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Abstract
We study the network untangling problem introduced by Rozenshtein et al. (Data
Min. Knowl. Disc. 35(1), 213–247, 2021), which is a variant of Vertex Cover

on temporal graphs–graphs whose edge set changes over discrete time steps. They
introduce two problem variants. The goal is to select at most k time intervals for each
vertex such that all time-edges are covered and (depending on the problem variant)
either the maximum interval length or the total sum of interval lengths is minimized.
This problem has data mining applications in finding activity timelines that explain
the interactions of entities in complex networks. Both variants of the problem are
NP-hard. In this paper, we initiate a multivariate complexity analysis involving the
following parameters: number of vertices, lifetime of the temporal graph, number of
intervals per vertex, and the interval length bound. For both problem versions, we
(almost) completely settle the parameterized complexity for all combinations of those
four parameters, thereby delineating the border of fixed-parameter tractability.
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1 Introduction

The classicalVertex Cover problem is among the most well-studied NP-hard prob-
lems on static graphs especially in the context of parameterized algorithmics. In fact,
it is often referred to as the Drosophila of parameterized complexity [11, 14, 17, 19,
32]. Real-world graphs, however, are often dynamic and change over time. In mod-
ern applications, this temporal information is readily available and allows for more
realistic models. This leads algorithmic research to focus on temporal graphs [3, 5, 8,
12, 13, 21, 22, 30, 37, 38]. In a temporal graph, edges can appear and disappear over
time, which is formalized by a sequence E1, . . . , Eτ of edge sets over a fixed set V
of vertices, where τ ≥ 1 denotes the lifetime of the temporal graph. Several classical
graph problems have been studied on temporal graphs [1, 2, 6, 25, 28, 29, 39].

In this paper, we study the network untangling problem introduced by [35, 36],
which is a temporal variant of Vertex Cover and motivated by data mining applica-
tions such as discovering event timelines and summarizing temporal networks. Here,
edges in the temporal graph model certain interactions between entities (vertices).
The goal is to explain the observed interactions by selecting few (and short) activity
intervals for each entity such that at the time of an interaction at least one of the two
entities is active. The formal definition is as follows: Let G = (V , (Ei )i∈[τ ]) be a tem-
poral graph. A k-activity timeline is a set T containing at most k time intervals for each
vertex, that is, T ⊆ {(v, a, b) ∈ V ×[τ ]×[τ ] | a ≤ b} such that |{(v, a, b) ∈ T }| ≤ k
for each v ∈ V . We say that T covers G if for each t ∈ [τ ] and each {u, v} ∈ Et ,
T contains (u, a, b) with t ∈ [a, b] or (v, a, b) with t ∈ [a, b]. That is, for each
time step t , the set {v ∈ V | (v, a, b) ∈ T , t ∈ [a, b]} must be a vertex cover for the
graph Gt = (V , Et ). The task is to find a k-activity timeline that minimizes an objec-
tive regarding the interval lengths. Rozenshtein et al. [36] introduced the following
two problems.

MinTimeline∞
Input: A temporal graph G = (V , E1, . . . , Eτ ) and k, � ∈ N0.

Question: Is there a k-activity timeline T covering G with

max
(v,a,b)∈T

(b − a) ≤ � ?

MinTimeline+
Input: A temporal graph G = (V , E1, . . . , Eτ ) and k, � ∈ N0.

Question: Is there a k-activity timeline T covering G with

∑

(v,a,b)∈T
(b − a) ≤ � ?

An example instance and solutions for each of these two problems are pictured in
Fig. 1. Note that both problems are equivalent if � = 0.

Rozenshtein et al. [36] showed that both problems are NP-hard and hard to approx-
imate in polynomial time. They focus on developing heuristics and show in a case
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Fig. 1 An example of a temporal graph: The areas between the dotted lines represent the individual layers.
The intervals highlighted in gray form a solution for MinTimeline+ (with � = 4, k = 2). The intervals
indicated by dashed boxes form a solution for MinTimeline∞ (with � = 1, k = 2)

study that activity timelines can successfully be recovered for real-world data of Twit-
ter users. In this work, we provide a deeper complexity-theoretic understanding of both
problems through the lens of parameterized complexity theory. To this end, we study
the influence of several natural problem parameters on the algorithmic complexity,
namely, the number n of vertices, the lifetime τ , the maximum number k of intervals
per vertex, and the interval length bound �. In our multivariate analysis, we identify for
both problems which parameter combinations yield fixed-parameter tractability and
which combinations are intractable. In doing so, we reveal interesting connections to
seemingly unrelated problems like graph coloring and bin packing. Our results yield
an (almost) tight characterization and pave the way for a comprehensive picture of the
computational complexity landscape of network untangling.

Related Work
As the literature on edge covering is extremely rich, we only consider studies closely
related to our setting. For a broader overview on the topic of temporal network mining,
we refer to a recent tutorial [34].Ourmain reference is thework by [36]who introduced
both problems and showed thatMinTimeline∞ is polynomial-time solvable for k = 1,
whereas MinTimeline+ is NP-hard for k = 1. Moreover, they showed that both
problems are NP-hard for � = 0 with unbounded k and thus not approximable in
polynomial time. They develop efficient heuristics to solve the problems and provide
experiments to evaluate the performance of their approaches.

Dondi [10] analyzed the computational complexity of MinTimeline+ with the
restriction that k = 1, showing that the problem is NP-hard in both of the following
cases: (i) if each layer contains only one edge and (ii) if the maximum degree in each
layer is at most two and τ = 3. He further gave a fixed-parameter algorithm for this
problem parameterized by the number of non-isolated vertices in any layer plus the
maximum length of time between the first edge and the last edge incident to any vertex.

Akrida et al. [2] studied a different variant of Vertex Cover on temporal graphs.
Their model expects an edge to be covered at least once over every time window of
some given size �. That is, they define a temporal vertex cover as a set S ⊆ V × [τ ]
such that, for every time window of size � and for each edge e = {v,w} appearing

123

105Theory of Computing Systems (2024) 68:103–121



Table 1 Overview of results

Parameter MinTimeline∞ MinTimeline+

n + k FPT [Thm. 8] FPT[Thm. 7]

n + � W[1]-h. [Thm. 12], XP [Thm. 6] FPT[Thm. 9]

n W[1]-h.[Thm. 12] (� = 1), XP[Thm. 6] XP[Thm. 7]

τ = 3, k = 2, � = 0 NP-h.[Cor. 3] NP-h.[Cor. 3]

Parameters: n number of vertices, τ lifetime, k number of intervals per vertex, � interval length bound

in a time step contained in the time window, it holds that (v, t) ∈ S or (w, t) ∈ S for
some t in the time window with time-edge (e, t). Among other results, they provide
NP-hardness results in very restricted settings.

Fluschnik et al. [16] and Heeger et al. [20] studied the parameterized complexity
of a “multistage” variant of Vertex Cover. Here, one is given a temporal graph
and seeks a sequence of vertex covers of size at most k (one for each layer of the
temporal graph) such that consecutive vertex covers are in some sense similar, e.g.,
the symmetric difference of two consecutive vertex covers is upper-bounded by some
value [16] or the sum of symmetric differences of all consecutive vertex covers is
upper-bounded by some value [20].

Our Contributions
We almost completely settle the parameterized complexity of the two variants
MinTimeline∞ and MinTimeline+ for all combinations of the parameters n, τ , k,
and �. Table 1 gives an overview of the central results. It turns out that both problems
are already NP-hard if the temporal graph contains three identical layers and k = 2
and � = 0 (Corollary 3). This strengthens the hardness result by [36] for � = 0
and implies that fixed-parameter tractability can only be achieved in combination
with the parameter n. Interestingly, the two problems behave somewhat differently
here. Our two main results state that MinTimeline∞ parameterized by n is W[1]-
hard even for � = 1 (Theorem 12), while MinTimeline+ parameterized by n + �

is in FPT (Theorem 9). We further show that both problems are in XP when param-
eterized by n (Theorems 6 and 7) and in FPT if � = 0 (Lemma 10). Theorem 7
shows that MinTimeline+ is also in FPT for n + k and Theorem 8 shows the same
for MinTimeline∞. For the restriction with k = 1, we strengthen the NP-hardness
of MinTimeline+ showing that it already holds for two layers (Theorem 5). Note
that n+τ trivially yields fixed-parameter tractability since the instance size is bounded
in this number. Thus, forMinTimeline∞, we obtain a full complexity dichotomy. For
MinTimeline+, the parameterized complexity regarding n remains open. Our hard-
ness results also imply running time lower bounds based on the Exponential Time
Hypothesis1 (ETH) (Corollaries 4 and 15).

1 The Exponential Time Hypothesis [23] states that 3- SAT cannot be solved in O(2cn) time for some
constant c > 0, where n is the number of variables of the input formula.
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2 Preliminaries

We denote the positive integers by N and let N0 := N ∪ {0}. For n ∈ N, let [n] :=
{1, . . . , n}. ]
Graphs
If not specified otherwise, a graph is static and undirected. We refer to [9] for details
on notation in graph theory. If G = (V , E) is a graph and S ⊆ V , let inc(S) := {e ∈
E | e∩ S 	= ∅} denote the set of edges incident to at least one vertex in S. A temporal
graph G := (V , (Ei )

τ
i=1) consists of a finite vertex set V and a sequence of edge sets

E1, . . . , Eτ ⊆ (V
2

)
. The pair (e, i) is a time-edge of G if e ∈ Ei . The graph (V , Ei ) is

called the i-th layer of G. The size of G is |G| := |V | + ∑τ
t=1 max{1, |Et |}.

Parameterized Complexity
Let � denote a finite alphabet. A parameterized problem L ⊆ {(x, k) ∈ �∗ × N0} is
a subset of all instances (x, k) in �∗ ×N0, where k is the parameter. A parameterized
problem L is (i) fixed-parameter tractable (or contained in the class FPT) if there is an
algorithm that decides every instance (x, k) for L in f (k) · |x |O(1) time, (ii) contained
in the class XP if there is an algorithm that decides every instance (x, k) for L in |x | f (k)
time, and (iii) para-NP-hard if L is NP-hard for some constant value of the parameter,
where f is any computable function that only depends on the parameter. Note that
FPT ⊆ XP. If a parameterized problem is W[1]-hard, then it is presumably not in
FPT, and if it is para-NP-hard, then it is not in XP (unless P = NP). Further details
can be found in the standard literature on parameterized algorithms and complexity [7,
11, 15, 32].

3 First Results

This section sets the basis of our parameterized complexity analysis containing results
for most of the parameter combinations (except for n + �).

We start with the general observation (which we will use later) that, for � = 0, the
temporal order of the layers is irrelevant since every element in a k-activity timeline
covers only edges of one layer.

Observation 1 Letπ : [τ ] → [τ ] be a permutation. Then, the instance ((V , (Ei )i∈[τ ]),
k, 0) is a yes-instance of MinTimeline∞ (MinTimeline+) if and only if ((V , (Eπ(i)

)i∈[τ ]), k, 0) is a yes-instance.

Moreover, if all layers of the temporal graph are equal, then, for � = 0, both problems
are equivalent to an extension of k-coloring. For a graphG = (V , E) and a, b ∈ Nwith
a ≥ b, an (a:b)-coloring of G is a function c : V → ([a]

b

)
such that c(u) ∩ c(v) = ∅

for all {u, v} ∈ E . Note that a (k:1)-coloring of a graph is simply a k-coloring. Given
a graph G, the problem (a:b)- Coloring asks whether there is an (a:b)-coloring
for G.We get the following.

Theorem 2 If E1 = E2 = · · · = Eτ , � = 0, and τ ≥ k, then MinTimeline∞
(MinTimeline+) is equivalent to (τ :τ − k)- Coloring.
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Proof Suppose that T is a k-activity timeline that covers G = (V , E1, . . . , Eτ ) with
E1 = · · · = Eτ =: E and � = 0. We can assume that T contains exactly k intervals
for each v ∈ V . Let G = (V , E). Then, c : V → ( [τ ]

τ−k

)
with c(v) := {t ∈ [τ ] |

(v, t, t) /∈ T } is a (τ :τ − k)-coloring of G.
Conversely, if c : V → ( [τ ]

τ−k

)
is a (τ :τ − k)-coloring of G = (V , E), then T :=

{(v, t, t) ∈ V × [τ ] × [τ ] | v ∈ V , t /∈ c(v)} is a k-activity timeline that covers G. 
�
The NP-hardness of 3- Coloring, or (3:1)- Coloring, implies the following.

Corollary 3 MinTimeline∞ and MinTimeline+ are NP-hard, even if k = 2, � = 0,
τ = 3, and all layers are identical.

Bonamy et al. [4]mention a result by [31] showing that (a:b)- Coloring can be solved
in (b+1)n ·nO(1) time. They show that the ETH implies that there is no 2o(log b)n-time
algorithm for (a:b)- Coloring ([4], Theorem 1.1). Thus, we have the following.

Corollary 4 MinTimeline∞ (MinTimeline+) with E1 = E2 = · · · = Eτ and � = 0
cannot be solved in f (τ − k) · 2o(log(τ−k))n time for any function f unless the ETH
fails.

Note that, if τ = 2, then MinTimeline∞ and MinTimeline+ are both trivial unless
k = 1. Rozenshtein et al. [36] already showed thatMinTimeline∞ is polynomial-time
solvable for k = 1. By contrast, we show that MinTimeline+ is NP-hard in the case
of k = 1 and τ = 2 (strengthening the NP-hardness for k = 1 with unbounded τ by
[36]). Moreover,MinTimeline+ is FPT when parameterized by �with this restriction.
This gives us the following.

Theorem 5 MinTimeline+ with two layers is NP-hard and FPT for parameter �.

Proof We show NP-hardness with a reduction from Odd Cycle Transversal. In
this problem, the input consists of a graph G = (V , E) and an integer s and the task
is to decide whether there is a vertex set X ⊆ V with |X | ≤ s such that G − X is
bipartite. This problem is NP-hard [27].

Given an instance (G = (V , E), s), the reduction outputs the instance (G :=
(V , E1 := E, E2 := E), k := 1, � := s). If X ⊆ V with |X | ≤ s is an odd cycle
transversal in G such that V1 and V2 are the two color classes in the bipartite graph
G − X , then T := {(v, 1, 2) | v ∈ X} ∪ {(v, i, i) | i ∈ {1, 2}, v ∈ Vi } is a 1-activity
timeline that covers G with

∑
(v,a,b)∈T (b − a) ≤ s. Conversely, if T is a 1-activity

timeline that covers G with
∑

(v,a,b)∈T (b−a) ≤ s, then X := {v ∈ V | (v, 1, 2) ∈ T }
is an odd cycle transversal of size at most s in G.

For fixed-parameter tractability, we show that MinTimeline+ with τ = 2 can be
reduced toAlmost 2- SAT. In this problem, the input consists of a Boolean formulaϕ

in 2-CNF (with duplicate clauses allowed) and an integer s and the task is to decide
whether ϕ can be made satisfiable by deleting at most s clauses. The problem is known
to be in FPT when parameterized by s [33].

Let (G = (V , E1, E2), k, �) be an instance for MinTimeline+. If k 	= 1, the
instance is trivial. Otherwise, we introduce two Boolean variables xv

1 and xv
2 for

each v ∈ V . Intuitively, xv
i is true if v is used to cover edges in Ei . The reduc-

tion outputs the instance (ϕ, s := �), where ϕ is constructed as follows: For every
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edge {u, v} ∈ Ei , i ∈ {1, 2}, ϕ contains s + 1 copies of the clause (xui ∨ xv
i ) express-

ing that the edge must be covered. For every vertex v ∈ V , the formula contains the
clause (¬xv

1 ∨¬xv
2 ), stating that v can only be used once unless this clause is deleted.

Now, suppose that X is a set of at most � clauses of ϕ and that α is a satisfying
assignment for all other clauses. Then, T := {(v, 1, 2) | (¬xv

1 ∨ ¬xv
2 ) ∈ X} ∪

{(v, i, i) | α(xv
i ) = true, (¬xv

1 ∨ ¬xv
2 ) /∈ X} is a 1-activity timeline that covers G

with
∑

(v,a,b)∈T (b − a) ≤ �. Conversely, if T is a 1-activity timeline that covers G
with

∑
(v,a,b)∈T (b − a) ≤ �, then removing the at most � clauses in {(¬xv

1 ∨ ¬xv
2 ) |

(v, 1, 2) ∈ T } from ϕ makes the formula satisfiable by the following assignment:
α(xv

i ) = true if and only if (v, i, i) ∈ T or (v, 1, 2) ∈ T . 
�

SinceMinTimeline∞ andMinTimeline+ areNP-hard, even if τ+k+� is constant,
the interesting parameterizations remaining involve the number n of vertices. Clearly,
combining n and τ trivially yields fixed-parameter tractability for both problems, as
the overall instance size is bounded in these two parameters. If we use only the number
n of vertices as a parameter, then we can use dynamic programming to show that both
problems are in XP.

Theorem 6 MinTimeline∞ is solvable in (k + 1)n(� + 2)n2nτnO(1) time.

Proof We solve an instance (G = (V = {v1, . . . , vn}, (Ei )i∈[τ ]), k, �) of MinTime-

line∞ via dynamic programming.Wedefine aBoolean tableT of size τ(k+1)n(�+2)n

as follows: For each i ∈ [τ ], k1, . . . , kn ∈ {0, . . . , k}, �1, . . . , �n ∈ {−1, 0, . . . , �},
T [i, k1, . . . , kn, �1, . . . , �n] = true if and only if there exists a T ⊆ V × [i] × [i]
with max(v,a,b)∈T (b − a) ≤ � that covers (V , E1, . . . , Ei ) and, for each j ∈ [n],
satisfies

• |{(v j , a, b) ∈ T }| ≤ k j ,
• |{(v j , a, i) ∈ T }| = 0 if � j = −1, and
• (v j , i − � j , i) ∈ T if � j ≥ 0.

Note that we have a yes-instance if and only if T [τ, k, . . . , k, �1, . . . , �n] = true for
some �1, . . . , �n .

For initialization, we set T [1, k1, . . . , kn, �1, . . . , �n] := true if and only if

• � j ≤ 0 for all j ∈ [n],
• � j = −1 for all j ∈ [n] with k j = 0,
• k j > 0 for all � j = 0, and
• {v j | � j = 0} is a vertex cover for (V , E1).

This is clear from the definition of T . The table T can then be filled recursively as
follows:

T [i, k1, . . . , kn, �1, . . . , �n] := true if and only if

(i) � j ≤ i − 1 for all j ∈ [n],
(ii) � j = −1 for all j ∈ [n] with k j = 0,
(iii) k j > 0 for all � j ≥ 0,
(iv) {v j | � j ≥ 0} is a vertex cover for (V , Ei ), and
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(v) T [i −1, k′
1, . . . , k

′
n, �

′
1, . . . , �

′
n] = true for some k′

1, . . . , k
′
n, �

′
1, . . . , �

′
n , where

◦ k′
j = k j and �′

j = � j − 1 if � j > 0,
◦ k′

j = k j − 1 and �′
j ∈ {−1,min(�, i − 2)} if � j = 0, and

◦ k′
j = k j and �′

j ∈ {−1,min(�, i − 2)} if � j = −1.

Conditions (i)–(iv) ensure that the values k j and � j are consistent and yield a local
vertex cover for layer i . Condition (v) checks whether the local solution extends to a
valid solution for all previous layers.

Filling an entry of the table can be done with at most 2n table look-ups. Thus, the
overall running time is τ(k + 1)n(� + 2)n2nnO(1). 
�

For MinTimeline+, one can achieve a better running time with a similar dynamic
programming approach–this even yields fixed-parameter tractability for n+ k and XP
for n.

Theorem 7 MinTimeline+ is solvable in (k + 1)n2O(n)τ (� + 1) time.

Proof Given an instance (G = (V = {v1, . . . , vn}, (Ei )i∈[τ ]), k, �), we define
a Boolean table T of size τ(� + 1)(k + 1)n2n as follows: For each i ∈ [τ ],
k1, . . . , kn ∈ {0, . . . , k}, S ⊆ V , and l ∈ {0, . . . , �}, T [i, k1, . . . , kn, S, l] = true
if and only if there exists a T ⊆ V × [i] × [i] with ∑

(v,a,b)∈T (b − a) ≤ l that
covers (V , E1, . . . , Ei ) and, for each j ∈ [n], satisfies
• |{(v j , a, b) ∈ T }| ≤ k j ,
• |{(v j , a, i) ∈ T }| = 0 if v j /∈ S, and
• |{(v j , a, i) ∈ T }| > 0 if v j ∈ S.

That is, we have a yes-instance if and only if T [τ, k, . . . , k, S, �] = true for
some S ⊆ V . By definition, we set T [1, k1, . . . , kn, S, l] = true if and only if

• v j /∈ S for all j ∈ [n] with k j = 0 and
• S is a vertex cover for (V , E1).

The remaining table entries can then be computed recursively:
T [i, k1, . . . , kn, S, l] = true if and only if

(i) v j /∈ S for all j ∈ [n] with k j = 0,
(ii) S is a vertex cover for (V , Ei ), and
(iii) T [i − 1, k′

1, . . . , k
′
n, S

′, l ′] = true for some S′ ⊆ V , where

(a) k′
j = k j if v j /∈ S,

(b) k′
j = k j − 1 if v j ∈ S \ S′,

(c) k′
j ∈ {k j − 1, k j } if v j ∈ S ∩ S′, and

(d) l ′ = l − |{ j ∈ [n] | v j ∈ S ∩ S′, k′
j = k j }|.

Conditions (i)–(iii) ensure that the values k j are consistent with S and yield a local
vertex cover for layer i . Condition (iv) checks whether the local solution extends to a
valid solution for all previous layers. Note that (c) captures the case that a solution T
contains some (v j , a, i − 1) and (v j , i, i) (in which case k′

j = k j − 1).
Thus, a table entry can be computed with at most 4n table look-ups leading to an

overall running time of τ(� + 1)(k + 1)n2O(n). 
�

123

110 Theory of Computing Systems (2024) 68:103–121



Note that Theorem 6 also implies that MinTimeline∞ parameterized by n + k + � is
in FPT. To show thatMinTimeline∞ is also in FPT when parameterized by n+k, we
observe that it is sufficient to consider only two possibilities to cover a time-edge. This
leads to a search tree algorithm similar to the one for the classical Vertex Cover

problem.

Theorem 8 MinTimeline∞ is solvable in O(2nkn2τ) time.

Proof Let (G = (V , (Ei )i∈[τ ]), k, �) be a MinTimeline∞ instance. We solve the
instance with a search tree algorithm. To this end, we store counters kv , v ∈ V , for the
number of intervals chosen for each vertex. We initially set all counters to zero and
start with an empty solution T = ∅.

Let i = min{t ∈ [τ ] | Et 	= ∅} and let {u, v} ∈ Ei be an arbitrary edge (if
all layers are empty, then we return “yes”). If ku = k and kv = k, then we return
“no” since we cannot cover this edge. Otherwise, we simply branch into the (at most
two) options of either taking (u, i, i ′) (if ku < k) or (v, i, i ′) (if kv < k) into T ,
where i ′ = min(i + �, τ ). In each branch, we increase the corresponding counter (ku
or kv) by one, delete all edges incident to the corresponding vertex (u or v) from the
layers Ei , . . . , Ei ′ , and recursively proceed on the remaining instance. Clearly, the
recursion terminates after at most nk calls. Thus, the running time is in O(2nkn2τ).


�
We continue with disentangling the parameterized complexity of MinTimeline+

and MinTimeline∞ regarding n and � in Sections 4 and 5.

4 ParameterizingMINTIMELINE+ by n + �

The main goal of this section is to show the following.

Theorem 9 MinTimeline+ parameterized by n + � is in FPT.

The formal proof is deferred to the end of this section. The general idea behind the
algorithm is to split the k-activity timelineT into twopartsT0�T>0 = T . Here,T0 con-
tains all elements (v, a, b) ∈ T with a = b andT>0 contains all elements (v, a, b) ∈ T
with a < b. Note that

∑
(v,a,b)∈T0(b − a) = 0 and that

∑
(v,a,b)∈T>0

(b − a) ≤ �. We
observe that T>0 induces an interval graph and that the number of possible induced
interval graphs is upper-bounded by a function only depending on n+�. The algorithm
iterates over all of these interval graphs and identifies the part of our temporal graph
which can be covered by a corresponding T>0. It remains to find a T0 that covers the
rest of our temporal graph. To this end, we will show that MinTimeline+ parameter-
ized by n is in FPT if � = 0. In fact, as both problems are equivalent if � = 0, we show
thatMinTimeline∞ andMinTimeline+ are both in FPT when parameterized by n in
this case. In the proof of Theorem 9, we will need a slightly more general version of
these problems, in which there is not a single value k, but a value kv for each v ∈ V .
We call this generalization Nonuniform MinTimeline∞ (MinTimeline+).

Lemma 10 Nonuniform MinTimeline∞ (MinTimeline+ ) parameterized by n is
in FPT if � = 0.
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Proof Given an instance I = (G = (V , (Ei )i∈[τ ]), (kv)v∈V , 0), we will create an
integer linear program (ILP) with a number of variables bounded by a function of n.
This ILP is feasible if and only if I is a yes-instance. Using Lenstra’s algorithm [26],
this implies that NonuniformMinTimeline∞ (MinTimeline+) parameterized by n
is in FPT, if � = 0.

We use a variable XS
E for every E ⊆ (V

2

)
and S ⊆ V where S is a vertex cover

for (V , E). There are at most 2(
n
2)+n variables of this kind. Intuitively, the value of the

variable XS
E gives us the number of times the vertex cover S is used to cover a layer

with edge set E .
For E ⊆ (V

2

)
, let a(E) := |{t ∈ [τ ] | Et = E}| denote the number of times the edge

set E appears as a layer in G. Let T s(E) := {S ⊆ V | S is a vertex cover of (V , E)}.
Then, the ILP constraints are as follows:

∑

S∈C(E)

XS
E = a(E), for all E ⊆

(
V

2

)
, (1)

∑

E⊆(V2)

∑

S∈C(E)
s.t. v∈S

X S
E ≤ kv, for all v ∈ V , (2)

XS
E ∈ N, for all E ⊆

(
V

2

)
, S ∈ C(E).

As we mentioned before, we are only interested in the feasibility of this ILP, so
there is no objective function to optimize.

This ILP is feasible if andonly ifI is a yes-instance: Suppose that (XS
E )E⊆(V2),S∈C(E)

is a solution. We define a solution T of I as follows: For any E ⊆ (V
2

)
, let C(E) =

{SE1 , . . . , SErE }. We use SE1 to cover the first XS1
E appearances of (V , E) in the layers

of G, that is, we add (v, t, t) to T for every v ∈ SE1 and appearance (V , Et ). Then

we continue with SE2 to cover the next XS2
E appearances, and so on. Condition (1)

guarantees that T covers G and Condition (2) ensures that at most kv intervals are
chosen for each vertex v ∈ V .

Conversely, suppose that I admits a solution T . For t ∈ [τ ], let Xt := {v ∈
V | (v, t, t) ∈ T }. Since � = 0, Xt must be a vertex cover for (V , Et ). Then, set
XS
E := |{t ∈ [τ ] | Et = E and Xt = S}|. It is easy to check that this yields a solution

of the ILP. 
�
As a side result, Theorem 2 and Lemma 10 together imply the following.

Corollary 11 (a:b)- Coloring parameterized by the number of vertices is in FPT.

We are now set to show Theorem 9: MinTimeline+ parameterized by n + � is in
FPT. The algorithm in the following proof is illustrated in Fig. 2.

Proof of Theorem 9 For an instance (G = (V , (Ei )i∈[τ ]), k, �), we say that an �′-
pattern is a sequence (F0, . . . , F�′) of edge sets where Fi ⊆ (V

2

)
for all i ∈ [�′].

A solution pattern is a pair (P, I) where P is an �′-pattern with 1 ≤ �′ ≤ � and
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Fig. 2 Illustration of the algorithm for � = 7 and k = 2 in the proof of Theorem 9: There are two solution
patterns with the �′-patterns highlighted in light gray and the intervals are highlighted in dark gray. The
solution is completed with intervals of length zero, which are represented by diamonds

I ⊆ V × {0, . . . , �′} × {0, . . . , �′} with I 	= ∅ and a < b for all (v, a, b) ∈ I. Let P
denote the set of all solution patterns. Note that there are at most 2(

n
2)(�+1) · � different

�′-patterns with 1 ≤ �′ ≤ �. This yields |P| ≤ 2(
n
2)(�+1)+n(�+1)2 · � ∈ 2O(n2�2). The

weight of a solution pattern (P, I) is defined as w((P, I)) := ∑
(v,a,b)∈I(b − a).

Our algorithm first checks all possibilities of how often a solution “matches” each
solution pattern (P, I), that is, it uses intervals as specified byI to cover a subsequence
of layers of G that is equal to P (a formal explanation follows below). Since I contains
an interval with positive length, we can choose at most � such solution patterns. Hence,
we iterate over all functions f : P → {0, . . . , �} with

∑
x∈P f (x)w(x) ≤ � and

which have the property that
∑

(P,I)∈P f ((P, I))|{(v, a, b) | (v, a, b) ∈ I}| ≤ k for

all v ∈ V . There are at most (� + 1)|P | such functions. Next, we try out every order
in which the solution patterns are matched by a solution. The result is a sequence
(P1, I1), . . . , (Pr , Ir ) of r ≤ � solution patterns. The arguments above imply that we

check at most (� + 1)2
O(n2�2) · �! such sequences.

Next, we check whether (P1, I1), . . . , (Pr , Ir ) can be matched by a solution and,
if it can, compute the temporal graph that remains to be covered once we implement
the solution patterns. The sequence above can be matched by a solution if there are
i1 < j1 < i2 < j2 < · · · < ir < jr ∈ [τ ] such that Ps = (Eis , . . . , E js ) for
all s ∈ [r ]. Algorithmically, we simply determine is and js by finding the earliest
occurrence of Ps in E1, . . . , Eτ with is ≥ js−1 + 1.

Next, we compute the remaining temporal graph obtained by implementing the
solution patterns (P1, I1), . . . , (Pr , Ir ) on i1, . . . , ir , j1, . . . , jr ∈ [τ ]. To this end,
for each s ∈ [r ] and each t ∈ [is, js], let E ′

t := Et \ inc{v ∈ V | (v, a, b) ∈
Is, is +a ≤ t ≤ is +b}. We call G′ := (V , E ′

1, . . . , E
′
τ ) the residual temporal graph.

For each v ∈ V , let kv := k − ∑r
s=1|{(v, a, b) | (v, a, b) ∈ Is}|.

We now build the instance (G′, (kv)v∈V , 0) of Nonuniform MinTimeline+.
By Lemma 10, solving this instance is FPT when parameterized by n. Our algo-
rithm returns true if (G′, (kv)v∈V , 0) is a yes-instance for at least one sequence
(P1, I1), . . . , (Pr , Ir ).

It remains to show that the algorithmwe described is correct. If the algorithm returns
true, then this result is clearly correct. Assume that, for (P1, I1), . . . , (Pr , Ir ), the
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instance (G′, (kv)v∈V , 0) has a solution T0. Let T>0 := ⋃r
s=1{(v, is + a, is + b) |

(v, a, b) ∈ Is}. Then, by construction, it is easy to verify that T := T0 ∪ T>0 is a
solution for (G, k, �).

Conversely, suppose that T is a solution for (G, k, �). Let T>0 := {(v, a, b) ∈
T | a < b}. Consider the interval multiset I := {[a, b] ⊆ [τ ] | ∃v ∈
V : (v, a, b) ∈ T>0} and the corresponding interval graph GI := (I, EI), where
EI := {{[a, b], [a′, b′]} ∈ (I

2

) | [a, b] ∩ [a′, b′] 	= ∅}. Since ∑
[a,b]∈I(b − a) ≤ �, it

follows that GI contains at most � connected components and each of these compo-
nents covers at most � time steps. We will describe a solution pattern corresponding
to each connected component of GI . For a connected component C of GI , let i :=
min[a,b]∈C a and j := max[a,b]∈C b. Note that j − i +1 ≤ �. Consider the ( j − i +1)-
pattern P = (Ei , . . . , E j ). Let J := {(v, a− i, b− i) | (v, a, b) ∈ T>0, [a, b] ∈ C}.
Then, the solution pattern corresponding toC is (P,J ). By listing the solution pattern
for each connected component of GI in the order in which the components appear in
the interval graph, we get the solution patterns (P1, I1), . . . , (Pr , Ir ) where r is the
number of components of GI .

We claim that our algorithm returns true for this particular sequence of solution
patterns. Note that our algorithm may choose different indices i1, . . . , ir , j1, . . . , jr
for implementing (P1, I1), . . . , (Pr , Ir ). However, the resulting residual temporal
graph G′ is the same as the residual temporal graph derived from the connected com-
ponents of GI up to a permutation of the layers. Hence, by Observation 1, G′ is also
a yes-instance for Nonuniform MinTimeline+ with � = 0. 
�

5 ParameterizingMINTIMELINE∞ by n + �

In this section, we prove that fixed-parameter tractability of MinTimeline∞ param-
eterized by n + � is (in contrast toMinTimeline+) unlikely.

Theorem 12 MinTimeline∞ parameterized by n is W[1]-hard for � = 1.

The key difference to the case � = 0 (which is in FPT (Lemma 10)) is that, for
� = 1, intervals can overlap and hence, the temporal ordering of the layers is relevant.
We prove Theorem 12 in three steps by first showing that two generalizations of
MinTimeline∞ with � = 1 are W[1]-hard when parameterized by n. The key step is
to show W[1]-hardness for the following “multicolored” version of MinTimeline∞.

Multicolored MinTimeline∞
Input: A temporal graph G = (V , E1, . . . , Eτ ) where V = V1 � · · · � Vr ,

� ∈ N0, and k1, . . . , kr ∈ N.
Question: Is there an activity timeline T covering G such that

max(v,a,b)∈T (b − a) ≤ � and |{(v, a, b) ∈ T | v ∈ Vi }| ≤ ki for all
i ∈ [r ]?

The proof is by reduction from Unary Bin Packing, where we are given m
items with sizes s1, . . . , sm ∈ N, a number β ∈ N of bins, and a bin size B ∈ N

with all integers encoded in unary. We are asked to decide if there is an assignment
f : [m] → [β] of items to bins such that

∑
i∈ f −1(b) si ≤ B for all b ∈ [β]. This
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Fig. 3 Output instance of the reduction for a Unary Bin Packing instance consisting of four items of
sizes 2, 3, 1, and 3 with β = 3 and B = 3. The activity timeline indicated in the figure corresponds to an
assignment that adds items 1 and 3 to the first bin, item 2 to the second bin, and item 4 to the third bin

problem is W[1]-hard when parameterized by β [24]. The general idea behind the
reduction is that bins can be represented by vertices and the bin size by the color
budgets ki .

Lemma 13 Multicolored MinTimeline∞ parameterized by n is W[1]-hard
for � = 1.

Proof We reduce from Unary Bin Packing and assume that in the input instance
(s1, . . . , sm, β, B), we have S := ∑m

i=1 si = βB. If S > βB, then this is clearly a
no-instance. If S < βB, then we can add βB − S items of size 1.

We construct an instance (G = (V = V1 � · · · � Vr , (Et )t∈[τ ]), � = 1, (ki )i∈[r ])
forMulticoloredMinTimeline∞ (see Fig. 3.). Let V := {u1, . . . , uβ, v1, . . . , vβ},
r := β + 1, Vi := {ui } for all i ∈ [β], and Vβ+1 := {v1, . . . , vβ}. We set ki := S − B
for i ∈ [β] and kβ+1 := S −m. The number of layers is τ := 2S. The first 2s1 layers
represent item 1, followed by 2s2 layers representing item 2, and so on. Specifically,
if t, . . . , t + 2si − 1 are the layers representing item i , then

Et := Et+2si−1 := {{u j , u j ′ } | j, j ′ ∈ [β], j 	= j ′} and
Et+a := {{u j , u j ′ } | j, j ′ ∈ [β], j 	= j ′} ∪ {{u j , v j } | j ∈ [β]}

for a ∈ [2si −2]. Clearly, this instance can be computed in polynomial time and |V | =
2β. It remains to show that the instance for Unary Bin Packing is a yes-instance if
and only if this output instance is a yes-instance forMulticoloredMinTimeline∞.

Let f be an assignment of items to bins such that
∑

i∈ f −1(b) si = B for all b ∈ [β].
We will give an activity timeline T that covers G. For any item i , let t, . . . , t +2si −1
be the 2si layers representing this item and let bi := f (i) be its bin. Then, we add the
following intervals to T :

{(u j , t + 2a, t + 2a + 1) | j ∈ [β], j 	= bi , a ∈ {0, . . . , si − 1}}∪
{(vbi , t + 2a + 1, t + 2a + 2) | a ∈ {0, . . . , si − 2}}.
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Then, any edge {u j , u j ′ } is covered because either j 	= bi or j ′ 	= bi . Also, the
edge {u j , v j } is covered by u j for j 	= bi and by vbi for j = bi . Then, for j ∈ [β],
j 	= bi , there are si intervals that contain u j and no interval contains ubi . Hence, for
every j ∈ [β], the vertex u j is contained in

∑

i∈[m]
bi 	= j

si = S −
∑

i∈[m]
bi= j

si = S − B = k j

intervals. The vertex v j is contained in

∑

i∈[m]
bi= j

(si − 1) = B − | f −1( j)|

intervals. Thus, the total number of intervals containing a vertex in Vβ+1 is

∑

j∈[β]
B − | f −1( j)| = βB − m = S − m = kβ+1.

Nowassume thatT is an activity timeline that coversG. Since {u1, . . . , uβ} induce a
clique in every layer that represents an item,T must contain all but one of these vertices
in every such layer. There are a total of 2S such layers. Since each interval can cover a
vertex in atmost �+1 = 2 layers, this requires S(β−1) intervals. Since only k j = S−B
intervals containing a vertex u j may be chosen, the total number of intervals containing
any of the vertices u1, . . . , uβ is at most β(S − B) = βS − S = S(β − 1) intervals.
Hence, in each layer that represents an item, exactly β − 1 of the vertices u1, . . . , uβ

are in T . Therefore, T contains only intervals of the form (ub, t +a, t +a+1) where
t is the first layer corresponding to a particular item and a is even.

Now consider the vertices v1, . . . , vβ . Since one vertex u j is not contained in T for
every layer representing an item, the vertex v j must be in T , unless it is the first or the
final layer representing that item. There are

∑
i∈[m](2si − 2) = 2(S−m) such layers.

Since each interval can cover at most two layers, this requires S−m = kβ+1 intervals.
Hence, none of the intervals that use any v j can overlap. Therefore,T contains intervals
of the form (v j , t +a, t +a+1)where t is the first layer corresponding to a particular
item and a is odd.

Now, consider an item i ∈ [m] and the representing layers t, . . . , t+2si −1. If si =
1, then there clearly exists one j ∈ [β] such that (u j , t, t + 1) is not contained in T .
If si > 1 and T does not contain (u j , t+2a, t+2a+1) and (u j ′, t+2a+2, t+2a+3)
with j 	= j ′ and 0 ≤ a ≤ si − 2, then T must contain (v j , t + 2a + 1, t + 2a + 2)
and (v j ′, t + 2a + 1, t + 2a + 2), contradicting our previous observation. Hence, for
every item i ∈ [m], there exists exactly one j ∈ [β] such that (u j , t + 2a, t + 2a + 1)
is not in T for all 0 ≤ a ≤ si − 1. We will call this bin bi . This yields the assignment
f (i) := bi for all i ∈ [m].
Suppose that

∑
i∈ f −1( j) si > B for any j ∈ [β]. Since ∑

j∈[β]
∑

i∈ f −1( j) si =∑
i∈[m] si = βB, this implies that

∑
i∈ f −1( j ′) si < B for some j ′ ∈ [β]. Then, u j ′ is
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contained in ∑

i∈[m]
f (i)	= j

si > S − B

intervals in T , which is not possible. Hence, f is an assignment of items to bins that
satisfies

∑
i∈ f −1( j) si = B for all j ∈ [β]. 
�

Recall the definition of Nonuniform MinTimeline∞ given in Section 4. Using
Lemma 13, we can now show that it is W[1]-hard when parameterized by n for � = 1.

Lemma 14 NonuniformMinTimeline∞ parameterized by n isW[1]-hard for � = 1.

Proof The proof is by reduction from Multicolored MinTimeline∞. Let (G =
(V = V1 � · · · � Vr , (Et )t∈[τ ]), � = 1, (ki )i∈[r ]) be an instance of Multicolored

MinTimeline∞.
We construct an instance (G′ = (V , (E ′

t )t∈[τ ′]), � = 1, (k′
v)v∈V ) of Nonuniform

MinTimeline∞ as follows. For every i ∈ [r ] and every v ∈ Vi , we set k′
v := ki .

Let τ ′ := τ + 2
∑r

i=1 ki . For t ∈ [τ ], we set E ′
t := Et . It remains to define the

additional layers τ + 1, . . . , τ ′. For every i ∈ [r ], we add 2ki layers ti := τ + 1 +
2

∑i−1
j=1 k j , . . . , ti + 2ki − 1, in which the vertices in Vi form a clique while all other

vertices are isolated.
Suppose that T is an activity timeline for G with |{(v, a, b) ∈ T | v ∈ Vi }| ≤ ki

for all i ∈ [r ]. For each v ∈ V , let kv := |{(v, a, b) ∈ T | a ∈ [τ ]}| be the number
of times v is used in T , that is,

∑
v∈Vi kv ≤ ki for each i ∈ [r ]. Hence, there exists

a function fi : [ki ] → Vi such that | f −1
i (v)| ≥ kv for all v ∈ Vi . Using fi , we can

cover the clique on Vi in the layers ti , . . . , ti + 2ki − 1 that represent the color i with
the intervals

T ′
i := {(v, ti + 2a − 2, ti + 2a − 1) | v ∈ Vi , a ∈ [ki ], fi (a) 	= v}.

Then, T ′ := T ∪ (
⋃

i∈[r ] T ′
i ) is an activity timeline for G′. Moreover, for every

v ∈ Vi , the following holds:

|{(v, a, b) ∈ T ′ | a ∈ [τ ′]}| =
|{(v, a, b) ∈ T | a ∈ [τ ]}| + |{(v, a, a + 1) ∈ T ′

i | τ + 1 ≤ a ≤ τ ′ − 1}|
= kv + ki − | f −1

i (v)| ≤ ki = k′
v.

Conversely, suppose that T ′ is an activity timeline for G′. In every layer ti , . . . , ti +
2ki − 1 at least |Vi | − 1 vertices in Vi must be active since Vi forms a clique in these
layers. Since every interval can cover only two layers, this requires at least (|Vi |−1)ki
intervals that use vertices in Vi . Hence, for every i ∈ [r ], T ′ can contain at most ki
intervals (v, a, b) with a ∈ [τ ] and v ∈ Vi . Therefore, T := {(v, a, b) ∈ T ′ | 1 ≤
a ≤ τ } is an activity timeline that covers G with the required property. 
�

To prove Theorem 12, we now show how to reduce NonuniformMinTimeline∞
toMinTimeline∞.
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Proof of Theorem 12 We reduce from Nonuniform MinTimeline∞. Given an input
instance (G = (V = {v1, . . . , vn}, (Et )t∈[τ ]), � = 1, (kv)v∈V ), we construct an
instance (G′ = (V ′, (E ′

t )t∈[τ ′]), � = 1, k) of MinTimeline∞. We let V ′ :=
V ∪ {u1, u2}, τ ′ := τ + 2k(|V | + 2), and k := maxv∈V kv . The layers of G′ are
as follows: For t ∈ [τ ], we let E ′

t := Et . The layers E ′
τ+1, . . . , E

′
τ+4k only contain

the edge {u1, u2}. Then, for i ∈ [n], the layers E ′
τ+2k(i+1)+1, . . . , E

′
τ+2k(i+1)+2(k−kvi )

contain only the edge {vi , u1}, while the layers E ′
τ+2k(i+1)+2(k−kvi )+1, . . . , E

′
τ+2k(i+2)

are empty.
Suppose that T is an activity timeline that covers G and contains only kv intervals

that use v for each v ∈ V . Then, we construct a k-activity timeline T ′ that covers
G′ as follows. We include all intervals in T . We add (u1, τ + 2a − 1, τ + 2a) and
(u2, τ + 2k + 2a− 1, τ + 2k + 2a) for all a ∈ [k] and (vi , τ + 2k(i + 1)+ a − 1, τ +
2k(i + 1) + a) for all a ∈ [k − kv].

Now suppose that T ′ is a k-activity timeline that covers G′. First, T ′ must contain k
intervals that use u1 and k intervals that use u2 in order to cover the appearances of the
edge {u1, u2} in E ′

τ+1, . . . , E
′
τ+4k . Hence, the edges {u1, vi } can only be covered by

intervals that use vi . This requires k−kvi intervals that use vi . Hence,T := {(v, a, b) ∈
T ′ | a ∈ [τ ], v ∈ V } is an activity timeline that covers G and only contains kv vertices
that use each v ∈ V . 
�

Unless the ETH fails, Unary Bin Packing cannot be solved in time
f (β)|I |o(β/ logβ) for any function f , where |I | is the input size ([24] Theorem 3).
The fact that our reduction yields a temporal graph with O(β) vertices implies the
following:

Corollary 15 MinTimeline∞ cannot be solved in time f (n)|G|o(n/ log n), for any func-
tion f , even if � = 1, unless the ETH fails.

6 Conclusion

We completely settled the computational complexity of MinTimeline∞ regarding the
considered parameters. ForMinTimeline+, the open question remaining is whether it
is in FPT when parameterized by the number of vertices. Besides this question, there
are many others which could be studied in future work:

• Are there (polynomial) kernelizations for the FPT cases? Developing data reduc-
tion rules might be especially interesting from a practical perspective.

• Does MinTimeline+ parameterized by n + � admit an FPT algorithm with a
more practical running time than the algorithm in the proof of Theorem 9? Or at
least a purely combinatorial algorithm, that is, one that does not invoke Lenstra’s
algorithm?

• Which other parameters yield tractable special cases? For example, can the number
of vertices be replaced by a smaller parameter (e.g. the vertex cover number or the
treewidth of the underlying graph)?
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• What changes if one only bounds the overall number of activity intervals instead
of bounding for each vertex? It should be possible to modify all our algorithms to
solve this problem. Maybe some of our hard cases become tractable?

• Dondi [10] poses the following interesting question: Is MinTimeline+ with the
restriction that k = 1 fixed-parameter tractable with respect to �? We showed
that it is, in fact, fixed-parameter tractable if we additionally restrict that τ = 2
(Theorem 5), so it would be interesting to know whether this can be generalized
to arbitrary τ or even to τ = 3.

• What about “temporalizing” other vertex selection problems (like Dominating

Set) in an analogous way (that is, at each time step the set of active vertices must
be a valid selection for the current graph)? In fact, our dynamic programs and
the ILP should easily work here as well, since they do not specifically depend on
vertex covers.
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