
Theory of Computing Systems
https://doi.org/10.1007/s00224-023-10132-0

b-Coloring Parameterized by Clique-Width

Lars Jaffke1 · Paloma T. Lima2 · Daniel Lokshtanov3

Accepted: 26 May 2023
© The Author(s) 2023

Abstract
We provide a polynomial-time algorithm for b- Coloring on graphs of constant
clique-width. This unifies and extends nearly all previously known polynomial time
results on graph classes, and answers open questions posed by Campos and Silva
(Algorithmica 80(1), 104–115, 2018) and Bonomo et al. (Graphs and Combinatorics
25(2), 153–167, 2009). This constitutes the first result concerning structural parame-
terizations of this problem. We show that the problem is FPT when parameterized by
the vertex cover number on general graphs, and on chordal graphs when parameterized
by the number of colors. Additionally, we observe that our algorithm for graphs of
bounded clique-width can be adapted to solve the Fall Coloring problem within
the same runtime bound. The running times of the clique-width based algorithms for
b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis.

Keywords B-coloring · Clique-width · Vertex cover · Structural parameterization

1 Introduction

This paper settles openquestions regarding the complexity of theb-Coloringproblem
on graph classes and initiates the study of its structural parameterizations. A b-coloring

An extended abstract of this work appeared in the proceedings of STACS 2021 [36]. L. J. is supported by
the Trond Mohn Foundation (TMS) and from the Norwegian Research Council.

B Lars Jaffke
lars.jaffke@uib.no

Paloma T. Lima
parlt@itu.dk

Daniel Lokshtanov
daniello@ucsb.edu

1 University of Bergen, Bergen, Norway

2 IT University of Copenhagen, Copenhagen, Denmark

3 University of California Santa Barbara, Santa Barbara, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-023-10132-0&domain=pdf
http://orcid.org/0000-0003-4856-5863

Theory of Computing Systems

of a graph G with k colors is a partition of the vertices of G into k independent sets
such that each of them contains a vertex that has a neighbor in all of the remaining
ones. The b-chromatic number of G, denoted by χb(G), is the maximum integer k
such that G admits a b-coloring with k colors. This notion was introduced by Irving
andManlove [34] to describe the behavior of the following color-suppressing heuristic
for the Graph Coloring problem. We start with some proper coloring of the input
graph G and try to iteratively suppress one of its colors. That is, for a given color c, we
consider each vertex v of color c, and check if there is another color c′ �= c available
that does not appear in its neighborhood. If so,we assign vertex v the color c′, observing
that the coloring remains proper, and repeat this process for the remaining vertices
of color c. If successful, we remove the color c from all vertices of G and decrease
the number of colors by one. Once no color can be supressed by this procedure, the
coloring at hand is a b-coloring of G, and in the worst case, this heuristic produces a
coloring with χb(G) many colors.

Since then, the b-Coloring and b- Chromatic Number problems which given
a graph G and an integer k ask whether G has a b-coloring with k colors and
whether χb(G) ≥ k, respectively, have received considerable attention in the algo-
rithms and complexity communities. Before we discuss these results, note that the
b-Coloring and b- Chromatic Number problem are not as closely related as the
Graph Coloring and Chromatic Number problems in terms of their (polynomial
time) complexities. If we can solve Chromatic Number, then we can use this algo-
rithm to solve Graph Coloring, since each n-vertex graph G has proper colorings
with χ(G), . . . , n colors. However, knowing χb(G) and χ(G) does not say anything
about the existence of a b-coloring with k ∈ {χ(G)+1, . . . , χb(G)−1} colors. There-
fore, the b-Coloring problem can be computationally harder on a graph class than the
b- Chromatic Number problem. Trivially, if we know how to solve b-Coloring in
polynomial time, we can solve b- Chromatic Number in polynomial time.

The b- Chromatic Number problem has been shown to be NP-complete in the
general case [34], as well as on bipartite graphs [41], co-bipartite graphs [6], chordal
graphs [29], and line graphs [8], and a lot of effort has beenput into devisingpolynomial
time algorithms for b-Coloring in various other classes of graphs.1 These include
trees [34], tree-cographs [6], and graphs with few P4s, such as cographs and P4-sparse
graphs [5], P4-tidy graphs [58], and (q, q − 4)-graphs for constant q [10]. A common
property shared by these graph classes is that they all have bounded clique-width [27,
28, 48, 57].2

The main contribution of this work is an algorithm that solves b-Coloring (and b-
Chromatic Number) in polynomial timeongraphs of constant clique-width.Besides
unifying the above mentioned polynomial time cases, this extends the tractability

1 In many of the following references, the results are stated for b- Chromatic Number instead of
b-Coloring; however the algorithms for b-Coloring follow from the algorithms for b- Chromatic
Number together with the fact that these graph classes are b-continuous [6, 22, 58], meaning that they
have b-colorings any number k ∈ {χ(G), . . . , χb(G)} of colors, and the fact that Chromatic Number is
solvable in polynomial time on these graph classes (for instance via [21, 59]).
2 To the best of our knowledge, the only polynomial time result for graphs of unbounded clique-width so
far concerns graphs of large girth. In particular, Campos et al. [9] showed that b- Chromatic Number is
polyomial-time solvable on graphs of girth at least 7.

123

Theory of Computing Systems

landscape of these problems to larger graph classes, and answers two open problems
stated in the literature.

Over a decade ago, Bonomo et al. [5] asked whether their polynomial time result
for cographs can be extended to distance-hereditary graphs. Havet et al. [29] answered
the question negatively by providing an NP-completeness proof for chordal distance-
hereditary graphs. We observe, however, that their proof has a flaw and while it does
prove the claimed statement for chordal graphs, it unfortunately fails to do so for
distance-hereditary graphs. Our polynomial time algorithm for graphs of bounded
clique-width in fact provides a positive answer toBonomo et al.’s question, as distance-
hereditary graphs have clique-width atmost three [27]. In recent years, even subclasses
of distance-hereditary graphs have received significant attention, for instance in the
work of Campos and Silva [11]: they provide a polynomial time algorithm for claw-
free block graphs, and ask whether this result can be generalized to block graphs. Our
algorithm provides a positive answer to this question as well. Moreover, it extends
the known algorithm for (q, q − 4)-graphs [10] (for constant q) to all (q, t)-graphs
for constants q and t with q ≥ 4, t ≥ 0, and either q ≤ 6 and t ≤ q − 4, or q ≥ 7
and t ≤ q − 3, by a theorem due to Makowsky and Rotics [48]. Similarly, it extends
the polynomial time algorithm for P4-tidy graphs [58] to the class of partner-limited
graphs thanks to a result by Vanherpe [57]. We give an overview of the graph classes
involved in the previous discussion in Fig. 1.

Our algorithm runs in time n2
O(w)

, where n denotes the number of vertices of
the input graph which is given together with a clique-width w-expression. As con-
sequences of results due to Fomin et al. [23] and Fomin et al. [24], we observe that
b-Coloring parameterized by clique-width is W[1]-hard, and that the exponential
dependence on w in the degree of the polynomial cannot be avoided unless the Expo-

Fig. 1 Some graph classes onwhich the complexities of b-Coloring and b- Chromatic Number problem
were studied. Whenever two classes are connected by a line, the upper one contains the lower one. All NP-
hardness results hold for b- Chromatic Number and all polynomial time results, except the one for graphs
of girth at least seven, hold for b-Coloring. The inner bottom area (dotted line) shows classes for which
polynomial time algorithms were previously known and the outer area (dashed line, labeled cw = O(1))
shows on which classes our algorithm can be applied

123

Theory of Computing Systems

nential Time Hypothesis (ETH) fails. Concretely, an algorithm running in time n2
o(w)

would refute ETH.
From the point of view of parameterized complexity, Panolan et al. [50] showed

that b- Chromatic Number parameterized by the number of colors is W[1]-hard.
However, this problem may even be harder, since so far no XP-algorithm is known.
Recently, Aboulker et al. [1] showed that the more restrictive b- Chromatic Core

problemparameterized by the number of colors (which has a brute-forceXP-algorithm,
see e.g. [20]) remains W[1]-hard.

It is therefore natural to ask which additional restrictions can be imposed to obtain
parameterized tractability results. For instance, an open problem posed by Sam-
paio [53] (see also [55]) asks whether b-Coloring parameterized by the number
of colors is FPT on chordal graphs. We answer this question in the affirmative. Other
restricted cases that have been considered in the literature target specific numbers of
colors that depend on the input graph. The Dual b-Coloring problem, which asks
if an input n-vertex graph has a b-coloring with n − k colors, is FPT parameterized by
k [30]. Moreover, deciding if a graph G has a b-coloring with k = �(G) + 1 colors,
which is an upper bound on χb(G), is FPT parameterized by k [50, 53], while the case
k = �(G) is XP and for every fixed p ≥ 1, the case k = �(G) − p is NP-complete
for k = 3 [35].

Another novelty aspect of our XP-algorithm parameterized by clique-width is that
it is the first result about structural parameterizations of the b-Coloring and b-
Chromatic Number problems. In all previously known polynomial time cases the
algorithms only work if the input graph has some prescribed structure. Our algorithm
works on all graphs, albeit with a prohibitively slow runtime on graphs of large clique-
width. In this vein, we round off our work with an FPT-result for another lead player
among structural parameterizations, the vertex cover number of a graph; a parameter
often referred to as the Drosophila of parameterized complexity.

Fall Coloring A fall coloring is a special type of b-coloring where every vertex needs
to have at least one neighbor in all color classes except its own. In other words, it
is a partition of the vertex set of a graph into independent dominating sets. As a
standalone notion, fall coloring has been introduced by Dunbar et al. [19]. However,
since the corresponding Fall Coloring problem falls in the category of locally
checkable vertex partitioning problems, it has been shown in earlier work of Telle and
Proskurowski [56] to be FPT parameterized by the tree-width of the input graph, as
well as FPT parameterized by clique-width plus the number of colors by Gerber and
Kobler [25] (see also [7]), and byHeggernes and Telle [31] to beNP-complete for fixed
number of colors. Fall Coloring remains hard further restricted to bipartite [43,
44, 54], chordal [54], or planar [44] graphs. On the other hand, even with unbounded
number of colors, it is known to be solvable in polynomial time on strongly chordal
graphs [26, 47], threshold graphs and split graphs [49]. In all of these cases, one simply
checkswhether the chromatic number of the input graph is equal to itsminimumdegree
plus one. To the best of our knowledge, these are the only known polynomial time
cases.

We adapt our algorithm for b-Coloring on graphs of bounded clique-width to
solve Fall Coloring, and therefore show that the latter problem is as well solvable

123

Theory of Computing Systems

in time n2
O(w)

, where w denotes the clique-width of a given decomposition of the
input graph. By a simple reduction, we show that Fall Coloring is alsoW[1]-hard
in this parameterization and that an n2

o(w)
-time algorithm for it would refute ETH.

Vertex Coloring Problems Parameterized by Clique-Width We briefly touch on differ-
ences in the complexities of vertex coloring problems of graphs when parameterized
by clique-width. While the standard Graph Coloring problem, asking for a proper
coloring of the input graph, is XP-time solvable parameterized by clique-width [21,
59], some of its generalizations are NP-complete on graphs of constant clique-width.
In the List Coloring problem we are given a graph G and for each of its vertices
v a list L(v) of colors, and the question is whether G has a proper coloring such
that each vertex is assigned a color from its list. This problem is NP-complete on the
(not disjoint) union of two complete graphs [38]. We can see that such graphs have
bounded clique-width for instance by observing that they do not contain a path on four
vertices as an induced subgraph, and are therefore cographs, which have clique-width
at most two [16]. In the related Precoloring Extension problem, we are given a
graph, some of whose vertices already received a color, and the question is whether
this coloring can be extended to a proper coloring of the entire graph. The following
standard reduction from List Coloring, starting with a graph that is the union of
two complete graphs, shows that this variant is NP-complete on graphs of constant
clique-width as well. Take the graph G together with the lists L(·), and construct a
graph H by adding to G, for each vertex v ∈ V (G) and each color c /∈ L(v), a new
vertex xcv which is adjacent only to v and assigned color c. It is not difficult to see that
this precoloring of H can be extended to the remainder of its vertices if and only if G
has a list coloring using the lists L(·). Moreover, adding pendant vertices to a graph
does not increase its clique-width.

Belmonte et al. [3] showed that the Grundy Coloring problem, which asks
for a linear order of the vertices that maximizes the number of colors used by the
greedy coloring heuristic, is NP-complete on graphs of constant clique-width. This
nicely contrasts our XP-algorithm for b-Coloring, since both the b-Coloring and
the Grundy Coloring problems are rooted in the theoretical analysis of graph
coloring heuristics.

Very recently, Jaffke et al. [37] showed that theClique Coloring problem, asking
for a vertex coloring without monochromatic maximal cliques, is XP parameterized
by clique-width as well. The question whether Clique Coloring parameterized by
clique-width isW[1]-hard remains open.

Sketch of the algorithm Let us discuss howwe obtain ourXP-algorithmparameterized
by clique-width. First, we consider a branch decomposition of the input graph G of
bounded module-width w which is equivalent to clique-width and has the following
property. At each node t of the branch decomposition we have a subgraph Gt of G
whose vertex set can be partitioned into at most w equivalence classes with respect
to their neighborhood outside of Gt . For the purpose of our dynamic programming
algorithm, it suffices to describe colorings by the way each of their color classes
interactswith these equivalence classes. In theGraph Coloringproblem, it is enough
to describe a color class according to its intersection with the equivalence classes of

123

Theory of Computing Systems

Gt alone [21, 59] (see also [24]). For the b-Coloring problem, we additionally have
to ensure that eventually, each color class indeed has a b-vertex. The challenge is to
do so without explicitly remembering which color classes a vertex has already seen
in its neighborhood – this would result in prohibitively large tables. We overcome
this difficulty by a symmetry breaking trick that instead stores, for each color class,
a demand to the future neighbors of the equivalence classes which – if fulfilled –
guarantees that the other color classes can have b-vertices in the end.

2 Preliminaries

Graphs All graphs considered here are simple and finite. For a graph G we denote by
V (G) and E(G) the vertex set and edge set of G, respectively. For an edge e = uv ∈
E(G), we call u and v the endpoints of e and we write u ∈ e and v ∈ e.

For two graphs G and H , we say that G is a subgraph of H , written G ⊆ H , if
V (G) ⊆ V (H) and E(G) ⊆ E(H). For a set of vertices S ⊆ V (G), the subgraph of
G induced by S is G[S] := (S, {uv ∈ E(G) | u, v ∈ S}).

For a graph G and a vertex v ∈ V (G), the set of its neighbors is NG(v) :=
{u ∈ V (G) | uv ∈ E(G)}, and the degree of v is degG(v) := |NG(v)|. The closed
neighborhood of v is NG [v] := {v} ∪ NG(v). For a set X ⊆ V (G), we let NG(X) :=⋃

v∈X NG(v) \ X and NG[X] := X ∪ NG(X). In all these cases, we may drop G as
a subscript if it is clear from the context. A graph is called subcubic if all its vertices
have degree at most three.

A graph G is connected if for all 2-partitions (X ,Y) of V (G) with X �= ∅ and
Y �= ∅, there is a pair x ∈ X , y ∈ Y such that xy ∈ E(G). A connected component of
a graph is a maximal connected subgraph. A connected graph is called a cycle if all
its vertices have degree two. A connected graph is called a tree if it has no cycle as a
subgraph. In a tree T , the vertices of degree one are called the leaves of T , denoted by
L(T), and the vertices in V (T)\L(T) are the internal vertices of T . A tree ofmaximum
degree at most two is a path and the leaves of a path are called its endpoints. If P is a
path with endpoints u and v, then we say that P is a path from u to v. The length of a
path is the number of its edges. For a graph G and a pair of vertices u, v ∈ V (G), we
denote by distG(u, v) the length of the shortest path between u and v in G.

A tree T is called rooted, if there is a distinguished vertex r ∈ V (T), called the
root of T , inducing an ancestral relation on V (T): for a vertex v ∈ V (T), if v �= r , the
neighbor of v on the path from v to r is called the parent of v, and all other neighbors
of v are called its children. For a vertex v ∈ V (T) \ {r} with parent p, the subtree
rooted at v, denoted by Tv , is the subgraph of T induced by all vertices that are in the
same connected component of (V (T), E(T)\{vp}) as v. We define Tr := T . A tree T
is called a caterpillar if it contains a path P ⊆ T such that all vertices in V (T)\V (P)

are adjacent to a vertex in P .
For a graph H , we say that a graph G is H-free if G does not contain H as an

induced subgraph. For a set of graphs H, we say that G is H-free if G is H -free for
all H ∈ H. For an integer k ≥ 3, let Ck denote a cycle on k vertices. A graph G is
called chordal if it is {Cn | n ≥ 4}-free. A graph G is called distance-hereditary if

123

Theory of Computing Systems

for each connected induced subgraph H of G, and each pair of vertices u, v ∈ V (H),
distH (u, v) = distG(u, v).

A set of vertices S ⊆ V (G) of a graph G is called an independent set if E(G[S]) =
∅. A set of vertices S ⊆ V (G) is a vertex cover in G if V (G) \ S is an independent
set in G. A set of vertices S ⊆ V (G) is a clique in G if E(G[S]) = {uv | u, v ∈ S}.

A graph G is called bipartite if its vertex set can be partitioned into two nonempty
independent sets, which we will refer to as a bipartition of G.

Notation for Equivalence Relations Let � be a set and ∼ an equivalence relation over
�. For an element x ∈ � the equivalence class of x , denoted by [x]∼ or simply [x]
if ∼ is clear from the context, is the set {y ∈ � | x ∼ y}. We denote the set of all
equivalence classes of ∼ by �/∼.

Parameterized Complexity We give the basic definitions of parameterized complexity
that are relevant to this work and refer to [17, 18] for details. Let � be an alphabet.
A parameterized problem is a set � ⊆ �∗ × N, the second component being the
parameter which usually expresses a structural measure of the input. A parameterized
problem � is said to be fixed-parameter tractable, or in the complexity class FPT, if
there is an algorithm that for any (x, k) ∈ �∗ × N correctly decides whether or not
(x, k) ∈ �, and runs in time f (k) · |x |c for some computable function f : N → N

and constant c. We say that a parameterized problem is in the complexity class XP, if
there is an algorithm that for each (x, k) ∈ �∗ × N correctly decides whether or not
(x, k) ∈ �, and runs in time f (k) · |x |g(k), for some computable functions f and g.

The concept analogous toNP-hardness in parameterized complexity is that ofW[1]-
hardness, whose formal definition we omit. The basic assumption is that FPT �= W[1],
underwhich noW[1]-hard problem admits an FPT-algorithm. Formore details, see [17,
18].

Exponential Time Hypothesis The 3- SAT problem asks whether a given boolean
formula in conjunctive normal form with clauses of size at most three has a truth
assignment to its variables that lets the formula evaluate to true. In 2001, Impagli-
azzo, Paturi, and Zane [32, 33] conjectured that any algorithm for the 3- SAT problem
requires exponential time. This conjecture is known as the Exponential Time Hypoth-
esis (ETH) whose plausibility stems from the fact that despite numerous efforts, a
subexponential-time algorithm for 3- SAT remains elusive. It can be stated as fol-
lows.

Conjecture (ETH [32, 33]) There is no algorithm that solves each instance of 3- SAT
on n variables in time 2o(n).

This conjecture initiated a rich theory of hardness results conditioned on ETH (see
e.g. the survey [45] and [17, Chapter 14]), allowing for more precise lower bounds
than the ones obtained from assumptions such as P �= NP or FPT �= W[1].

123

Theory of Computing Systems

2.1 Clique-Width, Branch Decompositions, andModule-Width

We first define clique-width, introduced by Courcelle, Engelfriet, and Rozenberg [15],
and then the equivalent measure of module-width that we will use in our algorithm.
We keep the definition of clique-width slightly informal and refer to [15, 16] for more
details. The reason why we choose module-width over clique-width is that module-
width allows for a slightly more compact description of our algorithm, since it suffices
to consider a single operation in the dynamic programming instead of several.

Let G be a graph. The clique-width of G, denoted by cw(G), is the minimum
number of labels {1, . . . , k} needed to obtain G using the following four operations:

1. Create a new graph consisting of a single vertex labeled i .
2. Take the disjoint union of two labeled graphs G1 and G2.
3. Add all edges between pairs of vertices of label i and label j .
4. Relabel every vertex labeled i to label j .

We now turn to the definition of module-width which is based on the notion of a
rooted branch decomposition.

Definition 2.1 (Branch decomposition) Let G be a graph. A branch decomposition
of G is a pair (T ,L) of a subcubic tree T and a bijection L : V (G) → L(T). If T is
a caterpillar, then (T ,L) is called linear branch decomposition. If T is rooted, then
we call (T ,L) a rooted branch decomposition. In this case, for t ∈ V (T), we denote
by Tt the subtree of T rooted at t , and we define Vt := {v ∈ V (G) | L(v) ∈ L(Tt)},
Vt := V (G) \ Vt , and Gt := G[Vt].

Module-width is attributed to Rao [51, 52].3 On a high level, the module-width of
a rooted branch decomposition measures, at each of its nodes t , the number of subsets
of Vt that make up the intersection of Vt with the neighborhood of some vertex in Vt .
This naturally groups the vertices of Vt into equivalence classes.

Definition 2.2 (Module-width)LetG be agraph, and (T ,L)be a rootedbranchdecom-
position of G. For each t ∈ V (T), let ∼t be the equivalence relation on Vt defined as
follows:

∀u, v ∈ Vt : u ∼t v ⇔ NG(u) ∩ Vt = NG(v) ∩ Vt

The module-width of (T ,L) is mw(T ,L) := maxt∈V (T)|Vt/∼t |. The module-
width of G, denoted bymw(G), is the minimummodule width over all rooted branch
decompositions of G.

Theorem 2.1 (Rao, Thm. 6.6 in [51]) For any graph G, mw(G) ≤ cw(G) ≤ 2 ·
mw(G), and given a decomposition of bounded clique-width, a decomposition of
bounded module-width, and vice versa, can be constructed in time O(n2), where
n = |V (G)|.
3 Note that in [52], module-width is referred to as modular-width which usually has a different meaning,
see e.g. [13].

123

Theory of Computing Systems

The operator (Ht, ηr, ηs) of node t with children r and s. Let (T ,L) be a rooted
branch decomposition of a graph G and let t ∈ V (T) be a node with children r and s.
We now describe an operator associated with t that tells us how the graphGt is formed
from its subgraphs Gr andGs , and how the equivalence classes of∼t are formed from
the equivalence classes of ∼r and ∼s . First, it is clear that Vt = Vr ∪Vs . Since Gr and
Gs are induced subgraphs of Gt , we furthermore know that E(Gt [Vr]) = E(Gr) and
E(Gt [Vs]) = E(Gs), so it remains to describe the edges between Vr and Vs . By the
definition of module-width, we know that each pair of vertices u, v ∈ Vr with u ∼r v

has the same neighborhood in Vr = Vs ∪ Vt . Hence, for each vertex z ∈ Vs , we know
that either both or neither of u and v are adjacent to z. In other words, for each pair
Qr ∈ Vr/∼r , Qs ∈ Vs∼s , either all edges between each pair of a vertex from Qr

and a vertex from Qs are present in Gt , or none of them. This can be described by
a bipartite graph Ht on bipartition (Vr/∼r , Vs/∼s) with [u]∼r [v]∼s ∈ E(Ht) if and
only if uv ∈ E(Gt). To summarize,

E(Gt) = E(Gr) ∪ E(Gs) ∪ F where

F = {uv | u ∈ Vr , v ∈ Vs, {[u]∼r , [v]∼s } ∈ E(Ht)}.

By roughly the same reasoning, we can observe that the equivalence relation ∼t

coarsens the equivalence relations ∼r and ∼s . Consider again vertices u, v ∈ Vr such
that u ∼r v. Then, N (u) ∩ Vr = N (v) ∩ Vr , and since Vr ⊆ Vt we have that Vt ⊆ Vr ,
which implies that N (u) ∩ Vt = N (v) ∩ Vt , so u ∼t v. However, it may well be that
there are vertices u, v ∈ Vr with u �r v, but u ∼t v: this is the case when u and v

have the same neighbors in Vt , but different neighbors in Vs . Lastly, note that there
may also be vertices v ∈ Vr and z ∈ Vs such that v ∼t z.

We have argued that each equivalence class of∼t can be obtained by taking a subset
of equivalence classes of ∼r and ∼s , and joining them (in what we call a ‘bubble’
below). Formally, there is a partition P = {P1, . . . , Ph} of V (Ht) = Vr/∼r ∪ Vs/∼s

such that Vt/∼t = {Q1, . . . , Qh}, where for 1 ≤ i ≤ h, Qi = ⋃
Q∈Pi Q. For each

1 ≤ i ≤ h, we call Pi the bubble of the resulting equivalence class
⋃

Q∈Pi Q of ∼t .
As auxiliary structures, for p ∈ {r , s}, we let ηp : Vp/∼p → Vt/∼t be the map

such that for all Qp ∈ Vp/∼p, Qp ⊆ ηp(Qp), i.e. ηp(Qp) is the equivalence class
of ∼t whose bubble contains Qp. We call (Ht , ηr , ηs) the operator of t .

2.2 Colorings

Let G be a graph. An ordered partition C = (C1, . . . ,Ck) of V (G) is called a coloring
of G (with k colors). (Observe that for i ∈ {1, . . . , k}, Ci may be empty.) For i ∈
{1, . . . , k}, we call Ci the color class i , and say that the vertices in Ci have color i . C
is called proper if for all i ∈ {1, . . . , k},Ci is an independent set inG. The restriction of
a coloring C = (C1, . . . ,Ck) to a vertex set S ⊆ V (G), is C|S := (C1∩S, . . . ,Ck∩S).
In this case we say conversely that C extends C|S .

Whenever convenient, we may alternatively denote a coloring of a graph with k
colors as a map φ : V (G) → {1, . . . , k}. In this case, a restriction of φ to S is the map
φ|S : S → {1, . . . , k} with φ|S(v) = φ(v) for all v ∈ S. For any T ⊆ V (G) with
S ⊆ T , we say that φ|T extends φ|S .

123

Theory of Computing Systems

Aproper coloring (C1, . . . ,Ck) is called a b-coloring, if for all i ∈ {1, . . . , k}, there
is a vertex vi ∈ Ci , called b-vertex of color i , such that for all j ∈ {1, . . . , k} \ {i},
NG(vi) ∩ C j �= ∅. In this work, we study the following computational problem.

We sometimes denote a b-coloring C = (C1, . . . ,Ck) by (C, B = {v1, . . . , vk}),
where for all i ∈ {1, . . . , k}, vi is a b-vertex of color i . In this case, B can be understood
as the set containing a witness b-vertex for each color class.

The following definitionwill be key to the algorithms presented in the next sections.

Definition 2.3 (Partial b-Coloring) Let G be a graph and k ∈ N. For an induced
subgraph H of G, a partial b-coloring of H is a pair (C, B) of a proper coloring
C = (C1, . . . ,Ck) of H and a subset B ⊆ V (H) such that for all i ∈ [k], |Ci ∩B| ≤ 1.
We call the vertices in B the partial b-vertices.

2.3 Distance-hereditary Graphs

In their work on P4-sparse graphs, Bonomo et al. [5] asked whether b-Coloring is
polynomial-time solvable on the class of distance-hereditary graphs. Havet et al. [29]
claimed to answer this question in the negative way, showing that b-Coloring is
NP-complete on chordal distance-hereditary graphs. Their proof, however, contains a
flaw and the graph constructed in their reduction, even though indeed chordal, fails to
be distance-hereditary. In what follows, we briefly describe their reduction and argue
that the graph constructed is not distance-hereditary.

The reduction presented in [29] is from 3- Edge Coloring restricted to the class
of 3-regular graphs. Given an instance G for 3- Edge Coloring with V (G) =
{v1, . . . , vn}, they construct a graph H as follows. The vertex set of H contains a
copy of V (G) plus one vertex associated with each edge of G. We denote by exy the
vertex corresponding to the edge xy. The vertices of V (G) form a clique in H , the ver-
tices corresponding to edges form an independent set, and for each edge xy ∈ E(G),
the vertex exy is adjacent to the copy of x and y in H . The connected component of
H induced by these vertices is therefore a split graph. Finally, they add three disjoint
copies of K1,n+2 to H . It is thus easy to see that H is a chordal graph. However, let
xz and yz be two edges of G sharing one endpoint. Then the subgraph of H induced
by {x, y, z, exz, eyz} is isomorphic to a gem (see Fig. 2). As shown by Bandelt and
Mulder [2], distance-hereditary graphs are gem-free graphs. This shows that the graph
H is not a distance-hereditary graph.

2.4 Parameterized byVertex Cover

In this subsection we prove that b-Coloring is FPT when parameterized by vertex
cover. We will do so by providing a 2O(tw·k)n time algorithm for the problem param-

123

Theory of Computing Systems

Fig. 2 Figure 2

eterized by the tree-width of the input graph plus number of colors. The result for
vertex cover will then follow from the fact that the vertex cover number of a graph is
always at most its tree-width, and a b-coloring of a graph with vertex cover 	 can have
at most 	 + 1 many colors. Indeed, either all b-vertices are contained in the vertex
cover, in which case there are at most 	 of them, or there is one outside, whose degree
is at most 	, and hence it can see at most 	 colors in its neighborhood.

Definition 2.4 LetG be a graph. A tree decomposition ofG is a pair (T ,B = {Bt | t ∈
V (T)}), where T is a tree, and the sets in B are called bags, satisfying the following
conditions.

1.
⋃

t∈V (T) Bt = V (G).
2. For each uv ∈ E(G), there is some t ∈ V (T) such that {u, v} ⊆ Bt .
3. For each v ∈ V (G), T [{t ∈ V (T) | v ∈ Bt }] is connected.
The width of a tree decomposition is maxt∈V (T)|Bt |− 1 and the tree-width of G is the
minimum width over all its tree decompositions.

Definition 2.5 A tree decomposition (T ,B = {Bt | t ∈ V (T)}) of a graph G is called
nice if T is a rooted tree and each node t ∈ V (T) is one of the following types:

Leaf: t is a leaf of T and Bt = ∅.
Introduce: t has a single child s and Bt = Bs ∪ {v} for some v ∈ V (G); we say

that v is introduced at t .
Forget: t has a single child s and Bs = Bt ∪ {v} for some vertex v ∈ Bt ; we say

that v is forgotten at t .
Join: t has two children, s1 and s2, and Bt = Bs1 = Bs2 .

For t ∈ V (T), we let Tt denote the subtree of T rooted at t ; we let Vt = ⋃
s∈V (Tt) Bs

and Gt = G[Vt].
Theorem 2.2 (Korhonen [40])There is an algorithm that given a graphG on n vertices
and an integer k, in 2O(w)n time either outputs a tree decomposition of G of width at
most 2k + 1 or concludes that the tree-width of G is more than k.

Lemma 2.1 (Kloks [39], verbatim from [17]) If a graph G admits a tree deecompo-
sition of width at most k, then it also admits a nice tree decomposition of width at
most k. Moreover, given a tree decomposition (T ,B) of G of width at most k, one can
in time O(k2 · max{|V (G)|, |V (T)|}) find a nice tree decomposition of G that has at
most O(k|V (G)|) nodes.

123

Theory of Computing Systems

Proposition 2.1 b- Coloring can be solved in 2O(tw·k)n time, where n is the number
of vertices and tw the tree-width of the input graph, and k the number of colors.

Proof By Theorem 2.2 and Lemma 2.1 we can assume that we have a nice tree decom-
position (T ,B = {Bt | t ∈ V (T)}) ofG of widthw ≤ 2tw+1 and withO(wn) nodes
after spending 2O(tw)n time. We do bottom-up dynamic programming along (T ,B).

The table entries of the dynamic programming and their invariant are as follows.
Let t ∈ V (T) be a node of (T ,B). Then, we let tabt [γ,C, P, σ] = 1 if there is a
partial b-coloring γt of Gt with the following properties, and 0 otherwise:

1. γ : Bt → [k] is a proper coloring with γ = γt |Bt .
2. P ⊆ Bt is the set of partial b-vertices of γt that are contained in Bt .
3. σ : P → 2[k] is a map such that for each p ∈ P , σ(p) is the set of colors that

appear in the neighborhood of p in γt .
4. C ⊆ [k], where γ (P) ⊆ C , is the set of colors that have a partial b-vertex in γt .

Each partial b-vertex not contained in Bt is a b-vertex.

We observe that at each node t ∈ V (T) there are at most 2O(wk) table entries;
moreover, once the table entries have been computed correctly, we know that G has
a b-coloring with k colors if and only if at the root r of T there is a table entry
tabr[γ, P, σ,C] = 1, whereC = [k], and for all p ∈ P , σ(p) = [k]. We discuss how
to compute the table entries for each type of node in (T ,B); we assume that initially
all table entries are set to 0.

Leaf. If t is a leaf, then it is trivial. For technical reasons, we assume that there
is a table entry tabt [∅,∅,∅,∅] = 1.

Introduce. If t is an introduce node, let s be its child and v the vertex introduced
at v. Let γ be a proper k-coloring of G[Bt]. Each neighbor of v that is
a partial b-vertex for its color has to mark the color γ (v) as seen in its
neighborhood. To this end, for each P ⊆ Bt and σ : P → 2[k], we say
that a map σs : P → 2[k] is compatible with σ if for all p ∈ P ∩ N (v),
σ(p) = σs(p) ∪ {γ (v)}, and for all p ∈ P \ N [v], σ(p) = σs(p).
We first discuss how to deal with the casewhen v is not a partial b-vertex
for its color. We consider each set C ⊆ [k], each P ⊆ Bt \ {v}, and
each map σ : P → 2[k]. We set tabt [γ, P, σ,C] to 1 if there is a map
σs : P → 2[k] compatible with σ and such that tabs[γ |Bs , P, σs,C] =
1.
Next, we consider the case when v is a partial b-vertex for its color.
Then we consider each set C ⊆ [k] with γ (v) ∈ C , and each P ⊆ Bt

with v ∈ P , and each map σ : P → 2[k] where σ(v) = γ (N (v)). We
set tabt [γ, P, σ,C] to 1 if there is a map σs : P \ {v} → 2[k] that is
compatible with σ and such that tabs[γ |Bs , P \{v}, σs,C \{γ (v)}] = 1.

Forget. If t is a forget node, let s be its child and v be the vertex forgotten at t .
The only thing we have to ensure here is that if v was a partial b-vertex
for its color, then in fact it was a b-vertex for its color. We proceed as
follows. We set tabt [γ, P, σ,C] to 1 if tabs[γs, Ps, σs,C] = 1 where
γs is an extension of γ (assigning v a color), and either

– v /∈ Ps , Ps = P , and σs = σ , or

123

Theory of Computing Systems

– v ∈ Ps , P = Ps \ {v}, σs |Bt = σ and σs(v) = [k].
Join. If t is a join node, let s1 and s2 be its children. Herewe only have tomark,

for each partial b-vertex contained in Bt , the colors it has seen in Gs1
and in Gs2 . Therefore we proceed as follows. We set tabt [γ, P, σ,C]
to 1 if there exist C1,C2 ⊆ [k] with C1 ∪ C2 = C ; and for i ∈ [2],
σi : P → 2[k] such that for all p ∈ P , σ(p) = σ1(p) ∪ σ2(p), and such
that tabsi [γ, Pi , σi ,Ci] = 1 for all i ∈ [2].

Correctness of the algorithm follows from its description. Regarding its run time, we
observe that for each node t ∈ V (T), all table entries tabt [·] can be computed in time
2O(wk). Since the number of nodes in T is at mostO(wn), the algorithm runs in time
2O(wk)n = 2O(tw·k)n. ��

Corollary 2.1 b-Coloring can be solved in 2O(2)n time where n is the number of
vertices and 	 the vertex cover number of the input graph.

Proof Let G be the input graph with vertex cover number 	. It is well-known that a
vertex cover of size 	 of G, which can be found inO(1.2738	 + 	n) time [12], can be
used to give a path decomposition of G of width (at most) 	 in O(n) time. Together
with the fact that each b-coloring of a graph with vertex cover number 	 can have at
most 	 + 1 colors, the result follows from Proposition 2.1. ��

2.5 Chordal Graphs

Another consequence of Proposition 2.1 is that b-Coloring is fixed-parameter
tractable on chordal graphs parameterized by the number of colors; which answers an
open question of Sampaio [53].

Corollary 2.2 b-Coloring can be solved in 2O(k2)n time on chordal graphs with n
vertices.

Proof Let (G, k) be an instance of b-Coloring such that G is a chordal graph. If the
maximum clique size inG is more than k, thenG has no proper coloring, and therefore
no b-coloring, with k colors. We may assume that the maximum clique size in G is at
most k. This in turn implies that the treewidth of G is at most k, since a clique tree of
G (which can be found in linear time [4]) is in fact a tree decomposition of width at
most k of G. We can therefore apply Proposition 2.1.

Note that even though the algorithm of [4] implies a linear dependence on the
number of edges in the input graph, this can be avoided by the following observation.
If an n-vertex graph has tree-width at mostw, then it has at mostwn edges. Therefore,
if the number of edges in G is more than kn then we can report that (G, k) is a No-
instance; otherwise, the dependence on the number of edges is subsumed by the run
time of the algorithm from Proposition 2.1. ��

123

Theory of Computing Systems

3 Parameterized by Clique-Width

In this section, we consider the b-coloring problem parameterized by the clique-width
of the input graph. We will work with decompositions of bounded module-width,
which is equivalent for our purposes, see Theorem 2.1.

The main contribution of this section is an algorithm that given a graph G on
n vertices and one of its rooted branch decompositions of module-width w, and an
integer k, decides whether G has a b-coloring with k colors in time n2

O(w)
. Before we

proceed, we observe that b-Coloring isW[1]-hard in this parameterization, and that
the exponential dependence on w of the degree of the polynomial in the runtime is
probably difficult to avoid.

Proposition 3.1 The b-Coloring problem on graphs on n vertices parameterized by
their module-width w is W[1]-hard and cannot be solved in time n2

o(w)
, unless ETH

fails. Moreover, the hardness holds even when a linear branch decomposition of width
w is provided.

Proof Fomin et al. [24] showed that the Graph Coloring problem which given
a graph G of module-width w and an integer k asks for a proper coloring of G
with k colors cannot be solved in time n2

o(w)
unless ETH fails, even when a linear

branch decomposition of module-width w is provided. Using Graph Coloring in
this setting as a starting point of a reduction, we can add a k-clique to the input graph.
The resulting graph has a b-coloring with k colors if and only if the original graph has
a proper coloring with k colors (take the vertices in the k-clique as the b-vertices). It
is not difficult to see that the given branch decomposition can be extended to include
the vertices of the added k-clique without increasing its module-width by too much.
W[1]-hardness parameterized by w can be observed using the same argument, even
as a consequence of an earlier result [23]. ��

3.1 Outline of the Algorithm

Throughout the following, we are given a graphG and one of its rooted branch decom-
positions (T ,L) of module-width w = mw(T ,L) and we want to find a b-coloring
of G with k colors, if it exists. In particular, our algorithm will find a b-coloring C
together with a set of witness b-vertices, containing precisely one b-vertex for each
color class of C, if it exists. This will be done via dynamic programming along T , and
for each node t ∈ V (T), the partial solutions associated with t are partial b-colorings
of Gt (recall Definition 2.3).

To obtain an efficient algorithm, we require a compact representation of the partial
b-colorings of each subgraph Gt associated with a node t ∈ V (T). To that end, we
introduce the notion of a t-signature of a partial b-coloring. Two partial b-colorings
with the same t-signature will be interchangeable for the sake of our algorithm, there-
fore the number of table entries at each node t will be bounded by the number of
t-signatures.

123

Theory of Computing Systems

Let (C, B) be a partial b-coloring of Gt . For (C, B) to be extended to a b-coloring
(C′, B ′) of the entire graph G, we have to ensure that two things happen for each color
class C ∈ C:
1. The extension of C in C′ is an independent set in G.
2. There is a witness b-vertex in B ′ for the extension of C in C′.

The t-signature has to represent a partial b-coloring faithfully enough so that we can
keep track of all the ways in which the above two conditions can be satisfied for each
of its color classes ‘in the future’. At the same time, its definition has to enable us to
significantly compress the information about partial b-colorings ofGt . This happens in
the following way. We categorize color classes of partial b-colorings of Gt according
to t-types. If two color classes C1, C2 of a partial b-coloring (C, B) have the same
t-type, then the above two conditions can be satisfied for C1 and C2 by extensions of
(C, B) in the exact same ways. This allows us to forget about the ‘names’ of the color
classes in a partial b-coloring, but instead to only remember for each t-type howmany
color classes with that type there are. This is precisely the information that is stored
in a t-signature.

Now, if we can bound the number of t-types by some function of the module-width
w, say f (w), then the number of t-signatures is upper bounded by k f (w) ≤ n f (w).
(There are at most k colors, so in particular there are at most k colors with a given
t-type.) This translates directly to an upper bound on the number of table entries in
the dynamic programming algorithm, which, up to some constants in the degree of
the polynomial, bounds the runtime of the resulting algorithm.

Let us discuss the information that goes into the definition of a t-type. Let C be a
color class in a partial b-coloring (C, B) of Gt . To keep track of which vertices from
Vt can be added to C without introducing a coloring conflict, it suffices to store which
equivalence classes of ∼t have vertices in C ,4 since all vertices in a given equivalence
class have the same neighbors in Vt . This way we can ensure that condition 1 is
satisfied.

To verify if condition 2 is satisfied we have to store some information about the
partial b-vertices. Naturally, we record whether or not B contains a partial b-vertex of
C , but we need to store more information. Suppose that B contains the partial b-vertex
v ofC . In a straightforward approach, we would simply keep track of the color classes
that already appear in the neighborhood of v. This waywe could easily decide at which
point during the execution of the algorithm, a partial b-vertex turns into a b-vertex.
However, this results in prohibitively large table entries, since there are 2k−1 subsets
of colors that we would have to consider, which for our purpose is no better than 2n .

We overcome this issue with the following symmetry breaking trick: We do not
record which color classes the partial b-vertex of C already sees/still needs to see.
Instead, we record which equivalence classes Q ∈ Vt/∼t contain a partial b-vertex w

of some other color class such that N (w) ∩ C = ∅. Suppose that some equivalence
class Q ∈ Vt/∼t contains the partial b-vertex w ∈ B of another color class C ′ �= C ,
such that w has no neighbor of color C in Vt . For w to become a b-vertex of its color,
the color class C must be extended with a neighbor of w in the future, i.e. in Vt . The

4 This is similar to the algorithm of Wanke for Graph Coloring on graphs of bounded NLC-width [59].

123

Theory of Computing Systems

neighborhood of w in Vt is precisely NG(Q) ∩ Vt , therefore we can concisely model
this situation as color classC requiring to contain a vertex among the future neighbors
of Q. In this situation, we say that

color class C has demand to the future neighbors of Q.

The t-type records for each equivalence class Q of ∼t , if a color class contains
vertices of Q, or if it has demand to the future of Q, or none of the two. Note that
if a color class both contains a vertex from Q and has demand to the future of Q,
we already know that we can disregard the corresponding partial b-coloring: In the
corresponding color class, we cannot add any future neighbors of Q without creating
a coloring conflict, and if we do not add a future neighbor of Q, then there is some
color class whose partial b-vertex will never become a b-vertex.

Now, if we have a partial b-coloring in which every color class has a partial b-
vertex, and all demands have been fulfilled, meaning that there is no color class that
has demand to the future of some equivalence class of ∼t , then we know that we
actually have a b-coloring. Moreover, the number of t-types is 2O(w), so the resulting
algorithm runs in time n2

O(w)
(see above).

3.2 t-Types and t-Signatures

In this section we introduce the basic concepts that we alluded to in the above descrip-
tion, namely the notion of a t-type and of a t-signature, where t is some node in the
given branch decomposition. A t-type is meant to capture the necessary information of
a color class in a partial b-coloring of Gt . However, we cannot give the definition of a
t-type as a property of a vertex set alone: a color classC may have demand to the future
of an equivalence class, which is because there is a partial b-vertex of another color
C ′ �= C that has no neighbor of color C yet. Therefore, we first give the definition of
a t-type abstractly, i.e. absent of any partial b-coloring or color class, and then define
what it means for a color class to be of a certain t-type within a partial b-coloring.

The t-type is a pair of a bit that is meant to tell us whether or not a coloring contains
a partial b-vertex of that color, and a map that tells us for each equivalence class,
whether there is a vertex of the color in the equivalence class (via the value cont), or
if the color has demand to the future neighbors of the equivalence class (via the value
dem), or none of the two (via the value none).

Definition 3.1 (t-Type) Let G be a graph with rooted branch decomposition (T ,L)

and let t ∈ V (T). A t-type is a pair (φ, ξ) of a map φ : Qt/∼t → {none, cont,dem}
and a bit ξ ∈ {0, 1}. We denote the set of all t-types by typest .

Before we proceed, we observe an upper bound on the number of t-types. For the
component ξ , we clearly only have two choices, and for each equivalence class Q
of ∼t , the entry φ(Q) takes one of three values.

Observation 3.1 Let (T ,L) be a rooted branch decomposition of module-width w =
mw(T ,L). For each t ∈ V (T), |typest | = 2 · 3|Vt/∼t | ≤ 2 · 3w.

123

Theory of Computing Systems

We now define what it means for a color class to be of a certain t-type within a
partial b-coloring of Gt . This is basically a formalization of the above discussion, but
it holds one aspect that is of importance of the algorithm and the arguments to follow.
We discuss this after the following definition, which is illustrated in Fig. 3.

Definition 3.2 Let G be a graph with rooted branch decomposition (T ,L) and let
t ∈ V (T). Let (C, B) be a partial b-coloring of Gt , let C ∈ C be a color class, and let
τ = (φ, ξ) ∈ typest be a t-type. We say that C has t-type τ in (C, B) if

1. ξ = |C ∩ B| and
2. for each Q ∈ Vt/∼t ,

(a.) if Q ∩C �= ∅, and there is no v ∈ (B \C) ∩ Q such that N (v) ∩C = ∅, then
φ(Q) = cont,

(b.) if Q ∩C = ∅ and there exists some v ∈ (B \C)∩ Q such that N (v)∩C = ∅,
then φ(Q) = dem, and

(c.) if Q ∩ C = ∅, and there is no v ∈ (B \C) ∩ Q such that N (v) ∩ C = ∅, then
φ(Q) = none.

The reader may have observed that 2 does not cover all the possibilities. The situ-
ation that is not covered is when Q ∩C �= ∅ and there is some v ∈ (B \C) ∩ Q such
that N (v) ∩ C = ∅. A priori, we can of course not exclude this as a possibility, but
there is a simple reason that partial b-colorings that contain a color class in which this
situation arises can be disregarded: For the vertex v to become a b-vertex for its color,
we have to add a future neighbor of Q to C ; but since Q already contains a vertex
from C this means that the resulting set is not independent anymore.

We turn to the definition of a t-signature which again is first given in abstract terms.

Definition 3.3 (t-Signature) Let G be a graph with rooted branch decomposition
(T ,L), and let t ∈ V (T). A t-signature is a map sigt : typest → {0, 1, . . . , k} such
that

∑
τ∈typest sigt (τ) = k.

Fig. 3 Illustration of the definition of a color class being of a certain t-type inside a partial b-coloring of Gt .
The large square vertices are partial b-vertices for their color. The type of the red (r) color in the coloring is
as follows. Since it has a b-vertex (the one in Q2), we have that ξ = 1. Since Q2 and Q4 have red vertices,
φ(Q2) = φ(Q4) = cont. Q1 and Q3 do not have red vertices. Q1 contains the b-vertex of color yellow
(y), but this vertex already has a red neighbor. Therefore, φ(Q1) = none. Finally, Q3 has the b-vertex
of color blue (b), and this vertex does not have a red neighbor yet. Therefore, there has to be a red vertex
among the future neighbors of Q3. Hence, φ(Q3) = dem

123

Theory of Computing Systems

The following bound on the number of t-signatures immediately follows from
Observation 3.1: for each t-type, the function takes one of k + 1 ≤ n + 1 values.

Observation 3.2 Let G be a graph on n vertices and (T ,L) be one of its branch
decompositions of module-width w = mw(T ,L). For each t ∈ V (T), there are at
most n2

O(w)
many t-signatures.

A t-signature represents a partial b-coloring (C, B) ofGt if for each t-type it counts
correctly how many color classes in C are of that t-type in (C, B).

Definition 3.4 Let G be a graph with rooted branch decomposition (T ,L), and let
t ∈ V (T). Let furthermore sigt be a t-signature and (C, B) a partial b-coloring in Gt .
We say that sigt represents (C, B) if for each t-type τ ∈ typest , there are precisely
sigt (τ) color classes in (C, B) that have t-type τ in (C, B).

We call a partial b-coloring of Gt representable if there is a t-signature that repre-
sents it.

Since throughout this section, we only consider b-colorings and partial b-colorings
with k (possibly empty) colors, Definitions 3.3 and 3.4 together imply that if a partial
b-coloring is represented by a t-signature, then necessarily each of its color classes
has a t-type: Definition 3.3 requires that for a t-signature sigt , the sum of sigt (τ) over
all t-types τ is k, and any partial b-coloring in Gt has k colors.

We would like to remark once more that not all partial b-colorings of Gt can be
represented by a t-signature, since there is a case that a color class cannot be described
by a t-type. In this case the partial b-coloring is not representable. Conversely, we can
make the following observation about representable partial b-colorings which is useful
in several proofs and sometimes used without explicit reference.

Observation 3.3 Let G be a graph with rooted branch decomposition (T ,L), and let
t ∈ V (T). Let (C, B) be a representable partial b-coloring of Gt , and let C ∈ C be a
color class whose t-type in (C, B) is (φ, ξ). If for some equivalence class Q ∈ Vt/∼t ,
Q ∩ C �= ∅, then φ(Q) = cont.

3.3 Compatibility

Let t ∈ V (T) \ L(T) be an internal node of the given rooted branch decomposition,
let r and s be its children, and let (Ht , ηr , ηs) be the operator of t . In our algorithm,
we want to combine information about partial b-colorings of Gr and Gs to obtain
information about partial b-colorings of Gt . We will try to obtain a color class of a
partial b-coloring of Gt by taking the union of a color class Cr of a partial b-coloring
of Gr and a color class Cs of a partial b-coloring of Gs .

However, in some cases this is not possible. For instance, when Cr contains ver-
tices from some equivalence class Qr ∈ Vr/∼r and Cs contains vertices from some
equivalence class Qs ∈ Vs/∼s , and in the graph Ht of the operator of t , we have that
Qr Qs ∈ E(Ht). Then, in Gt all edges between the set Qr and Qs are present which
means that Cr ∪ Cs is not an independent set in Gt .

Another condition is necessary to ensure that several demands that have to be met
at node t are indeed met. Let Ct = Cr ∪Cs and suppose there is an equivalence class

123

Theory of Computing Systems

Qt ∈ Vt/∼t that contains a vertex of Ct . Suppose furthermore that there is another
equivalence class Qr ∈ Vr/∼r contained in the bubble of Qt such thatCr has demand
to the future neighbors of Qr . Then, this demand must be fulfilled by a neighbor of
Qr in Cs for otherwise, the equivalence class Qt both contains vertices of Ct and Ct

has demand to the future neighbors of Qt . The resulting partial b-coloring would not
be representable.

The following definition formalizes this discussion and projects it down to the ‘type
level’; we illustrate this notion in Fig. 4.

Definition 3.5 (Compatible types) LetG be a graphwith rooted branch decomposition
(T ,L). Let furthermore t ∈ V (T) \ L(T) with children r and s, and let (Ht , ηr , ηs)

be the operator of t . Let (φr , ξr) ∈ typesr and (φs, ξs) ∈ typess . We say that (φr , ξr)

and (φs, ξs) are compatible if the following conditions hold.

1. ξr + ξs ≤ 1.
2. There is no pair Qr ∈ Vr/∼r , Qs ∈ Vs/∼s such that Qr Qs ∈ E(Ht) and

φr (Qr) = φs(Qs) = cont.
3. For each Q ∈ Vt/∼t such that there exists a p ∈ {r , s} and a Qp ∈ η−1

p (Q) with
φp(Qp) = cont, the following holds.

(a) For all Qr ∈ η−1
r (Q) with φr (Qr) = dem, there is a Qs ∈ Vs/∼s with

φs(Qs) = cont and Qr Qs ∈ E(Ht).
(b) Similarly, for all Qs ∈ η−1

s (Q) with φs(Qs) = dem, there is a Qr ∈ Vr/∼r

with φr (Qr) = cont and QsQr ∈ E(Ht).

Given a pair of a color class Cr of a partial b-coloring of Gr and a color class Cs

of a partial b-coloring of Gs whose types in the respective colorings are compatible,
Cr ∪Cs , considered as a color class in a partial b-coloring of Gt , has a fixed type. We
prove this later in the lemmas that attest the correctness of the algorithm, butwe already
describe the construction of this type here, mainly since the notion of compatibility of
signatures that we give below, requires this ‘merge type’.

Definition 3.6 (Merge Type) Let G be a graph with rooted branch decomposition
(T ,L). Let furthermore t ∈ V (T) \ L(T) with children r and s, and let (Ht , ηr , ηs)

dem

none

cont

cont

none

dem

none

none

cont

none

Fig. 4 Illustration of Definition 3.5. The shaded area shows a bubble and the labels on the equivalence
classes correspond to type labelings. For the left hand side, note that between a pair of classes that are both
labeled ‘cont’, there can be no edge in the operator. Moreover, since the bubble contains a class labeled
cont and one labeled dem, the demand of the latter has to be fulfilled at this node, i.e. there has to be an
edge from this class to a ‘cont’-class. The right side shows the situation when the ‘cont’-class in the bubble
is changed to ‘none’, in which case the dotted edges may or may not be present in the operator.

123

Theory of Computing Systems

be the operator of t . Let ρ = (φr , ξr) ∈ typesr and σ = (φs, ξs) ∈ typess be a
pair of compatible types. The merge type of ρ and σ , denoted bymerge(ρ, σ), is the
following t-type (φt , ξt).

1. ξt = ξr + ξs .
2. For each Q ∈ Vt/∼t :

(a) If for some p ∈ {r , s}, there exists a Qp ∈ η−1
p (Q)with φp(Qp) = cont, then

φt (Q) = cont.
(b) If 2a does not apply and for some p ∈ {r , s} there exists a Qp ∈ η−1

p (Q) with
φp(Qp) = dem and for o ∈ {r , s} \ {p} and all QpQo ∈ E(Ht) we have
φo(Qo) �= cont, then φt (Q) = dem.

(c) If neither 2a nor 2b applies, then φt (Q) = none.

Towards a notion of compatibility of signatures, we first define a structure we call
merge skeleton. Given a node t ∈ V (T) with children r and s, the merge skeleton is
an edge-labeled bipartite graph whose vertices are the r -types and the s-types, with
the merge type of a compatible pair of types ρ ∈ typesr , σ ∈ typess written on the
edge ρσ . Such an edge is meant to represent the fact that taking the union of a color
class Cr that has r -type ρ in a partial b-coloring of Gr with a color class Cs that has
s-type σ in a partial b-coloring of Gs results in a color class of t-type merge(ρ, σ)

in the partial b-coloring of Gt that results from merging the partial b-colorings of Gr

and Gs .

Definition 3.7 (Merge skeleton) Let G be a graph and (T ,L) one of its rooted branch
decompositions. Let t ∈ V (T) \ L(T) with children r and s. The merge skeleton of r
and s is an edge-labeled bipartite graph (J,m) where

– V (J) = typesr ∪ typess ,
– for all ρ ∈ typesr , σ ∈ typess , ρσ ∈ E(J) if and only if ρ and σ are compatible,
and

– m : E(J) → typest is such that for all ρσ ∈ E(J), m(ρσ) is the merge type of ρ

and σ .

Using the merge skeleton, we want to find out how to construct a t-signature of
a partial b-coloring of Gt that is obtained from a pair of a partial b-coloring for Gr

and one for Gs , knowing only their signatures. Any pair of an r -signature sigr and an
s-signature sigs can ‘flesh out’ the merge skeleton (J,m) of r and s, in the following
sense. We can obtain a map labeling the vertices of J that follows sigr on typesr and
sigs on typess . Then, an edge-labeling n of J with integers from {0, 1, . . . , k}, such
that for each vertex of J, the sum over its incident edges e of n(e) is equal to its vertex
label, produces a t-signature sigt . We can read off how many color classes of each
type there are from the edge labeling n. In fact, each t-signature can be produced in
such a way, as we prove below.

Definition 3.8 (Compatible signatures) Let (T ,L) be a rooted branch decomposition.
Let furthermore t ∈ V (T) \ L(T) with children r and s. Let sigt be a t-signature,
let sigr be an r -signature and sigs be a s-signature. We say that (sigt , sigr , sigs) is
compatible if there is a triple (J,m, n) such that (J,m) is the merge skeleton of r and
s, and n : E(J) → {0, 1, . . . , k} is a map with the following properties.

123

Theory of Computing Systems

1. For all p ∈ {r , s} and all π ∈ typesp,
∑

e∈E(J) : π∈e n(e) = sigp(π).
2. For all τ ∈ typest ,

∑
e∈E(J) : m(e)=τ n(e) = sigt (τ).

We first show thatwe can test efficientlywhether a triple of signatures is compatible.

Lemma 3.1 Let G be a graph on n vertices and let (T ,L) be one of its rooted branch
decomposition of module-width w = mw(T ,L). Let t ∈ V (T) \ L(T) with children
r and s. Let sigt be a t-signature, sigr be an r-signature, and sigs be an s-signature.

One can decide in time n2
O(w)

whether or not (sigt , sigr , sigs) is compatible.

Proof We first observe that the merge skeleton can be constructed in 2O(w) time,
where w = mw(T ,L): It is easy to see that given two types ρ ∈ typesr , σ ∈ typess ,
we can decide whether or not ρ and σ are compatible in time wO(1). Moreover,
by Observation 3.1, |typesr | ≤ 2O(w) and |typess | ≤ 2O(w), therefore we have to
check for (2O(w))2 = 2O(w) pairs of types if they are compatible, and if so, compute
their merge type. (This also implies that |E(J)| = 2O(w).) Computing a merge type
can be done in time wO(1) as well, simply by following the construction given in
Definition 3.6.

We brute-force all candidates for the labeling n. Given such a candidate, we can
verify in time2O(w) if it satisfies parts 1 and2of the definition of compatible signatures.
Since |E(J)| = 2O(w), a trivial upper bound on the number of such candidate labelings
is n2

O(w)
and therefore the claimed bound follows. ��

3.4 Merging and Splitting Partial b-Colorings

In this section we show that the notions introduced above work as desired, and the
technical lemmas we prove here will be the cornerstone of the correctness proof of
the resulting algorithm that we give later.

3.4.1 Bottom to Top

Lemma 3.2 Let G be a graph with rooted branch decomposition (T ,L) and let t ∈
V (T) \ L(T) be an internal node with children r and s. Let sigr be an r-signature,
sigs be an s-signature, and sigt be a t-signature such that:

– For all p ∈ {r , s}, there is a partial b-coloring (Cp, Bp) in G p that is represented
by sigp, and

– (sigt , sigr , sigs) is compatible.

Then, there is a partial b-coloring (Ct , Bt) of Gt that is represented by sigt .

Proof Let (J,m, n) be the structure witnessing that (sigt , sigr , sigs) is compatible.
We use Algorithm 1 to create the pair (Ct , Bt). We first show that (Ct , Bt) is indeed a
partial b-coloring of Gt , and then later that sigt represents (Ct , Bt).

Claim 3.1 (Ct , Bt) as constructed above is a partial b-coloring of Gt with k colors.

123

Theory of Computing Systems

Input : (Cr , Br), (Cs , Bs), J, and n as above
Output: (Ct , Bt), where Ct is a partition of Vt and Bt ⊆ Vt .

1 C′
r ← Cr , C′

s ← Cs , Ct ← ∅;
2 foreach ρ ∈ typesr , σ ∈ typess with ρσ ∈ E(J) do
3 Let x ← n(ρσ);
4 for i = 1, . . . , x do
5 Let Cr ∈ C′

r be of r -type ρ and Cs ∈ C′
s be of s-type σ ;

6 Ct ← Ct ∪ {Cr ∪ Cs };
7 C′

r ← C′
r \ {Cr }, C′

s ← C′
s \ {Cs };

8 return (Ct , Br ∪ Bs);

Algorithm 1Merging (Cr , Br) and (Cs, Bs) according to J and n.

Proof Since Cr is a partition of Vr and Cs is a partition of Vs , and each part of Cr
and Cs is used precisely once to obtain a part of Ct in Algorithm 1, it is clear by
Definition 3.8(1) that Ct is a partition of Vt . Together with Definition 3.8(2) and the
definition of a t-signature, this ensures that Ct has k parts.

We argue that each part C ∈ Ct is an independent set. Suppose for a contradiction
that C is not an independent set and let uv ∈ E(Gt) be an edge with u, v ∈ C . By
construction, there are Cr ∈ Cr and Cs ∈ Cs such that C = Cr ∪ Cs . Moreover, since
Cr andCs are color classes in a coloring, they are independent sets, so we may assume
that u ∈ Cr and v ∈ Cs (up to renaming). For all p ∈ {r , s}, let τp = (φp, ξp) be the
p-type of Cp in (Cp, Bp). Let furthemore Qr ∈ Vr/∼r be the equivalence class of
∼r containing u and Qs ∈ Vs/∼s be the equivalence class of ∼s containing v. This
means that φr (Qr) = φs(Qs) = cont. For u and v to be adjacent, the edge Qr Qs has
to be present in Ht . On the other hand, τrτs is an edge of the merge skeleton which
implies that τr and τs are compatible types; in which case Definition 3.5(2) forbids
the presence of this edge in Ht , a contradiction.

We have shown that Ct is a proper coloring of Gt , it remains to show that for all
C ∈ Ct , |C ∩ Bt | ≤ 1. Suppose for a contradiction that for some C ∈ Ct , |C ∩ Bt | > 1,
and let Cr ∈ Cr , Cs ∈ Cs be such that C = Cr ∪ Cs , as per Algorithm 1. Since for
all p ∈ {r , s}, (Cp, Bp) is a partial b-coloring of Gp, we have that |Cp ∩ Bp| ≤ 1,
and clearly Cr ∩ Bs = Cs ∩ Br = ∅. This means that |Cr ∩ Br | = |Cs ∩ Bs | = 1;
and in the r -type (φr , ξr) of Cr in (Cr , Br) and the s-type (φs, ξs) of Cs in (Cs, Bs),
ξr = ξs = 1. But again, (φr , ξr) and (φs, ξs) are compatible, so by Definition 3.5(1),
ξr + ξs ≤ 1, a contradiction. ��

To prove the lemma, it remains to show that the t-signature sigt represents (Ct , Bt).
This is shown via the following claim, with Definition 3.8 ensuring that the numbers
work out.

Claim 3.2 Let Cr ∈ Cr and Cs ∈ Cs , and let τr = (φr , ξr) be the r-type of Cr in
(Cr , Br), and let τs = (φs, ξs) be the s-type of Cs in (Cs, Bs), such that Ct = Cr ∪Cs

is a color class in (Ct , Bt). Then, the t-type of Ct in (Ct , Bt) ismerge(τr , τs).

Proof First observe that if Ct = Cr ∪Cs is a color class in (Ct , Bt), then τr and τs are
compatible by construction. Let τt = (φt , ξt) = merge(τr , τs). We have to argue that
the t-type of Ct in (Ct , Bt) is indeed (φt , ξt).

123

Theory of Computing Systems

For the first item of the definition of the merge type, we observe that ξr + ξs =
|Cr ∩ Br | + |Cs ∩ Bs | and since Bt = Br ∪ Bs and Ct = Cr ∪ Cs , we have ξt =
ξr + ξs = |Ct ∩ Bt |.

Now let Q ∈ Vt/∼t . Suppose that φt (Q) = cont; we have to argue thatCt ∩Q �= ∅
and that there is no vertex v ∈ (Bt \Ct)∩Qwith N (v)∩Ct = ∅. By the definition of the
merge type, there is some p ∈ {r , s} such that there is a Qp ∈ Vp/∼p with ηp(Qp) =
Q andφp(Qp) = cont. SinceCp has p-type (φp, ξp) in (Cp, Bp),Cp∩Qp �= ∅which
implies that Ct ∩ Q �= ∅. Now suppose that there is some vertex v ∈ (Bt \ Ct) ∩ Q
with N (v)∩Ct = ∅. This means that there is some p ∈ {r , s} and some Qp ∈ η−1

p (Q)

such that v ∈ Qp, and N (v)∩Cp = ∅. Since Cp has a p-type in (Cp, Bp), this means
that Cp ∩ Qp = ∅ and therefore φp(Qp) = dem. Assume wlog that p = r . Since
(φr , ξr) and (φs, ξs) are compatible, we have by Definition 3.5(3) that there is some
Qs ∈ Vs/∼s with φs(Qs) = cont and Qr Qs ∈ E(Ht). But this implies that v has a
neighbor in Cs ⊆ Ct , a contradiction.

Now suppose that φt (Q) = dem. By the definition of the merge type, we have that
in this case:

1. For any p ∈ {r , s} and Qp ∈ Vp/∼p with ηp(Qp) = Q, φp(Qp) �= cont.
2. We may assume (up to renaming) that for some Qr ∈ η−1

r (Q), φr (Qr) = dem,
3. and that for all Qr Qs ∈ E(Ht), φs(Qs) �= cont.

From item 1 we derive that Ct ∩ Q = ∅. Next, item 2 implies that there is a vertex
v ∈ (Br \ Cr) ∩ Qr with N (v) ∩ Cr = ∅, and by item 3, we can conclude that v has
no neighbor in Cs either. Therefore, v has no neighbor in Ct , as required.

Finally, suppose thatφt (Q) = none. Again then there is no Qp ∈ η−1(Q) such that
φp(Qp) = cont. If for all p ∈ {r , s} and all Qp ∈ η−1

p (Q), φp(Qp) = none, then it
is clear that Ct ∩ Q = ∅, and that there is no v ∈ (Bt \ Ct) ∩ Q with N (v) ∩ C = ∅.
So suppose (up to renaming) that for some Qr ∈ η−1

r (Q), φr (Qr) = dem, implying
that there is a vertex v ∈ (Br \ Cr) ∩ Qr with N (v) ∩ Cr = ∅. Since we did not
land in case 2b of the definition of a merge type, there is some Qr Qs ∈ E(Ht) such
that φs(Qs) = cont, which means v has a neighbor in Cs ⊆ Ct . Since this holds for
any such Qr (and Qs), we can conclude that there is no vertex in (Bt \ Ct) ∩ Q with
N (v) ∩ Ct = ∅. This concludes the proof. ��

This concludes the proof of Lemma 3.2. ��

3.4.2 Top to Bottom

Lemma 3.3 Let G be a graph with rooted branch decomposition (T ,L) and let t ∈
V (T) \ L(T) be an internal node with children r and s. Let sigt be a t-signature, and
suppose there is a partial b-coloring (Ct , Bt) of Gt which is represented by sigt . Then,
there exists an r-signature sigr and an s-signature sigs such that

– for all p ∈ {r , s} there is a partial b-coloring (Cp, Bp) represented by sigp, and
– (sigt , sigr , sigs) is compatible.

Proof For all p ∈ {r , s}, we let Cp := Ct |Vp and Bp := Bt ∩ Vp. It is clear that
(Cp, Bp) is a partial b-coloring of Gp.

123

Theory of Computing Systems

Claim 3.3 For all p ∈ {r , s}, (Cp, Bp) is represented by some p-signature.

Proof Suppose the claim is false for p = r . Then there is some Cr ∈ Cr that has no
r -type in (Cr , Br), meaning that for some Qr ∈ Vr/∼r , Qr ∩ Cr �= ∅ and there is a
vertex v ∈ (Br \Cr)∩Qr with N (v)∩Cr = ∅. By construction, there is aCt ∈ Ct with
Ct = Cr ∪Cs for someCs ⊆ Vs . Since (Ct , Bt) is representable, and ηr (Qr)∩Ct �= ∅,
we know that N (v) ∩ Ct �= ∅ (otherwise, Ct has no t-type in (Ct , Bt)). Therefore,
N (v) ∩ Cs �= ∅. But since all vertices in Qr are twins with respect to Vs , and since
Cr ∩ Qr �= ∅ and v ∈ Qr , this means that there is an edge between some vertex in Cr

and some vertex in Cs , contradicting the fact that Ct is an independent set. ��
By the previous claim, we know that (Cr , Br) is represented by some r -signature

sigr and that (Cs, Bs) is represented by some s-signature sigs . It remains to show that
(sigt , sigr , sigs) is compatible. To be able to argue this, we show that each t-type with
non-zero value in sigt appears as an edge label of the merge skeleton (J,m) of r and
s, in particular that it is the merge type of the r -type and s-type labeling the endpoints
of this edge.

Claim 3.4 Let Ct ∈ Ct be a color class whose t-type in (Ct , Bt) is τt = (φt , ξt). Let
τr = (φr , ξr) be the r-type of Cr := Ct ∩ Vr in (Cr , Br), and let τs = (φs, ξs)

be the s-type of Cs := Ct ∩ Vs in (Cs, Bs). Then, τr and τs are compatible and
τt = merge(τr , τs).

Proof We first show that τr and τs are compatible. We know that ξt ∈ {0, 1} and that
ξt = 1 if and only if |Ct ∩ Bt | = 1 if and only if either |Cr ∩ Br | = 1 or |Cs ∩ Bs | = 1
if and only if either ξr = 1 or ξs = 1, therefore ξr + ξs ≤ 1, meaning that condition 1
of the definition of compatibility is satisfied. Since Ct is an independent set, there are
no edges between Cr and Cs . This means that for any pair Qr ∈ Vr/∼r , Qs ∈ Vs/∼s

with φr (Qr) = φs(Qs) = cont, Qr Qs /∈ E(Ht), otherwise there would be an edge
between Cr and Cs , so condition 2 is satisfied as well.

Now suppose that Definition 3.5(3) is violated. We may assume (up to renaming)
that there is some Q ∈ Vt/∼t with the following properties. There is a Q∗

r ∈ η−1
r (Q)

with φr (Q∗
r) = cont, meaning that Cr ∩ Q∗

r �= ∅ and so Ct ∩ Q �= ∅. Moreover,
there is some Qr ∈ η−1

r (Q) with φr (Qr) = dem, where for any Qr Qs ∈ E(Ht),
φs(Qs) �= cont. This means that there is a vertex v ∈ (Br \ Cr) ∩ Qr such that
N (v) ∩ Cr = ∅, and moreover that N (v) ∩ Cs = ∅, implying that N (v) ∩ Ct = ∅.
Note that v ∈ (Bt \Ct)∩ Qt . In other words, we have argued that Q is an equivalence
class of ∼t such that Ct ∩ Q �= ∅ and there is a vertex v ∈ (Bt \ Ct) ∩ Q such that
N (v)∩Ct = ∅. But this means that the color class Ct cannot have a t-type in (Ct , Bt),
so (Ct , Bt) was not representable, a contradiction.

Now we argue that τt , the t-type of Ct in (Ct , Bt), is indeed the merge type of τr
and τs . We already argued above that ξt = ξr + ξs . Now let Q ∈ Vt/∼t , and suppose
that φt (Q) = cont. This means that Q ∩ Ct �= ∅. We may assume (up to renaming)
that u ∈ Qr ∩Cr for some Qr ∈ η−1

r (Q). Since (Cr , Br) is representable by Claim 3.3
this already implies that φr (Qr) = cont, therefore φt (Q) is set in accordance with the
definition of the merge type. Now suppose that for some Q ∈ Vt/∼t , φt (Q) = dem.
Then, Q ∩ Ct = ∅ and there is some v ∈ (Bt \ Ct) ∩ Q such that N (v) ∩ Ct = ∅.

123

Theory of Computing Systems

First, since Q ∩ Ct = ∅, this immediately implies that for all p ∈ {r , s} and all
Qp ∈ η−1

p (Q), Qp ∩ Cp = ∅ and therefore φp(Qp) �= cont. Now for p ∈ {r , s}, let
Qp be the equivalence class of ∼p containing v. We may assume (up to renaming)
that p = r . Clearly, ηr (Qr) = Q, therefore Qr ∩Cr = ∅. Moreover, N (v) ∩Cr = ∅,
and we have that φr (Qr) = dem. Now suppose for a contradiction that for some
Qr Qs ∈ E(Ht), φs(Qs) = cont. This implies that N (v) ∩ Cs �= ∅, and therefore
N (v) ∩ Ct �= ∅, a contradiction. We have shown that also in this case, φt (Q) is set in
accordance with the definition of the merge type.

Finally, suppose that φt (Q) = none. Then, Q ∩ Ct = ∅ and there is no v ∈
(Bt \ Ct) ∩ Q with N (v) ∩ Ct = ∅. This immediately implies that for all p ∈ {r , s}
and all Qp ∈ η−1(Q), φp(Qp) �= cont. Suppose that for some p ∈ {r , s} and some
Qp ∈ η−1

p (Q), φp(Qp) = dem, and assume (up to renaming) that p = r . This means
that there is some vertex u ∈ (Br \Cr) ∩ Qr with N (u) ∩Cr = ∅. On the other hand,
we know that N (u) ∩ Ct �= ∅, so u has a neighbor in Cs . This means that there is a
Qr Qs ∈ E(Ht) such that Qs ∩ Cs �= ∅, meaning that φs(Qs) = cont. Therefore,
φt (Q) is also set in accordance with the definition of the merge type. ��

To finish the proof, we have to construct an edge labeling n : E(J) → {0, 1, . . . , k}
satisfying the conditions of Definition 3.8. The previous claim tells us that we can
construct n in a straightforward way. Initially, set n(τt) = 0 for all τt ∈ typest .
For each color class Ct ∈ Ct whose t-type in (Ct , Bt) is τt , we know that the r -
type of Cr := Ct ∩ Vr , say τr , and the s-type of Cs := Ct ∩ Vs , say τs , are such
that τt = m(τrτs), i.e. τt appears as the label of the edge between τr and τs in J.
We therefore increase the value of n(τrτs) by one. Once we did this for all color
classes of (Ct , Bt), the tuple (J,m, n) satisfies the requirements of Definition 3.8, so
(sigt , sigr , sigs) is compatible. ��

3.5 The Algorithm

As alluded to above, the algorithm is bottom-up dynamic programming along the given
rooted branch decomposition (T ,L) of G. First, we define the table entries stored at
each node.

Definition of the table entries For a node t ∈ V (T) and a t-signature sigt , we let
tab[t, sigt] = 1 if and only if there exists a partial b-coloring of Gt that is represented
by sigt .

We now show that if all table entries have been computed correctly, then the solu-
tion can be read off the table entries stored at the root r of the given rooted branch
decomposition. Observe that since Vr = V (G) and therefore Vr = ∅, the equivalence
relation ∼r has one equivalence class, namely V (G).

Lemma 3.4 Let G be a graph with rooted branch decomposition (T ,L) and let r ∈
V (T) be the root of T . Let ρ be the r-type (φr, ξr) with ξr = 1 and φr(V (G)) = cont.
Let sigr be the r-signature letting sigr(ρ) = k. Then, G has a b-coloring with k colors
if and only if tab[r, sigr] = 1.

123

Theory of Computing Systems

Proof Suppose that G has a b-coloring (C, B) with k colors. Then, (C, B) is also a
partial b-coloring; but since all vertices in B are already b-vertices for their color, all
demands have been fulfilled. This means that (C, B) is representable by an r-signature,
denote this r-signature by sig. We argue that sig = sigr, in particular that all color
classes C ∈ C are of type ρ = (φr, ξr) in (C, B) as in the statement of the lemma. Let
C ∈ C be any color class. Since (C, B) is a b-coloring, B contains a b-vertex v of C ,
therefore also C �= ∅ which implies that the r-type of C is indeed ρ. As this reasoning
applies to all k color classes of (C, B), we can conclude that tab[r, sigr] = 1.

Now suppose for the other direction that tab[r, sigr] = 1. Then there is a partial
b-coloring (C, B) of Gr = G with k colors represented by sigr. Since (φr, ξr) is the
type of each color class and ξr = 1, each color class has a partial b-vertex; since no
color class has demand to the future neighbors of V (G) by φr, each partial b-vertex
is indeed a b-vertex for its color. Therefore, C is a b-coloring of G with k colors. ��

We describe how to compute the table entries, starting with the leaves of T .

Leaves of T Let t ∈ V (T) be a leaf node of T and let v ∈ V (G) be the vertex such
that L(v) = t . We show how to set the table entries tab[t, ·]. The partial b-colorings
of Gt = ({v},∅) we have to consider are the following. The vertex v is colored with
one of the k colors, and it is either the partial b-vertex for its color or not.

The t-signatures representing these colorings look as follows. Observe that ∼t has
precisely one equivalence class, namely {v}.We let φcont be themapwithφcont({v}) =
cont. In the case that v is not the partial b-vertex of its color, we have

– one color of type (φcont, 0), and
– k − 1 colors of type (φ∅, 0) with φ∅({v}) = none.

We denote this signature by sig1, i.e. we let sig1((φcont, 0)) = 1 and sig1((φ∅, 0)) =
k − 1.

In the case that v is the partial b-vertex of its color class, then the remaining k − 1
color classes have demand to the future neighbors of {v}, so that v eventually becomes
the b-vertex of its color. Therefore we have

– one color of type (φcont, 1), and
– k − 1 colors of type (φdem, 0) with φdem({v}) = dem.

Wedenote this signature by sig2, i.e.we let sig2((φcont, 1)) = 1 and sig2((φdem, 0)) =
k − 1. To summarize, for each t-signature sig, we let

tab[t, sig] :=
{
1, if sig ∈ {sig1, sig2}
0, otherwise

123

Theory of Computing Systems

Next, the internal nodes of T .

Internal nodes of T Now let t ∈ V (T) \ L(T) with children r and s. For each t-
signature sigt , we let tab[t, sigt] = 1 if and only if there exists a pair (sigr , sigs) of
an r -signature sigr and an s-signature sigs such that

1. tab[r , sigr] = 1 and tab[s, sigs] = 1, and
2. (sigt , sigr , sigs) is compatible.

Equipped with the lemmas of the previous sections, we can prove correctness of
the above algorithm.

Lemma 3.5 For each t ∈ V (T) and t-signature sigt , the above algorithm computes
the table entry tab[t, sigt] correctly.
Proof We prove the lemma by induction on the height of t . For the base case, when t
is a leaf, it is easily verified. From now on we may assume that t ∈ V (T) \L(T) with
children r and s.

First, suppose that the algorithm set tab[t, sig] = 1. This means that there is a pair
(sigr , sigs) of an r -signature sigr and an s-signature sigs such that tab[r , sigr] = 1
and tab[s, sigs] = 1 and (sigt , sigr , sigs) is compatible. By induction, we know that
there is a partial b-coloring of Gr represented by the r -signature sigr and a partial
b-coloring of Gs represented by the s-signature sigs . Then, by Lemma 3.2, there is a
partial b-coloring of Gt represented by the t-signature sigt .

Conversely, suppose that there is a partial b-coloring of Gt represented by the t-
signature sigt . Then, byLemma3.3, there is a partialb-coloringofGr representedby an
r -signature sigr and a partial b-coloring ofGs represented by an s-signature sigs , such
that (sigt , sigr , sigs) is compatible. By induction, the algorithm set tab[r , sigr] = 1
and tab[s, sigs] = 1, and therefore, by the above description, it set tab[t, sigt] = 1. ��

Wewrap up. By Lemma 3.5, the algorithm computes all table entries correctly, and
by Lemma 3.4, the solution to the instance can be determined upon inspecting the
table entries associated with the root of the given branch decomposition. Correctness
of the algorithm follows.

Regarding the runtime, we observe the following. Given an n-vertex graph with
rooted branch decomposition (T ,L) of module-width w = mw(T ,L), we have that
|V (T)| = O(n). (T is a full binary tree on n leaves, so |V (T)| = 2n − 1.) Let
t ∈ V (T). If t is a leaf node, then computing the table entries tab[t, ·] takes constant
time. If t is an internal node, then by Observation 3.2, we have to compute n2

O(w)
table

entries. Assume by induction that the table entries associated with the children of t

have been computed. For each t-signature sigt we have to try for
(
n2

O(w)
)2 = n2

O(w)

pairs of one signature per child whether or not they form a compatible triple together
with sigt . For each triple, this can be done in time n2

O(w)
by Lemma 3.1. Therefore,

the overall runtime of the algorithm is n2
O(w)

.

123

Theory of Computing Systems

Theorem 3.1 There is an algorithm that solves b-Coloring in time n2
O(w)

, where n
denotes the number of vertices of the input graph, and w denotes the module-width of
a given rooted branch decomposition of the input graph.

3.6 Fall Coloring

Recall that a fall coloring is a special type of b-coloring where every vertex is a b-
vertex for its color. In other words, it is a partition of the vertex set of a graph into
independent dominating sets. We adapt our algorithm for b-Coloring on graphs of
bounded clique-width to solve Fall Coloring, and therefore show that the latter
problem is as well solvable in time n2

O(w)
, where w denotes the clique-width of a

given decomposition of the input graph.

Adaptation of the b-COLORING Algorithm

Wenow show how to adapt the algorithm of Theorem 3.1 to solve the Fall Coloring

problem in time n2
O(w)

as well. This adaptation in some sense simplifies the algorithm
for b-Coloring, since we do no have to keep track of whether or not a color class
has a b-vertex in a partial coloring; every vertex has to be a b-vertex. Now, if we
can construct a coloring such that each color class is nonempty, and each vertex is a
b-vertex for its color, then clearly we have a fall coloring.With small modification, the
mechanics of our algorithm for b-Coloring allow for checking if there is a coloring
with this property. The main difference will be in the definition of the type of a color
class.

Let (C1, . . . ,Ck) be a proper coloring of Gt for some node t , andCi andC j be two
distinct color classes. If for some Q ∈ Vt/∼t , Ci ∩ Q = ∅, and there is any vertex
v j ∈ C j such that N (v j) ∩ Ci = ∅, then Ci has demand to the future neighbors of
Q: the vertex v j needs to become a b-vertex of color j , and since it has no neighbor
in color class i so far, one of its future neighbors (equivalently, a future neighbor of
equivalence class Q), has to receive color i .

The definition of a t-fall type can be obtained from the definition of a t-type by
dropping the bit ξ which becomes unnecessary in the context of Fall Coloring.

The definition of a color class being of a certain t-fall type becomes the following.

Definition 3.9 [t-Fall-type] Let G be a graph with rooted branch decomposition
(T ,L), and let t ∈ V (T). A t-fall type is a map φ : Vt/∼t → {none, cont,dem}.

Let C = (C1, . . . ,Ck) be a proper coloring of Gt , and let φ be a t-fall type. For
i ∈ {1, . . . , k}, we say that Ci has t-fall type φ in C if for each Q ∈ Vt/∼t ,

1. if Q ∩ Ci �= ∅ and for all v ∈ Q \ Ci , N (v) ∩ Ci �= ∅, then φ(Q) = cont,
2. if Q∩Ci = ∅ and there is a v ∈ Q \Ci with NGt (v)∩Ci = ∅, then φ(Q) = dem,

and
3. φ(Q) = none, otherwise.

We again restrict ourselves to finding (partial) colorings that are representable, in
the sense that there is no color class that both intersects an equivalence class and

123

Theory of Computing Systems

has demand to its future neighbors. In complete analogy, we define a t-signature as a
function counting the number of color classes of each t-fall type.

We say that two fall-types are compatible, if they satisfy parts 2 and 3 of Defini-
tion 3.5, the definition of compatible types in the case of b-Coloring. Part 1 simply
disappears since we do not have to keep track of whether or not a color class contains
a partial b-vertex. With this in mind, the technical arguments given in Section 3.4 go
through.

The definition of the table entries is analogous as well, and by an argument parallel
to the proof of Lemma 3.4, we can conclude that this information is sufficient to solve
the problem.

We discuss the resulting algorithm. For the leaf nodes, we only have to consider
colorings with one color class whose fall-type is φv({v}) = cont and k − 1 color
classes whose fall-type is φdem({v}) = dem. This is because in any fall-coloring of
G, the vertex v has to be a b-vertex for its color. The computation of the internal nodes
remains the same. A correctness proof of the algorithm can now be given in the same
way as in the proof of Lemma 3.5, and the discussion of the runtime of the algorithm
still goes through. We have the following theorem.

Theorem 3.2 There is an algorithm that solves Fall Coloring in time n2
O(w)

, where
n denotes the number of vertices of the input graph, and w denotes the module-width
of a given rooted branch decomposition of the input graph.

Hardness

We now show that the runtime of the algorithm from Theorem 3.2 is optimal in some
sense. Specifically, we give a reduction that proves the same lower bounds as the
ones we obtained for b-Coloring. Recall again that linear module-width and linear
clique-width can be used interchangeably in this setting (Theorem 2.1).

Proposition 3.2 The Fall Coloring problem on graphs on n vertices parameterized
by the module-width w of the input graph is W[1]-hard and cannot be solved in time
n2

o(w)
, unless ETH fails. Moreover, the hardness holds even when a linear branch

decomposition of width w is provided.

Proof We give a reduction from Graph Coloring parameterized by the module-
widthw of the input graph which isW[1]-hard and has no n2o(w)

-time algorithm under
ETH [23, 24]. Given an instance (G, k) construct a instance (H , k) of Fall Coloring

as follows. We obtain H from G by adding, for each vertex v ∈ V (G), a clique Xv on
k − 1 vertices to the graph, and making Xv complete to v.

If H has a fall coloring with k colors, then clearly this is a proper coloring ofG with
k colors, since G is an induced subgraph of H . Suppose G has a proper coloring with
k colors. For each vertex v ∈ V (G), we can bijectively assign the k − 1 remaining
colors (i.e. all colors except the one appearing on v) to the vertices of Xv . The coloring
constructed thisway is a fall coloring of H with k colors: First, we immediately observe
that the coloring is proper. Since we started from a proper coloring of G, there is no
monochromatic edge in G. Since we colored the vertices of each Xv bijectively with

123

Theory of Computing Systems

all colors except the one appearing on v, and since NH (Xv) ∩ V (G) = {v}, we did
not introduce any monochromatic edge either. It remains to argue that each vertex of
H is a b-vertex for its color. For each v ∈ V (G), we have that v is a b-vertex since the
remaining k − 1 colors appear on Xv . For each u ∈ Xv , we have that u is a b-vertex
since it sees k − 2 colors on Xv \ {u}, plus the color of v; since Xv ∪ {v} is a clique,
all of these colors are mutually distinct.

The size of H is polynomial in the size of G, and it is clear that adding the cliques
Xv did not increase the module-width of G. ��

4 Conclusion

In this work, we gave an XP-algorithm for b-Coloring parameterized by the clique-
width of a given decomposition of the input graph, and an FPT-algorithmparameterized
by the vertex cover number. This initiated the study of structural parameterizations of
the b-Coloring and b- Chromatic Number problems. The most prominent param-
eter sitting between clique-width and the vertex cover number is arguably the treewidth
of a graph. Since any graph of bounded treewidth has bounded clique-width, our algo-
rithm implies that b-Coloring parameterized by treewidth is in XP. We therefore ask,
is b-Coloring parameterized by the treewidth of the input graph FPT or W[1]-hard?

It would be interesting to obtain an FPT-algorithm for b-Coloring parameterized
by the vertex cover number vc whose runtime is tight under ETH. Lokshtanov et
al. [46] showed that Graph Coloring has no 2o(vc log vc) · nO(1) time algorithm
unless ETH fails, and by the same argument5 given in Proposition 3.1, this rules out
2o(vc log vc) ·nO(1) time algorithms for b-Coloring under ETH. We therefore ask if the
runtime of 2O(vc2) · nO(1) in Corollary 2.1 can be improved to 2O(vc log vc) · nO(1).

There are two main approaches for solving Graph Coloring parameterized by
clique-width, one being efficient when the number of colors is small [42], and the
other being efficient when the number of colors is large [21, 59]. Our algorithm for
b- Coloring falls in the latter category. It would be interesting to obtain an efficient
algorithm for b-Coloring parameterized by clique-width when the number is small,
with a running time that is tight under the Strong Exponential Time Hypothesis as
it was done for Graph Coloring by Lampis [42]. Moreover, Courcelle et al. [14]
recently gave an algorithm that unifies both approaches into a single algorithm; is the
same possible for b-Coloring?

Acknowledgements We would like to thank the anonymous reviewers for many valuable suggestions that
improved this work. We are particularly grateful for the suggestion to replace our initial vertex cover based
algorithm and the use of Courcelle’s Theorem by a single explicit DP algorithm on graphs of bounded
tree-width. This led to a cleaner and more precise presentation of the result on chordal graphs as well as an
improved algorithm parameterized by vertex cover.

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).

5 Noting that we may assume that the number of colors is always linearly bounded in the vertex cover
number; so adding the clique does not increase the number of colors in a prohibitive way.

123

Theory of Computing Systems

Declaration

Conflicts of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aboulker, P., Bonnet, É., Kim, E.J., Sikora, F.: Grundy coloring & friends, half-graphs, bicliques. In:
STACS 2020, LIPIcs, vol. 154, pp. 58:1–58:18 (2020)

2. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory. Ser. B 41, 182–208 (1986)
3. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y.: Grundy distinguishes treewidth from

pathwidth. In: ESA 2020, LIPIcs, vol. 173, pp. 14:1–14:19 (2020)
4. Blair, J.R., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph theory and sparse

matrix computation, pp. 1–29. Springer, (1993)
5. Bonomo, F., Durán, G., Maffray, F., Marenco, J., Valencia-Pabon, M.: On the b-coloring of cographs

and P4-sparse graphs. Graphs and Combinatorics 25(2), 153–167 (2009)
6. Bonomo, F., Schaudt, O., Stein, M., Valencia-Pabon, M.: b-Coloring is NP-hard on co-bipartite graphs

and polytime solvable on tree-cographs. Algorithmica 73(2), 289–305 (2015)
7. Bui-Xuan, B., Telle, J.A., Vatshelle,M.: Fast dynamic programming for locally checkable vertex subset

and vertex partitioning problems. Theor. Comput. Sci. 511, 66–76 (2013). https://doi.org/10.1016/j.
tcs.2013.01.009

8. Campos, V.A., Lima, C.V., Martins, N.A., Sampaio, L., Santos, M.C., Silva, A.: The b-chromatic index
of graphs. Discrete Mathematics 338(11), 2072–2079 (2015)

9. Campos, V.A., Lima, C.V.G.C., Silva, A.: Graphs of girth at least 7 have high b-chromatic number.
European J. Comb. 48, 154–164 (2015)

10. Campos, V.A., Linhares-Sales, C., Sampaio, R., Maia, A.K.: Maximization coloring problems on
graphs with few P4. Discret Appl. Math. 164, 539–546 (2014)

11. Campos, V.A., Silva, A.: Edge-b-coloring trees. Algorithmica 80(1), 104–115 (2018)
12. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40–42),

3736–3756 (2010). https://doi.org/10.1016/j.tcs.2010.06.026
13. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded

clique-width graphs. ACM Trans. Algorithm 15(3), 1–57 (2019)
14. Courcelle, B., Durand, I., Raskin, M.: A unified algorithm for colouring graphs of bounded clique-

width. CoRR (2020). arXiv:2008.07468
15. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst.

Sci. 46(2), 218–270 (1993)
16. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1–3),

77–114 (2000)
17. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh,

S.: Parameterized Algorithms. Springer (2015)
18. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)
19. Dunbar, J.E., Hedetniemi, S.M., Hedetniemi, S., Jacobs, D.P., Knisely, J., Laskar, R., Rall, D.F.: Fall

colorings of graphs. J. Comb. Math. Comb. Comput. 33, 257–274 (2000)
20. Effantin, B., Gastineau, N., Togni, O.: A characterization of b-chromatic and partial grundy numbers

by induced subgraphs. Discret. Math. 339(8), 2157–2167 (2016)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.tcs.2013.01.009
https://doi.org/10.1016/j.tcs.2013.01.009
https://doi.org/10.1016/j.tcs.2010.06.026
http://arxiv.org/abs/2008.07468

Theory of Computing Systems

21. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded
graphs in polynomial time. In: WG 2001, pp. 117–128 (2001)

22. Faik, T.: About the b-continuity of graphs (extended abstract). Electron. Notes Discrete Math. 17,
151–156 (2004)

23. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameteriza-
tions. SIAM J. Comput. 39(5), 1941–1956 (2010)

24. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S., Zehavi, M.: Clique-width III: Hamiltonian
cycle and the odd case of graph coloring. ACM Trans. Algorithms 15(1), 9:1–9:27 (2019)

25. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs with fixed
clique-width. Theor. Comput. Sci. 299(1–3), 719–734 (2003). https://doi.org/10.1016/S0304-
3975(02)00725-9

26. Goddard, W., Henning, M.A.: Independent domination in graphs: A survey and recent results. Discret.
Math. 313(7), 839–854 (2013)

27. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput.
Sci. 11(03), 423–443 (2000)

28. Gurski, F.: The behavior of clique-width under graph operations and graph transformations. Theory
Comput. Syst. 60(2), 346–376 (2017). https://doi.org/10.1007/s00224-016-9685-1

29. Havet, F., Sales, C.L., Sampaio, L.: b-coloring of tight graphs.Discret. Appl.Math. 160(18), 2709–2715
(2012)

30. Havet, F., Sampaio, L.: On the Grundy and b-chromatic numbers of a graph. Algorithmica 65, 885–899
(2013)

31. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nord. J. Comput. 5(2),
128–142 (1998)

32. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
33. Impagliazzo,R., Paturi,R., Zane, F.:Whichproblemshave strongly exponential complexity? J.Comput.

Syst. Sci. 63(4), 512–530 (2001)
34. Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discret. Appl. Math. 91(1–3), 127–

141 (1999)
35. Jaffke, L., Lima, P.T.: A complexity dichotomy for critical values of the b-chromatic number of graphs.

Theor. Comput. Sci. 815, 182–196 (2020)
36. Jaffke, L., Lima, P.T., Lokshtanov, D.: b-Coloring parameterized by clique-width. In: STACS 2021,

LIPIcs, vol. 187, pp. 43:1–43:15. Schloss Dagstuhl (2021)
37. Jaffke, L., Lima, P.T., Philip, G.: Structural parameterizations of clique coloring. In: MFCS 2020,

LIPIcs, vol. 170, pp. 49:1–49:15. Schloss Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.MFCS.
2020.49. https://drops.dagstuhl.de/opus/volltexte/2020/12715

38. Jansen, K.: Complexity results for the optimum cost chromatic partition problem (1997)
39. Kloks, T.: Treewidth, Computations and Approximations, LNCS, vol. 842.Springer (1994). https://doi.

org/10.1007/BFb0045375
40. Korhonen, T.: A single-exponential time 2-approximation algorithm for treewidth. In: FOCS 2021, pp.

184–192. IEEE (2021). https://doi.org/10.1109/FOCS52979.2021.00026
41. Kratochvíl, J., Tuza, Z., Voigt, M.: On the b-chromatic number of graphs. In: WG 2002, pp. 310–320

(2002)
42. Lampis, M.: Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math. 34(3), 1538–1558

(2020). https://doi.org/10.1137/19M1280326
43. Laskar, R., Lyle, J.: Fall colouring of bipartite graphs and cartesian products of graphs. Discret. Appl.

Math. 157(2), 330–338 (2009)
44. Lauri, J., Mitillos, C.: Complexity of fall coloring for restricted graph classes. In: IWOCA 2019, pp.

352–364. Springer (2019)
45. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis.

Bulletin of the EATCS 105, 41–72 (2011)
46. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. SIAM J.

Comput. 47(3), 675–702 (2018)
47. Lyle, J., Drake, N., Laskar, R.: Independent domatic partitioning or fall coloring of strongly chordal

graphs. Congressus Numerantium 172, 149–159 (2005)
48. Makowsky, J.A., Rotics, U.: On the clique-width of graphs with few P4’s. Int. J. Found. Comput. Sci.

10(03), 329–348 (1999)
49. Mitillos, C.: Topics in graph fall-coloring. Ph.D. thesis, Illinois Institute of Technology (2016)

123

https://doi.org/10.1016/S0304-3975(02)00725-9
https://doi.org/10.1016/S0304-3975(02)00725-9
https://doi.org/10.1007/s00224-016-9685-1
https://doi.org/10.4230/LIPIcs.MFCS.2020.49
https://doi.org/10.4230/LIPIcs.MFCS.2020.49
https://drops.dagstuhl.de/opus/volltexte/2020/12715
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1137/19M1280326

Theory of Computing Systems

50. Panolan, F., Philip, G., Saurabh, S.: On the parameterized complexity of b-chromatic number. J. Com-
put. Syst. Sci. 84, 120–131 (2017)

51. Rao, M.: Décompositions de graphes et algorithmes efficaces. Ph.D. thesis, University of Metz (2006)
52. Rao, M.: Clique-width of graphs defined by one-vertex extensions. Discret. Math. 308(24), 6157–6165

(2008)
53. Sampaio, L.: Algorithmic aspects of graph colourings heuristics. Ph.D. thesis, Université Nice Sophia

Antipolis (2012)
54. Silva, A.: Graphs with small fall-spectrum. Discret Appl Math 254, 183–188 (2019)
55. Silva, A.S.F.D.: The b-chromatic number of some tree-like graphs. Ph.D. thesis, Université Joseph-

Fourier - Grenoble I (2010)
56. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J.

Discret. Mathematics 10(4), 529–550 (1997)
57. Vanherpe, J.: Clique-width of partner-limited graphs. Discrete. Math. 276(1–3), 363–374 (2004).

https://doi.org/10.1016/S0012-365X(03)00295-4
58. Velasquez, C.I.B., Bonomo, F., Koch, I.: On the b-coloring of P4-tidy graphs. Discret. Appl. Math.

159(1), 60–68 (2011)
59. Wanke, E.: k-NLC graphs and polynomial algorithms. Discret. Appl. Math. 54, 251–266 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1016/S0012-365X(03)00295-4

	b-Coloring Parameterized by Clique-Width
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Clique-Width, Branch Decompositions, and Module-Width
	2.2 Colorings
	2.3 Distance-hereditary Graphs
	2.4 Parameterized by Vertex Cover
	2.5 Chordal Graphs

	3 Parameterized by Clique-Width
	3.1 Outline of the Algorithm
	3.2 t-Types and t-Signatures
	3.3 Compatibility
	3.4 Merging and Splitting Partial b-Colorings
	3.4.1 Bottom to Top
	3.4.2 Top to Bottom

	3.5 The Algorithm
	3.6 Fall Coloring
	Adaptation of the b-Coloring Algorithm
	Hardness

	4 Conclusion
	Acknowledgements
	References

