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Abstract
Westudy the problemof placingwildlife crossings, such as green bridges, over human-
made obstacles to challenge habitat fragmentation. The main task herein is, given a
graph describing habitats or routes of wildlife animals and possibilities of building
green bridges, to find a low-cost placement of green bridges that connects the habitats.
We develop three problem models for this task and study them from a computational
complexity and parameterized algorithmics perspective.

Keywords Wildlife crossings · Computational sustainability · Parameterized
algorithmics · NP-hardness · Connected subgraphs

1 Introduction

Sustainability is a major concern impacting today’s politics, economy, and industry.
Accordingly, sustainability sciences are well-established by now. Yet, the interdis-
ciplinary scientific field “computational sustainability” [20, 21], which combines
practical and theoretical computer science with sustainability sciences, is quite young.
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For instance, the Institute for Computational Sustainability at Cornell University was
founded in 2008, the 1st International Conference on Computational Sustainability
(CompSust’09) took place in 2009, and special tracks on computational sustainability
and AI were established at AAAI [17] and IJCAI [35]. This work contributes to com-
putational sustainability:Wemodel problems of elaborately placing wildlife crossings
and give complexity-theoretical and algorithmic analysis for each. Wildlife crossings
are constructions (mostly bridges or tunnels [33]) that allow wildlife animals to safely
cross human-made transportation lines (e.g., roads).Wewill refer to wildlife crossings
as green bridges.

There are numerous reports on wildlife-vehicle collisions [22, 26, 37]. Huijser et
al. [26] identify several endangered animal species suffering from high road mortality
and estimate the annual cost associated with wildlife-vehicle collisions with around
8 billion US dollars. Wildlife fencing with wildlife crossings can reduce collisions by
over 80% [26], enables populations to sustain [36], and are thereby among the most
cost-effective [25]. The implementation, though, is a delicate problem, as depicted by
Huijser et al. [26, p.16]:

The location, type, and dimensions of wildlife crossing structures must be care-
fully plannedwith regard to the species and surrounding landscape. For example,
grizzly bears, deer, and elk tend to use wildlife overpasses to a greater extent than
wildlife underpasses,while black bears andmountain lions use underpassesmore
frequently than overpasses. In addition, different species use different habitats,
influencing their movements and where they want to cross the road.

Apart from these delicacies, another challenge is to obtain good data about the spe-
cific areas inhabited by a species [39]: While it is arguably easier to answer whether
some animal species habitates a certain patch of land in the positive, it seems more
challenging to rule it out. Clearly, high data quality is a crucial for deciding on where
to place green bridges.

In this work, we consider the task of (re-)connecting habitats under varying con-
nectivity requirements by placing as few green bridges as possible, thus minimizing
the cost. We assume to be given a set of land patches which are disconnected by roads,
the set of inhabited patches for each animal, and possible locations for green bridges,
each of which connects two patches. This is canonical to model as a graph: vertices
represent the land patches, edges represent the possible locations for green bridges,
and for each animal species we are given a vertex subset of the inhabited patches.
The goal in the model now is to find an edge set that sufficiently connects the habi-
tats of each species. In particular, we comparatively study in terms of computational
complexity and parameterized algorithmics the following three different (families of)
decision problems.1

1 The d-th power Gd of a graph G contains edge {v, w} ∈ (V (G)
2

)
if and only if distG (v, w) ≤ d.
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Fig. 1 A diagram of interconnections between the problems (for the definition of Connect GBP see Prob-
lem 1). An edge from problem A to problem B means that any solution to A is also a solution to B. Problems
with d omitted from the problem name require that there is a solution for some value of d

� Green Bridges Placement (� GBP)

Input: An undirected graph G = (V , E), a set H = {V1, . . . , Vr } of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and k ∈ N0.

Question: Is there an edge set F ⊆ E with |F | ≤ k such that for every i ∈ {1, . . . , r},
it holds that Vi ⊆ V (G[F]) and

� ≡ d- Reach: G[F]d [Vi ] is connected? (Problem 2) (Section 3)
� ≡ d- Closed: G[F]d [Vi ] is a clique? (Problem 6) (Section 4)

� ≡ d- Diam(eter): diam(G[F][Vi ]) ≤ d? (Problem 7) (Section 5)

Our problems address both the challenge in obtaining high quality data aswell as the
question to what connectivity is sufficient. Connectivity is addressed by the different
requirements on the solution: While d- Reach GBP simply ensures connectivity of
each habitat along length-d paths, d- Closed GBP additionally requires every two
patches of eachhabitat to be connectedby such apath.The latter is also true ford- Diam
GBP, which additionally requires that such a path only uses the habitat’s patches. In
this sense, d- Diam GBP generalizes 1- Reach GBP. Moreover, d- Diam GBP and
d- Closed GBP are equivalent for d = 1. See Fig. 1 for relationships between the
problems in terms of Karp reductions.

As for the data quality, recall that it is arguably easier to tell with sufficient certainty
that some animal species inhabits a certain area, but harder to rule it out with the same
certainty, especially for areas that are adjacent to habitated areas. This property is
captured very well by d- Reach GBP and d- Closed GBP. Herein, one should
choose d antiproportionally to the data quality. For instance, with perfect data quality,
that is, perfect knowledge about each species’ habitat, one may choose d = 1 (and
hence, d- Diam GBP is also amenable). Imperfect data quality is reflected by a choice
of d > 1. Here, we relax the connectivity constraints and allow for “hops” within the
connected habitat. If for example d = 2 and a possibly uninhabited area v is adjacent
to two inhabited areas u and w, then u and w may be connected by {u, v} and {v,w},
thus “hopping” over v.

Our Contributions Our results are summarized in Table 1. We settle the classic com-
plexity and parameterized complexity (regarding the number k of green bridges and the
number r of habitats) of the three problems. While d- Reach GBP is (surprisingly)
already NP-hard for d = 1 on planar or maximum degree � = 4 graphs, d- Closed
GBP and d- Diam GBP become NP-hard for d ≥ 2, but admit an (r + �)O(1)-sized
problem kernel and thus are linear time solvable if r + � is constant. All variants are
para-NP-hard when parameterized by r . d- Reach GBP and d- Closed GBP are
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Table 1 Overview of our results

Problem Comput. Parameterized Algorithmics Section
(� GBP) Complex. k r k + r

d-Reach d = 1 NP-c.a 2k-vertex K† p-NP-h.‡ O(rk + k2) PK 3.2

d = 2 NP-c.b O(kk )-vertex K†,∗ p-NP-h.c FPT† 3.3

d ≥ 3 NP-c. XP, W[1]-h. p-NP-h.c XP, W[1]-h. 3.4

d-Closed d = 1 Lin. time — — — 4

d = 2 NP-c.d O(kk )-vertex K†,∗ p-NP-h.e,g FPT† 4.3

d ≥ 3 NP-c. XP, W[1]-h. p-NP-h.e,g XP, W[1]-h. 4.4

d- Diam d = 1 Lin. time — — — 5

d = 2 NP-c.f 2k-vertex K† p-NP-h.g O(rk + k2) PK 5

NP-c., P, K,W[1]-h., and p-NP-h. stand for NP-complete, “polynomial-size”, “problem kernel”,W[1]-hard,
and para-NP-hard, respectively
a (even on planar graphs) b(even on bipartite graphs with � = 4 or graphs of diameter four) c(even if r = 1
or if r = 2 and � = 4) d (even on bipartite graphs of diameter three and r = 1, but linear-time solvable
when r + � is constant) e(admits a linear-size problem kernel if � is constant) f (linear-time solvable
when r +� is constant) g(even if r = 1) †(no polynomial problem kernel unless NP ⊆ coNP / poly) ∗(but
an O(k3)-vertex problem kernel on planar graphs) ‡(if r ≥ 7, linear-time solvable if r ≤ 2)

fixed-parameter tractable regarding k when d ≤ 2, but become W[1]-hard (yet XP)
regarding k and k+r when d > 2. Additionally, we prove that d- Reach GBP admits
an rd-approximation in O(mn + rnd) time.

Further related work Our problems deal with finding (small) spanning connected
subgraphs obeying some (connectivity) constraints. These problems are applicable in
awide rangeof areas and typically take the formof a special case or variant of 1- Reach
GBP. Areas include computer networks [6], social networks [2], graph drawing [4],
combinatorial auctions [7], reconfigurable computing [16], vacuum technology [14],
and structural biology [1].

1- Reach GBP on cliques is also known as the Subset Interconnection

Design problem: Given sets V1, . . . , Vr , find a graph G with V (G) = V1 ∪ · · · ∪ Vr
with the minimum number of edges such that G[Vi ] is connected for each i . This
problem was first introduced by [13] and proven to be NP-hard by [15]. It was also
studied in terms of its approximability [2] and its parameterized complexity [5].

Closely related to our problems are also Steiner multigraph problems [18, 34],
which were also studied in the context of wildlife corridor construction [29, 30].
Requiring small diameter appears also in the context of spanning trees [32] and Steiner
forests [11]. An edge-weighted version of 4- Diam GBP is proven to be NP-hard even
if there are only twodifferentweights [31].Kimet al. [27] study the problemof deleting
few edges to augment a graph’s diameter to a constant. Gionis et al. [19] studied a
variant of 2- Diam GBP in which for any solution F and habitat Vi , G[F][Vi ] must
induce a star, and gave an efficient approximation algorithm for it. Herrendorf [24]
studied the same variant as well as the 1- Reach GBP problem (under a different
name) in terms of their parameterized complexity.
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Connecting habitats arbitrarily The following obvious model just requires that each
habitat is connected.

Problem 1 Connected Green Bridges Placement (Connect GBP)

Input: An undirected graph G = (V , E), a set H = {V1, . . . , Vr } of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and an integer k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈ {1, . . . , r} it
holds that in G[F] there exists a connected component containing Vi?

Connect GBPwith edge costs is also known as Steiner Forest [18] and gener-
alizes the well-knownNP-hard Steiner Tree problem. Gassner [18] proved Steiner
Forest to be NP-hard even if every so-called terminal net contains two vertices, if the
graph is planar and has treewidth three, and if there are two different edge costs, each
being upper-bounded linearly in the instance size. It follows that Connect GBP is
also NP-hard in this case. Bateni et al. [3] proved that Steiner Forest is polynomial-
time solvable on treewidth-two graphs and admits approximation schemes on planar
and bounded-treewidth graphs.

Fromamodeling perspective, solutions forConnect GBPmaybehighly scattered:
Patches of the same species’ habitat may be arbitrarily far away from another; thus,
to reach another patch of their habitat, animals may need to take long walks through
areas of their habitats when only using green bridges to cross streets. It is likely that
species with scattered habitats will not make use of the green bridges.With our models
we avoid such solutions.

2 Preliminaries

LetN andN0 be the natural numbers without and with zero, respectively. We use basic
definitions from graph theory [10] and parameterized algorithmics [8].

Graph Theory Let G = (V , E) be an undirected graph with vertex set V and edge
set E ⊆ (V

2

)
. We also denote by V (G) and E(G) the vertices and edges of G, respec-

tively. For V ′ ⊆ V , let G[V ′] = (V ′, E ∩ (V ′
2

)
) denote the graph G induced by

a vertex set V ′. For F ⊆ E let V (F) := {v ∈ V | ∃e ∈ F : v ∈ e} and
G[F] := (V (F), F) denote the graph G induced by the edge set F . A path P is a
graph with V (P) := {v1, . . . , vn} and E(P) := {{vi , vi+1} | 1 ≤ i < n}. The length
of the path P is |E(P)|. The distance distG(v,w) between vertices v,w ∈ V (G)

is the length of the shortest path between v and w in G. The diameter diam(G) is
the length of longest shortest path over all vertex pairs. For p ∈ N, the graph Gp

is the p-th power of G containing the vertex set V and edge set {{v,w} ∈ (V
2

) |
distG(v,w) ≤ p}. For F ⊆ E ,V ′ ⊆ V , andd ∈ N, the graphG[F]d [V ′] is understood
as ((G[F])d)[V ′]. Let NG(v) := {w ∈ V | {v,w} ∈ E} be the (open) neighborhood
of v, and NG [v] := NG(v) ∪ {v} be the closed neighborhood of v. For p ∈ N,
let N p

G(v) := {w ∈ V | {v,w} ∈ E(Gp)} be the (open) p-neighborhood of v, and
N p
G[v] := N p

G(v) ∪ {v} be the closed p-neighborhood of v. Two vertices v,w ∈ V
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are called twins if NG(v) = NG(w). The (vertex) degree degG(v) := |NG(v)| of v is
the number of its neighbors. The maximum degree �(G) := maxv∈V degG(v) is the
maximum over all (vertex) degrees.

3 Connecting Habitats with a Patch at Short Reach

The following problem ensures that any habitat patch can reach the other patches via
patches of the same habitat and short strolls over “foreign” ground.

Problem 2 d- Reach Green Bridges Placement (d- Reach GBP)

Input: An undirected graph G = (V , E), a set H = {V1, . . . , Vr } of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and an integer k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈ {1, . . . , r} it
holds that Vi ⊆ V (G[F]) and G[F]d [Vi ] is connected?

Theorem 1 d- Reach Green Bridges Placement is

(i) if d = 1, NP-hard even on planar graphs, or if r ≥ 7 but solvable in linear time
if r ≤ 2;

(ii) if d = 2, NP-hard even on graphs with maximum degree four and r = 2 or
graphs with diameter four and r = 1, and in FPT regarding k;

(iii) if d ≥ 3, NP-hard and W[1]-hard regarding k + r .

Moreover, d- Reach GBP admits an rd-approximation of the minimum number of
green bridges in O(mn + rnd) time.

We will first present the approximation algorithm. Afterwards, we will present the
results in (i)-(iii) in the order above.

3.1 An (r · d)-Approximation for d-REACH GBP

In this section wewill present the approximation algorithm of Theorem 1. The approx-
imation algorithm computes for every habitat Vi a spanning tree in Gd [Vi ], and adds
the edges of the corresponding paths to the solution F . Each of the spanning trees then
is a d-approximation for just the one habitat, hence the union of the spanning trees is
an rd-approximation for all habitats.

Lemma 1 For r = 1, d- Reach GBP admits a d-approximation of the minimum
number of green bridges in O(mn) time.

Proof Westart off by computing inO(mn) time the graph H := Gd aswell as for every
edge e = {u, v} ∈ E(H) the corresponding path Pe fromu tov of length atmostd inG.
If H [V1] is not connected, then return no. If not, then compute a minimum spanning
tree T ⊆ H [V1] in O(n log n) time. For each edge e = {u, v} ∈ E(T ) compute
in O(m) time the corresponding path Pe ⊆ G from u to v of length at most d. Finally,
return the set F := ⋃

e∈E(T ) E(Pe), computable in O(m) time. Clearly, G[F]d [V1] is
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connected. As a minimum solution F∗ has at least |V1| − 1 edges, and every path Pe
consists of at most d edges,

|F | = |
⋃

e∈E(T )

E(Pe)| ≤
∑

e∈E(T )

E(Pe) ≤ (|V1| − 1) · d ≤ d|F∗|.

�
Proposition 1 d- Reach GBP admits an rd-approximation of the minimum number
of green bridges in O(mn + rnd) time.

Proof We initially compute the shortest paths between all vertex pairs in G in O(mn)

time. We obtain the graph H := Gd as a byproduct. If for some i ∈ {1, . . . , r},
H [Vi ] is not connected, then return no. If not, then compute for each i ∈ {1, . . . , r}
a spanning tree Ti of H [Vi ], or return no if H [Vi ] is not connected. Let Fi ⊆ E(G)

be the edge set corresponding to Ti as in the proof of Lemma 1. As G[Fi ]d [Vi ] is
connected, F := ⋃r

i=1 Fi is a solution.
Note that each of the r spanning trees Ti contains at most n edges, and for each of

these edges e ∈ Fi we can determine the corresponding paths Pe ⊆ G of length at
most d in O(d) time. We obtain an overall running time of O(mn + rnd).

As for the approximation ratio, let F∗ be a minimum solution, and for every i ∈
{1, . . . , r} let F∗

i ⊆ E(G) be a minimum-size edge set such that G[F∗
i ]d [Vi ] is

connected. As |F∗| ≥ maxi∈{1,...,r} |F∗
i |, we have

|F | ≤
r∑

i=1

|Fi | ≤
r∑

i=1

d|F∗
i | ≤ r · d|F∗|.

�

3.2 When a next habitat is directly reachable (d = 1)

Recall that setting d = 1 may reflect perfect knowledge about the habitats. In this
case, we want that in G[F], each habitat Vi forms a connected component.

Du and Miller [15] showed that 1- Reach GBP is NP-hard even when the input
graph is complete. We give two reductions that show NP-hardness in some restricted
cases. From the second reduction we can also derive that presumably there is no
polynomial kernel with respect to the budget k. Lastly, we show that if there are only
two habitats, then the problem can be solved in linear time.

We start with proving that 1- Reach GBP is NP-hard on series-parallel graphs.
As every series-parallel graph is planar, we also obtain the same hardness result for
planar graphs. Further, the provided reduction also shows that the problem is unlikely
to admit a kernel whose size is bounded polynomially in the parameter.

Proposition 2 1- Reach GBP is NP-hard and, unless NP ⊆ coNP / poly, admits no
problem kernel of size kO(1), even on series-parallel graphs.
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We will give a linear parametric transformation from the following problem:

Problem 3 Hitting Set (HS)

Input: A universe U , a set F ⊆ 2U of subsets of U , and an integer k.
Question: Is there a hitting set U ′ ⊆ U with |U ′| ≤ k such that for all F ∈ F we
have F ∩U ′ �= ∅?

Note that Hitting Set admits no problem kernel of size polynomial in |U |
unless NP ⊆ coNP / poly [12].

Construction 1 For an instanceI = (U ,F , k) of Hitting SetwithU = {1, . . . , n}
and F = {F1, . . . , Fm}, construct an instance I ′ := (G ′,H , k′) with habitats
H = {S, V1, . . . , Vm} and k′ := n + k as follows (see Fig. 2 for an illustration).

Add to G ′ the vertex set VU := {xi | i ∈ U } as well as the two vertices s and t ,
and the edge sets E∗ := ⋃n

i=1{{s, xi }} and EU := ⋃n
i=1{{xi , t}}. Finally, let S :=

{s} ∪ ⋃n
i=1{xi }, and for each Fj ∈ F let Vj := {s, t} ∪ ⋃

i∈Fj
{xi }.

Observation 2 The graph G ′ constructed in Construction 1 is planar and series-
parallel.

Observation 3 Let I ′ be a yes-instance. Then every solution F contains all edges
in E∗.

Proof By construction, G[S] is a star with center s. Hence, all edges in G[S] are
contained in every solution. Since E∗ = E(G[S]), the claim follows. �
Lemma 4 LetI ′ be the instance obtained from an instanceI using Construction 1.
Then, I is a yes-instance if and only if I ′ is a yes-instance.

Proof (⇒) Let U ′ ⊆ U be a solution for instance I . We claim that F := E∗ ∪⋃
i∈U ′ {{xi , t}} is a solution for I ′. Note that |F | ≤ n + k. Observe that G ′[F][S] is

connected. Suppose now that there is Vj such that G ′[F][Vj ] is not connected. Let Fj

be the corresponding set. Since E∗ ⊆ F , none of the edges {{xi , t} | i ∈ Fj } are
contained in F . It follows that Fj ∩U ′ = ∅, contradicting the fact thatU ′ is a solution
for I .

Fig. 2 Illustration to Construction 1 for 1- Reach GBP on series-parallel (and thus planar) graphs. In this
example, there are e.g. Fp ⊇ {1, i, j} and Fq ⊇ {i, j, n}. In case of a yes-instance, the red-colored edges
are in every solution (Observation 3).
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(⇐) Let F be a solution to I ′. By Observation 11 we know that E∗ ⊆ F .
We claim that U ′ := {i ∈ U | {xi , t} ∈ F} is a solution for I . Clearly |U ′| ≤ k.
Suppose U ′ is not a solution. Then there is an Fj ∈ F with Fj ∩ U ′ = ∅. But
then G ′[F][Vj ] is not connected, a contradiction. �

Next, we prove that 1- Reach GBP is NP-hard even if we are given a constant
number of habitats.

Proposition 3 1- Reach GBP is NP-complete even if r = 7.

We reduce from the following NP-hard problem.

Problem 4 Directed Hamiltonian Path (DHP)

Input: A directed graph D = (W , A) and two distinct vertices s, t ∈ W such that
outdeg(t) = indeg(s) = 0.

Question: Is there an s-t path that visits every vertex exactly once?

Wefirst recall awell-known reduction toHamiltonian Path (HP), the undirected
variant. Then, we reduce HP to 1- Reach GBP. For both constructions, we refer to
Fig. 3 for an illustrative example.

Construction 2 Construct the undirected graph G ′ = (V ′, E ′) as follows. For each
vertex v ∈ W \ {s, t}, G ′ contains the path Pv = (vin, v, vout). Moreover, it con-
tains the paths Ps = (s, sout) and Pt = (tin, t). For every arc (v,w) ∈ A, add the
edge (vout, win).

(a)
ss

aa

bb

tt

(b)
ss

soutsout

ainain

aa

aoutaout

binbin

bb

boutbout

tintin

tt

(c)
ss

soutsout

ainain

aa

aoutaout

binbin

bb

boutbout

tintin

tt

xoutxout

youtyout

xinxin

yinyin

(d)
ss

soutsout

ainain

aa

aoutaout

binbin

bb

boutbout

tintin

tt

xoutxout

youtyout

xinxin

yinyin

(e)
ss

soutsout

ainain

aa

aoutaout

binbin

bb

boutbout

tintin

tt

xoutxout

youtyout

xinxin

yinyin

Fig. 3 Illustration to Constructions 2 and 3. Part (a) shows an exemplary directed graph which is a yes-
instance for DHP. Applying Construction 2 on (a) yields (b). Applying Construction 3 on (b) yields the
instance whose graph is depicted in (c) and two habitats of which are depicted in (d) and (e). Vertices marked
yellow in (d) are contained in the habitat Xout . Vertices marked red in (e) are contained in the habitat Yout .
The graph induced by Yout contains the red edges
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Recall the following.

Observation 5 (D, s, t) is a yes-instance of DHP if and only if (G ′, s, t), obtained
from (D, s, t) using Construction 2, is a yes-instance of HP.

Next, we construct from G ′ the instance of 1- Reach GBP.

Construction 3 LetG ′ = (W ′, E ′) obtained from (D = (W , A), s, t) using Construc-
tion 2. We now construct the graph G = (V , E) from G ′ with habitat set

H = {Xout, X in, X
∗
out, X

∗
in, Vall,Yout,Yin}

as follows.Add the new vertices xout, xin, yout, yin, that is, let

V := V ′ ∪ {xout, xin, yout, yin}.

Moreover, make xout adjacent to vout for each v ∈ W \ {t}, make yout adjacent to vout
for each v ∈ W \ {t}, make xin adjacent to vin for each v ∈ W \ {s}, make yin adjacent
to vin for each v ∈ W \ {s}, Next, let Vall := W ′ and

X∗
out := {xout} ∪

⋃

v∈W\{t}
{vout}, Xout := X∗

out ∪
⋃

v∈W\{s}
{vin},

X∗
in := {xin} ∪

⋃

v∈W\{s}
{vin}, X in := X∗

in ∪
⋃

v∈W\{t}
{vout},

Yout := {yout} ∪
⋃

v∈W\{t}
{vout, v}, and Yin := {yin} ∪

⋃

v∈W\{s}
{vin, v}.

Finally, let k := 2(n − 2) + 2 + 4(n − 1) + (n − 1) = 7(n − 1), where n = |W |. �
As the habitats X∗

out, X
∗
in, Yout, and Yin induce trees in G, we have the following.

Observation 6 If (G,H , k), obtained from (G ′, s, t) using Construction 3, is a yes-
instance of 1- Reach GBP, then every solution contains all edges contained in Pv

for every v ∈ W and all edges incident with xout, with xin, with yout, and with yin.

Lemma 7 The instance I ′ = (G ′, s, t), obtained from (D, s, t) using Construction 2,
is a yes-instance of HP if and only if I = (G,H , k), obtained from (G ′, s, t)
using Construction 3, is a yes-instance of 1- Reach GBP.

Proof Let F ′ := ⋃
v∈W E(Pv) ∪ {e ∈ E | e ∩ {xout, xin, yout, yin} �= ∅} and let n :=

|W |. Note that |F ′| = 2(n − 2) + 2 + 4(n − 1).
(⇒) Let P = (s, v2, . . . , vn−2, t) be an s-t path in D that visits every ver-

tex exactly once. We claim that F := F ′ ∪ F ′′ is a solution for instance I , where
F ′′ := {uout, vin | (u, v) ∈ A(P)}. Clearly |F | ≤ |F ′| + |F ′′| = k. Note that the set
F ′ already connects the habitats X∗

out, X
∗
in, Yout, and Yin. Note that P is a subgraph

of D that is weakly connected and in which every vertex has indegree one and every
vertex has outdegree one, except for s (indegree zero) and t (outdegree zero). Hence,
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for every v ∈ W there exists an edge (v,w) ∈ A(P), and thus {vout, win} ∈ F ′′. There-
fore, G[F][X in] is connected. The argumentation for G[F][Xout] being connected is
analogous. Finally, as P is a connected subgraph, F contains the edges of an s-t path
that contains all vertices in Vall.

(⇐) Let F be a solution to I . Due to Observation 6, we know that F ′ ⊆ F , and
hence for F ′′ := F \ F ′ we have |F ′′| ≤ k − (6(n − 1)) = n − 1. By definition
of Xout and X in, we know that in G[F], every vout is adjacent to at least one win,
and every vin is adjacent to at least one wout. Thus, in the graph P := (W , E∗)
with E∗ = {(v,w) | (vout, win) ∈ F ′′}, every vertex has indegree and outdegree
one, except for s (indegree zero) and t (outdegree zero). We claim that P is weakly
connected. Consider any two vertices v,w ∈ W . By our assumption there exists a
v-w path P ′ in G[F][Vall]. Note that G[F ′][Vall] has n connected components, each
of which contains exactly one vertex in W . Hence, P ′ contains at least one edge in
F ′′, and an additional edge in F ′′ for each additional vertex inW that is visited by P ′.
This edge set E(P ′) ∩ F ′′ corresponds to the edges of an undirected v-w path in P .
Hence, P is connected. Together with the above properties of P , it follows that P is
a Hamiltonian s-t path. �

Lastly, we show that 1- Reach GBP becomes tractable for r = 2. Let α : N → N

be the inverse of the single-valued Ackermann function.

Proposition 4 1- Reach GBP is solvable in O((n + m)α(n)) time if r = 2.

Proof Assume that both G[V1] and G[V2] are connected (otherwise, safely return no)
and that V1 ∩ V2 �= ∅ (otherwise, a tree spanning over Vi for each i ∈ {1, 2} is a valid,
minimum-size solution). We first compute a spanning forest T∩ within G[V1 ∩ V2],
using breadth-first search. Afterwards, for each i ∈ {1, 2}, we run Kruskal’s [28]
algorithm to extend the forest T∩[Vi ] to a spanning tree Ti that spans over the vertices
in Vi . Let F := E(T1) ∪ E(T2). We return yes if and only if |F | ≤ k. As each
v ∈ Vi is visited at most once, the algorithm runs in O((n + m)α(n)) time by using
the disjoint-set structure [38].

To prove the correctness of the algorithm, we show that F is a minimum-cardinality
solution. Since both G[V1] and G[V2] are connected, G[F][Vi ] is connected for
each i ∈ {1, 2}. It remains to show that F is of minimum cardinality. Consider some
minimum-cardinality solution F ′. Let F ′

i := E(G[F ′][Vi ]) for each i ∈ {1, 2}, and
let F ′∩ := E(G[F ′][V1 ∩ V2]). Observe that |E(T∩)| ≥ |F ′∩| as otherwise there is
cycle in G[F ′][V1 ∩ V2] contradicting the fact that F ′ is of minimum-cardinality. It
follows that

|F ′| = |F ′
1| + |F ′

2| − |F∩| ≥ |V1| − 1 + |V2| − 1 − |F∩|
≥ |V1| − 1 + |V2| − 1 − |E(T∩)| = |F |.

�
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3.3 One hop between habitat patches (d = 2)

In this section we prove that 2- Reach GBP is already NP-complete even if there are
two habitats and the graph has maximum degree four, or if there is only one habitat.
Afterwards we show that 2- Reach GBP still admits a problem kernel with respect
to k. If the graph is planar, we can show that the kernelization is polynomial in the
number of vertices.

Proposition 5 d- Reach GBPwith d ≥ 2 isNP-complete even if (i) r = 2 and� ≤ 4
or (ii) r = 1 and the input graph has diameter 2d.

For the sake of presentation, we prove Proposition 5(i) for d = 2. Afterwards, we
briefly explain how to adapt the proof for d > 2 and for Proposition 5(ii).

Construction 4 Let I = (G, k) be an instance of 3- Regular Vertex Cover

with G = (V , E) and V = {1, . . . , n} construct an instance of 2- Reach GBP with
graph G ′ = (V ′, E ′), habitat sets V1 and V2, and integer k′ := |E | + (n − 1) + k as
follows (see Fig. 4(a) for an illustration).

Add the vertex set VE := {ve | e ∈ E} and add ve with e = {i, j} ∈ E to habitat V1.
Next, add the vertex sets VG = {vi | i ∈ V }, and connect each vi with all edge-vertices
corresponding to an edge incident with i , i.e., add the edge set EG := ⋃

i∈V {{vi , ve} |
i ∈ e}. Next, add the vertex set VX := {xi | i ∈ V }, connect each xi with vi , and
add xi to V1 and to V2. Finally, add the edge set {{xi , xi+1} | i ∈ {1, . . . , n − 1}}. �
Observation 8 Let I = (G, k) be an instance of 3- Regular Vertex Cover and
let I ′ = (G ′, {V1, V2}, k′) be the instance obtained from I using Construction 4.
If I ′ is a yes-instance, then every solution contains all edges in G[VX ].
Proof Suppose not, and let F be a solution without some edge {xi , xi+1}. Note that
inG−{{xi , xi+1}}, the distance between xi and xi+1 is at least four; thusG[F]2[VX ] =
G[F]2[V2] is not be connected. A contradiction. �
Lemma 9 Let I = (G, k) be an instance of 3- Regular Vertex Cover and
let I ′ = (G ′, f , k′) be the instance obtained from I using Construction 4. If I ′ is
a yes-instance, then there is a solution F ⊆ E(G ′) such that degG ′[F](ve) = 1 for
all e ∈ E(G).

Fig. 4 Illustration for 2- Reach GBP with (a) r = 2 and � = 4 (k′ = m + (n − 1) + k) and (b) r = 1
(k′ = m + k)
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Proof Clearly, in every solution, we have degG ′[F](ve) ≥ 1. Let F be a minimum
solution with a minimum number of edges incident to vertices in {ve | e ∈ E}.
Suppose that there is at least one e = {i, j} ∈ E such that degG ′[F](ve) = 2, that is,
{ve, vi }, {ve, v j } ∈ F . Since F is a solution, there is a path P in G ′[F] from ve to
some xi . Let {ve, vi } be the first edge on this path. Let F ′ := (F \ {ve, v j })∪ {v j , x j }.
We claim that F ′ is a solution, yielding a contradiction to the fact that F is a solution
with a minimum number of edges incident with vertices in VE .

Only a vertex ve′ can be disconnected from any VX by removing {ve, v j } from F .
This vertex cannot be on the path P , and hence is connected to ve via edge {ve, v j }.
Since now edge {v j , x j } is present, ve′ is again connected to VX . �
Lemma 10 Let I = (G, k) be an instance of 3- Regular Vertex Cover and
let I ′ = (G ′, {V1, V2}, k′) be the instance obtained from I using Construction 4.
Then I is a yes-instance if and only if I ′ is a yes-instance.

Proof (⇒) Let S ⊆ V be a vertex cover of size k in G. We construct a solu-
tion F ⊆ E ′ as follows. Let FX = ⋃n−1

i=1 {{xi , xi+1}} and FV := {{vi , xi } | i ∈ S}. We
define the auxiliary function g : E → V ′ with g({i, j}) = vmin({i, j}∩S). Let FE :=⋃

e={i, j}∈E {ve, g(e)}. Let F := FX ∪FV ∪FE . Note that |F | = |FX |+|FV |+|FE | ≤
|E |+(n−1)+k = k′.Moreover, everyve ∈ VE is connected to xi via a path (ve, vi , xi ),
where i ∈ (e ∩ S). Finally, observe that G ′[F][VX ] is connected.

(⇐) Let I ′ be a yes-instance. Due to Lemma 9 there is a solution F ⊆ E ′
such that degG ′[F](ve) = 1 for all e ∈ E . Due to Observation 8, we know that the

edges
⋃n−1

i=1 {{xi , xi+1}} ⊆ F . Let S := {i ∈ V | {vi , xi } ∈ F}. We claim that S is a
vertex cover. Suppose not, that is, there is an edge e ∈ E such that e ∩ S = ∅. That
means that the unique neighbor of ve, say vi , is not adjacent with xi in G ′[F]. Since
degG ′[F](ve) = 1 for all e ∈ E , NG ′[F][vi ] forms a connected component in G ′[F]2
not containing xi . This contradicts the fact that F is a solution. �
Remark 1

(i) Tomake the reduction work for d ≥ 3, it is enough to subdivide each edge {ve, vi }
(d − 2) times and set k′ := (d − 1)m + (n − 1) + k.

(ii) If we contract all xi , set V2 = ∅ (i.e., only one habitat remains), and set k′ :=
(d − 1)m + k, then the reduction is still valid (see Fig. 4(b) for an illustration).
Thus, Proposition 5(ii) follows.

The reduction in the proof of Proposition 5 requires k to be linear in the input
instance’s size.Wenext prove that, indeed,2- Reach GBP is fixed-parameter tractable
with respect to k by showing that it admits a problem kernel of size exponential in k.

Proposition 6 2- Reach GBP admits a problem kernel with at most 2k+(2k
k

)
vertices,

at most
(2k
2

) + k
(2k
k

)
edges, and at most 22k habitats.

Let V̄ := V \ ⋃
V ′∈H V ′ for a graph G = (V , E) and habitat set H =

{V1, . . . , Vr }. The following reduction rules are immediate.
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Reduction Rule 1

(i) If |Vi | = 1 for some i , delete Vi .
(ii) If a vertex in V̄ is of degree at most one, delete it.
(iii) If there is an i ∈ {1, . . . , r} with |Vi | > 1 and an v ∈ Vi of degree zero, return a

trivial no-instance.
(iv) If there is a vertex v ∈ V \V̄ of degree atmost one, delete it (also from V1, . . . , Vr ),

and set k := k − 1.

Clearly, k edges can connect at most 2k vertices; thus we obtain the following.

Reduction Rule 2 If |V \ V̄ | > 2k, then return a trivial no-instance.

So we have at most 2k vertices in habitats. Next, we upper-bound the number of
non-habitat vertices. No minimal solution has edges between two such vertices.

Reduction Rule 3 If there is an edge e ∈ E with e ⊆ V̄ , then delete e.

Moreover, no minimum solution connects through non-habitat twins.

Reduction Rule 4 If N (v) ⊆ N (w) for distinct v,w ∈ V̄ , then delete v.

We still need to bound the number of vertices in V̄ . For an n-element set S letF ⊆
2S be a family of subsets such that for every A, B ∈ F we have A � B. Then |F | ≤( n
�n/2�

)
by Sperner’s Theorem. Hence, after applying the reduction rules, we get an

instance with at most 2k + (2k
k

)
vertices and

(2k
2

) + 2k
(2k
k

)
edges.

Finally, we can upper-bound the number of habitats by simply deleting duplicates.

Reduction Rule 5 If Vi = Vj for distinct i, j ∈ {1, . . . , r}, then delete Vj .

It follows that we can safely assume that r ≤ 22k . Thus, Proposition 6 follows.
Unfortunately, improving the problem kernel to polynomial-size appears unlikely.

Proposition 7 Unless NP ⊆ coNP / poly, d- Reach GBP for d ≥ 2 admits no prob-
lem kernel of size kO(1), even if r ≥ 1 is constant.

We will give a linear parametric transformation from the following problem:

Problem 5 Set Cover (SC)

Input: A universe U , a set F ⊆ 2U of subsets of U , and an integer k.
Question: Is there F ′ ⊂ F with |F ′| ≤ k such that

⋃
F∈F ′ F = U?

The construction is basically the same as for Proposition 5(ii). Note that Set Cover

admits no problemkernel of size polynomial in |U |+k, unlessNP ⊆ coNP / poly [12].

Proof Let I = (U ,F , k) be an instance of Set Cover, with U = {u1, . . . , un}.
Construct an instance I ′ := (G, V1, k′) of 2- Reach GBP with k′ = |U | + k as
follows (see Fig. 5). Let G be initially empty. Add the vertex set VU := U , the vertex
set VF := {vF | F ∈ F }, and the vertex x . Set V1 := VU ∪ {x}. Make each vertex
in VF adjacent with x . Finally, for each F ∈ F , add the edge set {{vi , vF } | ui ∈ F}.
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Fig. 5 Illustration for the construction in the proof of Proposition 7 for 2- Reach GBP with r = 1. In this
example, U = {u1, . . . , un} and we have {u1, ui , u j , un} = F ∈ F

The proof thatI is a yes-instance if and only ifI ′ is a yes-instance is analogous
with the correctness proof for Proposition 5(ii).

Since Set Cover admits no problem kernel of size polynomial in |U | + k,
unless NP ⊆ coNP / poly [12], neither does 2- Reach GBP when parameterized
by k′ = |U | + k. �

Proposition 7holds for general graphs. In fact, for planar graphs, the above reduction
rules allow for an O(k3)-vertex kernel. The number of habitats in the kernel however
may still be exponential in k.

Proposition 8 2- Reach GBP on planar graphs admits a problem kernel with O(k3)
vertices and edges and at most 22k habitats.

Observation 11 Suppose all reduction rules were applied exhaustively. Then

(i) there are at most
(2k
2

)
vertices of degree two in V̄ , and

(ii) there are at most 3
(2k
3

)
vertices of degree at least three in V̄ .

Proof (i) By Reduction Rules 3, 2 and 4, every degree-two vertex in V̄ has a pairwise
different pair of neighbors in V \ V̄ . As there are

(2k
2

)
(unordered) vertex pairs in V \ V̄ ,

there are at most
(2k
2

)
degree-two vertices in V̄ , otherwise one of the reduction rules

was not applied exhaustively.
(ii) Any three vertices u, v, w in a planar graph share at most two neighbors, that is,

|N (u)∩N (v)∩N (w)| ≤ 2. Suppose there are more than 3
(2k
3

)
vertices in V̄ of degree

at least three. Then, by Reduction Rules 3 to 4, there are three vertices u, v, w ∈ V̄
such that |N (u) ∩ N (v) ∩ N (w)| ≥ 3, a contradiction to G being planar. �

As |V \ V̄ | ≤ 2k and we deleted all degree-one vertices, Proposition 8 follows.

3.4 At Least Two Hops Between Habitat Patches (d ≥ 3)

If the data is more sparse, that is, the observed habitats to connect are rather scat-
tered, then the problem becomes significantly harder to solve from the parameterized
complexity point of view.
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Fig. 6 Illustration to Construction 5 for d- Reach GBP for d ≥ 3

Proposition 9 d- Reach GBP with d ≥ 3 is NP-complete and W[1]-hard when
parameterized by k + r .

We give the construction for d being odd. Afterwards, we explain how to adapt the
reduction to d being even. The reduction is from theMulticolored Clique problem,
where, given a k-partite graph G = (U 1, . . . ,Uk, E), the question is whether there
is a clique containing exactly one vertex from each part. Multicolored Clique is
NP-hard and W[1]-hard when parameterized by k.

Construction 5 Let (G)withG = (U 1, . . . ,Uk, E) be an instance ofMulticolored

Clique where G[Ui ] forms an independent set for every i ∈ {1, . . . , k}. Assume
without loss of generality thatUi = {ui1, . . . , ui|V i |}. Let k′ := (d−1)

2 k+(k
2

)
. Construct

the instance (G ′, {V1, . . . , V(k2)
}, k′) as follows (see Fig. 6 for an illustration).

Let g : ({1,...,k}
2

) → {1, . . . , (k2
)} be a bijective function. Let G ′ be initially G. For

each i ∈ {1, . . . , k}, add a vertex vi to G ′, add vi to each habitat V� with i ∈ g−1(�),
and connect vi with uij for each j ∈ {1, . . . , ui|Ui |} via a path with d−1

2 edges, where vi

and u j
i are the endpoints of the path.

Remark 2 For every even d ≥ 4, we can adapt the reduction for d − 1: At the end
of the construction, subdivide each edge between two vertices that are in the original
graph G.

Observation 12 In the obtained instance, for every � ∈ {1, . . . , (k2
)}, it holds that,

V� = {vi , v j } where {i, j} = g−1(�), and for every i, j ∈ {1, . . . , k}, i �= j , it holds
that {�′ | {vi , v j } ⊆ V�′ } = {�} with � = g({i, j}).
Observation 13 If the obtained instance is a yes-instance, then in every minimal
solution F, for every i ∈ {1, . . . , k} there is exactly one uij in G[F].
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Proof Note that each vi must be connected with at least one vertex fromUi in G ′[F].
Thus, |V (G ′[F]) ∩ Ui | ≥ 1. Moreover, from each i, j ∈ {1, . . . , k}, i �= j , F must
contain an edge between Ui and U j , since distG ′(vi , u) + distG ′(v j , u′) ≥ d − 1 for
every u ∈ Ui , u′ ∈ U j . Since additionally k′ = (d−1)

2 k + (k
2

)
, it follows that vi cannot

be connected with two vertices from Ui in G ′[F][Ui ∪ {vi }]. Hence, if there are two
vertices u, u′ ∈ Ui ∩ F , with u being connected to vi in G ′[F][Ui ∪ {vi }], then u′ is
not part of an va-vb path in G ′[F] of length at most d for every a, b ∈ {1, . . . , k}. It
follows that F is not minimal. �
Lemma 14 Let I = (G) with G = (U 1, . . . ,Uk, E) be an instance of Mul-

ticolored Clique and let I ′ = (G ′,H , k′) be the instance obtained from I
using Construction 5. ThenI is a yes-instance if and only ifI ′ is a yes-instance.

Proof (⇒) LetW ⊆ V (G) be amulticolored clique. Let F contain
(W
2

)
and all edges

of a path from vi toUi ∩W . We claim that F is a solution. Note that |F | = (k
2

)+k d−1
2 .

Since V� is of size two for all � ∈ {1, . . . , (k2
)} (Observation 12), we only need to show

that vi , v j with {i, j} = g−1(�) is connected by a path of length at most d. We know
that vi is connected to some uix by a path of length (d − 1)/2, which is adjacent to

some u j
y , which is connected to v j by a path of length (d − 1)/2. Thus, vi and v j are

of distance d.
(⇐) Let F be a solution. Note that |F | = (k

2

) + k d−1
2 . We claim that W :=

V (G ′[F]) ∩ V (G) is a multicolored clique. First, observe that |W | = k since for
every vi there is exactly one ui�i in G ′[F] (Observation 13). Suppose that W is not

a multicolored clique, that is, there are Ui and U j such that there is no edge in F
between them. Then vi and v j are of distance larger than d in G ′[F], contradicting
that F is a solution. �

4 Connecting Habitats at Short Pairwise Distance

In the next problem, we require short pairwise reachability.

Problem 6 d- Closed Green Bridges Placement (d- Closed GBP)

Input: An undirected graph G = (V , E), a set H = {V1, . . . , Vr } of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈ {1, . . . , r} it
holds that Vi ⊆ V (G[F]) and G[F]d [Vi ] is a clique?

Note that if G[F]d [Vi ] is a clique, then distG[F](v,w) ≤ d for all v,w ∈ Vi .
Further, d- Closed GBP is an unweighted variant of the 2NET problem [9].

Theorem 2 d- Closed Green Bridges Placement is,

(i) if d = 1, linear-time solvable;
(ii) if d = 2, NP-hard even on bipartite graphs of diameter three and r = 1, and

in FPT regarding k;
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(iii) if d ≥ 3, NP-hard and W[1]-hard regarding k even if r = 1.

Further, d- Closed GBP is linear-time solvable if the number of habitats and the
maximum degree are constant.

We first show the linear-time solvability for constant number of habitats and max-
imum degree. Afterwards we present the results in (i)-(iii).

4.1 Graphs of Constant MaximumDegree

2- Reach GBP is NP-hard if the number r of habitats and the maximum degree �

are constant (Proposition 5). 2- Closed GBP is linear-time solvable in this case:

Proposition 10 d- Closed GBP admits an O(r�(� − 1)3d/2)-sized problem kernel
computable in O(r(n + m)) time.

Proof Let I = (G,H , k) be an instance of d- Closed GBP. For every i ∈
{1, . . . , r}, fix a vertex ui ∈ Vi . We assume that we have Vi ⊆ Nd

G[ui ] for

all i ∈ {1, . . . , r}, otherwise I is a no-instance. Now let Wi = N �3d/2�
G [ui ] and

let G ′ := G[⋃r
i=1 Wi ]. Note that G ′ contains at most r�(� − 1)�3d/2� vertices and

can be computed by r breadth-first searches. We claim that G ′ contains every path
of length at most d between every two vertices v,w ∈ Vi , for every i ∈ {1, . . . , r}.
Recall that an edge set F ⊆ E is a solution if and only if for every i ∈ {1, . . . , r}
and for every v,w ∈ Vi , the graph G[F] contains a path of length at most d from v

to w. As by our claim G ′ contains any such path, this implies that I is a yes-
instance if and only ifI ′ := (G ′,H , k) is a yes-instance (note that Vi ⊆ V (G ′) for
every i ∈ {1, . . . , r}).

Assuming that Vi ⊆ Nd
G[ui ], G[Wi ] contains all paths of length at most d

between ui and any v ∈ Vi . So let v,w ∈ Vi be two vertices, both distinct
from ui . As v,w ∈ Nd

G[ui ] and Wi = N �3d/2�
G [ui ], the subgraph G[Wi ] contains

all vertices in N �d/2�
G [v] and N �d/2�

G [w]. Consider now a path of length at most d

between v and w. Suppose it contains a vertex x ∈ V (G) \ (N �d/2�
G [v] ∪ N �d/2�

G [w]).
Then distG(v, x) + distG(w, x) > 2�d/2� ≥ d, a contradiction to x being on a path
from v to w of length at most d. The claim follows. �

4.2 When Every Habitat Must be Complete (d = 1)

For d = 1, the problem is solvable in linear time: Check whether each habitat induces
a clique. If so, check if the union of the cliques is small enough.

Observation 15 1- Closed GBP is solvable in linear time.

Proof We employ the following algorithm: For each i ∈ {1, . . . , r}, let Gi := G[Vi ]
and return no if Gi is not a clique. Finally, return yes if |⋃r

i=1 E(Gi )| ≤ k, and no
otherwise. Clearly, if the algorithm returns yes, thenI is yes-instance. Conversely,
let I be a yes-instance and let F ′ be a solution to I . We know that for every i ∈
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{1, . . . , r}, and any two vertices v,w ∈ Vi , edge {v,w} must be in F ′. It follows
that

⋃r
i=1 E(Gi ) ⊆ F ′. Thus, | ⋃r

i=1 E(Gi )| ≤ |F ′| ≤ k and the algorithm correctly
returns yes. �

4.3 When Each Part is Just Two Steps Away (d = 2)

For d = 2, d- Closed GBP becomes NP-hard already on quite restrictive inputs. It
is however, as we show at the end of this section, still fixed-parameter tractable when
parameterized by k.

Proposition 11 2- Closed GBP is NP-complete, even if r = 1 and the input graph
is bipartite and of diameter three.

Construction 6 LetI = (G, k)with G = (V , E) be an instance of Vertex Cover,
and assumewithout loss of generality that V = {1, . . . , n}. Construct an instance of 2-
Closed GBP with graph G ′ = (V ′, E ′), habitat V1, and integer k′ := 2|E | + k + 3
as follows (see Fig. 7 for an illustration).

To construct G ′ and V1, add the vertex set VE := {ve | e ∈ E} and add VE to V1.
Add two designated vertices y′ and y, add y to V1, and make y′ adjacent with y and all
vertices in VE . Add a designated vertex x , add x to V1, and introduce a path of length
two from x to y (call the inner vertex z). Add the vertex set VG := {vi | i ∈ V }, and
make each vi adjacent with x and all edge-vertices corresponding to an edge incident
with i , i.e., add the edge set EG := ⋃

i∈V {{vi , ve} | i ∈ e}. �
Observation 16 LetI ′ = (G ′, {V1}, k′) be an instance obtained from applying Con-
struction 6 on an instance I = (G, k) of Vertex Cover. If I ′ is a yes-instance,
then for every solution F ⊆ E(G ′) it holds that {{y, y′}, {y, z}, {z, x}} ∪ {{y′, ve} |
e ∈ E(G)} ⊆ F.

Lemma 17 Let I = (G, k) be an instance of Vertex Cover. Consider the
instance I ′ = (G ′, {V1}, k′) obtained from I using Construction 6. If I ′ is a yes-
instance, then there is a solution F ⊆ E(G ′) such that |NG ′[F](ve) ∩ VG | = 1 for
all e ∈ E(G).

Fig. 7 Illustration to Construction 6 for 2- Closed GBP
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Proof Note that in every solution, clearly we have |NG ′[F](ve) ∩ VG | ≥ 1. Suppose
there is a minimal solution F such that there is at least one e = {i, j} ∈ E such
that |NG ′[F](ve) ∩ VG | = 2. Let F be a solution with a minimum number of edges
incident to vertices in VE .

Since distG ′[F](ve, x) = 2, at least one of the edges {vi , xi } or {v j , x j } are in F .
If both are present then we can remove one of the edges {ve, vi } or {ve, v j } incident
with ve to obtain a solution of smaller size. This yields a contradiction.

Otherwise, assume there is exactly one edge, say {ve, vi }, contained in F . Then
exchanging {ve, v j } with {v j , x} yields a solution with a lower number of edges inci-
dent to vertices in VE . A contradiction. �
Lemma 18 Let I = (G, k) be an instance of Vertex Cover. Consider the
instance I ′ = (G ′, {V1}, k′) obtained from I using Construction 6. Then I is a
yes-instance if and only if I ′ is a yes-instance.

Proof (⇒) Let W ⊆ V be a vertex cover of size at most k in G. We construct
a solution F ⊆ E ′ as follows. Let F ′ denote the set of all edges required due
to Construction 16. Let FV := {{vi , x} | i ∈ W }. We define the auxiliary func-
tion g : E → V ′ with g({i, j}) = vmin({i, j}∩W ). Let FE := ⋃

e={i, j}∈E {ve, g(e)}.
Let F := F ′ ∪FV ∪FE . Note that |F | = |F ′|+|FV |+|FE | ≤ |E |+3+|E |+k = k′.
Moreover, every ve ∈ V ′ is connected to x via a path (ve, vi , z), for some i ∈ (e∩W ),
of length two. Thus all vertex pairs in V1 are at distance at most two.

(⇐) LetI ′ be a yes-instance.Due toConstruction 17, there is a solution F ⊆ E ′
such that degG ′[F](ve) = 1 for all e ∈ E . Let W := {i ∈ V | {vi , x} ∈ F}. We claim
thatW is a vertex cover. Suppose not, that is, there is an edge e ∈ E such that e∩W = ∅.
That means that the unique neighbor of ve, say vi , is not adjacent with x in G ′[F].
Then, ve is not connectedwith x inG ′[F]2, and hence F is no solution, a contradiction.

�
We next show fixed-parameter tractability when parameterizing by k. All the reduc-

tion rules that worked for 2- Reach GBP also work for 2- Closed GBP. It thus
follows that 2- Closed GBP admits a problem kernel of size exponentially in k. As
with 2- Reach GBP, the problem kernel presumably cannot be much improved. This
can be shown by combining the constructions of Proposition 7 and 11.

Corollary 1 2- Closed GBP admits a problem kernel of size exponentially in k and,
unless NP ⊆ coNP / poly, none of size polynomial in k, even if r = 1.

4.4 When Reaching Each Part is a Voyage (d ≥ 3)

For d ≥ 3, the problem is W[1]-hard regarding the number k of green bridges, even
for one habitat. The reduction is similar to the one for Proposition 9.

Proposition 12 d- Closed GBP with d ≥ 3 is NP-complete and W[1]-hard when
parameterized by the number k, even if r = 1.

Proof Let I = (G) with G = (U 1, . . . ,Uk, E) be an instance of Multicolored

Clique. Apply Construction 5 to obtain instance I ′′ = (G ′, {V1, . . . , V(k2)
}, k′)
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(recall that k′ = d−1
2 k + (k

2

)
). Let I ′ = (G ′, {V ′

1}, k′) with V ′
1 := ⋃(k2)

i=1 Vi =
{v1, . . . , vk} be the finally obtained instance of d- Closed GBP. We claim that I is
a yes-instance if and only if I ′ is a yes-instance.

(⇒) Let C be a multicolored clique in G. Let zi := V (C)∩Ui . We claim that F ,
consisting of the edges of each shortest path from vi to zi and the edge set E(C), is a
solution to I ′. Note that |F | = k′. Moreover, for any two i, j ∈ {1, . . . , k}, we have
that vi and v j are of distance 2 d−1

2 + 1 = d. Hence, F is a solution.
(⇐) Let F be a solution toI . Since F must contain a path from vi to some zi ∈

Ui for every i ∈ {1, . . . , k}, there are at most
(k
2

)
edges left to connect. Let Z :=

{z1, . . . , zk} be the vertices such that vi is connected with zi in G[F][Ui ]. As

d ≥ distG ′[F](vi , v j ) = distG ′[F](vi , zi ) + distG ′[F](zi , z j ) + distG ′[F](z j , v j )

and d − 1 = distG ′[F](vi , zi ) + distG ′[F](z j , v j ), it follows that distG ′[F](zi , z j ) = 1.
Thus, G[Z ] forms a multicolored clique. �

5 Connecting Habitats at Small Diameter

Lastly, we consider requiring short pairwise reachability in 1- Reach GBP.

Problem 7 d- Diamater Green Bridges Placement (d- Diam GBP)

Input: An undirected graph G = (V , E), a set H = {V1, . . . , Vr } of habitats
where Vi ⊆ V for all i ∈ {1, . . . , r}, and an integer k ∈ N0.

Question: Is there a subset F ⊆ E with |F | ≤ k such that for every i ∈ {1, . . . , r} it
holds that Vi ⊆ V (G[F]) and G[F][Vi ] has diameter d?

In particular, G[F][Vi ] is required to be connected. Note that 1- Reach GBP

reduces to Diam GBP (where d is part of the input and then set to the number of
vertices in the input instance’s graph). We have the following.

Theorem 3 d- Diam GBP is,

(i) if d = 1, solvable in linear time;
(ii) if d = 2, NP-hard even if r = 1.

Moreover, d- Diam GBP admits a problem kernel with at most 2k vertices and at
most 22k habitats.

1- Diam GBP is equivalent to 1- Closed GBP, which is linear-time solvable by
Observation 15. Thus, Theorem 3(3) follows. Applying Reduction Rule 2 and 5 and
deleting all non-habitat vertices yields the problem kernel. At the end of this section
we show that 2- Diam GBP most likely does not admit a polynomial kernel with
respect to k. We now show that 2- Diam GBP is NP-hard even if there is only one
habitat.

Proposition 13 2- Diam GBP is NP-hard even if r = 1.
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Construction 7 LetI = (G, k) with G = (V , E) be an instance of Vertex Cover

and assume without loss of generality that V = {1, . . . , n} and E = {e1, . . . , em}.
Construct an instance I ′ := (G ′, {V1}, k′) with k′ := 3m + 2n + 12 + k as follows
(see Fig. 8 for an illustration). Add the vertex sets VE := {ve | e ∈ E} and VG = {vi |
i ∈ V }, as well as the vertex set VA := {x}∪{yi | i ∈ {1, 2, 3}}∪{zi | i ∈ {1, . . . , 4}}.
Add all vertices to V1. Next, for each e = {i, j} ∈ E , connect ve with vi , v j , y1,
and z3. For each i ∈ V , connect vi with x , y1, and y3. Lastly, add the edge set

E∗ := {{y1, y2}, {y2, y3}, {y1, z1}, {y1, z2}, {y3, z3}, {y3, z4}, {y3, x},
{z1, z4}, {z1, z2}, {z2, z3}, {z2, x}, {z3, z4}

}

to E ′. Let E1
V := {{y1, vi } | i ∈ V }, E3

V := {{y3, vi } | i ∈ V }, E1
E := {{y1, ve} | e ∈

E}, and E3
E := {{z3, ve} | e ∈ E}. �

Observation 19 Let I ′ be the instance obtained from some instance I using Con-
struction 7. If I ′ is a yes-instance, then every solution F for I ′ contains the edge
set F ′ := E∗ ∪ E1

V ∪ E3
V ∪ E1

E ∪ E3
E .

Proof LetI ′ be a yes-instance and let F be a solution. Note that inG ′−{y1}, there is
no path of length at most two from any vertex in VE ∪VG to z1. Hence, E1

V ∪E1
E ⊆ F .

In G ′ − {y3}, there is no path of length at most two from any vertex in VG ∪ {x} to z4.
Hence, E3

V ⊆ F . In G ′ − {z3}, there is no path of length at most two from any vertex
in VE to z4. Hence, E3

E ⊆ F . In G ′ − {z2}, there is no path of length at most two
from x to z1. Lastly, it is not difficult to see that every edge in E∗ must be in F . �

We are set to prove the correctness of Construction 7.

Lemma 20 Let I ′ be the instance obtained from some instance I using Construc-
tion 7. Then, I is a yes-instance if and only if I ′ is a yes-instance.

Fig. 8 Illustration for 2- Diam GBP with r = 1
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Proof (⇒) Let S ⊆ V be a vertex cover of size k. Let F ′ denote the set of all edges
required to be in a solution due to Observation 19. Let FV := {{vi , x} | i ∈ S}. We
define the auxiliary function g : E → VG with g({i, j}) = vmin({i, j}∩S). Let FE :=⋃

e∈E {{ve, g(e)}}. Let F := F ′∪FV ∪FE . Note that |F | = |F ′|+|FV |+|FE | ≤ (2m+
2n+12)+k+m = k′. Next considerG ′[F][V1]. Observe that distG ′[F][V1](v,w) ≤ 2
for every vertices v ∈ VG ∪ VE ∪ VA and w ∈ VA \ {x}, for every vertices v,w ∈ VG ,
for every vertices v,w ∈ VE , and for every vertices v ∈ VG and w = {x}. We claim
that for all e ∈ E , distG ′[F][V1](x, ve) = 2. By construction, distG ′[F][V1](x, ve) > 1.
Suppose that there is ve with e = {i, j} and distG ′[F][V1](x, ve) > 2. Then there is no
path (x, v, ve) with v ∈ {vi , v j }. Then {i, j} ∩ S = ∅, contradicting the fact that S is
a vertex cover.

(⇐) Let F be a solution toI ′. Let F ′ be the set of edges mentioned in Observa-
tion 19; so F ′ ⊆ F .Note that |F ′| = 2m+2n+12.Observe that inG ′−VG , the distance
of x to any ve ∈ VE is larger than two. Hence, for each ve, there is a path (ve, v, x)
in G ′[F][V1] with v ∈ VG . We claim that S := {i ∈ V | {vi , x} ∈ F} is a vertex cover
for G of size at most k. Suppose not, that is, there is an edge e = {i, j}with e∩ S = ∅.
This contradicts the fact that there is a path (ve, v, x) in G ′[F][V1] with v ∈ VG .
It remains to show that |S| ≤ k. As F contains an edge {ve, v} with v ∈ VG for
every e ∈ E , |S| = |F ∩ {{vi , x} | i ∈ V }| ≤ k′ − (|F ′| + m) = k, and the claim
follows. �

Additionally, we have the following kernelization lower bound for 2- Diam GBP.

Proposition 14 Unless NP ⊆ coNP / poly, 2- Diam GBP admits no problem kernel
of size polynomial in k.

Construction 8 Let I = (U ,F , k) with U = {u1, . . . , un} and F = {F1, . . . , Fm}
be an instance of Hitting Set. Construct an instance I ′ := (G ′,H , k′) with k′ =
n + (n

2

) + k as follows (see Fig. 9 for an illustration).
Let V := VF ∪ VU ∪ {x}, where VF := {vF | F ∈ F } and VU := {vi | ui ∈ U }.

Add the edge sets E ′ := {{vi , vFj } | ui ∈ Fj }, EU := {{vi , v j } | {i, j} ∈ (n
2

)},
and Ex := {{x, vi } | i ∈ {1, . . . , n}. The habitats H = HF ∪ HU are defined as
follows. For each F ∈ F , there is the habitat VF ∈ HF with VF := {x, vF } ∪ {vi |
ui ∈ F}. For each {i, j} ∈ (n

2

)
, there is the habitat V{i, j} ∈ HU with V{i, j} := {vi , v j }.

Finally, let k′ := n + (n
2

) + k. �

Fig. 9 Illustration for 2- Diam GBP. Here, Vq denotes all sets V{q,·}
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Due toHU , we know that every solution needs to contain every edge in the clique
induced by VU .

Observation 21 Let I ′ be the instance obtained from some instance I using Con-
struction 8. If I ′ is a yes-instance, then every solution F for I ′ contains the edge
set EU .

Lemma 22 Let I ′ be the instance obtained from some instance I using Construc-
tion 8. Then, I is a yes-instance if and only if I ′ is a yes-instance.

Proof (⇒) Let S ⊆ U be a hitting set of size k. We define the auxiliary func-
tion g : F → VU with g(F) = vmin{i |ui∈S∩F}. Let XF := ⋃

F∈F {{vF , g(F)}}.
Then X = EU ∪ XF ∪{{x, vi } | ui ∈ S} is a solution, as for every F ∈ F , G[X ][VF ]
contains as a subgraph a star with center g(F) and leaves x and VU \ {g(F)}, thus it
is of diameter at most two.

(⇐) Let X be a solution to I ′. Due to Observation 21, we know that EU ⊆ X .
Moreover, every vertex in VF has a neighbor in VU .We claim that S := {ui | {x, vi } ∈
X} is a solution to I . Suppose not. Then there exists a set F ∈ F with S ∩ F = ∅.
As diam(G[X ][VF ]) ≤ 2, we have that the distance between vF and x is at most two.
But then X must contain both {vF , vi } and {vi , x} for some i ∈ {1, . . . , n}. But then,
by construction of E ′, we have ui ∈ S ∩ F , a contradiction. �

6 Conclusion, Discussion, and Outlook

We modeled the problem of placing wildlife crossings with three different problem
families: d- Reach GBP, d- Closed GBP, and d- Diam GBP. We studied the prac-
tically desired cases d = 1 and d = 2, as well as the cases d ≥ 3. For all three
problems, we settled the classic as well as the parameterized complexity (regarding
the number k of wildlife crossings and the number r of habitats). All three problems
become NP-hard already for d = 2, and d- Reach GBP even for d = 1, in most of
the cases on restricted input graphs and only few habitats. However, all three variants
are fixed-parameter tractable regarding k in the case of d = 2, whereas, for d ≥ 3,
d- Reach GBP and d- Closed GBP turn out to be intractable (yet in XP) for this
parameter. Thus, the less desired cases d ≥ 3 are also algorithmically rather imprac-
tical. Moreover, d- Closed GBP and d- Diam GBP are tractable if the number r of
habitats and the maximum degree � of the graph are small, which is expected to be
likely in real-world applications.

Discussion We derived an intriguing interrelation of connection requirements, data
quality, and computational and parameterized complexity.While each problem admits
its individual complexity fingerprint, each of them depends highly on the value of d,
the level of the respective connectivity constraint. This value can reflect the quality
of the given data, since naturally we assume that habitats are connected. The worse
the data, the stronger are the relaxations according to the connectivity of habitats, and
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thus the larger is the value of d. Our results show that having very small (d = 2)
data gaps already leads to the problems becoming NP-hard, and that even larger gaps
(d ≥ 3) yield W[1]-hardness (when parameterized by k). Hence, knowledge about
habitats, connections, and data quality decide which problem models can be applied,
thus influencing the computation power required to determine an optimal placement
of wildlife crossings. For instance, for larger networks, we recommend to ensure data
quality such that one of our proposed problems for d ≤ 2 becomes applicable. This
in turn emphasizes the importance of careful habitat recognition.

In ourmodels,weneglected that different positions possibly lead todifferent costs of
buildingbridges (i.e., edge costs). This neglect is justifiedwhendifferentiating between
types of bridges (and thus their costs) is not necessary (e.g., if the habitat’s species
share preferred types of green bridges, and the underlying human-made transportation
lines are homogeneous). In other scenarios, additionally considering these costs may
be beneficial for decision-making.

Outlook andOpenProblems As for algorithmic questions to the established problems,
there are a few immediate questions that are unanswered in our work.While 1- Reach
GBP is NP-hard even if r ≥ 7 but polynomial-time solvable if r ≤ 2, its complexity
for 2 < r < 7 remains open. Note that we obtained an O(rd)-approximation for d-
Reach GBP, which possibly leaves room for improvement and does not directly
transfer to the other two problem variants. It may be attractive to find out whether the
problems admit FPT approximation algorithms as well. For d ≤ 2, all our problems
allow for problem kernels where the number of vertices only depends on k, but it is
presumed impossible to have a polynomial dependence on k. If however the underlying
street network is planar, then the input graphs to our problems canbe seen as their planar
dual. Therefore, it is likely that the input graphs are planar in real-world applications.
In a follow-up work [23] we studied 1- Reach GBP with habitats that induce cycles
and planar input graphs and analyzed the algorithms (among them the approximation
algorithm from Proposition 1) on real-world graphs with synthetic habitats.

We conclude our work with some suggestions for extending our models. Interesting
directions here include, for instance, distinguishing types of green bridges to place, tak-
ing into account possiblemovement directionswithin habitats (connectivity in directed
graphs), identifying real-world driven problem parameters leading to tractability, or
the problem of maintaining and servicing green bridges over time under a possible
seasonal change of wildlife habitats (temporal graph modeling could fit well).
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