ 	ram • (∀ j ∈ N \ {i} • σ1( j) = σ2( j) ∧
p(σ1) 
= p(σ2)} .

Let p :	ram → {0, 1}. Then I R(p) consists of the numbers of all registers that can
affect what the value of p is.

A basic RAM property is a function p : 	ram → {0, 1} that satisfies the condition
that I R(p) is finite. We write Pram for the set of all basic RAM properties.

Let p be a basic RAM property and σ be a RAM memory state. Then testing the
property p on a RAM memory in state σ yields the value p(σ ) and does not change
the state of the RAMmemory. The condition on p expresses that only a finite number
of registers can affect what this value is. We say that p holds in σ if p(σ ) = 1.

The following theorem states that each basic RAM property holds in some state of
a RAM memory if and only if it holds in all states of the RAM memory that coincide
with that state on its input region.

5 We use the notation f � D, where f is a function and D ⊆ dom( f ), for the function g with dom(g) = D
such that for all d ∈ dom(g), g(d) = f (d).

123



Theory of Computing Systems

Theorem 3 Let σ1, σ2 ∈ 	ram and p ∈ Pram. Then σ1 � I R(p) = σ2 � I R(p) implies
p(σ1) = p(σ2).

Proof Let 	′ram be the set of all functions σ : N ∪ {−1} → {0, 1}∗ that satisfy the
condition that there exists an i ∈ N such that, for all j ∈ N, σ(i + j) = λ, let O ′ram be
the set of all functions o :	′ram → 	′ram, let σ ′1, σ ′2 ∈ 	′ram be such that σ ′1 � N = σ1
and σ ′2 � N = σ2, and let o ∈ O ′ram be such that, for all σ ∈ 	′ram, o(σ ) � N = σ � N

and o(σ )(−1) = p(σ ). Then σ1 � I R(p) = σ2 � I R(p) implies p(σ1) = p(σ2)
iff σ ′1 � I R(o) = σ ′2 � I R(o) implies o(σ ′1) = o(σ ′2). Because of this and the fact
that (N ∪ {−1}, {0, 1}∗, 	′ram, O ′ram) is also a computer according to Definition 3.1
from [28], this theorem now follows immediately from Theorem 3.1 from [28]. ��

With basic RAMoperations only computational processes can be consideredwhose
data environment consists of one RAMmemory. Below, n-RAM operations are intro-
duced to remove this restriction. They are defined such that the basic RAM operations
are exactly the 1-RAM operations.

An n-RAM operation (n ∈ N
+) is a function o : 	ram

n → 	ram that sat-
isfies the condition that there exist a basic RAM operation o′ and a k ∈ N

with 1 ≤ k ≤ n such that, for all σ1, . . . , σn ∈ 	ram, o′(β(σ1, . . . , σn)) =
β(σ1, . . . , σk−1, o(σ1, . . . , σn), σk+1, . . . , σn), where β :	ram

n → 	ram is the unique
function such that β(σ1, . . . , σn)(n · i + k − 1) = σk(i) for all i ∈ N and k ∈ N with
1 ≤ k ≤ n. We write On-ram, where n ∈ N

+, for the set of all n-RAM operations.
The function ζ : {k ∈ N

+ | k ≤ n} ×N → N defined by ζ(k, i) = n · i + k − 1 is a
bijection. From this it follows that the basic RAM operation o′ and the k ∈ N referred
to in the above definition are unique if they exist.

The operations from
⋃

n≥1 On-ram are referred to as RAM operations.
In a similar way as n-RAM operations, n-RAM properties are defined. The basic

RAM properties are exactly the 1-RAM properties.
An n-RAM property (n ∈ N

+) is a function p : 	ram
n → {0, 1} that satisfies the

condition that there exists a basic RAM property p′ such that, for all σ1, . . . , σn ∈
	ram, p′(β(σ1, . . . , σn)) = p(σ1, . . . , σn), where β : 	ram

n → 	ram is defined as
above. We write Pn-ram, where n ∈ N

+, for the set of all n-RAM properties.
The properties from

⋃
n≥1 Pn-ram are referred to as RAM properties.

The RAM conditions on D are:

1. the signature 	D of D includes (in addition to what is stated in Section 2.2):

• a sort BS of bit strings and a sort N of natural numbers;
• constants λ, 0, 1 : BS and a binary operator � : BS× BS→ BS;
• constants 0, 1 : N and a binary operator + : N× N→ N;
• a constant σλ : D and a ternary operator ⊕ : D× N× BS→ D;

2. the sorts, constants, and operatorsmentionedunder 1 are interpreted inD as follows:

• the sort BS is interpreted as the set {0, 1}∗, the sort N is interpreted as the set
N, and the sort D is interpreted as the set 	ram;

• the constantλ:BS is interpreted as the empty bit string, the constants 0, 1:BS are
interpreted as the bit strings with the bit 0 and 1, respectively, as sole element,

123



Theory of Computing Systems

and the operator�:BS×BS→ BS is interpreted as the concatenation operation
on {0, 1}∗;

• the constants 0, 1:N are interpreted as the natural numbers 0 and 1, respectively,
and the operator + :N×N→ N is interpreted as the addition operation on N;

• the constant σλ : D is interpreted as the unique σ ∈ 	ram such that σ(i) = λ

for all i ∈ N and the operator ⊕ : D × N × BS → D is interpreted as the
override operation defined by⊕(σ, i, w)(i) = w and, for all j ∈ N with i 
= j ,
⊕(σ, i, w)( j) = σ( j);

3. the signature 	D of D is restricted as follows:

• for each operator from 	D, the sort of its result is D only if the sort of each of
its arguments is D or the operator is ⊕;

• for each operator from 	D, the sort of its result is B only if the sort of each of
its arguments is D;

4. the interpretation of the operators mentioned under 3 is restricted as follows:

• each operator with result sortD other than⊕ is interpreted as a RAMoperation;
• each operator with result sort B is interpreted as a RAM property.

The notation σ {i �→ w}, where σ ∈ 	ram, i ∈ N, and w ∈ {0, 1}∗, is used for the
term ⊕(σ, i, w).

The RAM conditions make it possible to explain what it means that a given process
computes a given partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N). Moreover, the
RAM conditions are nonrestrictive: presumably they allow to deal with all proposed
versions of the RAMmodel of computation as well as all proposed models of parallel
computation that are based on a version of the RAM model and the idea that the data
environment of a computational process consists of one or more RAM memories.

3.2 Computing Partial Functions from ({0, 1}∗)n to {0, 1}∗

Below, we make precise in the setting of ACPτ
ε -I +REC+CFAR, whereD is assumed

to satisfy the RAM conditions, what it means that a given process computes a given
partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N).

In the rest of this paper,D is assumed to satisfy the RAM conditions. Moreover, it
is assumed thatm ∈ V.

Henceforth, the notation ρw1,...,wn , where w1, . . . , wn ∈ {0, 1}∗, is used for the
unique ρ ∈ VVal such that ρ(m) = σλ{1 �→ w1} . . . {n �→ wn} and ρ(v) = σλ for all
v ∈ V \ {m}.

If t ∈ Prec is a finite-process term, then there is a finite upper bound to the number
of actions that the process denoted by t can perform.

The depth of a finite-process term t ∈ Prec, written depth(t), is defined as follows:
depth(t) = min{n ∈ N | ACPτ

ε -I+REC+CFAR+PR � πn(t) = t}. This means that
depth(t) is the maximum number of actions other than τ that the process denoted by
t can perform.

123



Theory of Computing Systems

Let n ∈ N, let F : ({0, 1}∗)n �→ {0, 1}∗,6 and let W : N → N. Then, roughly
speaking, a process p computes F in W steps if:

• for all w1, . . . , wn ∈ {0, 1}∗ such that F(w1, . . . , wn) is defined:
if p is started in a RAM memory state σ in which σ(1) = w1, …, σ(n) = wn ,
then:

– it terminates successfully in a state σ ′ in which σ ′(0) = F(w1, . . . , wn);
– the total number of actions that it performs is not greater than W (l), where l
is the sum of the lengths of w1, . . . , wn ;

• for all w1, . . . , wn ∈ {0, 1}∗ such that F(w1, . . . , wn) is undefined:
if p is started in a RAM memory state σ in which σ(1) = w1, …, σ(n) = wn ,
then:

– it does not terminate successfully.

Below a precise definition in the setting of ACPτ
ε -I +REC+CFAR is given. In that

definition, the equation Vρw1,...,wn
(t) = Vρw1,...,wn

(t · (m = σ ′ :→ ε)) expresses that
the RAM memory state at successful termination satisfies σ ′(0) = F(w1, . . . , wn).
This is the case becausem = σ ′ :→ ε equals ε if the latter equation is satisfied and δ

otherwise.
Let t ∈ Prec, let n ∈ N, let F : ({0, 1}∗)n �→ {0, 1}∗, and let W : N → N. Then t

computes F in W steps if:

• for all w1, . . . , wn ∈ {0, 1}∗ such that F(w1, . . . , wn) is defined, there exists a
σ ′ ∈ 	ram with σ ′(0) = F(w1, . . . , wn) such that:7

Vρw1,...,wn
(t) is a terminating-process term ,

ACPτ
ε -I+REC+CFAR � Vρw1,...,wn

(t) = Vρw1,...,wn
(t · (m = σ ′ :→ ε)) ,

depth(Vρw1,...,wn
(t)) ≤ W (�(w1)+ . . .+ �(wn)) ;

• for all w1, . . . , wn ∈ {0, 1}∗ such that F(w1, . . . , wn) is undefined:

Vρw1,...,wn
(t) is not a terminating-process term .

Wesay that t computes F if there exists aW :N → N such that t computes F inW steps,
we say that F is a computable function if there exists a t ∈ P such that t computes F ,
and we say that t is a computational process if there exists a F : ({0, 1}∗)n �→ {0, 1}∗
such that t computes F .

We write CPrec for the set {t ∈ Prec | t is a computational process}.
With the above definition, we can establishwhether a process of the kind considered

in the current setting computes a given partial function from ({0, 1}∗)n to {0, 1}∗
(n ∈ N) by equational reasoning using the axioms of ACPτ

ε -I +REC+CFAR. This
setting is more general than the setting provided by any known version of the RAM

6 We write f : A �→ B, where A and B are sets, to indicate that f is a partial function from A to B.
7 We write �(u), where u is a sequence, for the length of u.

123



Theory of Computing Systems

model of computation. It is not suitable as a model of computation itself. However,
various knownmodels of computation can be defined by fixingwhichRAMoperations
andwhich RAMproperties belong toD and by restricting the computational processes
to the ones of a certain form. To the best of my knowledge, the models of computation
that can be dealt with in this way include all proposed versions of the RAM model
as well as all proposed models of parallel computation that are based on a version of
the RAM model and the idea that the data environment of a computational process
consists of one or more RAM memories.

Whatever model of computation is obtained by fixing the RAM operations and the
RAM properties and by restricting the computational processes to the ones of a certain
form, it is an idealization of a real computer because it offers an unbounded number of
registers that can contain a bit string of arbitrary length instead of a bounded number
of registers that can only contain a bit string of a fixed length.

4 The RAMPModel of Computation

The setting introduced in the previous sections is used in this section to describe a
version of the RAM model of computation. Because it focuses on the processes that
are produced by RAMs when they execute their built-in program, the version of the
RAM model of computation described in this section is called the RAMP (Random
Access Machine Process) model of computation.

First, the operators are introduced that represent the RAM operations and the RAM
properties that belong to D in the case of the RAMP model of computation. Next,
the interpretation of those operators as a RAM operation or a RAM property is given.
Finally, the RAMP model of computation is described.

4.1 Operators for the RAMPModel

In this section, the operators that are relevant to the RAMP model of computation are
introduced.

In the case of the RAMP model of computation, the set of operators from 	D that
are interpreted in D as RAM operations or RAM properties is the set ORAMP defined
as follows:

ORAMP = {binop:s1:s2:d | binop ∈ Binop ∧ s1, s2 ∈ Src ∧ d ∈ Dst}
∪ {unop:s1:d | unop ∈ Unop ∧ s1 ∈ Src ∧ d ∈ Dst}
∪ {cmpop:s1:s2 | cmpop ∈ Cmpop ∧ s1, s2 ∈ Src} ,

where

Binop = {add, sub, and, or} ,

Unop = {not, shl, shr,mov} ,

Cmpop = {eq,gt,beq}

123



Theory of Computing Systems

and

Src = {#i | i ∈ N} ∪ N ∪ {@i | i ∈ N} ,

Dst = N ∪ {@i | i ∈ N} .

We write Op
RAMP for the set {cmpop:s1:s2 | cmpop ∈ Cmpop ∧ s1, s2 ∈ Src} and

Oo
RAMP for the set ORAMP \Op

RAMP.
The operators fromOo

RAMP are the operators that are interpreted inD as basic RAM
operations and the operators from Op

RAMP are the operators that are interpreted in D
as basic RAM properties.

The following is a preliminary explanation of the operators from ORAMP:

• carrying out the operation denoted by an operator of the form binop:s1:s2:d on
a RAM memory in some state boils down to carrying out the binary operation
named binop on the values that s1 and s2 stand for in that state and then changing
the content of the register that d stands for into the result of this;

• carrying out the operation denoted by an operator of the form unop:s1:d on a RAM
memory in some state boils down to carrying out the unary operation named unop
on the value that s stands for in that state and then changing the content of the
register that d stands for into the result of this;

• carrying out the operation denoted by an operator of the form cmpop:s1:s2 on a
RAMmemory in some state boils down to carrying out the binary operation named
cmpop on the values that s1 and s2 stand for in that state.

The value that si (i = 1, 2) stands for is as follows:

• immediate: it stands for the shortest bit string representing the natural number i if
it is of the form #i ;

• direct addressing: it stands for the content of the register with number i if it is of
the form i ;

• indirect addressing: it stands for the content of the register whose number is rep-
resented by the content of the register with number i if it is of the form @i ;

and the register that d stands for is as follows:

• direct addressing: it stands for the register with number i if it is of the form i ;
• indirect addressing: it stands for the register whose number is represented by the
content of the register with number i if it is of the form @i .

The following kinds of operations and relations on bit strings are covered by
the operators from ORAMP: arithmetic operations (add, sub), logical operations
(and,or,not), bit-shift operations (shl, shr), data-transfer operations (mov), arith-
metic relations (eq,gt), and the bit-wise equality relation (beq). The arithmetic
operations on bit strings are operations that model arithmetic operations on natural
numbers with respect to their binary representation by bit strings, the logical opera-
tions on bit strings are bitwise logical operations, and the data transfer operation on
bit strings is the identity operation on bit strings (which is carried out when copying
bit strings). The arithmetic relations on bit strings are relations that model arithmetic
relations on natural numbers with respect to their binary representation by bit strings.

123



Theory of Computing Systems

4.2 Interpretation of the Operators for the RAMPModel

The interpretation of the operators from ORAMP in D is defined in this section.
We start with defining auxiliary functions for conversion between natural numbers

and bit strings and evaluation of the elements of Src and Dst.
Wewrite ·− for proper subtraction of natural numbers.Wewrite÷ for zero-totalized

Euclidean division of natural numbers, i.e. Euclidean division made total by imposing
that division by zero yields zero (like inmeadows, see e.g. [6, 7]).We use juxtaposition
for concatenation of bit strings.

The natural to bit string function b :N → {0, 1}∗ is recursively defined as follows:
b(n) = n if n ≤ 1 and b(n) = (n mod 2)b(n ÷ 2) if n > 1

and the bit string to natural function n : {0, 1}∗ → N is recursively defined as follows:

n(λ) = 0 and n(bw) = b + 2 · n(w).

These definitions tell us that, when viewed as the binary representation of a natural
number, the first bit of a bit string is considered the least significant bit. Results of
applying b have no leading zeros, but the operand of n may have leading zeros.

Thus, we have that n(b(n)) = n and b(n(w)) = w′, where w′ is w without leading
zeros, if w 
= λ.

For each σ ∈ 	ram, the src-valuation in σ function vσ : Src → {0, 1}∗ is defined
as follows:

vσ (#i) = b(i), vσ (i) = σ(i), and vσ (@i) = σ(n(σ (i)))

and, for each σ ∈ 	ram, the dst-valuation in σ function rσ : Dst → N is defined as
follows:

rσ (i) = i and rσ (@i) = n(σ (i)).

We continue with defining the operations on bit strings that the operation names
from Binop ∪ Unop refer to.

We define the operations on bit strings that the operation names add and sub refer
to as follows:

+ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ : w1 + w2 = b(n(w1)+ n(w2));
·− : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ : w1

·− w2 = b(n(w1) ·− n(w2)).

These definitions tell us that, although the operands of the operations + and ·− may
have leading zeros, results of applying these operations have no leading zeros.

We define the operations on bit strings that the operation names and, or, and not
refer to recursively as follows:

∧ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ : λ ∧ λ = λ, λ ∧ (bw) = 0(λ ∧ w),

(bw) ∧ λ = 0(w ∧ λ), (b1w1) ∧ (b2w2) = (b1 ∧ b2)(w1 ∧ w2);
∨ : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ : λ ∨ λ = λ, λ ∨ (bw) = b(λ ∨ w),

(bw) ∨ λ = b(w ∨ λ), (b1w1) ∨ (b2w2) = (b1 ∨ b2)(w1 ∨ w2);
¬ : {0, 1}∗ → {0, 1}∗ : ¬λ = λ, ¬(bw) = (¬b)(¬w).

123



Theory of Computing Systems

These definitions tell us that, if the operands of the operations ∧ and ∨ do not have
the same length, sufficient leading zeros are assumed to exist. Moreover, results of
applying these operations and results of applying ¬ can have leading zeros.

We define the operations on bit strings that the operation names shl and shr refer
to as follows:

� : {0, 1}∗ → {0, 1}∗ : �λ = λ, �(bw) = 0bw;
� : {0, 1}∗ → {0, 1}∗ : �λ = λ, �(bw) = w.

These definitions tell us that results of applying the operations � and � can have
leading zeros. We have that n(�w) = n(w) · 2 and n(�w) = n(w)÷ 2.

Now, we are ready to define the interpretation of the operators from ORAMP in D.
For each o ∈ ORAMP, the interpretation of o in D, written [[o]], is defined as follows:

[[add:s1:s2:d]](σ ) = σ {rσ (d) �→ vσ (s1)+ vσ (s2)};
[[sub:s1:s2:d]](σ ) = σ {rσ (d) �→ vσ (s1) ·− vσ (s2)};
[[and:s1:s2:d]](σ ) = σ {rσ (d) �→ vσ (s1) ∧ vσ (s2)};
[[or:s1:s2:d]](σ ) = σ {rσ (d) �→ vσ (s1) ∨ vσ (s2)};
[[not:s1:d]](σ ) = σ {rσ (d) �→ ¬vσ (s1)};
[[shl:s1:d]](σ ) = σ {rσ (d) �→ �vσ (s1)};
[[shr:s1:d]](σ ) = σ {rσ (d) �→ �vσ (s1)};
[[mov:s1:d]](σ ) = σ {rσ (d) �→ vσ (s1)};
[[eq:s1:s2]](σ ) =

{
1 if n(vσ (s1)) = n(vσ (s2)),
0 otherwise;

[[gt:s1:s2]](σ ) =
{
1 if n(vσ (s1)) > n(vσ (s2)),
0 otherwise;

[[beq:s1:s2]](σ ) =
{
1 if vσ (s1) = vσ (s2),
0 otherwise.

Clearly, the interpretation of each operator from Oo
RAMP is a basic RAM operation

and the interpretation of each operator from Op
RAMP is a basic RAM property.

4.3 RAMPTerms and the RAMPModel

Below, the RAMP model of computation is characterized in the setting introduced in
Sections 2 and 3. However, first the notion of a RAMP term is defined. This notion is
introduced to make precise what the set of possible computational processes is in the
case of the RAMP model of computation.

In this section, D is fixed as follows:

• 	D is the smallest signature including (a) all sorts, constants, and operators
required by the assumptions made about D in ACPτ

ε -I or the RAM conditions
on D and (b) all operators from ORAMP;

123



Theory of Computing Systems

• all sorts, constants, and operators mentioned under (a) are interpreted in D as
required by the assumptions made about D in ACPτ

ε -I or the RAM conditions on
D;

• all operators mentioned under (b) are interpreted in D as defined at the end of
Section 4.2.

Moreover, it is assumed that m ∈ V.
A RAM process term, called a RAMP term for short, is a term from Prec that is of

the form 〈X |E〉, where, for each Y ∈ vars(E), the recursion equation for Y in E has
one of the following forms:

Y = t :→ [m := o(m)] · Z ,

Y = (p(m) = 1) :→ [m :=m] · Z + (p(m) = 0) :→ [m :=m] · Z ′,
Y = t :→ ε,

where o ∈ Oo
RAMP, p ∈ Op

RAMP, and Z , Z ′ ∈ vars(E). We write PRAMP for the set of
all RAMP terms, and we write CPRAMP for PRAMP ∩ CPrec.

In the definition of a RAMP term above, E would not be a guarded linear recursive
specification over ACPτ

ε -I if the (ineffective) assignment action [m := m] had been
omitted from the summands of recursion equations of the second form. Because we
regard both performing a RAM operation and testing a RAM property as a step of
a computational process, the presence of this action has the technical advantage that
counting of steps becomes counting of actions.

A process that can be denoted by a RAMP term is called a RAM process or a RAMP
for short. So, a RAMP is a process that is definable by a guarded linear recursive
specification over ACPτ

ε -I of the kind described above.
As mentioned in Section 1, a basic assumption in this paper is that a model of

computation is fully characterized by: (a) a set of possible computational processes,
(b) for each possible computational process, a set of possible data environments, and
(c) the effect of applying such processes to such environments.

D as fixed above and CPRAMP induce the RAMP model of computation:

• the set of possible computational processes is the set of all processes that can be
denoted by a term from CPRAMP;

• for each possible computational process, the set of possible data environments is
the set of all {m}-indexed data environments;

• the effect of applying the process denoted by a t ∈ CPRAMP to a {m}-indexed data
environment μ is Vρ(t), where ρ is a flexible variable valuation that represents μ.

The RAMPmodel of computation described above is intended to be essentially the
same as the standard RAM model of computation extended with logical instructions
and bit-shift instructions. The RAMs from that model are referred to as the BBRAMs
(Basic Binary RAMs). There is a strong resemblance between ORAMP and the set
IBBRAM of instructions from which the built-in programs of the BBRAMs can be
constructed. Because the concrete syntax of the instructions does not matter, IBBRAM
can be defined as follows:

IBBRAM = (Oo
RAMP) ∪ {jmp:p:i | p ∈ Op

RAMP ∧ i ∈ N
+} ∪ {halt} .

123



Theory of Computing Systems

A BBRAM program is a non-empty sequence C from IBBRAM∗ in which instructions
of the form jmp:p:i with i > �(C) do not occur. We write ISBBRAM for the set of all
BBRAM programs.

The execution of an instruction o from Oo
RAMP by a BBRAM causes the state of

its memory to change according to [[o]]. The execution of an instruction of the form
jmp:p:i or the instruction halt by a BBRAM has no effect on the state of its memory.
After execution of an instruction by a BBRAM, the BBRAMproceeds to the execution
of the next instruction from its built-in program except when the instruction is of
the form jmp:p:i and [[p]] = 1 or when the instruction is halt. In the case that
the instruction is of the form jmp:p:i and [[p]] = 1, the execution proceeds to the
i th instruction of the program. In the case that the instruction is halt, the execution
terminates successfully.

The processes that are produced by the BBRAMs when they execute their built-in
program are given by a functionM:ISBBRAM → PRAMP that is defined up to consistent
renaming of variables as follows: M(c1 . . . cn) = 〈X1|E〉, where E consists of, for
each i ∈ N with 1 ≤ i ≤ n, an equation

Xi = t :→ [m := ci (m)] · Xi+1 if ci ∈ Oo
RAMP,

Xi = (p(m) = 1) :→ [m :=m] · X j + (p(m) = 0) :→ [m :=m] · Xi+1
if ci ≡ jmp:p: j,

Xi = t :→ ε if ci ≡ halt,

where X1, . . . , Xn are different variable from X.
LetC ∈ ISBBRAM. ThenM(C) denotes the process that is produced by theBBRAM

whose built-in program is C when it executes its built-in program.
The definition of M is in accordance with the descriptions of various versions of

the RAM model of computation in the literature on this subject (see e.g. [1, 12, 21,
32]). However, to the best of my knowledge, none of these descriptions is precise and
complete enough to allow of a proof of this.

The RAMPs are exactly the processes that can be produced by the BBRAMs when
they execute their built-in program.

Theorem 4 For each constant 〈X |E〉 ∈ Prec, 〈X |E〉 ∈ PRAMP iff there exists a
C ∈ ISBBRAM such that 〈X |E〉 and M(C) are identical up to consistent renaming of
variables.

Proof It is easy to see that (a) for all C ∈ ISBBRAM, M(C) ∈ PRAMP and (b) M is
an bijection up to consistent renaming of variables. From this, the theorem follows
immediately. ��

Notice that, if 〈X |E〉 and 〈X ′|E ′〉 are identical up to consistent renaming of vari-
ables, then the equation 〈X |E〉 = 〈X ′|E ′〉 is derivable from RDP and RSP.

The following theorem is a result concerning the computational power of RAMPs.

Theorem 5 For each F : ({0, 1}∗)n �→ {0, 1}∗, there exists a t ∈ PRAMP such that t
computes F iff F is Turing-computable.

123



Theory of Computing Systems

Proof By Theorem 4, it is sufficient to show that each BBRAM is Turing equivalent to
a Turing machine. The BBRAM model of computation is essentially the same as the
BRAMmodel of computation from [14] extendedwith bit-shift instructions. It follows
directly from simulation results mentioned in [14] (part (3) of Theorem 2.4, part (3)
of Theorem 2.5, and part (2) of Theorem 2.6) that each BRAM can be simulated by
a Turing machine and vice versa. Because each Turing machine can be simulated
by a BRAM, we immediately have that each Turing machine can be simulated by a
BBRAM. It is easy to see that the bit-shift instructions can be simulated by a Turing
machine. From this and the fact that eachBRAMcanbe simulated by aTuringmachine,
it follows that each BBRAM can be simulated by a Turing machine as well. Hence,
each BBRAM is Turing equivalent to a Turing machine. ��

Henceforth, we write POLY for { f | f :N → N∧ f is a polynomial function}. The
following theorem tells us that the decision problems that belong to the complexity
class P are exactly the decision problems that can be solved by means of a RAMP in
polynomially many steps.

Theorem 6 For each F : {0, 1}∗ → {0, 1}, there exist a t ∈ PRAMP and a W ∈ POLY
such that t computes F in W steps iff F ∈ P .

Proof By Theorem 4, it is sufficient to show that time complexity on BBRAMs under
the uniform time measure, i.e. the number of steps, and time complexity on multi-tape
Turing machines are polynomially related. The BBRAM is essentially the same as the
BRAMmodel of computation from [14] extendedwith bit-shift instructions. It follows
directly from simulation results mentioned in [14] (part (3) of Theorem 2.4, part (3)
of Theorem 2.5, and part (2) of Theorem 2.6) that time complexity on BRAMs under
the uniform time measure and time complexity on multi-tape Turing machines are
polynomially related. It is easy to see that the bit-shift instructions can be simulated
by a multi-tape Turing machine in linear time. Hence, the time complexities remain
polynomially related if the BRAM model is extended with the bit-shift instructions.

��

5 The APRAMPModel of Computation

The setting introduced in Sections 2 and 3 is used in this section to describe an
asynchronous parallelRAMmodel of computation.Because it focuses on the processes
that are produces by asynchronous parallel RAMs when they execute their built-in
programs, the parallel RAM model of computation described in this section is called
the APRAMP (Asynchronous Parallel Random Access Machine Process) model of
computation. In this model of computation, a computational process is the parallel
composition of a number of processes that each has its own private RAM memory.
However, together they also have a shared RAM memory for synchronization and
communication.

First, the operators are introduced that represent the RAM operations and the RAM
properties that belong toD in the case of the APRAMP model of computation. Next,
the interpretation of those operators as a RAM operation or a RAM property is given.
Finally, the APRAMP model of computation is described.

123



Theory of Computing Systems

In the case of the APRAMP model of computation, the set of operators from 	D
that are interpreted in D as RAM operations or RAM properties is the set OPRAMP
defined as follows:

OPRAMP = ORAMP ∪ {ini:#i | i ∈ N
+}

∪ {loa:@i :d | i ∈ N ∧ d ∈ Dst} ∪ {sto:s:@i | s ∈ Src ∧ i ∈ N} ,

where Src and Dst are as defined in Section 4.1.
In operators of the forms binop:s1:s2:d, unop:s1:d, and cmpop:s1:s2 from ORAMP,

s1, s2, and d refer to the private RAMmemory. In operators of the form loa:@i :d and
sto:s:@i from OPRAMP \ ORAMP, s and d refer to the private RAM memory too. The
operators of the form loa:@i :d differ from the operators of the formmov:@i :d in that
@i stands for the content of the register from the shared RAMmemory whose number
is represented by the content of the register with number i from the private memory.
The operators of the form sto:s:@i differ from the operators of the form mov:s:@i
in that @i stands for the register from the shared RAM memory whose number is
represented by the content of the register with number i from the private memory. The
operators of the form ini:#i initialize the registers from the private memory as follows:
the content of the register with number 0 becomes the shortest bit string that represents
the natural number i and the content of all other registers becomes the empty bit string.

Now, we are ready to define the interpretation of the operators from OPRAMP in
D. For each o ∈ OPRAMP, the interpretation of o in D, written [[o]], is as defined in
Section4.2 for operators fromORAMP and as definedbelow for the additional operators:

[[ini:#i]](σp) = σλ{0 �→ b(i)};
[[loa:@i :d]](σp, σs) = σp{rσp (d) �→ σs(n(σp(i)))};
[[sto:s:@i]](σp, σs) = σs{n(σp(i)) �→ vσp (s)}.

Here, σp should be thought of as a private-memory state and σs should be thought of
as a shared-memory state.

Clearly, the interpretation of each operator of the form ini:#i is a 1-RAM operation
and the interpretation of each operator of the form loa:@i :d or sto:s:@i is a 2-RAM
operation.

Below, the APRAMP model of computation is characterized in the setting intro-
duced in Sections 2 and 3. However, first the notion of an APRAMP term is defined.
This notion is introduced to make precise what the set of possible computational
processes is in the case of the APRAMP model of computation.

In this section, D is fixed as follows:

• 	D is the smallest signature including (a) all sorts, constants, and operators
required by the assumptions made about D in ACPτ

ε -I or the RAM conditions
on D and (b) all operators from OPRAMP;

• all sorts, constants, and operators mentioned under (a) are interpreted in D as
required by the assumptions made about D in ACPτ

ε -I or the RAM conditions on
D;

• all operators mentioned under (b) are interpreted in D as defined above.

123



Theory of Computing Systems

Moreover, it is assumed that m ∈ V and, for all i ∈ N
+, mi ∈ V. We write Vm

n ,
where n ∈ N

+, for the set {m} ∪ {mi | i ∈ N
+ ∧ i ≤ n}.

An n-APRAM process term (n ∈ N
+), called an n-APRAMP term for short, is a

term from Prec that is of the form 〈X1|E1〉 ‖ . . . ‖ 〈Xn|En〉, where, for each i ∈ N
+

with i ≤ n:

• for each X ∈ vars(Ei ), the recursion equation for X in Ei has one of the following
forms:

(1) X = t :→ [mi := ini:#i (mi )] · Y ,
(2) X = t :→ [mi := loa:@ j :d (mi ,m)] · Y ,
(3) X = t :→ [m := sto:s:@ j (mi ,m)] · Y ,
(4) X = t :→ [mi := o(mi )] · Y ,
(5) X = (p(mi ) = 1) :→ [mi :=mi ] · Y + (p(mi ) = 0) :→ [mi :=mi ] · Y ′,
(6) X = t :→ ε,

where o ∈ Oo
RAMP, p ∈ Op

RAMP, and Y ,Y ′ ∈ vars(Ei );
• for each X ∈ vars(Ei ), the recursion equation for X in Ei is of the form (1) iff

X ≡ Xi .

We write PAPRAMP for the set of all terms t ∈ Prec such that t is an n-APRAMP term
for some n ∈ N

+, and we write CPAPRAMP for PAPRAMP ∩ CPrec. Moreover, we write
deg(t), where t ∈ PAPRAMP, for the unique n ∈ N

+ such that t is an n-APRAMP term.
The terms from PAPRAMP are referred to as APRAMP terms.
A process that can be denoted by an APRAMP term is called an APRAM process

or an APRAMP for short. So, an APRAMP is a parallel composition of processes
that are definable by a guarded linear recursive specification over ACPτ

ε -I of the kind
described above. Each of those parallel processes starts with an initialization step in
which the number of its private memory is made available in the register with number
0 from its private memory.

It follows from the auxiliary result about abstraction-free terms mentioned in
Section 2.4 that, for all t ∈ PAPRAMP, there exists a guarded linear recursive speci-
fication E and X ∈ vars(E) such that ACPτ

ε -I+REC � t = 〈X |E〉.
Asmentioned before, a basic assumption in this paper is that amodel of computation

is fully characterized by: (a) a set of possible computational processes, (b) for each
possible computational process, a set of possible data environments, and (c) the effect
of applying such processes to such environments.

D as fixed above and CPAPRAMP induce the APRAMP model of computation:

• the set of possible computational processes is the set of all processes that can be
denoted by a term from CPAPRAMP;

• for each possible computational process p, the set of possible data environments is
the set of all Vm

deg(t)-indexed data environments, where t is a term from CPAPRAMP
denoting p;

• the effect of applying the process denoted by a t ∈ CPAPRAMP to a Vm
deg(t)-indexed

data environmentμ is Vρ(t), where ρ is a flexible variable valuation that represents
μ.

The APRAMPmodel of computation described above is intended to be close to the
asynchronous parallel RAMmodel of computation sketched in [10, 25, 30]. However,

123



Theory of Computing Systems

the time complexity measure for this model that will be introduced in Section 7 is quite
different from the ones proposed in those papers. The APRAMP model described
above is considered less close to the asynchronous parallel RAM model sketched
in [17] because the latter provides special instructions for synchronization.

The APRAMPs can be looked upon as the processes that can be produced by a
collection of BBRAMs with an extended instruction set when they execute their built-
in program asynchronously in parallel.

The BBRAMs with the extended instruction set are referred to as the SMBRAMs
(Shared Memory Binary RAMs). There is a strong resemblance betweenOPRAMP and
the set ISMBRAM of instructions from which the built-in programs of the SMBRAMs
can be constructed. Because the concrete syntax of the instructions does not matter,
ISMBRAM can be defined as follows:

ISMBRAM = (OPRAMP \Op
RAMP) ∪ {jmp:p:i | p ∈ Op

RAMP ∧ i ∈ N
+} ∪ {halt} .

An SMBRAM program is a non-empty sequence C from ISSMBRAM
∗ in which instruc-

tions of the form jmp:p:i with i > �(C) do not occur. We write ISSMBRAM for the set
of all SMBRAM programs.

For the SMBRAMs whose private memory has number i (i ∈ N
+), the processes

that are produced when they execute their built-in program are given by a function
Mi : ISSMBRAM → PAPRAMP that is defined up to consistent renaming of variables as
follows:Mi (c1 . . . cn) = 〈Xi |Ei 〉, where Ei consists of the equation

Xi = t :→ [mi := ini:#i (mi )] · Y1

and, for each j ∈ N with 1 ≤ j ≤ n, an equation

Y j = t :→ [mi := c j (mi ,m)] · Y j+1 if c j ∈ Load,

Y j = t :→ [m := c j (mi ,m)] · Y j+1 if c j ∈ Store,

Y j = t :→ [mi := c j (mi )] · Y j+1 if c j ∈ Oo
RAMP,

Y j = (p(mi ) = 1) :→ [mi :=mi ] · Y j ′ + (p(mi ) = 0) :→ [mi :=mi ] · Y j+1
if c j ≡ jmp:p: j ′,

Y j = t :→ ε if c j ≡ halt,

where Load = {loa:@i :d | i ∈ N ∧ d ∈ Dst}, Store = {sto:s:@i | s ∈ Src ∧ i ∈ N},
and Y1, . . . ,Yn are different variables from X \ {Xi }.

The APRAMPs are exactly the processes that can be produced by a collection of
SMBRAMs when they execute their built-in program asynchronously in parallel.

Theorem 7 Let n ∈ N
+. For all constants 〈X1|E1〉, . . . , 〈Xn|En〉 ∈ Prec, 〈X1|E1〉 ‖

. . . ‖ 〈Xn|En〉 ∈ PAPRAMP iff there exist C1, . . . ,Cn ∈ ISSMBRAM such that 〈X1|E1〉 ‖

. . . ‖ 〈Xn|En〉 and M1(C1) ‖ . . . ‖Mn(Cn) are identical up to consistent renaming
of variables.

123



Theory of Computing Systems

Proof Let i ∈ N
+ be such that i ≤ n. It is easy to see that (a) for all C ∈ ISSMBRAM,

Mi (C) ∈ PAPRAMP and (b)Mi is an bijection up to consistent renaming of variables.
From this, it follows immediately that there exists a C ∈ ISSMBRAM such that 〈Xi |Ei 〉
andMi (C) are identical up to consistent renaming of variables. From this, the theorem
follows immediately. ��

6 The SPRAMPModel of Computation

In the asynchronous parallel RAM model of computation presented in Section 5,
the parallel processes that make up a computational process do not automatically
synchronize after each computational step. In this section, we describe a parallel
RAMmodel of computationwhere the parallel processes thatmake up a computational
process automatically synchronize after each computational step.

6.1 Synchronization of Parallel Processes

For the purpose of synchronizing parallel processes, a special instance of the synchro-
nization merge operator of CSP [23] is defined in terms of the operators of ACPτ

ε -
I+RN. It is assumed that sync, s̃ync ∈ A and γ is such that γ (sync, sync) = s̃ync,
γ (sync, a) = δ for all a ∈ A \ {sync}, and γ (s̃ync, a) = δ for all a ∈ A. The special
instance of the synchronization merge operator, ‖sync, is defined as follows:

t ‖sync t ′ = ρ f (∂{sync}(ρ f (t) ‖ ρ f (t
′))) ,

where the renaming function f is defined by f (s̃ync) = sync and f (α) = α if
α ∈ A \ {s̃ync}.

The process denoted by t1 ‖sync . . . ‖sync tn behaves as the n processes denoted by
t1, . . . , tn in parallel, but with the restriction that the special synchronization action
sync can only be performed simultaneously by all n processes.

Because of the use of an action renaming operator in the definition of ‖sync, it is
assumed in Sections 6.2 and 7.3 that:

• from Section 2.4, Prec stands for the set of all closed ACPτ
ε -I+REC+RN terms of

sort P;
• from Section 2.4, all occurrences of ACPτ

ε -I+REC, ACPτ
ε -I+REC+CFAR,

and ACPτ
ε -I+REC+CFAR+PR have been replaced by ACPτ

ε -I+REC+RN,
ACPτ

ε -I+REC+CFAR+RN, and ACPτ
ε -I+REC+CFAR+PR+RN, respectively.

What is defined by the definitions given from Section 3 is the same before and after
these changes. Moreover, all results given from Section 2.4, including the soundness
and semi-completeness results, go through after these changes.

123



Theory of Computing Systems

6.2 SPRAMPTerms and the SPRAMPModel

The parallel RAM model of computation described in this section is called the
SPRAMP (Synchronous Parallel Random Access Machine Process) model of com-
putation.

The operators that represent the RAM operations and the RAM properties that
belong toD in the case of the SPRAMP model of computation are the same as in the
case of the APRAMP model of computation. The interpretation of those operators as
a RAM operation or a RAM property is also the same as in the case of the APRAMP
model of computation. Moreover, D is fixed as in Section 5.

Below, the SPRAMP model of computation is characterized. However, first the
notion of an n-SPRAMP term is defined.

Like in Section 5, it is assumed thatm ∈ V and, for all i ∈ N
+,mi ∈ V. Again, we

write Vm
n , where n ∈ N

+, for the set {m} ∪ {mi | i ∈ N
+ ∧ i ≤ n}.

An n-SPRAM process term (n ∈ N
+), called an n-SPRAMP term for short, is a

term from Prec that is of the form 〈X1|E1〉 ‖sync . . . ‖sync 〈Xn|En〉, where, for each
i ∈ N

+ with i ≤ n:

• for each X ∈ vars(Ei ), the recursion equation for X in Ei has one of the following
forms:

(1) X = t :→ sync · Y ,
(2) X = t :→ [mi := ini:#i (mi )] · Y ,
(3) X = t :→ [mi := loa:@ j :d (mi ,m)] · Y ,
(4) X = t :→ [m := sto:s:@ j (mi ,m)] · Y ,
(5) X = t :→ [mi := o(mi )] · Y ,
(6) X = (p(mi ) = 1) :→ [mi :=mi ] · Y + (p(mi ) = 0) :→ [mi :=mi ] · Y ′,
(7) X = t :→ ε,

where o ∈ Oo
RAMP, p ∈ Op

RAMP, and Y ,Y ′ ∈ vars(Ei );
• for each X ,Y ∈ vars(Ei ) with Y occurring in the right-hand side of the recursion
equation for X in Ei , the recursion equation for X in Ei is of the form (1) iff the
recursion equation for Y in Ei is not of the form (1);

• for each X ∈ vars(Ei ), the recursion equation for X in Ei is of the form (2) iff
X ≡ Xi .

We write PSPRAMP for the set of all terms t ∈ Prec such that t is an n-SPRAMP term
for some n ∈ N

+, and we write CPSPRAMP for PSPRAMP ∩ CPrec. Moreover, we write
deg(t), where t ∈ PSPRAMP, for the unique n ∈ N

+ such that t is an n-SPRAMP term.
The terms from PSPRAMP are referred to as SPRAMP terms.
A process that can be denoted by an SPRAMP term is called an SPRAM process

or an SPRAMP for short. So, an SPRAMP is a synchronous parallel composition of
processes that are definable by a guarded linear recursive specification over ACPτ

ε -I of
the kind described above. Each of those parallel processes starts with an initialization
step in which the number of its private memory is made available in the register with
number 0 from its private memory.

123



Theory of Computing Systems

It follows from the auxiliary result about abstraction-free terms mentioned in
Section 2.4 that, for all t ∈ PAPRAMP, there exists a guarded linear recursive speci-
fication E and X ∈ vars(E) such that ACPτ

ε -I+REC+RN � t = 〈X |E〉.
D as fixed above and CPSPRAMP induce the SPRAMP model of computation:

• the set of possible computational processes is the set of all processes that can be
denoted by a term from CPSPRAMP;

• for each possible computational process p, the set of possible data environments is
the set of all Vm

deg(t)-indexed data environments, where t is a term from CPSPRAMP
denoting p;

• the effect of applying the process denoted by a t ∈ CPSPRAMP to a Vm
deg(t)-indexed

data environmentμ is Vρ(t), where ρ is a flexible variable valuation that represents
μ.

The SPRAMP model of computation described above is intended to be close to
the synchronous parallel RAM model of computation sketched in [36].8 However,
that model is a PRIORITY CRCW model whereas the SPRAMP model is essentially
an ARBITRARY CRCW model. Roughly speaking, this means that, in the case that
two or more parallel processes attempt to change the content of the same register at
the same time, there is a difference in how the process that succeeds in its attempt
is chosen (see also Section 8). Moreover, in the model sketched in [36], the built-in
programs of the RAMs that make up a PRAM must be the same whereas the parallel
processes that make up an SPRAMP may be different.

The SPRAMPs can be looked upon as the processes that can be produced by a
collection of SMBRAMs when they execute their built-in program synchronously in
parallel.

For the SMBRAMs whose private memory has number i (i ∈ N
+), the processes

that are produced when they execute their built-in program are now given by a function
Msync

i : ISSMBRAM → PSPRAMP that is defined up to consistent renaming of variables
as follows:Msync

i (c1 . . . cn) = 〈Xi |Ei 〉, where Ei consists of the equation

Xi = t :→ [mi := ini:#i (mi )] · Y1

and, for each j ∈ N with 1 ≤ j ≤ n, an equation

Y2 j−1 = t :→ sync · Y2 j
Y2 j = t :→ [mi := c j (mi ,m)] · Y2 j+1 if c j ∈ Load,

Y2 j = t :→ [m := c j (mi ,m)] · Y2 j+1 if c j ∈ Store,

Y2 j = t :→ [mi := c j (mi )] · Y2 j+1 if c j ∈ Oo
RAMP,

Y2 j = (p(mi ) = 1) :→ [mi :=mi ] · Y2 j ′−1 + (p(mi ) = 0) :→ [mi :=mi ] · Y2 j+1
if c j ≡ jmp:p: j ′,

Y2 j = t :→ ε if c j ≡ halt,

8 The model sketched in [36] is known as the PRAM model and is similar to, among others, the models
sketched in [16, 19, 25, 27, 37].

123



Theory of Computing Systems

where Load = {loa:@i :d | i ∈ N ∧ d ∈ Dst}, Store = {sto:s:@i | s ∈ Src ∧ i ∈ N},
and Y1, . . . ,Y2n are different variables from X \ {Xi }.

The SPRAMPs are exactly the processes that can be produced by a collection of
SMBRAMs when they execute their built-in program synchronously in parallel.

Theorem 8 Let n ∈ N
+. For all constants 〈X1|E1〉, . . . ,〈Xn|En〉 ∈ Prec, 〈X1|E1〉‖sync

. . . ‖sync 〈Xn|En〉 ∈ PSPRAMP iff there exist C1, . . . ,Cn ∈ ISSMBRAM such that

〈X1|E1〉‖sync . . .‖sync 〈Xn|En〉 andMsync
1 (C1)‖sync . . .‖syncMsync

n (Cn) are identical
up to consistent renaming of variables.

Proof Let i ∈ N
+ be such that i ≤ n. It is easy to see that (a) for all C ∈ ISSMBRAM,

Msync
i (C) ∈ PSPRAMP and (b) Msync

i is an bijection up to consistent renaming of
variables. From this, it follows immediately that there exists a C ∈ ISSMBRAM such
that 〈Xi |Ei 〉 andMsync

i (C) are identical up to consistent renaming of variables. From
this, the theorem follows immediately. ��

The first synchronous parallel RAM models of computation, e.g. the models pro-
posed in [16, 19, 36], are older than the first asynchronous parallel RAM models of
computation, e.g. the models proposed in [10, 25, 30]. It appears that the synchronous
parallel RAM models have been primarily devised to be used in the area of computa-
tional complexity and that the asynchronous parallel RAMmodels have been primarily
devised because the synchronous models were considered of restricted value in the
area of algorithm efficiency.

7 Time andWork Complexity Measures

This section concerns complexity measures for the models of computation presented
in Sections 4–6. Before the complexity measures in question are introduced, it is made
precise in the current setting what a complexity measure is and what the complexity
of a computable function from ({0, 1}∗)n to {0, 1}∗ under a given complexity measure
is.

Let CP ⊆ CPrec. Then a complexity measure for CP is a partial function
M : CP × ⋃

m∈N
({0, 1}∗)m �→ N such that, for all t ∈ CP and (w1, . . . , wn) ∈⋃

m∈N
({0, 1}∗)m , M(t, (w1, . . . , wn)) is defined iff Vρw1,...,wn

(t) is a terminating-
process term.

This notion of a complexity measure bears little resemblance to Blum’s notion of
a complexity measure [8], but it is in accordance with Blum’s notion.

Let CP ⊆ CPrec and let M be a complexity measure for CP . Let n ∈ N and let
F : ({0, 1}∗)n �→ {0, 1}∗ be a computable function. Let V : N → N. Then F is of
complexity V under the complexity measure M if there exists a t ∈ CP such that:

• t computes F ;
• for all w1, . . . , wn ∈ {0, 1}∗ such that F(w1, . . . , wn) is defined:

M(t, (w1, . . . , wn)) ≤ V (�(w1)+ . . .+ �(wn)) .

123



Theory of Computing Systems

7.1 The RAMPModel of Computation

Below, a time complexity measure and a work complexity measure for the RAMP
model of computation are introduced.

The sequential uniform time measure yields, for a given RAMP and a given data
environment, themaximumnumber of steps that can be performed by the givenRAMP
before eventually halting in the case where the initial data environment is the given
data environment.

The sequential uniform time measure is the complexity measure MSUT for CPRAMP
defined by

MSUT(t, (w1, . . . , wn)) = depth(Vρw1,...,wn
(t))

for all t ∈ CPRAMP and (w1, . . . , wn) ∈ ⋃
m∈N

({0, 1}∗)m such that Vρw1,...,wn
(t) is a

terminating-process term.
The sequential uniform time measure is essentially the same as the uniform time

complexity measure for the standard RAM model of computation (see e.g [1]).
It is an idealized time measure: the simplifying assumption is made that a RAMP

performs one step per time unit.
The maximum number of steps that can be performed by a given RAMP can also

be looked upon as the maximum amount of work. This makes the sequential uniform
time measure a very plausible work measure as well.

The sequential work measure is the complexity measure MSW for CPRAMP defined
by

MSW(t, (w1, . . . , wn)) = MSUT(t, (w1, . . . , wn))

for all t ∈ CPRAMP and (w1, . . . , wn) ∈ ⋃
m∈N

({0, 1}∗)m such that Vρw1,...,wn
(t) is a

terminating-process term.
In the sequential case, it is in accordance with our intuition that the uniform time

complexity measure coincides with the work complexity measure. In the parallel case,
this is not in accordance with our intuition: it is to be expected that the introduction of
parallelism results in a reduction of the amount of time needed but not in a reduction
of the amount of work needed.

The following connection between the complexity measure MSUT and the notion of
“computability inW steps” from Section 3.2 is a corollary of the definitions involved.

Corollary 1 For each computable function F : ({0, 1}∗)n �→ {0, 1}∗ and function V :
N → N, F is of complexity V under the complexity measure MSUT iff there exists a
t ∈ PRAMP such that t computes F in V steps.

7.2 The APRAMPModel of Computation

Below, a time complexity measure and a work complexity measure for the APRAMP
model of computation are introduced.

The asynchronous parallel uniform time measure yields, for a given APRAMP
and a given data environment, the maximum over all parallel processes that make up
the given APRAMP of the maximum number of steps that can be performed before

123



Theory of Computing Systems

eventually halting in the case where the initial data environment is the given data
environment.

The asynchronous parallel uniform time measure is the complexity measureMAPUT
for CPAPRAMP defined by

MAPUT(t, (w1, . . . , wn)) = max{depth(τHi
(Vρw1,...,wn

(t))) | 1 ≤ i ≤ deg(t)} ,

where Hi is the set of all α ∈ A in which mi does not occur, for all t ∈ CPAPRAMP
and (w1, . . . , wn) ∈ ⋃

m∈N
({0, 1}∗)m such that Vρw1,...,wn

(t) is a terminating-process
term.

In this definition, τHi
turns steps of the process denoted by Vρw1,...,wn

(t) that are not
performed by the parallel process whose private memory is referred to by mi into
silent steps. Because depth does not count silent steps, depth(τHi

(Vρw1,...,wn
(t))) is the

maximum number of steps that the parallel process whose private memory is referred
to bymi can perform.

Because it yields the maximum number of steps that can be performed by one of the
parallel processes that make up a given APRAMP, the asynchronous parallel uniform
time measure differs from the asynchronous parallel work measure.

The asynchronous parallel work measure is the complexity measure MAPW for
CPAPRAMP defined by

MAPW(t, (w1, . . . , wn)) = depth(Vρw1,...,wn
(t))

for all t ∈ CPAPRAMP and (w1, . . . , wn) ∈⋃
m∈N

({0, 1}∗)m such that Vρw1,...,wn
(t) is a

terminating-process term.
The sequential work measure and the asynchronous parallel work measure are

such that comparison of complexities under these measures have some meaning: both
concern the maximum number of steps that can be performed by a computational
process.

Like all complexity measures introduced in this section, the asynchronous parallel
uniform time measure introduced above is a worst-case complexity measure. It is
quite different from the parallel time complexity measures that have been proposed
for the asynchronous parallel RAM model of computation sketched in [10, 25, 30].
The round complexitymeasure is proposed as parallel time complexitymeasure in [10,
25] and an expected time complexity measure is proposed as parallel time complexity
measure in [30]. Neither of those measures is a worst-case complexity measure: the
round complexity measure removes certain cases from consideration and the expected
time complexity measure is an average-case complexity measure.

It appears that the round complexitymeasure and the expected time complexitymea-
sure are more important to analysis of the efficiency of parallel algorithms whereas the
asynchronous parallel time complexity measure introduced above is more important
to analysis of the complexity of computational problems that are amenable to solu-
tion by a parallel algorithm. After all, the area of computational complexity is mostly
concerned with worst-case complexity.

In [30], the asynchronous parallel uniform timemeasure introduced above is explic-
itly rejected. Consider the case where there exists an interleaving of the parallel

123



Theory of Computing Systems

processes that make up an APRAMP that is close to performing all steps of each
of the processes uninterrupted by steps of the others. Then the interleaving concerned
is not ruled out by synchronization (through the shared memory) and may even be
enforced by synchronization. So it may be likely or unlikely to occur. Seen in that
light, it is surprising why it is stated in [30] that such an interleaving has “very low
probability, yielding a sequential measure”.

7.3 The SPRAMPModel of Computation

Below, a time complexity measure and a work complexity measure for the SPRAMP
model of computation are introduced.

The time complexity measure introduced below is essentially the same as the uni-
form time complexity measure that goes with the synchronous parallel RAM model
of computation sketched in [36] and similar models.

The synchronous parallel uniform time measure yields, for a given SPRAMP and
a given data environment, the maximum number of synchronization steps that can
be performed by the given SPRAMP before eventually halting in the case where the
initial data environment is the given data environment.

The synchronous parallel uniform time measure is the complexity measure MSPUT
for CPSPRAMP defined by

MSPUT(t, (w1, . . . , wn)) = depth(τsync(Vρw1,...,wn
(t))) ,

where sync = A \ {sync}, for all t ∈ CPSPRAMP and (w1, . . . , wn) ∈⋃
m∈N

({0, 1}∗)m
such that Vρw1,...,wn

(t) is a terminating-process term.
In this definition, τsync turns all steps of the process denoted by Vρw1,...,wn

(t) other
than synchronization steps, i.e. all computational steps, into silent steps. Because
depth does not count silent steps, depth(τsync(Vρw1,...,wn

(t))) is the maximum number
of synchronization steps that can be performed by the process denoted by Vρw1,...,wn

(t)
before eventually halting.

Because the parallel processes that make up a given SPRAMP synchronize after
each computational step, the time between two consecutive synchronization steps can
be considered one time unit. Therefore, the synchronous parallel uniform timemeasure
is a plausible time measure. Clearly, the maximum number of synchronization steps
that can be performed by the given SPRAMP and the maximum number of compu-
tational steps that can be performed by the given SPRAMP are separate numbers. So
the synchronous parallel uniform time measure differs from the synchronous parallel
work measure.

The synchronous parallel work measure is the complexity measure MSPW for
CPSPRAMP defined by

MSPW(t, (w1, . . . , wn)) = depth(τsync(Vρw1,...,wn
(t)))

for all t ∈ CPSPRAMP and (w1, . . . , wn) ∈ ⋃
m∈N

({0, 1}∗)m such that Vρw1,...,wn
(t) is a

terminating-process term.

123



Theory of Computing Systems

The sequential work measure and the synchronous parallel work measure are such
that comparison of complexities under these measures have some meaning: both
concern the maximum number of computational steps that can be performed by a
computational process.

Take an SPRAMP and the APRAMP which is the SPRAMP without the automatic
synchronization after each computational step. Assume that at any stage the next step
to be taken by any of the parallel processes that make up the APRAMP does not
depend on the steps that have been taken by the other parallel processes. Then the
synchronous parallel time measure MSPUT yields for the SPRAMP the same result as
the asynchronous parallel time measure MAPUT yields for the APRAMP.

8 SPRAMPs and the Parallel Computation Thesis

The SPRAMP model of computation is a simple model based on an idealization of
existing shared memory parallel machines that abstracts from synchronization over-
head. The synchronous parallel uniform time measure introduced for this model is a
simple, hardware independent, and worst-case complexity measure.

The question is whether the SPRAMPmodel of computation is a reasonable model
of parallel computation. A model of parallel computation is generally considered rea-
sonable if the parallel computation thesis holds. In the current setting, this thesis can be
phrased as follows: the parallel computation thesis holds for a model of computation
if, for each computable partial function from ({0, 1}∗)n to {0, 1}∗ (n ∈ N), its com-
plexity under the time complexity measure for that model is polynomially related to
its complexity under the space complexity measure for the multi-tape Turing machine
model of computation.

Before we answer the question whether the SPRAMP model of computation is a
reasonable model of parallel computation, we go into a classification of synchronous
parallel RAMs. This classification is used later on in answering the question. Follow-
ing [24], PRAM is used as a common name for a synchronous parallel RAM regardless
of its classification.

First of all, there are PRAMs whose constituent RAMs may execute different pro-
grams and PRAMs whose constituent RAMs must execute the same program. The
former PRAMs are classified as MIMD (Multiple Instruction, Multiple Data) and the
latter PRAMs are classified as SIMD (Single Instruction, Multiple Data).

In [24, Section 2.1], PRAMs are classified according to their restrictions on
sharedmemory access as EREW (Exclusive-Read Exclusive-Write), CREW (Concur-
rent-Read Exclusive-Write) or CRCW (Concurrent-Read Concurrent-Write). CRCW
PRAMs are further classified according to their way of resolving write conflicts as
COMMON,where all values attempted to bewritten concurrently into the same shared
register must be identical, ARBITRARY, where one of the values attempted to be
written concurrently into the same shared register is chosen arbitrarily, or PRIORITY,
where the RAMs making up the PRAM are numbered and, from all values attempted
to bewritten concurrently into the same shared register, the one attempted to bewritten
by the RAM with the lowest number is chosen.

123



Theory of Computing Systems

An SPRAMP is a process that can be produced by a MIMD ARBITRARY CRCW
PRAM with SMBRAMs (see Section 5) as constituent RAMs.

Below, the next two lemmas about the above classifications of PRAMs will be
used to show that the parallel computation thesis holds for the SPRAMP model of
computation.

Lemma 4 Assuming a fixed instruction set:

1. MIMDPRIORITYCRCWPRAMs can be simulated byMIMDARBITRARYCRCW
PRAMs with the same number of RAMs and with the parallel time increased by a
factor of O(log(p)), where p is the number of RAMs;

2. MIMDARBITRARYCRCWPRAMs can be simulated byMIMDPRIORITYCRCW
PRAMs with the same number of RAMs and the same parallel time.

Proof Assume a fixed instruction set.
Part 1. It is shown in [24, Section 3.1] that MIMD PRIORITY CRCW PRAMs can

be simulated by MIMD EREW PRAMs with the same number of RAMs and with
the parallel time increased by only a factor of O(log(p)), where p is the number of
RAMs. It follows directly from the definitions concerned that MIMD EREW PRAMs
can be simulated by MIMD ARBITRARY CRCW PRAMs with the same number of
RAMs and the same parallel time (the programs involved can be executed directly).
Hence,MIMDPRIORITYCRCWPRAMs can be simulated byMIMDARBITRARY
CRCW PRAMs with the same number of RAMs and with the parallel time increased
by a factor of O(log(p)), where p is the number of RAMs.

Part 2. It follows directly from the definitions concerned that MIMDARBITRARY
CRCWPRAMscan be simulated byMIMDPRIORITYCRCWPRAMswith the same
number of RAMs and the same parallel time (the programs involved can be executed
directly). ��
Lemma 5 Assuming a fixed instruction set:

1. SIMD PRIORITY CRCW PRAMs can be simulated by MIMD PRIORITY CRCW
PRAMs with the same number of RAMs and with the same parallel time;

2. MIMD PRIORITY CRCW PRAMs can be simulated by SIMD PRIORITY CRCW
PRAMs with the same number of RAMs and with the parallel time increased by a
constant factor.

Proof Assume a fixed instruction set.
Part 1. This follows directly from the definitions concerned (the programs involved

can be executed directly).
Part 2. This is a special case of Theorem 3 from [39]. ��
The next theorem expresses that the parallel computation thesis holds for the

SPRAMP model of computation.

Theorem 9 Let F : ({0, 1}∗)m �→ {0, 1}∗ for some m ∈ N be a computable function
and let T , S : N → N. Then:

• if F is of complexity T (n) under the synchronous parallel time complexity measure
MSPUT for the SPRAMPmodel of computation, then there exists a k ∈ N such that F

123



Theory of Computing Systems

is of complexity O(T (n)k) under the space complexity measure for the multi-tape
Turing machine model of computation;

• if F is of complexity S(n) under the space complexity measure for the multi-tape
Turing machine model of computation, then there exists a k ∈ N such that F is
of complexity O(S(n)k) under the synchronous parallel time complexity measure
MSPUT for the SPRAMP model of computation provided that S(n) ≥ log(n) for all
n ∈ N.

Proof In [19], SIMDAGs are introduced. SIMDAGs are SIMD PRIORITY CRCW
PRAMs with a subset of the instruction set of SMBRAMs as instruction set. Because
DSPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DSPACE(S(n)2), the variant of the current the-
orem for the SIMDAGmodel of computation follows immediately from Theorems 2.1
and 2.2 from [19] under a constructibility assumption for S(n). However, the proofs
of those theorems go through with the instruction set of SMBRAMs because none of
the SMBRAM instructions builds bit strings that are more than O(T (n)) bits long in
T (n) time. Moreover, if we take forking variants of SIMDAGs with the instruction set
of SMBRAMs (resembling the P-RAMs from [16]), the constructibility assumption
for S(n) is not needed. This can be shown in the sameway as in the proof of Lemma 1a
from [16].

In the rest of this proof, we write E-SIMDAG for a SIMDAG with the instruction
set of SMBRAMs and forking E-SIMDAG for a forking variant of an E-SIMDAG.

The variant of the current theorem for the forkingE-SIMDAGmodel of computation
follows directly from the above-mentioned facts.

Now forking E-SIMDAGs can be simulated by E-SIMDAGs with O(p) number of
SMBRAMs and with the parallel time increased by a factor of O(log(p)), where p is
the number of SMBRAMs used by the forking E-SIMDAG concerned. This is proved
as in the proof of Lemma 2.1 from [20]. The other way round, E-SIMDAGs can be sim-
ulated by forking E-SIMDAGs with eventually the same number of SMBRAMs and
with the parallel time increased by O(log(p)), where p is the number of SMBRAMs
of the E-SIMDAG concerned. This is easy to see: before the programs of the p
SMBRAMs involved can be executed directly, the p SMBRAMs must be created
by forking and this can be done in O(log(p)) time. It follows immediately from these
simulation results that time complexities on forking E-SIMDAGs are polynomially
related to time complexities on E-SIMDAGs.

Thevariant of the current theorem for theE-SIMDAGmodel of computation follows
directly from the variant of the current theorem for the forking E-SIMDAG model of
computation and the above-mentioned polynomial relationship. From this, the fact
that E-SIMDAGs are actually SIMD PRIORITY CRCW PRAMs that are composed
of SMBRAMs,Lemmas 5, 4, andTheorem8, the current theoremnow follows directly.

��

9 Concluding Remarks

In this paper, it has been studied whether the imperative process algebra ACPτ
ε -I can

play a role in the field of models of computation.

123



Theory of Computing Systems

Models of computation corresponding tomodels based on sequential randomaccess
machines, asynchronous parallel random access machines, synchronous parallel ran-
dom access machines, and complexity measures for those models have been described
in a direct and mathematically precise way in the setting of ACPτ

ε -I.Central in the
models described are the computational processes considered instead of the abstract
machines that produce those processes when they execute their built-in program.

The work presented in this paper pertains to formalizing models of computation.
Little work has been done in this area. Three notable exceptions are [2, 31, 40]. Those
papers are concerned with formalization in a theorem prover (HOL4, Isabelle/HOL,
Matita) and focusses on some version of the Turing machine model of computation.
This makes it impracticable to compare the work presented in those papers with the
work presented in this paper.

Whereas it is usual in versions of the RAMmodel of computation that bit strings are
represented by natural numbers, here natural numbers are represented by bit strings.
Moreover, the choice has been made to represent the natural number 0 by the bit string
0 and to adopt the empty bit string as the register content that indicates that a register
is (as yet) unused.

Author Contributions The single author wrote and reviewed the manuscript.

Declarations

Competing interests The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer algorithms. Addison-
Wesley, Reading, MA (1974)

2. Asperti, A., Ricciotti, W.: A formalization of multi-tape Turing machines. Theoret. Comput. Sci. 603,
23–42 (2015). https://doi.org/10.1016/j.tcs.2015.07.013

3. Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Inf. Control
78(3), 205–245 (1988). https://doi.org/10.1016/0890-5401(88)90027-2

4. Baeten, J.C.M., Weijland, W.P. : Process Algebra. Cambridge Tracts in Theoretical Computer Science,
vol. 18. Cambridge University Press, Cambridge (1990) https://doi.org/10.1017/CBO9780511624193

5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Control 60(1–3),
109–137 (1984). https://doi.org/10.1016/S0019-9958(84)80025-X

6. Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. J. Appl. Log. 9(3), 203–
220 (2011). https://doi.org/10.1016/j.jal.2011.03.001

7. Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. J. ACM 54(2), 7 (2007).
https://doi.org/10.1145/1219092.1219095

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2015.07.013
https://doi.org/10.1016/0890-5401(88)90027-2
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1016/j.jal.2011.03.001
https://doi.org/10.1145/1219092.1219095


Theory of Computing Systems

8. Blum, M.: A machine-independent theory of the complexity of recursive functions. J. ACM 14(2),
322–336 (1967). https://doi.org/10.1145/321386.321395

9. Bouwman, M.S., Luttik, S.P., Schols, W.R.M., Willemse, T.A.C.: A process algebra with global vari-
ables. Electronic Proceedings in Theoretical Computer Science 322, 33–50 (2020). https://doi.org/10.
4204/EPTCS.322.5

10. Cole, R., Zajicek, O. : The APRAM: Incorporating asynchrony into the PRAM model. In: SPAA ’89.
pp. 169–178 ACM, New York (1989). https://doi.org/10.1145/72935.72954

11. Colvin, R., Hayes, I.J. : CSP with hierarchical state. In: Leuschel, M., Wehrheim, H. (eds) IFM 2009.
Lecture Notes in Computer Science, vol. 5423. pp 118–135. Springer, Berlin (2009). https://doi.org/
10.1007/978-3-642-00255-7_9

12. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. J Comput. Syst. Sci. 7(4), 354–
375 (1973). https://doi.org/10.1145/800152.804898

13. De Nicola, R., Pugliese, R. (1997) Testing semantics of asynchronous distributed programs. In: Dam,
M. (ed) LOMAPS 1996. Lecture Notes in Computer Science, vol. 1192. pp 320–344. Springer, Berlin.
https://doi.org/10.1007/3-540-62503-8_15

14. van EmdeBoas, P. :Machinemodels and simulations. In: van Leeuwen, J. (ed.) Handbook of theoretical
computer scienceo vol. A. pp 2–66. Elsevier, Amsterdam (1990) https://doi.org/10.1016/B978-0-444-
88071-0.50006-0

15. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: A process algebra
for wireless mesh networks. In: Seidl, H. (ed) ESOP 2012. Lecture Notes in Computer Science, vol
7211. pp 295–315. Springer, Berlin (2012) https://doi.org/10.1007/978-3-642-28869-2_15

16. Fortune, S., Wyllie, J. : Parallelism in random access machines. In: STOC ’78. pp 114–118. ACM,
New York, (1978) https://doi.org/10.1145/800133.804339

17. Gibbons, P.B. : A more practical PRAM model. In: SPAA ’89. pp 158–168. ACM, New York (1989)
https://doi.org/10.1145/72935.72953

18. Goguen, J.A. : Theorem Proving and Algebra (2021) arXiv:2101.02690
19. Goldschlager, L.M.: A universal interconnection pattern for parallel computers. J. ACM 29(4), 1073–

1086 (1982). https://doi.org/10.1145/322344.322353
20. Goodrich, M.T. : Intersecting line segments in parallel with an output-sensitive number of processors.

In: SPAA ’89. pp 127–137. ACM, New York (1989). https://doi.org/10.1145/72935.72950
21. Hartmanis, J., Simon, J. : On the power of multiplication in random access machines. In: SWAT ’74,

pp. 13–23. IEEE, New York (1974). https://doi.org/10.1109/SWAT.1974.20
22. Hennessy,M., Ingólfsdóttir, A.: Communicating processeswith value-passing and assignments. Formal

Aspects Comput. 5(5), 432–466 (1993). https://doi.org/10.1007/BF01212486
23. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)
24. Karp, R.M., Ramachandran, V. : Parallel algorithms for shared-memory machines. In: van Leeuwen,

J. (ed) Handbook of Theoretical Computer Science vol. A. pp 870–941. Elsevier, Amsterdam (1990).
https://doi.org/10.1016/B978-0-444-88071-0.50022-9

25. Kruskal, C.P.: Rudolph L, Snir M: A complexity theory of efficient parallel algorithms. Theoret.
Comput. Sci. 71(1), 95–132 (1990). https://doi.org/10.1016/0304-3975(90)90192-K

26. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–923 (1994).
https://doi.org/10.1145/177492.177726

27. Mak, L.: Parallelism always helps. SIAM Journal of Computing 26(1), 153–172 (1997). https://doi.
org/10.1137/S0097539794265402

28. Maurer, W.D.: A theory of computer instructions. Sci. Comput. Program. 60, 244–273 (2006). https://
doi.org/10.1016/j.scico.2005.09.001

29. Middelburg, C.A.: Imperative process algebra with abstraction. Sci. Ann. Comput. Sci. 32(1), 137–179
(2022). https://doi.org/10.7561/SACS.2022.1.137

30. Nishimura, N.: A model for asynchronous shared memory parallel computation. SIAM J Comput.
23(6), 1122–1147 (1994). https://doi.org/10.1137/S0097539791219670

31. Norrish,M. :Mechanised computability theory. In: vanEekelen,M.,Geuvers,H., Schmaltz, J.,Wiedijk,
F. (eds) ITP 2011. Lecture Notes in Computer Science, vol. 6898. pp 297–311. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-22863-6_22

32. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, MA (1994)
33. Pigozzi, D., Salibra, A.: The abstract variable-binding calculus. Stud. Logica. 55(1), 129–179 (1995).

https://doi.org/10.1007/BF01053036

123

https://doi.org/10.1145/321386.321395
https://doi.org/10.4204/EPTCS.322.5
https://doi.org/10.4204/EPTCS.322.5
https://doi.org/10.1145/72935.72954
https://doi.org/10.1007/978-3-642-00255-7_9
https://doi.org/10.1007/978-3-642-00255-7_9
https://doi.org/10.1145/800152.804898
https://doi.org/10.1007/3-540-62503-8_15
https://doi.org/10.1016/B978-0-444-88071-0.50006-0
https://doi.org/10.1016/B978-0-444-88071-0.50006-0
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/72935.72953
http://arxiv.org/abs/2101.02690
https://doi.org/10.1145/322344.322353
https://doi.org/10.1145/72935.72950
https://doi.org/10.1109/SWAT.1974.20
https://doi.org/10.1007/BF01212486
https://doi.org/10.1016/B978-0-444-88071-0.50022-9
https://doi.org/10.1016/0304-3975(90)90192-K
https://doi.org/10.1145/177492.177726
https://doi.org/10.1137/S0097539794265402
https://doi.org/10.1137/S0097539794265402
https://doi.org/10.1016/j.scico.2005.09.001
https://doi.org/10.1016/j.scico.2005.09.001
https://doi.org/10.7561/SACS.2022.1.137
https://doi.org/10.1137/S0097539791219670
https://doi.org/10.1007/978-3-642-22863-6_22
https://doi.org/10.1007/BF01053036


Theory of Computing Systems

34. Sannella, D., Tarlecki, A. : Algebraic preliminaries. In: Astesiano, E., Kreowski, H.-J., Krieg-Brückner,
B. (eds) Algebraic Foundations of Systems Specification. pp 13–30. Springer, Berlin (1999). https://
doi.org/10.1007/978-3-642-59851-7_2

35. Schneider, F.B. : On Concurrent Programming. Graduate Texts in Computer Science. Springer, Berlin
(1997). https://doi.org/10.1007/978-1-4612-1830-2

36. Stockmeyer, L.J.: Vishkin U: Simulation of parallel random access machines by circuits. SIAM Journal
of Computing 13(2), 409–422 (1984). https://doi.org/10.1137/0213027

37. Trahan, J.L., Vedantham, S.: Analysis of PRAM instruction sets from a log cost perspective. Int. J.
Found. Comput. Sci. 5(3–4), 231–246 (1994). https://doi.org/10.1142/S0129054194000128

38. Wirsing, M. : Algebraic specification. In: van Leeuwen, J. (ed) Handbook of Theoretical Computer
Science vol. B. pp 675–788. Elsevier, Amsterdam (1990). https://doi.org/10.1016/B978-0-444-88074-
1.50018-4

39. Wloka, M.G. : Parallel VLSI synthesis. PhD Thesis, Department of Computer Science, Brown Uni-
versity, Providence, RI (1991)

40. Xu, J., Zhang, X., Urban, C. :Mechanising Turingmachines and computability theory in Isabelle/HOL.
In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) ITP 2013. Lecture Notes in Computer Science,
vol. 7998. pp 147–162. Springer, Berlin (2013) https://doi.org/10.1007/978-3-642-39634-2_13

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-642-59851-7_2
https://doi.org/10.1007/978-3-642-59851-7_2
https://doi.org/10.1007/978-1-4612-1830-2
https://doi.org/10.1137/0213027
https://doi.org/10.1142/S0129054194000128
https://doi.org/10.1016/B978-0-444-88074-1.50018-4
https://doi.org/10.1016/B978-0-444-88074-1.50018-4
https://doi.org/10.1007/978-3-642-39634-2_13

	Imperative Process Algebra and Models of Parallel Computation
	Abstract
	1 Introduction
	2 The Imperative Process Algebra ACPετ-I
	2.1 ACP with Empty Process and Silent Step
	2.2 Imperative ACPετ-I
	2.3 ACPετ-I with Recursion
	2.4 Results about ACPετ-I with Recursion
	2.5 Extensions

	3 Computation and the RAM Conditions
	3.1 The RAM Conditions
	3.2 Computing Partial Functions from ({ 0,1 }*)n to { 0,1 }*

	4 The RAMP Model of Computation
	4.1 Operators for the RAMP Model
	4.2 Interpretation of the Operators for the RAMP Model
	4.3 RAMP Terms and the RAMP Model

	5 The APRAMP Model of Computation
	6 The SPRAMP Model of Computation
	6.1 Synchronization of Parallel Processes
	6.2 SPRAMP Terms and the SPRAMP Model

	7 Time and Work Complexity Measures
	7.1 The RAMP Model of Computation
	7.2 The APRAMP Model of Computation
	7.3 The SPRAMP Model of Computation

	8 SPRAMPs and the Parallel Computation Thesis
	9 Concluding Remarks
	References


