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Abstract
The descriptional complexity of basic operations on regular languages using 1-limited
automata, a restricted version of one-tape Turing machines, is investigated. When
simulating operations on deterministic finite automata with deterministic 1-limited
automata, the sizes of the resulting devices are polynomial in the sizes of the simulated
machines. The situation is different when the operations are applied to deterministic
1-limited automata: while for boolean operations the simulations remain polynomial,
for product, star, and reversal they cost exponential in size. The costs for product and
star do not reduce if the given machines are sweeping two-way deterministic finite
automata. These bounds are tight.

Keywords Descriptional complexity · Models of computation · Regular languages

1 Introduction

It is well known that the class of regular languages is characterized by finite automata
and it is closed under several operations. When a class of languages benefits of such
strong closure properties, it is quite natural to ask how much these operations cost in
terms of the size of the descriptions of recognizing devices. More precisely, for any
fixed operation, the goal is to study the (possibly optimal) size of a machine accepting
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the language resulting by applying the operation as a function of the sizes of the
smallest machines accepting the languages on which the operation is applied. In this
paper we focus on union, intersection, complementation, product, star, and reversal.
These operations have been extensively studied in the literature [2–5]. Their costs in
the case of deterministic finite automata are summarized in Table 1.

Providing finite automata with the ability of performing nondeterministic moves,
as well as scanning the input in a two-way fashion, does not add computational power
to these devices [6, 7]. In other words, also two-way finite automata (in both deter-
ministic and nondeterministic versions) characterize the class of regular languages.
The descriptional complexity of operations on these extensions of finite automata has
also been considered [8, 9].

In this paper we further extend this research by investigating the descriptional com-
plexity of language operations for another class of machines, which still characterizes
regular languages, namely for 1-limited automata.

Limited automata are single-tape Turingmachineswith rewriting restrictions, intro-
duced by Hibbard in 1967 [10] and recently reconsidered and deeply investigated
(see, e.g., [11–17]). These devices are two-way finite automata with the extra capa-
bility of overwriting the contents of each tape cell only in the first d visits, for a fixed
constant d ≥ 0 (we use the name d-limited automaton to explicitly mention the con-
stant d). In his original paper, Hibbard proved that, for any fixed d ≥ 2, d-limited
automata have the same computational power as pushdown automata, namely they
accept exactly context-free languages. Moreover, the deterministic version of such
devices defines a hierarchy where, for each d ≥ 2, the class of languages accepted
by deterministic d-limited automata is properly included in the class of languages
accepted by deterministic (d + 1)-limited automata. This hierarchy does not cover
all the class of context-free languages. Indeed, there are some context-free languages
which cannot be accepted by any deterministic d-limited automaton, for each arbitrar-
ily large d [10]. At the bottom level of the hierarchy, deterministic 2-limited automata
recognize exactly the class of deterministic context-free languages [12].

For d = 0 no rewritings are possible, hence the resulting models are two-way
finite automata, which, as already mentioned, recognize exactly the class of regular
languages in both deterministic and nondeterministic cases [6, 7]. The computational
power does not increase if the rewritings in each cell are restricted only to the first

Table 1 The costs of operations
on deterministic finite
automata [5]

Operation Size

Union nm

Intersection nm

Complement n + 1

Product n2m − 2m−1

Kleene star 3
4 2

n

Reversal 2n

For each operation, it is shown the size of the automaton obtained by
applying the corresponding operation to an automaton of size n (and
one of size m, in case of binary operations)
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visit. In otherwords, 1-limited automata are nomore powerful than finite automata [18,
p. 209].

However, by considering the sizes of the descriptions, we can see that 1-limited
automata can be significantly more succinct than finite automata. In particular, a dou-
ble exponential size gap between 1-limited automata and one-way deterministic finite
automata has been proved, while exponential size gaps have been proved for the con-
versions from 1-limited automata into one-way nondeterministic finite automata and
from deterministic 1-limited automata into one-way deterministic finite automata [11].

In the study of the descriptional complexity of language operations, we consider a
class of source devices and a class of target devices. For any given operation, the goal
is to investigate the size of target devices recognizing the languages resulting from the
operation, as a function of the sizes of source devices that specify the languages on
which the operation is applied. Up to now, results in the literature consider source and
target devices from the same family. In this setting, if we apply classical constructions
to simulate operations on one-way deterministic finite automata,we obtain exponential
size blowup in some cases (i.e., product, star, and reversal) because, intuitively, some
nondeterministic steps are introduced, and their elimination costs exponential in finite
automata (see Table 1). Hence, wewonderedwhether, using deterministic models with
further capabilities (as 1-limited automata), it is possible to bypass nondeterministic
computations introduced in one-way finite automata to simulate these operations, thus
avoiding such exponential size growth.

Therefore, for each operation we study, we first take finite automata as source
devices, and we simulate the operations on them with 1-limited automata as target
devices. We emphasize that we consider deterministic machines only. Therefore, we
prove that, despite the capability of 1-limited automata of rewriting the cells of the tape
during thefirst visit does notmake thismodelmore powerful thanfinite automata, using
these machines as target devices for simulating operations between finite automata
yields 1-limited automata more succinct than equivalent finite automata.

On the other hand, when considering 1-limited automata as source and target
devices, the simulations cost polynomial only in the case of union, intersection, and
complementation. In the case of reversal, product, and star, however, we were able
to find exponential lower bounds witnessing that there is no smaller automaton than
the one obtained by converting the source deterministic 1-limited automata into one-
way finite automata first (obtaining exponentially larger machines), and then applying
the corresponding (polynomial-size) language operation construction for obtaining a
deterministic 1-limited automaton. In the case of product and star, these lower bounds
still holdwhen restricting the class of sourcemachines to sweeping two-way determin-
istic finite automata, and keeping deterministic 1-limited automata as target machines.

2 Preliminaries

In this section we recall some basic definitions and notations. We assume the reader
familiar with notions from formal languages and automata theory (see, e.g., [19]).
Given a set S, #S denotes its cardinality and 2S the family of all its subsets. Given an
alphabet �, we denote by |w| the length of a string w ∈ �∗, by wR the reversal of w,
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and by ε the empty string. Given two languages L, L ′ ⊆ �∗, LR denotes the reversal
of L , namely LR = {wR | w ∈ L}, L∗ denotes the Kleene star of L , Lc denotes
the complement of L , and L · L ′, L ∪ L ′, and L ∩ L ′ denote the product, union, and
intersection of L and L ′, respectively (with the usual meaning).

Given a machineM, the language accepted by it will be denoted as L(M). In this
work we focus on deterministic machines. A one-way deterministic finite automaton
(1dfa) is defined as usual as a quintuple A = (Q, �, δ, q0, F), where Q is a finite
set of states, � is a finite input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is a
set of final states, and δ : Q × � → Q is a partial transition function. At each step,
according to its current state p and the symbol σ scanned by the head, A enters the
state δ(p, σ ), if defined, and moves the input head rightward to the next symbol. The
machine accepts the input if, starting from the initial state q0 with the head on the
leftmost input symbol, ends the computation in a final state q ∈ F after having read
the whole input.

Providing 1dfas with the ability of moving the head back and forth, we obtain two-
way deterministic finite automata (2dfas). They are defined by extending the transition
function so that a left (−1) or right (+1) head direction is indicated in each instruction.
Furthermore, to prevent the head to fall out the input, two special symbols � and �
not belonging to �, called the left and the right end-marker, respectively, surround
each input word, and enforce the computation to stay between them (except at the end
of computation when accepting, as described below). More precisely, on input w the
tape contains �w�, the left end-marker being at position 0 and the right end-marker
being at position |w| + 1. By ��,� we denote the set � ∪ {�,�}. Formally, the
transition function of a two-way automaton is δ : Q × ��,� → Q × {−1,+1} such
that, for each transition (q, d) ∈ δ(p, σ ), if σ = � then d = +1, and if σ = �
then d = −1 or q ∈ F . In this way, the head cannot pass the end-markers, except at
the end of computation to accept. The machine accepts the input if, starting from the
initial state q0 with the head on the 1-st tape cell (i.e., scanning the leftmost symbol
of the input), it ends its computation in a final state q ∈ F after passing the right
end-marker (i.e., with a move to the right).

We also consider a restriction of 2dfas in which the direction of the head can
change only at the end-markers [20]. These devices are called sweeping 2dfas.

We now introduce the main model we are interested in. A deterministic 1-limited
automaton (deterministic 1- la) is a 2dfa which can rewrite the contents of each
tape cell in the first visit only. Formally, it is a tuple A = (Q, �, �, δ, q0, F),
where Q, �, q0, F are defined as for 2dfas � is a finite working alphabet such
that ��,� ⊆ �, and δ : Q × � → Q × � × {−1,+1} is the transition function.
In one move, according to the transition function and to the current state, A reads a
symbol from the tape, changes its state, replaces the symbol just read from the tape by
a new symbol, and moves its head to one position forward or backward. In particular,
δ(p, a) = (q, X ,m) means that when the automaton in the state p is scanning a cell
containing the symbol a, it enters the state q, rewrites the cell contents by X , and
moves the head to left, if m = −1, or to right, if m = +1. However, there are the
following restrictions:
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• Replacing symbols is allowed to modify the contents of each cell only during the
first visit, with the exception of the cells containing the end-markers, which are
never modified. After the first visit, the contents of the cell are said to be frozen.

• The end-marker symbols cannot be used to replace the contents of any of the cells
which initially contain the input.

The two previous conditions can be formalized by asking that if δ(p, a) = (q, X ,m)

then either a ∈ � and X ∈ � \ �{�,�}, or X = a.
The size of a machine is given by the total number of symbols used to write down its

description. Therefore, the size of deterministic 1- las is bounded by a polynomial in
the number of states and of working symbols, namely, it is �(#Q ·#� · log(#Q ·#�)).
In the case of deterministic finite automata, since no writings are allowed and hence
the working alphabet is not provided, the size is linear in the number of instructions
and states, which is bounded by a polynomial in the number of states and in the number
of input symbols, namely, it is �(#Q · #� · log(#Q)).

We say that a machine works in linear time if there exists a linearly growing
function f : N → N such that, for every accepted word w, the number of moves
along a computation accepting w is bounded by f (|w|).

3 Product and Kleene Star

Westart our investigationby studying theoperations of product and star. It is known that
the costs for these operations on 1dfas are exponential due to the needof simulating in a
deterministic way the nondeterministic choices used for decomposing the input string
into factors from the given languages. However, we show that, using deterministic
1- las as target machines, the costs reduce to polynomials. Then, we analyze the
simulations of these operations when the source machines are deterministic 1- las.
In this case, by studying suitable witness languages, we prove that the costs become
exponential.

3.1 1DFAs as Source Machines

By exploiting the capabilities of deterministic 1- las of rewriting the tape and scanning
it in a two-way fashion, here we show that the product and the star of languages
accepted by 1dfas can be recognized by deterministic 1- las of polynomial size.

Product We start by describing how to obtain a deterministic 1- la A = (Q, �, �,

δ, q0, F) accepting the concatenation of the languages accepted by two 1dfas A′ =
(Q′, �, δ′, q ′

0, F
′) and A′′ = (Q′′, �, δ′′, q ′′

0 , F ′′), in such a way that the size of A
is polynomial in the sizes of A′ and A′′. Let Q′ = {q ′

0, q
′
1, . . . , q

′
n′−1} and Q′′ =

{q ′′
0 , q ′′

1 , . . . , q ′′
n′′−1}. Hence n′ = #Q′ and n′′ = #Q′′.

Let us start by briefly recalling how a 1dfa accepting L(A′) · L(A′′) can work. It
simulates A′ on the whole input word and, every time a final state is entered, it starts
a parallel simulation of the automaton A′′ on the remaining input suffix. When the
end of the input is reached, if some computation of A′′ is in a final state, then the
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1dfa accepts. Since the simulating 1dfa keeps in its finite control, at the same time,
a state of A′ and a set of states reached by all the parallel simulations of A′′, its size
is �(n′ · 2n′′

). As shown by Yu, Zhuang, and Salomaa, this size is optimal, namely, in
the worst case it cannot be reduced [5].

Here, our goal is to avoid the exponential blowup in size by exploiting the rewriting
capability of 1- las. To this end, A still simulates the behavior of A′ by using a state
component of size n′, and marks the cells from which the simulations ofA′′ can start,
that are the cells next to the ones A′ enters some accepting state. So the simulation
can be executed in a sequential rather than parallel way. Moreover, instead of storing
the set of states reached by the simulations of A′′ in the finite control,A encodes and
writes it along the tape. This information is then accessed, using the ability of 1- las
of scanning the tape in a two-way fashion, to start and recover the simulations of A′′.

In order to encode the set of states reached by the computations of A′′, the tape is
logically divided into blocks of n′′ cells (possibly with a final shorter block). Thus,
the i-th cell of each block ismarkedwith✔ if the stateq ′′

i is reached by some simulation
of A′′ ending in the last cell before the block, otherwise it is marked with ✗.

The written information is organized into three tracks. In particular, for each frozen
cell:

• The first track contains a copy of the input symbol originally contained in the cell
before the rewriting, so that it can be still accessed during the simulations of A′′;

• The second track contains a marker indicating whether (✔) or not (✗) the automa-
tonA′ has entered an accepting state right before reading the cell, i.e., by reading
the input prefix which ends in the cell immediately to the left. So that for any cell
containing ✔ a simulation of A′′ can be started;

• The third track contains a marker indicating whether (✔) or not (✗) the corre-
sponding states are reachable by some simulation of A′′, as explained above.

Example 1 In this examplewe consider the product between the two automata depicted
in Fig. 1. In the same figure, the contents of the tape at the end of the computation
on input aacaabaacabbaaabb of the deterministic 1- la for the product obtained
according to the construction presented above is shown. It is possible to notice that:

• On the second track, the cells in positions 4 of the first and of the second block
are marked with ✔, in fact the prefixes of length 4 (aaca) and 10 (aacaabaaca)
are accepted by the 1dfa on the left.

• On the third track, the cell in position 1 of the second block and the cells in posi-
tions 2 and 3 of the third block are marked with ✔. Indeed, starting the simulation
of the automaton on the right from the cell in position 4 of the first block, the
automaton reaches the state q ′′

1 at the end of the first block and the state q ′′
3 at the

end of the second block, while, starting the simulation of the automaton on the
right from the cell in position 4 of the second block, the automaton reaches the
state q ′′

2 at the end of the second block.

In this case, the simulating deterministic 1- la accepts the input. In fact, the
string aaca is accepted by the automaton on the left, and the string abaacabbaaabb
is accepted by the one on the right. Hence, the accepting simulation of the automaton
on the right is the one starting from the cell in position 4 of the first block. At the end of
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Fig. 1 Two 1dfas and the contents of the tape at the end of the simulation of the product of their languages
on input aacaabaacabbaaabb. The red rectangles indicate the logical division in blocks of the tape. Above
each cell it is indicated its position relative to the block it is contained in

the first block, thus after reading the word ab from the initial state q ′′
0 , the automaton

enters the state q ′′
1 , from which, reading the word aacabb, it reaches the state q ′′

3 at
the end of the second block. Finally, from q ′′

3 , reading the suffix aaabb of the input,
contained in the third block, the automaton enters the final state q ′′

5 and accepts.

To make the storing and the recovering of the information about the simulation of
the automatonA′′ possible while keeping the cost of the simulation polynomial in the
size of the simulated devices, the behavior of the simulating 1- la will be restricted to
virtual windows of length 2n′′ that cover two successive blocks of cells. The right block
covered by a window contains, in some position, the leftmost cell that has not been
overwritten so far, to which we refer as relative frontier. A typical situation is depicted
in Fig. 2, in which x ∈ (� \ �)n

′′ ∪ {�} indicates the left block covered by a window,
while the contents of the right block of the window can be decomposed into yu,
with y ∈ (� \�)∗ and u ∈ �∗ ∪�∗�, such that |yu| = n′′ unless, possibly, � occurs
in u, in which case |yu| ≤ n′′. The frontier is on the first position of u. We shall refer
to the positions relative to the current window as pairs in {0, 1, . . . , n′′ − 1} × {l, r},
where the pairs whose second element is l (resp., r) denote the left (resp., right) block
of the window.

We now present some details on howA recognizesL(A′)·L(A′′) (see Procedure 1).
The details of the cost of this simulation in terms of number of states are discussed in
the proof of Theorem 1. The deterministic 1- la stores in its finite control the position
of the frontier in the right block of the window (relativeFrontier), the relative position
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Procedure 1 product(A′, A′′)
Given two 1dfas A′ = (Q′, �, δ′, q ′

0, F
′) and A′′ = (Q′′, �, δ′′, q ′′

0 , F ′′), the
deterministic 1- la implementing this procedure accepts the language L(A′) ·
L(A′).
1 frontierState ← q ′

0
2 relativeFrontier ← 0
3 relativePosition ← (0, r)
4 isFinal ← q ′

0 ∈ F ′
5 stateReachable ← false
6 while current symbol �= � do
7 write(current symbol, isFinal, stateReachable)
8 relativeFrontier ← (relativeFrontier + 1) mod #Q′′
9 if relativeFrontier = 0 then relativePosition ← (#Q′′ − 1, l)

10 frontierState ← δ′(frontierState, current symbol)
11 isFinal ← frontierState ∈ F ′
12 stateReachable ← checkReachability(A′′, {q ′′

relativeFrontier}, (#Q′′ − 1, l))
13 move the head rightward until reaching position (relativeFrontier, r)
14 if checkReachability(A′′, F ′′, (relativeFrontier, r) − 1)

or isFinal and q ′′
0 ∈ F ′′ then Accept

15 else Reject

Fig. 2 Typical description of the window during a computation ofA: the current frontier occurs in the right

block as first position of u, w ∈ ((� \ �)n
′′
)∗, x ∈ (� \ �)n

′′
, y ∈ (� \ �)∗, u ∈ �+, with |yu| = n′′,

and v ∈ �∗

of the head within the window (relativePosition),1 and the state of the automaton A′
(frontierState), which is updated every time the cell at the frontier is read. At the
beginning of the computation, frontierState is initialized with q ′

0, and the relative
frontier and the relative position both point at position 0 into the right block of the
window (Lines 1, 2 and 3).

Let us now show how the 1- la can overwrite each block, cell by cell, with an
encoding of the set of states reached by all computations of A′′ at the end of the
previous block and how it can mark the cells in which the simulations of A′′ start.

Let (i, r), i ∈ {0, . . . , n′′ − 1}, be the position of the frontier. the 1- la has to
gather the information to write in the leftmost cell that has not been rewritten yet. In
particular, it has

1 We assume that relativePosition is automatically updated according to the movements of the head ofA:
its value is incremented (resp., decremented) when the head is moved to the right (resp., left). Moreover, if
the value of relativePosition is (n′′ − 1, l) (resp., (0, r)) and a move to the right (resp., left) is performed,
the new value will be (0, r) (resp., (n′′ − 1, l)).
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1. To check whether the simulated automaton A′ accepts the input scanned so far:
This can be easily done by using the state component devoted to the simulation
ofA′ for simulating a move ofA′ on the current input symbol and verify whether
it enters a state in F ′ (Lines 10 and 11). In that case,A will write ✔ on the second
track, ✗ otherwise.

2. To check whether the state q ′′
i can be reached by some computation of A′′ before

entering the (first cell of the) right block of the current window: This operation
is split into two phases (see Procedure 2). First, the 1- la starts (from the initial
state q ′′

0 ) the computations of A′′ from each cell of the left block whose second
track contains ✔. Then, it recovers, in turn, the computations of A′′ from the
states indicated in the third track of the cells of the left block, starting from the
leftmost position of the window, i.e., relative position (0, l). If, during these two
phases, the computation of A′′ reaches the state q ′′

i after simulating the transition
on the symbol in the last cell of the left block, i.e., relative position (n′′ − 1, l),
the simulating automaton has to write ✔ in the third track, ✗ otherwise.

Procedure 2 checkReachability(A′′, targetStates, lastPosition)
Checks whether some state of targetStates can be reached either starting a
simulation of the automaton A′′ = (Q′′, �, δ′′, q ′′

0 , F ′′) (from q ′′
0 ) from some

marked cell of the second track to lastPosition or recovering the simulation ofA′′
(from the states encoded in the third track) from the beginning of the window to
lastPosition.

16 move the head leftward until reaching relative position (0, l) or �
17 for cellPosition ← relativePosition to lastPosition do
18 move the head until reaching relative position cellPosition
19 if the second track of the tape contains ✔ then
20 if simulate(A′′, q ′′

0 , lastPosition) ∈ targetStates then
21 return true
22 move the head leftward until reaching relative position (0, l) or �
23 for cellPosition ← relativePosition to (#Q′′ − 1, l) do
24 move the head until reaching relative position cellPosition
25 if the third track of the tape contains ✔ then
26 move the head rightward until reaching position (0, l)
27 if simulate(A′′, q ′′

cellPosition, lastPosition)∈ targetStates then
28 return true
29 return false

After gathering this information, the 1-la moves the head to the frontier (Line 13)
and overwrites2 the cell (Line 7); the frontier is moved to the next cell (Line 8). When
the last cell of the window is overwritten, the window shifted forward of one block
(i.e., it is shifted n′′ − 1 cells to the left), so the right block becomes the left one and
the frontier points at position (0, r) (Line 9).

When the machine detects the end of the input, indicated by the right end-marker�
(Line 6), it has to check whether some simulation ofA′′ halts in some accepting state.

2 With the function write, the 1- la overwrites the cell currently scanned by the head of the machine
with the three arguments of the function, writing one argument per tape track.
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This can be done with the same approach described in Item 2, but the two procedures
of the two phases continue the simulations until the last cell of the input (i.e., the
position to the left of the frontier, that is position (relativeFrontier, r)−1) rather than
stopping in position (n′′ − 1, l). The deterministic 1- la accepts if, during the two
phases, some state in F ′′ is reached at the end of the input or if the simulated state
of A′ is final and the initial state of A′′ is final as well (Line 14).

Example 2 Let us now consider a detailed portion of the computation of the deter-
ministic 1- la presented in Example 1. In particular, Fig. 3 shows how the simulating
machine recovers the information to write on the third track of the leftmost unvisited
cell. This corresponds to one call to checkReachability. For ease of presenta-
tion, we shall callA′ andA′′ the 1dfas depicted in Fig. 1 on the left and on the right,
respectively.

First, the simulating device moves its head to the left to the cell 0 of the left block.
Then, moving rightward, it looks for cells that have a marker ✔ on the second track,
meaning thatA′ reached afinal state before scanning that cell, and so a simulation ofA′′
can start. In this case, the only ✔ in the second track is in the cell number 4. Hence, the
deterministic 1- la simulatesA′′ from the initial state q ′′

0 and checks whether the state
with index equal to the frontier, which is 3 in this case, is reached reading the symbols
of the block from cell 4. Since A′′ reaches q ′′

2 �= q ′′
3 reading the string bb from q ′′

0
and there are no other ✔ on the second track of the left block, the deterministic 1- la
moves its head back to the cell 0 of the block. Then, it looks for markers ✔ on the
third track, the leftmost being in the cell 1. Therefore, the deterministic 1- la checks
whether A′′ reaches q ′′

3 reading the string aacabb contained in the left block starting
from the state q ′′

1 . In this case, the check is successful, so the automaton moves to the
cell at the frontier to write ✔ on the third track (cfr. Fig. 1).

Fig. 3 A detail on the computation of the contents that the deterministic 1- la presented in Fig. 1 writes on
the third track, in the third cell of the third block

123



Theory of Computing Systems

By computing the size of the resulting deterministic 1- la A, we are able to state
our result on the acceptance of the product of two regular languages (represented by
1dfas) by a deterministic 1- la.

Theorem 1 Let A′ = (Q′, �, δ′, q ′
0, F

′) and A′′ = (Q′′, �, δ′′, q ′′
0 , F ′′) be two

1dfas. Then there exists a deterministic 1- la accepting L(A′) ·L(A′′) with O(#Q′ ·
#Q′′4) states and 5#� + 2 working symbols.

Proof LetA = (Q, �, �, δ, q0, F)be thedeterministic 1- la implementingProcedure
1 described above. Since, during the computation, the tape cell is split into three tracks,
the working alphabet of A is

� = ��,� ∪ (� × {✔, ✗} × {✔, ✗}),

whose size is #��,� + 4#�.
Plus, the automaton has to store in its finite control the following components:

• The simulated state of A′ (frontierState), whose size is #Q′;
• The simulated state ofA′′ (state) in Procedure 3, that is an auxiliary procedure to
simulate the automaton passed as argument (in this caseA′′) on the portion of the
tape between the cell where the head of the automaton is when the procedure is
called and lastPosition starting from state. This component has size #Q′′;

• The position of the head (relativePosition) relative to the current window, of size
2#Q′′, and the position of the frontier (relativeFrontier) of size #Q′′;

• The counter cellPosition of Procedure 2 of size #Q′′;
• Some additional state components (of constant size) used to keep track of the
execution flow of the procedure.

Therefore, the number of states of A is O(#Q′ · #Q′′4). �

Kleene Star Let us now turn our attention to the star operation. Let A =
(Q, �, δ, qI , F) be a 1dfa. A deterministic 1- la N for L(A)∗ can implement an
approach similar to the one used for the product, so we now illustrate the main differ-
ences (in the following we shall refer to Procedure 4). The details of the cost of this
simulation are given in the proof of Theorem 2.

In this case, the only automaton to be simulated isA. The first simulation is started
from the leftmost input cell. Every time a (simulated) final state is entered by some
simulated computation of A, N starts a new simulation. If, at the end of the input,
some simulation reaches a final state, then the 1- la accepts.

To implement this strategy, the tape of N is still organized as for the simulation of
the product, i.e., it is logically split into blocks of size #Q and three tracks are used to
store a copy of the input, indicating whether or not some simulation of A has entered
an accepting state on the previous cell, and a marker indicating whether or not the
corresponding states are reachable by some simulation of A.

Before entering a new cell, N first checks whether the prefix already visited is
inL(A)∗. This is done by recovering the simulations ofA (from the states encoded on
the third track) and starting the new ones (from the cells of the second track marked
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Procedure 3 simulate(A′′, state, lastPosition)
Simulates the automaton A′′ = (Q′′, �, δ′′, q ′′

0 , F ′′) on the portion of the tape
from relativePosition to lastPosition starting from state. If, along the computa-
tion, the transition function is not defined for the simulated state and the scanned
symbol, it returns ⊥.

30 repeat
31 state ← δ(state, current symbol)
32 if relativePosition = lastPosition then return state
33 move the head one cell to the right
34 until state = ⊥
35 return state

Procedure 4 KleeneStar(A)
Given a 1dfa A = (Q, �, δ, q0, F), the deterministic 1- la implementing this
procedure accepts the language L(A)∗.

36 relativeFrontier ← 0
37 relativePosition ← (0, r)
38 isFinal ← true
39 stateReachable ← false
40 while current symbol �= � do
41 write(current symbol, isFinal, stateReachable)
42 relativeFrontier ← (relativeFrontier + 1) mod #Q
43 if relativeFrontier = 0 then relativePosition ← (#Q − 1, l)
44 isFinal ← checkReachability(A, F, (relativeFrontier, r) − 1)
45 stateReachable ← checkReachability(A, {qrelativeFrontier}, (#Q − 1, l))
46 move the head rightward until reaching position (relativeFrontier, r)
47 if isFinal then Accept
48 else Reject

with✔), and checking whether some of them reaches a state in F (Line 44). After that,
N checks whether the state whose index is relativeFrontier is reached at the end of
the previous block by some simulation (Line 45). Once this information is computed,
the automaton moves the head on the cell at the frontier and overwrites it (Line 41).2

When the right end-marker is reached (Line 40), N only needs to check whether
some simulation is in a final state and, in that case, it accepts (Line 47).

Theorem 2 LetA = (Q, �, δ, q0, F) be a 1dfa. Then there exists a deterministic 1-
la accepting L(A)∗ with O(#Q4) states and 5#� + 2 working symbols.

Proof Let N = (Q, �, �, δ, q0, F) be the deterministic 1- la implementing Proce-
dure 1 described above. Also in this case the working alphabet is

� = ��,� ∪ (� × {✔,✗} × {✔,✗}),

whose size is #��,� + 4#�. Plus, the automaton has to store in its finite control the
following information:

• The simulated state of A (state) in Procedure 3 (#Q possible values);
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• The position of the head (relativePosition) relative to the current window and the
position of the frontier (relativeFrontier) (2#Q and #Q possible values, respec-
tively);

• The counter cellPosition of Procedure 2 (#Q possible values);
• Some additional state components (of constant size) used to keep track of the
execution flow of the procedure.

Therefore, the number of states of A is O(#Q4). �

3.2 Deterministic 1-LAs and Sweeping 2DFAs as Source Machines

Wenow focus on the size costs of the operations of product and star on deterministic 1-
las. An immediate approach is to convert the source deterministic 1- las to 1dfas,
and then to apply the constructions shown in the previous section. Since converting
deterministic 1- las into 1dfas costs exponential in size [11], this procedure yields
exponential-size deterministic 1- las for the two operations we are considering. Here,
we show that this strategy cannot be improved, in fact we prove exponential lower
bounds for these operations that match the blowup in size necessary to convert deter-
ministic 1- las into 1dfas. Actually, we prove even a stronger result by observing that
the same holds if the source machines are sweeping 2dfas.

For any fixed integer k ≥ 2, let us consider the language of the strings obtained by
concatenating at least two blocks of length k, in which the first and the last blocks are
equal, i.e., Lk = {w{a, b} jkw | j ≥ 0, w ∈ {a, b}k}.

Let us start by describing a sweeping 2dfa Ak accepting Lk . Notice that, each
computation of Ak is a sequence of traversals (or sweeps) of the tape.

During the first traversal of the tape from left to right, using a counter modulo k,Ak

checks that the length of the input word is amultiple of k. If this is not the case, thenAk

rejects. Otherwise, Ak has to compare the first and the last block of the input. This
task can be done using the following strategy. The automaton performs at most k left-
to-right traversals of the input S0,S1, . . . ,Sk−1, interleaved with right-to-left sweeps.
The purpose of the traversal Si is to check whether the (i + 1)-th symbols of the first
and of the last block coincide. This can be done using a counter c modulo k stored in
the finite control. The counter is set in such a way that, during the sweep Si , it contains
0 while visiting the cell i + 1 of the first block. Furthermore, the machine saves in the
finite control the symbol therein contained. While moving the head to the right, the
counter is incremented for each visited cell.

The machine inspects each cell that is reached when the value of the counter is 0,
by comparing its symbol with the one stored in the finite control. If the two values are
equal, the value true is assigned to a Boolean variable matched, false otherwise.

When the right end-marker is reached, if matched contains false, Ak stops and
rejects, because the last block is not equal to the first one. Otherwise, Ak starts a
traversal from right to left, decrementing the counter c at each move. Hence, in a
traversal from left to right and in the next one from right to left, a same cell is reached
with the same value of c. In particular, in the sweep Si and in the next right-to-left
traversal, each cell k such that k mod i = 0 is reached exactly when the counter is 0.
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The sweep S0 starts with the head on the first tape cell and 0 in the counter. At
the end of a right-to-left traversal, when the left end-marker is reached, if matched is
true, then the head is moved to the first input cell, without changing the counter. In
this way the counter is properly set for the next sweep.

This procedure is repeated until the right end-marker is reached with the counter
containing 1. In this case all the positions have been inspected and, if the variable
matched contains true, the automaton accepts.

Since the only information the automatonAk has to store in its control is the counter
modulo k and the variable matched, it is possible to implement it with a number of
states linear in k.

Let us now consider the language L2
k , namely the product of Lk with itself. In this

case, the ability of moving the head in a two-way fashion does not come in handy. This
is because, ideally, the machine cannot know in advance where to “split” the input
string into two parts belonging to Lk , or, in other words, which part of the input belongs
to the first occurrence of Lk and which part belongs to the second one. Therefore, it
would have to store in its finite control the word of length k immediately following any
blockmatching the first one, to compare it with the last block. This idea is confirmed in
the proof of the next theorem, where, using a distinguishability argument, it is proved
that each 1dfa for L2

k needs a number of states at least double exponential in k. Since it
is known that the conversion of deterministic 1- las into 1dfas costs exponential [11],
then we can conclude that the size of each deterministic 1- las for L2

k has to be at least
exponential in k.

Theorem 3 For any integer k ≥ 2,

• There exist two sweeping 2dfas A′ and A′′ of size linear in k such that any
deterministic 1- la accepting L(A′) · L(A′′) needs size at least exponential in k.

• There exists a sweeping 2dfaA of size linear in k such that any deterministic 1- la
accepting L(A)∗ needs size exponential in k.

Proof Let us consider the language Lk . Using the approach described above, it is
possible to recognize Lk with a 2dfa of size linear in k.

Let us turn our attention to the language Lk · Lk = L2
k . We prove a lower bound for

the size required by any 1dfa accepting it. To this end, we are going to describe a set
of pairwise distinguishable strings for this language. We remind the reader that two
strings x, y are distinguishable with respect to a language L when there is a string z
such that exactly one of the two strings xz and yz belongs to L . The cardinality of
any set of strings which are pairwise distinguishable with respect to L gives a lower
bound for the number of states of each 1dfa accepting L .

Let us consider the list x1, x2, . . . , xN , with N = 2k , of all the strings in {a, b}k in
some fixed order.

With each nonempty subset S = {i1, i2, . . . , in}, 1 ≤ i1 < i2 < . . . < in ≤ N ,
we associate the string wS = xi1xi1xi1xi2xi1xi3xi1 · · · xin xi1 . In other words, wS is
the ordered sequence of factors corresponding to the elements of S interleaved with
occurrences of xi1 . In particular, xi1 occurs at the beginning of the sequence and after
every factor. Furthermore we define w∅ = ε.

Now, consider two sets S, T ⊆ {1, 2, . . . , N }, with S �= T . Since S and T are
different, there is a string x ∈ {a, b}k contained exactly in one of them. Without
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loss of generality, assume x ∈ S and x /∈ T . We prove that x distinguishes wS

and wT by showing that wSx ∈ L2
k and wT x /∈ L2

k . In fact, let S = {i1, i2, . . . , in}
and x = xi� , with 1 ≤ � ≤ n. If � > 1, then we decompose wS as w′

S · w′′
S ,

where w′
S = xi1xi1xi1xi2xi1 · · · xi�−1xi1 , w

′′
S = xi�xi1xi�+1xi1 · · · xin xi1 , and we notice

thatw′
S ∈ Lk ,w′′

Sx = w′′
Sxi� ∈ Lk and hencewSx ∈ L2

k . In a similar way, when � = 1,
we take w′

S = xi1xi1 and w′′
S = xi1xi2xi1 · · · xin xi1 , thus concluding that wSx ∈ L2

k .
On the other hand, the string wT x is not in L2

k because x = xi� does not occur in
the factorization of wT as concatenation of factors of length k. Actually, for the same
reason, wT x /∈ L∗

k . Since wS ∈ L2
k ⊆ L∗

k , this observation easily allows to extend our
result to the Kleene star operation. Hence x distinguishes wS and wT with respect to
both the languages L2

k and L∗
k .

Since there are 2N subsets of {1, 2, . . . , N }, each 1dfa accepting Lk · Lk and each
1dfa accepting L∗

k needs at least 2
2k states.

To conclude the proof, we point out that each n-state deterministic 1- la can be
simulated by a 1dfa with at most n(n + 1)n states [11]. Hence, if one of the lan-
guages Lk · Lk or L∗

k is accepted by a deterministic 1- la with n states, n > 2,

then 22
k ≤ n(n + 1)n ≤ 2log2 n+n log2(n+1) ≤ 2n

2
, thus implying 2k ≤ n2 and, hence,

n ≥ 2k/2. This allows to conclude that, to accept Lk · Lk and L∗
k , deterministic 1- las

require a number of states at least exponential in k. �
We point out that in [9] exponential lower bounds in the case source and target

machines are 2dfas have been proved for product and star. The language therein
used is on a 7-symbol input alphabet, while here we used a binary input alphabet.
Furthermore, since 2dfas are a particular case of deterministic 1- las, our result is a
generalization of that in [9], because it holds for a larger class of target machines.

By considering as source machines deterministic 1- las, we immediately get:

Corollary 4 For any integer k ≥ 2,

• There exist two deterministic 1- las A′ and A′′ of size linear in k such that any
deterministic 1- la accepting L(A′) · L(A′′) needs size at least exponential in k.

• There exists a deterministic1- laAof size linear in k such that anydeterministic1-
la accepting L(A)∗ needs size exponential in k.

In conclusion, starting from two deterministic 1- las A′ and A′′ accepting the
languages L ′ and L ′′ (resp., from a deterministic 1- la A accepting a language L), a
deterministic 1- la for L ′ · L ′′ (resp., L∗) can be obtained by converting A′ and A′′
(resp., A) into 1dfas, and then applying the transformation of Theorem 1 (resp.,
Theorem 2). These constructions are optimal, in fact we proved that the exponential
blowup in size due to the conversion into 1dfas cannot be avoided.

4 Union, Intersection, and Complementation

We continue our investigation by analyzing the operations of union, intersection, and
complementation using deterministic 1- las as target machines. As in the previous
section, we start by considering 1dfas as source devices and then we switch to the
case of deterministic 1- las.
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4.1 1DFAs as Source Machines

It is well known that for union, intersection, and complementation, the simulations
are easier than the ones for product and star. Even if the target machines are 1dfas, it
is possible to obtain polynomial-size simulating devices.

Union and Intersection For union and intersection, the resulting 1dfa is obtained by
simulating in parallel the 1dfas accepting the two given languages. Hence, it has a
number of states which is the product of the number of states of the two given 1dfas.
This cannot be improved in the worst case [5].

When the target machine is a 2dfa, it can perform the simulation of the first 1dfa
during a sweep from left to right, and then, when the end of the input is reached, it can
move the head at the beginning of the tape to start the simulation of the second 1dfa.
In the case of the union, the resulting 2dfa accepts if the simulation of at least one
1dfa accepts, while, in the case of the intersection, it accepts if both the simulated
1dfas accept.

The 2dfa implementing this simulation only needs to store, in its state, the copies
of the simulated machines, plus one state used to move backward the head at the end
of the first simulation. So the total number of states of the simulating devices is 1
plus the sum of the numbers of states of the two simulated 1dfas. For the sake of
completeness we formally present this easy construction in the next theorem.

Theorem 5 Let A′ = (Q′, �, δ′, q ′
0, F

′) and A′′ = (Q′′, �, δ′′, q ′′
0 , F ′′) be two

1dfas. Then there exist

• a 2dfa for the language L(A′) ∪ L(A′′) and
• a 2dfa for the language L(A′) ∩ L(A′′)

with #Q′ + #Q′′ + 1 states.

Proof A 2dfa (Q, �, δ, qI , F ′ ∪ F ′′) accepting the language L(A′) ∪ L(A′′) can be
obtained as follows. Without loss of generality, we assume Q′ ∩ Q′′ = ∅. The set of
states is Q = Q′ ∪ Q′′ ∪ {qB}, and the transition function is defined as follows:

1. δ(p, a) = (q,+1), for each a ∈ � and p, q ∈ Q′ such that δ′(p, a) = q
or p, q ∈ Q′′ such that δ′′(p, a) = q;

2. δ(q,�) = (qB,−1), for each q ∈ Q′ \ F ′;
3. δ(qB, a) = (q,−1), for each a ∈ �;
4. δ(qB,�) = (q ′′

0 ,+1);
5. δ(q,�) = (q,+1), for each q ∈ F ′ ∪ F ′′.

Notice that, when the input is accepted by A′, the automaton stops the computation
and accepts after the simulation of A′.

A two-way automaton for the language L(A′) ∩ L(A′′) can be defined in a very
similar way. It only differs in the set of final states which coincides with F ′′, in
transitions of Item 2, due to the fact that the 2dfa has to simulate the second 1dfa
only if the first one accepts the input, and in transitions of Item 5 which lead to
acceptance only if the simulation of A′′ leads to acceptance:
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2. δ(q,�) = (qB,−1), for each q ∈ F ′.
5. δ(q,�) = (q,+1), for each q ∈ F ′′.

�
From these constructions we can directly obtain equivalent deterministic 1- las

that, during the first sweep, simply overwrite each tape cell with a copy of the symbol
it originally contains.

Corollary 6 Let A′ = (Q′, �, δ′, q ′
0, F

′) and A′′ = (Q′′, �, δ′′, q ′′
0 , F ′′) be two

1dfas. Then there exist

• a deterministic 1- la for the language L(A′) ∪ L(A′′) and
• a deterministic 1- la for the language L(A′) ∩ L(A′′)

with #Q′ + #Q′′ + 1 states and 2#� + 2 working symbols.

Observe that, while using 1dfas as target devices requires to simulate the source
machines in parallel (because they are one-way), thus yielding devices with a number
of states equal to the product of the states of the simulated 1dfas [5], here we obtained
deterministic 1- las whose sizes are equal to the sum of the sizes of the simulated
machines.

Complementation Even this case is trivial and it is included for the sake of complete-
ness. A deterministic 1- la for the complement can be obtained with a construction
analogous to the standard one used for obtaining a 1dfa for the complement, i.e., just
by complementing the set of the accepting states, provided that the transition function
is total.

Theorem 7 LetA = (Q, �, δ, q0, F) be a 1dfa. Then there exists a deterministic 1-
la with #Q+1 states and #� +3 working symbols which accepts L(A)c. If δ is total
then the number of states of the resulting deterministic 1- la reduces to #Q.

Proof A deterministic 1- la accepting the language L(A)c can be defined as (Q′, �,

��,� ∪ {	}, δ′, q0, Q′ \ F), where 	 is a new symbol not in �, Q′ = Q ∪ {r}, with r
not in Q, and δ′ contains the following transitions:

1. δ′(p, a) = (q, 	,+1), for each a ∈ � and p, q ∈ Q such that δ(p, a) = q;
2. δ′(q,�) = (q,�,+1), for each q ∈ Q′ \ F ,
3. δ′(q, a) = (r , 	,+1), for each a ∈ � and q ∈ Q′ such that δ(q, a) is not defined.
4. δ′(r , a) = (r , 	,+1), for each a ∈ �.

If δ is total then Q′ = Q and Items 3 and 4 are dropped.

4.2 Deterministic 1-LAs as Source Machines: Polynomial-Size Simulations

More interesting constructions and results can be obtained if both source and target
machines are deterministic 1- las. By making use of a polynomial-size linear-time
simulation of 1- las presented in [13]: Given a 1- la, paying a polynomial growth in
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size, it is possible to obtain an equivalent one that works in a time which is linear in
the input length. The idea of the construction is similar to the technique used for the
simulation of the product in Section 3: the simulating deviceworks on a virtualwindow
of fixed size that is shifted along the tape in a one-way manner. More precisely, there
exists a constant K not depending on the input length such that, in the computations
of the simulating 1- las, for any two tape cells at distance K , the leftmost one cannot
be visited after having visited the rightmost one. Along each window it is stored the
information useful to simulate the behavior of the 1- la on the cells to the left of the
window without accessing such portion of the tape anymore. In this way, it is possible
to bound the number of visits to each cell.

Lemma 8 ([13, Theorem 1 and Lemma 6]) For each deterministic 1- la A =
(Q, �, �, δ, q0, F) there exists an equivalent deterministic 1- laA′ working in linear
time with O(#Q4) states and (#Q + 1) · #(� \ �) working symbols.

Using this result, we are able to obtain deterministic 1- las for union, intersec-
tion and complement whose sizes are polynomial in the description of the simulated
deterministic 1- las.

Union and Intersection Let us briefly recall how the linear-time simulation of
Lemma 8 works (for further details we address the reader to [13]). The construction
is inspired by the conversion of two-way automata into one-way 1dfas [7], that was
also used to convert 1- las into one-way finite automata [11]. To simulate a two-way
automaton in a one-way fashion, at any point during the computation, the simulating
1dfa stores into its internal state the so called Shepherdson tables, that contain the
information about the possible two-way computations on the portion of the tape to
the left of the head. In this way, the 1dfa does not need to move its head backward,
but has to keep updated the tables in its state. Since the number of possible tables is
exponential, this technique produces an exponential blowup in size.

In the case of 1- las, to perform a linear-time simulation, the simulating 1- la fills
each window with an encoding of the table describing the behavior of the simulated
1- la on the portion of the tape preceding the window. This allows, on the one hand,
to perform the simulation visiting the cells of each window a constant number of
times and, on the other hand, to avoid the exponential blowup in size of the simulating
device.

The idea of the simulation is that, in order to fill the cells of the virtual windowswith
useful information, only the cells of the window itself can be visited. In particular,
every time the simulating device has to scan a new cell, i.e., the leftmost cell that
has not been visited yet, it first recovers the information to write in the new cell only
visiting the frozen cells in the current window, then it moves the head to the new cell
and writes the computed information (on a separate track) along with the working
symbol that the simulated device would write on that cell.

For the simulation of union and intersection of the languages accepted by two
deterministic 1- las, the machines are simulated in parallel. In particular, two (possi-
bly different) virtual windows are used and shifted independently. Before entering a
new cell, the simulating device computes the information about the windows of the
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simulated deterministic 1- las (in this phase, only the cells of the two windows are
visited: initially, the window of the first simulated device is visited and then, when
the information has been gathered and stored in the finite control, the window of the
second one is visited to compute and store the information about the second device).
Then the new cell is entered and the stored information is saved (on two tracks of
the tape), together with the symbols written by the simulated devices (on two extra
tracks).

When the end of the input is reached, in the case of the union the simulating device
accepts if at least one simulation accepts, in the case of the intersection it accepts if
both the simulated devices accept.

Theorem 9 Let A′ = (Q′, �, �′, δ′, q ′
0, F

′) and A′′ = (Q′′, �, �′, δ′′, q ′′
0 , F ′′) be

two deterministic 1- las, n′ = #Q′, and n′′ = #Q′′. Then there exist

• a deterministic 1- la for the language L(A′) ∪ L(A′′) and
• a deterministic 1- la for the language L(A′) ∩ L(A′′)

both with O(n′4n′′4) states and (n′ + 1) · (n′′ + 1) · #(�′ \ �) · #(�′′ \ �) working
symbols.

Proof We can use Lemma 8 to perform a parallel linear-time simulation ofA′ andA′′.
So, the simulating deterministic 1- la has a state component of size O(n′4) to simulate
A′ and one of size O(n′′4) for the simulation of A′′. Moreover, it uses 4 tracks: two
for the tables of A′ and A′′, for which, respectively, (n′ + 1) and (n′′ + 1) symbols
are used, and two tracks for the symbols �′ \ � and �′′ \ � written by A′ and A′′,
respectively. �

Complementation To accept the complement of the language accepted by a deter-
ministic 1- laA, again Lemma 8 can be used to perform a linear-time (and therefore,
halting) simulation ofA. The simulating deterministic 1- la accepts ifA enters a loop
or if it is not in an accepting state at the end of its computation.

Theorem 10 Let A = (Q, �, δ, q0, F) be a deterministic 1- la. Then there exists a
deterministic 1- la with O(#Q4) states and (#Q + 1) · #(�′ \ �) working symbols
which accepts L(A)c.

5 Reversal

The last operationwe study is the reversal. Even in this case, the deterministic 1- la for
the reversal of the language accepted by a 1dfa A can be obtained by exploiting just
the capability of the simulating machine of scanning the input in a two-way fashion,
so, again, we first give our result for 2dfas. Roughly, starting from the initial state of
A with the head positioned on the last symbol of the input word, the machine accepts
if, simulating the transitions of A scanning the input from right to left, a final state
is entered when the head reaches the left end-marker. This approach yields a 2dfa
with a number of states equal to the one of the simulated machine, plus two states for
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adjusting the position of the head along the tape at the beginning and at the end of the
computation.

Theorem 11 Let A = (Q, �, δ, q0, F) be a 1dfa. Then there exists one 2dfa
with #Q + 2 states which accepts L(A)R.

Proof A 2dfaAR for the reversal of the language accepted byAworks as follows. At
the beginning of the computation it performs a sweep from left to right on the tape.
When the head reaches the right end-marker, it performs a backward simulation of the
automatonA: It uses a copy of the state set ofA, and, every time it simulates a transition
connecting two states, it performs a move to the left. If the backward simulation,
starting from the (simulated) initial state ofA, leads to an accepting (simulated) state
while reaching the left end-marker, then AR accepts (after traversing the whole input
to reach the right end of the tape), otherwise it rejects.

Formally,AR = (Q′, �, δ′, qI , {qF }), where Q′ = Q ∪{qI , qF } and the transition
function is defined as follows:

1. δ′(qI , a) = (qI ,+1), for each a ∈ �;
2. δ′(qI ,�) = (q0,−1);
3. δ′(q, a) = (δ(q, a),−1), for each q ∈ Q and each a ∈ �;
4. δ′(q,�) = (qF ,+1), for each q ∈ F ;
5. δ′(qF , a) = (qF ,+1), for each a ∈ � ∪ {�}. �
As a consequence, we are able to construct an equivalent deterministic 1- la that

uses the same strategy of the obtained 2dfa, with the only difference that, during the
first sweep from left to right, it rewrites on each cell a copy of the symbol it scans.

Theorem 12 LetA = (Q, �, δ, q0, F) be a 1dfa. Then there exists a deterministic 1-
la with #Q + 2 states and 2#� + 2 working symbols which accepts L(A)R.

In the case of deterministic 1- las, the reversal has an exponential cost in size. The
exponential upper bound can be obtained by converting the deterministic 1- la into a
1dfa and then applying Theorem 12. A matching exponential lower bound has been
proved in [13, Theorem 4]. More precisely, it is shown that, for each integer k ≥ 2,
the deterministic 1- la for the language

{x0x1 · · · xn | n ≥ 1, xi ∈ {a, b}k for i = 0, . . . , n, ∃ j > 0 s.t. x j = x0}

has size O(k) while the deterministic 1- la for its reversal has size 2O(k).

Theorem 13 ([13, Theorem 4]) For any integer k ≥ 2, there exists a deterministic 1-
laA of size linear in k such that any deterministic 1- la accepting L(A)R needs size
exponential in k.

6 Conclusion

In this paper we studied the descriptional complexity of classical operations on regular
languages using, as target devices, deterministic 1- las.
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Table 2 The costs of operations of deterministic finite automata and deterministic 1-limited automata.
or each operation (first column), the second to fifth columns show the sizes of the devices obtained by
simulating the corresponding operation pplied to a source machine of size n accepting a language L (and
to one of size m accepting L ′, in case of binary operations)

Op. Construction
1dfa →1dfa 1dfa →D1-la D1-la→D1-la sw. 2dfa →D1-la
states states states symbols states symbols

L ∪ L ′ nm n + m + 1 O(n4m4) O(nmγ η) O(n4m4) O(nm)

L ∩ L ′ nm n + m + 1 O(n4m4) O(nmγ η) O(n4m4) O(nm)

Lc n + 1 n + 1 O(n4) O(nγ ) O(n4) O(n)

LR 2n n + 2 2O(n) O(1) n O(1)

L · L ′ n2m − 2m−1 O(nm4) 2O(n+m) O(1) 2O(n+m) O(1)

L∗ 3
4 2

n O(n4) 2O(n) O(1) 2O(n) O(1)

The simulations considered in the second to fifth columns are, respectively, from 1dfas (as source devices)
into 1dfas (as target devices), from 1dfas into deterministic 1- las, from 1dfas into 1dfas, and from
sweeping 2dfas into deterministic 1- las. For the constructions of the third column, given a fixed input
alphabet of the simulated 1dfas, the number of working symbols of the resulting deterministic 1- las is
constant. For the constructions of the fourth colum, the source devices have working alphabets of size γ

(and η for binary operations)

It is interesting to notice that, if we consider operations between 1dfas (as source
devices) then we are able to create deterministic 1- las accepting the languages
obtained by applying such operations that are smaller than the equivalent 1dfas
obtained by using standard constructions [5]. In particular, while the 1dfas accepting
the languages obtained by applying the operations of reversal, product, andKleene star
on the languages accepted by 1dfas cost exponential, the constructions we provided
yield equivalent deterministic 1- las whose sizes are only polynomial in the sizes of
the source 1dfas (cfr. second and third columns of Table 2).

On the other hand, the simulation of operations between deterministic 1- las by
deterministic 1- las costs polynomial only in the case of union, intersection, and
complementation. In the case of reversal, product, and star, however, we were able to
find exponential lower bounds witnessing the fact that there is no smaller automaton
than the one obtained by converting the simulated deterministic 1- las into 1dfas
first (obtaining exponentially larger machines), and then applying the corresponding
(polynomial-size) language operation construction for obtaining a deterministic 1- la
(cfr. fourth column of Table 2). In the special case in which the source machines are
sweeping 2dfas, it is obvious that we can apply the same constructions. sFurthermore,
exponential lower bounds still hold for product and star, while it is a trivial observation
that the simulation for the reversal costs linear in size (cfr. fifth column of Table 2).
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