
Theory of Computing Systems
https://doi.org/10.1007/s00224-023-10122-2

Subgroup Membership in GL(2,Z)

Markus Lohrey1

Accepted: 14 March 2023
© The Author(s) 2023

Abstract
It is shown that the subgroup membership problem for a virtually free group can
be decided in polynomial time when all group elements are represented by so-called
powerwords, i.e., words of the form pz11 pz22 · · · pzkk . Here the pi are explicit words over
the generating set of the group and all zi are binary encoded integers. As a corollary, it
follows that the subgroup membership problem for the matrix group GL(2,Z) can be
decided in polynomial time when elements of GL(2,Z) are represented by matrices
with binary encoded integers. For the same input representation, it also shown that
one can compute in polynomial time the index of a given finitely generated subgroup
of GL(2,Z).

Keywords Algorithmic group theory · Subgroup membership problems · Algorithms
for GL(2,Z)

1 Introduction

The subgroup membership problem (also known as the generalized word problem)
for a group G asks whether for given group elements g0, g1, . . . , gk ∈ G, g0 belongs
to the subgroup 〈g1, . . . , gk〉 generated by g1, . . . , gk . To make this a well-defined
computational problem, one has to fix an input representation for elements of G.
Here, a popular choice is to restrict to finitely generated (f.g. for short) groups. In this
case, group elements can be encoded by finite words over a finite set of generators. The
subgroup membership problem is one of the best studied problems in computational
group theory. Let us survey some important results on subgroupmembership problems.

For symmetric groups Sn , Sims [38] has developed a polynomial time algorithm for
the uniform variant of the subgroup membership problem, where n is part of the input;
see also [3] for efficient parallel algorithms. Here, we only consider the non-uniform
subgroup membership problem, where we fix an infinite f.g. group G. For a f.g. free
group, the subgroup membership problem can be solved using Nielsen reduction (see

B Markus Lohrey
lohrey@eti.uni-siegen.de

1 Universität Siegen, Siegen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-023-10122-2&domain=pdf
http://orcid.org/0000-0002-4680-7198

Theory of Computing Systems

e.g. [25]); a polynomial time algorithm was found by Avenhaus and Madlener [1]. In
fact, in [1] it is shown that the subgroup membership problem for a f.g. free group
is P-complete. Another polynomial time algorithm uses Stallings’s folding procedure
[39]; an almost linear time implementation can be found in [40]. An extension of
Stallings’s folding for fundamental groups of certain graphs of groups was developed
in [17]. ‘The folding procedure from [17] can be used to show that subgroup mem-
bership is decidable for right-angled Artin groups with a chordal independence graph.
Moreover, Friedl and Wilton [12] used the results of [17] in combination with deep
results from3-dimensional topology in order to decide the subgroupmembership prob-
lem for 3-manifold groups. Other extensions of Stallings’s folding and applications
to subgroup membership problems can be found in [19, 27, 35]. Using completely
different (more algebraic) techniques, the subgroup membership problem has been
shown to be decidable for polycyclic groups [2, 26] and f.g. metabelian groups [33,
34]. For f.g. nilpotent groups the subgroup membership problem is complete for the
circuit complexity class TC0 [29].

On the undecidability side,Mihaı̆lova [28] has shown that the subgroupmembership
problem is undecidable for the direct product F2 × F2 (where F2 is the free group
of rank two). This implies undecidability of the subgroup membership problem for
many other groups, e.g., SL(4,Z) (the group of 4×4 integer matrices with determinant
one) or the 5-strand braid group B5. Rips [31] constructed hyperbolic groups with an
undecidable subgroup membership problem.

Apart from the above mentioned results for free groups [1] (P-completeness) and
nilpotent groups [29] (TC0-completeness) the authors are not aware of other precise
complexity results for subgroup membership problems in infinite groups. The com-
pleteness results from [1, 29] assume that group elements are represented by finite
words over the generators of the free group. In recent years, group theoretic deci-
sion problems have also been studied with respect to more succinct representations
of group elements. For instance, the so-called compressed word problem, where the
input group element is represented by a straight-line program (a context-free grammar
that produces exactly one string) has received a lot of attention; see [4, 22] for surveys.
For the subgroup membership problem in free groups, Gurevich and Schupp studied
in [14] a succinct variant, where input group elements are of the form az11 az22 · · · azkk .
Here, the ai are from a fixed free basis of the free group and the zi are binary encoded
integers. Based on an adaptation of Stallings’s folding, they show that this succinct
membership problem can be solved in polynomial time. Then, Gurevich and Schupp
proceed in [14] by showing that their succinct folding algorithm for free groups can
be adapted so that it works for the free product Z/2Z ∗ Z/3Z. The particular interest
in this group comes from the fact that it is isomorphic to the modular group PSL(2,Z),
which is the quotient of SL(2,Z) by 〈−Id2〉 ∼= Z/2Z (Id2 is the 2× 2 identity matrix).
As an application of the succinct folding algorithm for Z/2Z ∗ Z/3Z, Gurevich and
Schupp show that the subgroup membership problem for PSL(2,Z) is decidable in
polynomial time when all matrix entries are encoded in binary notation.

A related result was shown in [29]: the subgroup membership problem for a
f.g. nilpotent group can be solved in polynomial time, when group elements are rep-
resented by binary encoded Mal’cev coordinates.

123

Theory of Computing Systems

The polynomial time algorithm for the succinct membership problem for Z/2Z ∗
Z/3Z from [14] is tailored towards this group, and it is not clear how to adapt the
algorithm to related groups. The latter is the goal of this paper. For this it turns out
to be useful to consider a more succinct representation of input elements for free
groups. Recall that Gurevich and Schupp use words of the form az11 az22 · · · azkk , where
the integers zi are given in binary notation and the ai are generators from a free basis.
Here, we represent group elements by so-called power words which were studied in
[23] in the context of group theory. A powerword has the form pz11 pz22 · · · pzkk , where as
above the integers zi are given in binary notation but the pi are arbitrary words over the
group generators. In [23] it was shown that the so-called power word problem (does a
given powerword represent the group identity?) for a f.g. free group F isAC0-reducible
to the ordinaryword problem for F (and hence in logspace). In Section 3, we prove that
the power-compressed subgroupmembership problem (i.e., the subgroupmembership
problem with all group elements represented by power words) for a free group can be
solved in polynomial time by using a folding procedure à la Stallings (Theorem 1).
This generalizes the abovementioned result of Gurevich and Schupp. At first sight, the
step from power words of the form az11 az22 · · · azkk (with the ai generators) to general
power words as defined above looks not very spectacular. But apart from the quite
technical details, the power-compressed subgroup membership problem has a major
advantage over the restricted version of Gurevich and Schupp: we show that if G is a
f.g. group and H is a finite index subgroup of G then the power-compressed subgroup
membership problem for G is polynomial time reducible to the power-compressed
subgroup membership problem for H (Lemma 11). Hence, the power-compressed
subgroup membership problem for every f.g. virtually free group (a finite extension of
a f.g. free group) can be solved in polynomial time (Corollary 2). This result opens up
new applications to matrix group algorithms. It is well-known that the group GL(2,Z)

(the group of all 2 × 2 integer matrices with determinant ±1) is f.g. virtually free.
Moreover, given a matrix A ∈ GL(2,Z) with binary encoded entries one can compute
a power word (over a fixed finite generating set of GL(2,Z)) that represents A. Hence,
the subgroup membership problem for GL(2,Z) can be decided in polynomial time
when elements of GL(2,Z) are represented by matrices with binary encoded integers
(Corollary 3).

In Section 5 we present another application of our folding procedure for power
words: we show that the finite index problem for f.g. subgroups of GL(2,Z) can be
decided in polynomial time, when elements of GL(2,Z) are represented as matrices
with binary encoded integers (Corollary 5). In the finite index problem for a group G
the goal is to compute the index (an element ofN∪{∞}) of a given f.g. subgroup ofG.
The finite index problem has been studied in [16] (for free groups), [27] (amalgamated
products of finite groups), [37] (virtually free groups), [18] (quasiconvex subgroups
of automatic groups), [9] (direct products of free-abelian and free groups) and [8]
(solvable Baumslag-Solitar groups BS(1, q)).

RelatedWork Related to the subgroupmembership problem is themore general ratio-
nal subset membership problem. A rational subset in a group G is given by a finite
automaton, where transitions are labelled with elements of G. Such an automaton
accepts a subset of G in the natural way. In the rational subset membership problem

123

Theory of Computing Systems

for G the input consists of a rational subset L ⊆ G and an element g ∈ G and
the question is, whether g ∈ L . This problem was shown to be decidable for free
groups by Benois [6] via an automaton saturation procedure that moreover can be
implemented in cubic time [7]. Stallings’s folding can be viewed as a special case of
Benois’s construction.

Rational subset membership problems (and special cases) for matrix groups are
a very active research field. Some recent results can be found in [5, 8, 11, 21, 30].
Closest to our work is [5], where it is shown that the identity problem for SL(2,Z)

(does the identity matrix belong to a finitely generated subsemigroup of SL(2,Z)?)
and the rational subset membership problem for PSL(2,Z) are NP-complete (when
matrix entries are given in binary notation). For this, the authors of [5] use the ideas of
Gurevich and Schupp [14]. In [8, 11], first steps towardsGL(2,Q) are taken: in [11] the
authors prove decidability ofmembership in so-called flat rational subsets ofGL(2,Q),
whereas [8] establishes the decidability of the full rational subsetmembership problem
for the Baumslag-Solitar groups BS(1, q) < GL(2,Q) with q ≥ 2.

2 Preliminaries

General Notations For an integer z ∈ Z we define its signum as usual: sign(0) = 0,
and for z > 0, sign(z) = 1 and sign(−z) = −1. As usual, Σ∗ denotes the set of
all finite words over an alphabet Σ , ε denotes the empty word, and Σ+ = Σ∗ \ {ε}
is the set of all non-empty words. The length of a word w is denoted by |w|. If
w = uv ∈ Σ∗ then u is called a prefix of w and v is called a suffix of w. The word
u ∈ Σ∗ is a factor of the word w ∈ Σ∗ if w = sut for some s, t ∈ Σ∗. At one
point, it will be convenient to work with ω-words. An ω-word over the alphabet Γ is
an infinite sequence a1a2a3a4 · · · with ai ∈ Γ for all i ≥ 1. With Γ ω we denote the
set of all ω-word over the alphabet Γ .

Groups We assume some basic background in group theory; see [25] or [32] for more
details. For a group G and a subset A ⊆ G, we denote with 〈A〉 the subgroup of G
generated by A. It is the set of all products of elements from A ∪ A−1. We say that
A generates G (or A is a generating set for G) if G = 〈A〉. If A = A−1 then A is a
symmetric generating set for G. A group G is called finitely generated if it has a finite
generating set.

Fix a finite set Σ of symbols and let Σ−1 = {a−1 | a ∈ Σ} be a set of formal
inverses of the symbols in Σ with Σ ∩ Σ−1 = ∅. Let Γ = Σ ∪ Σ−1. We define
an involution on Γ ∗ by setting (a−1)−1 = a for a ∈ Σ and (a1a2 · · · ak)−1 =
a−1
k · · · a−1

2 a−1
1 for a1, . . . , ak ∈ Γ . A word w ∈ Γ ∗ is called freely reduced if it

neither contains a factor aa−1 nor a−1a for a ∈ Σ . With red(Γ ∗)we denote the set of
all freely reduced words. For every word w ∈ Γ ∗ one obtains a unique freely reduced
word that is obtained from w by deleting factors aa−1 and a−1a (a ∈ Σ) as long as
possible. We denote this word with red(w); it can be computed in linear time from w.

The free group generated by Σ , denoted by F(Σ), consists of the set red(Γ ∗)
together with the multiplication · defined by u · v = red(uv) for u, v ∈ red(Γ ∗). The
group identity of F(Σ) is the empty word ε. A group G that has a free subgroup of

123

Theory of Computing Systems

finite index in G is called virtually free. Usually, we identify a (not necessarily freely
reduced) word w ∈ Γ ∗ with the group element red(w) ∈ F(Σ).

For every group G there exists a free group F(Σ) and a surjective homomorphism
π : F(Σ) → G. We then have G = 〈π(Σ)〉. If G is finitely generated then we can
choose Σ to be finite. In this situation, we also identify Σ with the generating set
π(Σ). We also say that the element w ∈ F(Σ) represents the group element π(w).
For u, v ∈ F(Σ) we say that u = v in G if π(u) = π(v). Sometimes, we identify
w ∈ F(Σ) (or w ∈ (Σ ∪ Σ−1)∗) with the corresponding group element π(w).

Fix a f.g. group G together with a surjective morphism π : F(Σ) → G with Σ

finite. The subgroup membership problem for G is the following decision problem:
input: words w0, w1, . . . , wn ∈ F(Σ).
question: Does π(w0) belong to the subgroup 〈π(w1), . . . , π(wn)〉 ≤ G?
Note that we formulated the subgroup membership problem for G with respect to a
fixed surjective morphism π : F(Σ) → G. In other words, for every such surjective
morphism π : F(Σ) → G, we have another variant of the subgroup membership
problem for G. On the other hand, it is easy to see that the computational complexity
of the subgroup membership problem for G does not depend on the concrete choice
of π : F(Σ) → G, at least if we only care about complexity classes containing
polynomial time (actually, a smaller complexity class such as deterministic logspace
would be also fine, but this is not needed for our considerations). To see this take
another surjective morphism π ′ : F(Θ) → G (with Θ finite as well). Then for every
generator a ∈ Σ there is an element h(a) ∈ F(Θ) such that π(a) = π ′(h(a)) in the
group G. The mapping h uniquely extends to a morphism h : F(Σ) → F(Θ) (this
is the crucial property of free groups). We then have π(w0) ∈ 〈π(w1), . . . , π(wn)〉
if and only if π(h(w0)) ∈ 〈π(h(w1)), . . . , π(h(wn))〉. Since the morphism h can be
easily computed in polynomial time (simply replace every symbol a by h(a)), this
shows that subgroup membership problem for G with respect to π : F(Σ) → G is
polynomial time reducible to the subgroup membership problem for G with respect to
π ′ : F(Θ) → G. This justifies to not mention the surjective morphism π : F(Σ) →
G in the subgroup membership problem for G.

In this paper we are interested in a variant of the subgroup membership problem
for G where the words w0, w1, . . . , wn are given in a more succinct way. In the next
section, we define this variant.

3 Stallings’s Folding for Power-CompressedWords

In this sectionwe present our succinct version of Stallings’s folding thatwasmentioned
in the introduction.We start with the definition of power words and power-compressed
graphs. These graphs are basically finite automata where the transitions are labelled
with power words. We prefer to use the term “graph” instead of “automaton”, since
the former is more common in the literature on Stallings’s folding.

A power word over an alphabet Σ is a sequence (p1, n1)(p2, n2) · · · (pk, nk) of
pairs where p1, . . . , pk ∈ Σ+ and n1, . . . , nk ∈ N\{0}. Such a power word represents
the ordinaryword pn11 pn22 · · · pnkk andweusually identify a powerwordwith theword it
represents. The difference between the sequence of pairs (p1, n1)(p2, n2) · · · (pk, nk)

123

Theory of Computing Systems

and the word pn11 pn22 · · · pnkk comes from to the succinctness of descriptions. When
a power word is part of the input for a computational problem, we always assume
that the exponents ni are given in binary notation, whereas the words pi (also called
the periods of the power word) are written down explicitly by listing all symbols
in the words. Therefore, we define the input length ‖w‖ of the power word w =
(p1, n1)(p2, n2) · · · (pk, nk) as

k∑

i=1

(|pi | + log ni).

On the other hand, the length of the word pn11 pn22 · · · pnkk is
∑k

i=1 ni |pi |. Therefore, a
power word should be seen as a succinct representation of the word it represents.

In the case of a power word over an alphabet Γ = Σ ∪ Σ−1 we may also allow
negative exponents. Of course, p−n stands for (p−1)n .

Consider a f.g. groupG together with a surjective morphism π : F(Σ) → G forΣ
finite. The power-compressed subgroup membership problem for G is the following
problem:
input: Power words w0, w1, . . . , wn over the alphabet Γ = Σ ∪ Σ−1.1

question: Does π(w0) belong to the subgroup 〈π(w1), . . . , π(wn)〉 ≤ G?
As for the (ordinary) subgroup membership problem, the concrete choice of the
surjective morphism π : F(Σ) → G does not influence the complexity of the
power-compressed subgroup membership problem. The reason is the same as for
the subgroup membership problem. The morphism h : F(Σ) → F(Θ) from
the previous section can be also applied to a power words: the power word w =
(p1, n1)(p2, n2) · · · (pk, nk) is mapped to

h(w) = (h(p1), n1)(h(p2), n2) · · · (h(pk), nk).

This yields a polynomial time reduction from the power-compressed subgroup mem-
bership problem for G with respect to π : F(Σ) → G to the power-compressed
subgroup membership problem for G with respect to π prime : F(Θ) → G.

The goal of this section is to show that the power-compressed subgroupmembership
problem can be decided in polynomial time for a f.g. free group. In Section 4 we will
extend this result to f.g. virtually free groups.

Ourmain tool for solving the power-compressed subgroupmembership problem for
f.g. free groups is an extension of Stallings’s folding procedure for power-compressed
words. First we need some combinatorial results for words. Fix a finite alphabet Σ

with the inverse alphabet Σ−1 for the rest of Section 3 and let Γ = Σ ∪ Σ−1.

1 We do not assume the wi to be freely reduced but as explained earlier, we identify every wi with
red(wi) ∈ F(Σ). It is not hard to show that one can compute from the power word wi in polynomial time
a power word for red(wi), but we do not need this fact (it follows implicitly from our folding algorithm).

123

Theory of Computing Systems

3.1 Combinatorics onWords

We fix an arbitrary linear order < on Γ . In order to simplify notation later, it is con-
venient to require that a < a−1 for every a ∈ Σ . With � we denote the lexicographic
order with respect to <. Let Ω ⊆ red(Γ ∗) denote the set of all freely reduced words
w such that

– w is non-empty,
– w is cyclically reduced (i.e, w cannot be written as aua−1 for a ∈ Γ),
– w is primitive (i.e, w cannot be written as un for some n ≥ 2),
– w is lexicographically minimal among all cyclic permutations of w and w−1 (i.e.,

w � uv for all u, v ∈ Γ ∗ with vu = w or vu = w−1).

Note that Σ ⊆ Ω and Σ−1 ∩ Ω = ∅ (since a < a−1 for a ∈ Σ). For every w ∈ Ω

and n ∈ Z we have wn ∈ red(Γ ∗) (since w is freely reduced and cyclically reduced).
The set Ω was introduced in [23] in order to solve the power word problem (that

was mentioned in the introduction) for a free group in logspace. The crucial fact about
words in Ω is that if two powers px and qy (p, q ∈ Ω , x, y ∈ Z) have a long enough
common factor then p = q; see Lemma 1 below.

Example 1 Assume that a < b < a−1 < b−1. Then the wordw = abab−1 belongs to
Ω . It is clearly freely reduced, cyclically reduced, and primitive. Moreover, the cyclic
permutations of w and w−1 = ba−1b−1a−1 are:

w = a b a b−1

b a b−1 a
a b−1 a b
b−1 a b a

w−1 = b a−1 b−1 a−1

a−1 b−1 a−1 b
b−1 a−1 b a−1

a−1 b a−1 b−1

Among those words, w is indeed the lexicographically minimal one.

The following lemma can be found in [23, Lemma 11].

Lemma 1 Let p, q ∈ Ω and x, y ∈ Z. If px and qy have a common factor of length
at least |p| + |q| − 1 then p = q.

We also need the following statement:

Lemma 2 If p ∈ Ω , u, v ∈ Γ ∗, and upv = pp then u = ε or v = ε.

Proof Assume that upv = pp such that u �= ε and v �= ε. We obtain a factorization
p = qr such that q �= ε, r �= ε and p = rq = qr . Hence, q, r ∈ s∗ for some string
s ∈ Γ + (see e.g. [24, Proposition 1.3.2]), which implies that p is not primitive, a
contradiction. ��

123

Theory of Computing Systems

3.2 Power-Compressed Graphs

A power-compressed graph is a tuple G = (V , E, ι, τ, λ, v0), where V is the set of
vertices, E is the set of directed edges with V ∩ E = ∅, ι : E → V maps an edge to its
source vertex, τ : E → V maps an edge to its target vertex, λ : E → Γ + × (Z \ {0})
assigns to every edge its label, and v0 ∈ V is the so-called base point. Moreover, for
every edge e such that ι(e) = u, τ(e) = v, and λ(e) = (p, z) there is an inverse edge
e−1 �= e such that ι(e−1) = v, τ(e−1) = u, λ(e−1) = (p,−z), and (e−1)−1 = e. In
this paper, V and E will be always finite. Note that we may have edges e, e′ ∈ E with
e �= e′, ι(e) = ι(e′), τ(e) = τ(e′), and λ(e) = λ(e′).

When we describe a power-compressed graph we often specify for a pair of edges
e, e−1 only one of them and implicitly assume the existence of its inverse edge. An
edge e is called short if λ(e) ∈ Γ × {−1, 1}, otherwise it is called long. If G only
contains short edges, then G is called an uncompressed graph, or just graph.2 We
define the input length of G as |G| = ∑

e∈E ‖λ(e)‖ (here, we view λ(e) = (p, z) as a
power word consisting of a single power).

A path in G is a sequence

ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1],

where k ≥ 0, e1, . . . , ek ∈ E , ι(ei) = vi and τ(ei) = vi+1 for 1 ≤ i ≤ k. If vi �= v j

for all i, j with 1 ≤ i < j ≤ k + 1 then ρ is called a simple path. If v1 = vk+1 and
k ≥ 1 then ρ is a cycle. If vi �= v j for all i, j with 1 ≤ i < j ≤ k and v1 = vk+1
then ρ is a simple cycle. Let ι(ρ) = v1 and τ(ρ) = vk+1. If λ(ei) = (pi , zi) then we
define λ(ρ) as the power word (p1, z1)(p2, z2) · · · (pk, zk). The path ρ is oriented if
sign(zi) = signsign(z j) for all i, j . The path ρ is without backtracking if ei+1 �= e−1

i
for all 1 ≤ i ≤ k − 1. The power-compressed graph G is connected if for all u, v ∈ V
there is a path ρ with ι(ρ) = u and τ(ρ) = v. The power-compressed graph G is a
tree if it is connected and it does not contain a cycle without backtracking.

In the following, we identify a pair (p, z) ∈ Γ + × (Z \ {0}) with the power
pz . In particular, in an uncompressed graph every edge is labelled with a symbol
from Γ . With a power-compressed graph G we can associate an uncompressed graph
decompress(G) that is obtained by replacing in G every pz-labelled edge e by a path
ρ of short edges from ι(e) to τ(e) and such that λ(ρ) = pz . Moreover, if ι(e) �= τ(e)
then ρ is a simple path and if ι(e) = τ(e) then ρ is a simple cycle.

A power-compressed graph G = (V , E, ι, τ, λ, v0) can be viewed as a finite
automaton over the alphabet Γ , where transition labels are succinct words of the
form pz with z given in binary notation: V is the set of states, an edge e corresponds
to a transition from ι(e) to τ(e) with label λ(e) and v0 is the unique initial and final
state. We denote with L(G) the set of all words w ∈ Γ ∗ accepted by the automaton
G. With F(G) we denote the image of L(G) in the free group F(Σ). Since every edge
of G has an inverse edge, it is easy to see that F(G) is a subgroup of F(Σ).

2 Sometimes it is called a dual graph since every every edge has an inverse edge. This definition of graphs
is quite common in group theory and topology; see e.g. [36].

123

Theory of Computing Systems

3.3 Folding Uncompressed Graphs

Before we continue with power-compressed graphs let us first explain Stallings’s
folding procedure [39] for uncompressed graphs, which is one of the most powerful
techniques for analysing subgroups of free groups; see e.g. [16]. Let G andH be two
uncompressed graphs as defined in Section 3.2. We say that G can be folded into H
if there exist two edges e �= e′ in G such that ι(e) = ι(e′) and λ(e) = λ(e′) and H is
obtained from G by merging the two vertices τ(e) and τ(e′) (note that we may have
already τ(e) = τ(e′) in G) into a single vertex and removing the edges e and e−1 (this
is an arbitrary choice; we could also keep e and e−1 and remove e′ and e′−1) from the
graph. One can easily show that F(G) = F(H) holds in this situation. Every vertex
of G is mapped to a vertex of H in the natural way (τ(e) and τ(e′) are mapped to the
same vertex ofH). If a graph G cannot be folded further then we say that G is folded.
In this case, G is a deterministic automaton and w ∈ L(G) implies red(w) ∈ L(G).

Consider nowafinite set ofwords A = {w1, . . . , wn} ⊆ Γ + and let gi = red(wi) ∈
F(Σ) be the free group element represented by wi . We construct a so-called bouquet
graph B(A) such that

F(B(A)) = 〈g1, . . . , gn〉 ≤ F(Σ)

as follows:

– First we define for a non-empty word w = a1a2 · · · ak (ai ∈ Γ) the cycle graph

C(w) = ({v0, . . . , vk−1}, {e±1
i : 1 ≤ i ≤ k}, ι, τ, v0),

where ι(ei) = vi−1, λ(ei) = ai , and τ(ei) = vi mod k for 1 ≤ i ≤ k.
– We then define the bouquet graph B(A) by taking the disjoint union of the cycle
graphs C(w1), . . . , C(wn) and then merging the base points of the C(wi).

Let S(A) be the graph obtained by foldingB(A) as long as possible. The final graph of
this procedure is in fact unique up to graph isomorphism. The graphS(A) is sometimes
called the Stallings’s graph for A. Note that as an automaton, S(A) is deterministic.
The above discussion leads to the following crucial fact (see also [16] for a more
detailed discussion):

Lemma 3 Let A and g1, . . . , gn be as above and let g ∈ red(Γ ∗) be a freely reduced
word and hence an element of F(Σ). Then g is accepted by S(A) if and only if
g ∈ 〈g1, . . . , gn〉 ≤ F().

3.4 Folding Power-Compressed Graphs

Fix a power-compressed graph G = (V , E, ι, τ, λ, v0) for the rest of this section and
let P be the set of all words p such that λ(e) = pz for some e ∈ E and z ∈ Z \ {0}.
We will refer to the following numbers throughout this section:

– α := max{|p| : p ∈ P} ≥ 1,

123

Theory of Computing Systems

– β := 2α − 1 ≥ 1,
– γ := 2(α + β) ≥ 4.

We say that G is normalized if

– P ⊆ Ω (where Ω is defined in Section 3.1), and
– for every e ∈ E , if e is long and λ(e) = pz then |z| ≥ γ .

Let E� be the set of long edges of G.
Lemma 4 From a given power-compressed graph G we can compute in polynomial
time a normalized power-compressed graph G′ such that F(G) = F(G′).

Proof We first modify G such that for every edge label λ(e) = pz we have p ∈ Ω .
This can be done in polynomial time by [23, Lemma 12] which states that a given
power word w over the alphabet Γ can be transformed in polynomial time (in fact,
even in logspace) into a power word w′ over the alphabet Γ such that (i) all periods of
w′ belong to Ω and (ii) w = w′ in F(Σ). We finally replace every long edge e with
λ(e) = pz and |z| < γ by a simple path (or simple cycle) ρ of short edges such that
λ(ρ) = pz . ��

We say that G is weakly folded if none of the following two conditions A and B
hold:
Condition A: There exist two (long or short) edges e1 �= e2 such that ι(e1) = ι(e2),
λ(e1) = pz1 and λ(e2) = pz2 for some p ∈ P ∪ P−1 and z1, z2 ∈ N \ {0}.
Condition B: There exist a long edge e with λ(e) = pz and a path ρ consisting of
short edges such that ι(e) = ι(ρ), λ(ρ) = p, p ∈ P ∪ P−1, and z ∈ N \ {0}.
We say that G is strongly folded if the graph decompress(G) is folded in the sense of
Section 3.3. Clearly, if G is strongly folded then G is also weakly folded.

Lemma 5 A given normalized power-compressed graph G = (V , E, ι, τ, λ, v0) can
be folded in polynomial time into a normalized and weakly folded power-compressed
graph G′. We have F(G) = F(G′).

Proof In order to estimate the complexity of our algorithm, we use two termination
parameters: the number |E�| of long edges and the total number of edges |E |. The
algorithm performs a sequence of folding steps that are explained below. In each step,
the value |E�| will not increase. If |E�| does not change then |E | will not increase,
but if |E�| decreases then |E | may increase by at most γ − 1. The situation becomes
difficult because it may happen that in a folding step neither |E�| nor |E | changes. We
distinguish the following three types of folding steps, where G = (V , E, ι, τ, λ, v0) is
the power-compressed graph before the folding step and G′ = (V ′, E ′, ι′, τ ′, λ′, v′

0)

is the power-compressed graph after the folding step.
decreasing (p-edge) fold: If condition A holds with z1 = z2 then we can merge τ(e1)
and τ(e2) into a single vertex (let us call it v) and replace the two edges e1 and e2 by
a single edge from ι(e1) = ι(e2) to v with label pz1 .

More formally: If we define ≡V to be the smallest (with respect to inclusion)
equivalence relation on V with τ(e1) ≡V τ(e2) and≡E to be the smallest equivalence
relation on E with e1 ≡E e2 then we can identify V ′ (respectively, E ′) with the set

123

Theory of Computing Systems

of equivalence classes {[v]≡V : v ∈ V } (respectively, {[e]≡E : e ∈ E}). Moreover
ι′([e]≡E) = [ι(e)]≡V , τ ′([e]≡E) = [τ(e)]≡V , λ′([e]≡E) = λ(e) (all these mappings
are well-defined). The surjective mapping μ with μ(v) = [v]≡V is called the merging
function associated with the merging step. Note that some of (or all) the vertices ι(e1),
τ(e1), τ(e2) can be equal.
nondecreasing (p-edge) fold: If condition A holds with (w.l.o.g.) z1 < z2 then we can
fold the two edges e1 and e2 by first setting V ′ = V , E ′ = E , τ ′ = τ , ι′(e2) = τ(e1)
and λ′(e2) = pz2−z1 . On all other arguments, ι′ (respectively, λ′) coincides with ι

(respectively, λ). The resulting graph G′ may be not normalized, namely if e2 is long
(in G′) and z2 − z1 < γ . In this case we replace e2 by a simple path (or cycle, in case
ι′(e2) = τ ′(e2)) of fresh short edges from ι′(e2) to τ ′(e2) spelling the word pz2−z1 .
Note that we have V ⊆ V ′. We define the merging function μ : V → V ′ as the
canonical inclusion mapping.
nondecreasing (p-path) fold: If the situation in condition B occurs, then we first set
V ′ = V , E ′ = E , τ ′ = τ , ι′(e) = τ(ρ) and λ′(e) = pz−1. On all other arguments,
ι′ (respectively, λ′) coincides with ι (respectively, λ). If z − 1 < γ then we replace
in G′ the edge e by a simple path (or cycle) of short fresh edges spelling the word
pz−1. Again we define the merging function μ : V → V ′ as the canonical inclusion
mapping.
Note that each of the above folding steps simulates several folding steps in the corre-
sponding uncompressed graph. Figure 1 shows some folding steps:

– (a) to (b): nondecreasing p-path fold (where ρ is the path that is inverse to the red
path labelled with ab)

– (b) to (c): decreasing p-edge fold
– (c) to (d): nondecreasing q-edge fold (the q6-labelled edge coils once around the
q5-labelled loop and the remaining q-labelled edge is replaced by the two short
edges labelled with a and c).

– (d) to (e): nondecreasing q-path fold
– (e) to (f): decreasing a-edge fold

Assume we make a sequence of k folding steps, where G is the initial graph, G′ is
the final graph and μi (1 ≤ i ≤ k) is the merging function for the i-th folding step.
Then we can define the compositionμ = μ1 ◦μ2 ◦ · · · ◦μk (whereμ1 is applied first);
it maps every vertex v of G to a vertexμ(v) of G′. We then say that vertex v is mapped
to vertex μ(v) during the folding. For two vertices u, v of G with μ(u) = μ(v) we
say that u and v are merged during the folding.

Note that every folding step preserves the property of being normalized and that
|E�| never increases. Clearly, a decreasing fold decreases |E | (and possibly |E�| in
case e1 and e2 are long edges). Therefore, we can always perform decreasing folds if
possible. A nondecreasing fold can reduce the number of long edges in which case the
number of short edges increases by at most α · (γ − 1). If a nondecreasing fold does
not reduce the number of long edges then both |E | and |E�| stay the same. Hence, the
total number of decreasing folds is bounded by |E | + α · (γ − 1) · |E�|. Bounding
the number of nondecreasing folds is not so easy. If we just iteratively fold then we
may obtain an exponential running time. In order to ensure termination in polynomial
time, we arrange the folding steps as follows: Assume that P = {p1, p2, . . . , pn}.

123

Theory of Computing Systems

Fig. 1 Some folding steps, where p = ab ∈ Ω and q = ac ∈ Ω . We assume that γ = 4 and that all inverse
edges are implicitly present. The edges involved in the folding steps are red; dotted arrows only indicate
the direction of foldings and are not part of the graph. The final graph is weakly folded; in fact it is also
strongly folded

Algorithm 1: (The main folding algorithm).
Data: normalized power-compressed graph G

1 i := 1
2 while true do
3 fold G with respect to pi /* this is explained in the main text */
4 if G is weakly folded then
5 return G
6 else
7 i := smallest j such that G is not folded with respect to p j
8 end if
9 end while

We say that the current graph is folded with respect to p j if neither condition A nor
condition B holds with p = p j . For the following algorithm it is useful to consider
the graph Gp where the edge set of Gp contains all long edges from E that are labelled
with a power of p. In addition, Gp contains a p-labelled edge from u to v if G contains
a path ρ of short edges from u to v and such that λ(ρ) = p (note that Gp is in
general not normalized). Such an edge should be only viewed as an abbreviation of
the corresponding path ρ (which is unique if no decreasing folds are possible in G).

The main structure of the folding algorithm is shown in Algorithm 1. In the fol-
lowing, we always perform decreasing folds when possible without mentioning this
explicitly.

123

Theory of Computing Systems

We now explain how to fold the current graph G with respect to some p = pi (line 3 of
Algorithm 1). We consider each connected component of the graph Gp separately. For
the following consideration, we can assume that Gp is connected. We claim that Gp

can be folded either into a simple oriented path or a simple oriented cycle. Moreover,
if Gp is a tree then it is folded into a simple oriented path. The case that Gp consists
of a single edge is clear. If Gp has more than one edge then we consider the following
cases.
Case 1.Gp is a tree: Choose an edge ewith ι(e) = u and τ(e) = v where v is a leaf. Let
G′ be the connected graph obtained from Gp by removing e, e−1 and v. By induction,
G′ can be folded into a simple oriented path ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1],
where w.l.o.g. λ(ei) = pai with ai > 0 for all i . Let vi be the vertex to which u = ι(e)
is mapped during the folding. Assume that λ(e) = pb with b > 0 (the case b < 0
is analogous). If there exists j ≥ i such that b = ai + · · · + a j then nothing has to
be done (the vertex v is mapped to v j+1 during the folding and the edges e and e−1

are removed). If there is no such j then we have to add a vertex to the path: if there
is j ≥ i such that ai + · · · + a j−1 < b < ai + · · · + a j then we replace the edge
e j by an edge from v j to a fresh vertex v′ and an edge from v′ to v j+1. The label of
the first edge is pb−(ai+···+a j−1) and the label of the second edge is pai+···+a j−b. If
ai + · · · + ak < b then we add an edge from vk+1 to the new vertex v′ with label
pb−(ai+···+ak). In both cases the vertex v = τ(e) is mapped to the new vertex v′ during
the folding. The resulting graph is an oriented path.
Case 2. Gp is not a tree. Then we choose an edge e such that G′ := Gp \ e (the graph
obtained from Gp by removing the edges e and e−1) is still connected. By induction,
we obtain the following two cases.
Case 2.1. G′ is folded into a simple oriented path

ρ = [v1, e1, v2, e2, . . . , vk, ek, vk+1],

where w.l.o.g. λ(ei) = pai with ai > 0 for all i . Let vi (respectively, vl) be the vertex
to which ι(e) (respectively, τ(e)) is mapped during the folding and let λ(e) = pb with
b > 0. We proceed as in case 1. In case there exists j ≥ i with b = ai + · · · + a j then
we additionally merge v j+1 and vl . We may have already v j+1 = vl in which case
we end up with a simple oriented path. Otherwise we obtain a simple oriented path
with a simple oriented cycle attached to it. If there is no j ≥ i with b = ai + · · · + a j

then we add a new vertex v′ to the path as in case 1 and merge v′ with vl . This yields
again a simple oriented path with a simple oriented cycle attached to it. We then fold
the two ends of the simple path onto the cycle (by coiling them around the cycle) and
obtain a simple oriented cycle.
Case 2.2. G′ is folded into a simple oriented cycle C. We proceed analogously to case
2.1. We either obtain a single simple oriented cycle or two simple oriented cycles ρ1
and ρ2 that are glued together in a single vertex v (to see this, one can first remove
an arbitrary edge from the cycle C, which yields a simple oriented path, then carries
out the construction from case 2.1 and finally adds the removed edge again). Such
a pair of cycles can be replaced by a single cycle as follows: Let λ(ρ1) = pz1 and
λ(ρ2) = pz2 with z1, z2 > 0. Then one can replace the two cycles by a single cycle ρ

with λ(ρ) = pz , where z = gcd(z1, z2). Folding the cycles into a single cycle actually

123

Theory of Computing Systems

corresponds to Euclid’s algorithm.3 Of course, we also have to map the vertices of ρ1
and ρ2 into the cycle ρ. For this we start with a pz-labelled loop at vertex v. If v′ �= v

is a vertex belonging to say ρ1 and the simple path from v to v′ on the cycle ρ1 is
labelled with py , y > 0, then we compute r := y mod z and subdivide the loop into
an edge from v to v′ with label pr and an edge from v′ back to v with label pz−r . We
continue in this way with the other vertices on ρ1 and ρ2.
Let the power-compressed graph Hp be the outcome of the above procedure. It is a
disjoint union of simple oriented paths and simple oriented cycles and hence folded
with respect to p. The running time of the computations in cases 1 and 2 is polynomial
in ‖Gp‖ and due to the recursion this running time has to be charged for every edge
of Gp. Recall that edges labelled with p in Hp actually correspond to paths of short
edges in the original graph G. This concludes the description of line 3 in Algorithm 1.

It remains to argue that we make only polynomially many iterations of the while-
loop in Algorithm 1. For this assume that the current graph (call it G′) is folded with
respect to pi and that we fold the graph with respect to some p j with j > i . Let us
denote the sequence of folding steps with respect to p j with F j and let G′′ be the
graph after the execution of F j . Moreover, assume that G′′ is no longer folded with
respect to pi . We argue that this implies that during the execution of F j we made
progress in the sense that |E | or |E�| decreases. Since G′ is folded with respect to pi
but G′′ is not, we must have G′

pi �= G′′
pi . But this implies that |E | or |E�| must decrease

during F j . Otherwise we only make non-decreasing p j -edge and p j -path folds that
do not eliminate long edges. Such folds only change the source and target vertices of
pzj -labelled long edges, which does not modify the graph G′

pi .
Since we have already bounded the number of decreasing folds by |E | + α · (γ −

1) · |E�| and the number of long edges never increases, the index i in Algorithm 1 can
only decrease a polynomial number of times (more precisely: |E |+α ·γ · |E�| times).
This shows that Algorithm 1 works in polynomial time and concludes the proof of
Lemma 5.
It remains to convert a weakly folded power-compressed graph in polynomial time into
a strongly folded power-compressed graph. The general idea is the following. Let G be
a normalized andweakly folded power-compressed graph. Recall thatdecompress(G)

is obtained from G by replacing every long edge e with label pz by a simple path (or
simple cycle) ρ with ι(e) = ι(ρ), τ(e) = τ(ρ) and λ(ρ) = pz . We show that any
sequence of folding steps in decompress(G) can only affect a short initial and final
part of this path ρ. Hence, it suffices to partially decompress G and then fold short
edges as long as possible.

Let us be a bit more precise: We will show that in the above situation, vertices
in decompress(G) that neither belong to the prefix of ρ labelled with pγ /2 nor to
the suffix of ρ labelled with pγ /2 – later such vertices will be called protected –
cannot be merged with other vertices during a sequence of folding steps starting in

3 It is not surprising that at some point we use Euclid’s algorithm. For the special case of the free group of
rank one, which is isomorphic to Z, the power-compressed subgroup membership problem corresponds to
solving a single linear equation with binary encoded integers. The solvability of such an equation can be
checked using Euclid’s algorithm.

123

Theory of Computing Systems

decompress(G) (recall the definition of β and γ = 2(α + β) from the beginning of
Section 3.4). For this we need the following simple lemma:

Lemma 6 LetH be an uncompressed graph and assume thatH is folded intoH′ by a
sequence of folding steps. If thereby two vertices u and v ofH are merged to a single
vertex ofH′, then there must exist a path ρ without backtracking inH from u to v such
that λ(ρ) = ε in F(Σ).4

Proof It suffices to find a path ρ from u to v such that λ(ρ) = ε in F(Σ). By removing
subpaths [u′, e, v′, e−1, u′] from ρ we obtain a path ρ′ without backtracking and such
that λ(ρ′) = ε still holds in F(Σ). The existence of such a path can be shown by a
straightforward induction over the number of folding steps from H to H′. Note that
if two different vertices v1 and v2 of an uncompressed graph are merged in a single
folding step, then there exist two different edges e1 �= e2 such that ι(e1) = ι(e2),
τ(e1) = v1, τ(e2) = v2, and λ(e1) = λ(e2) = a for some a ∈ �. Hence, the path
ρ′ = [v1, e−1

1 , ι(e1), e2, v2] satisfies λ(ρ′) = a−1a = ε in F(Σ). ��
Due to Lemma 6 it will suffice to show that a non-empty path without backtracking
in decompress(G) that starts in a protected vertex is labelled with a word w such that
w �= ε in F(Σ). Since G is normalized and weakly folded, it will turn out that this
word w must be a prefix of an ω-word from the following set L ⊆ Γ ω: The set L
consists of all ω-words of the form

spz11 w1 p
z2
2 w2 p

z3
3 w3 p

z4
4 w4 · · · (1)

such that the following properties hold for all i ≥ 1:

– pi ∈ Ω ∪ Ω−1,
– s is a suffix of p1,
– wi ∈ red(Γ ∗) \ (p−1

i Γ ∗ ∪ Γ ∗ p−1
i+1),

– z1 ≥ α + β = γ /2 and zi ≥ γ if i ≥ 2,
– if wi = ε, then pi �= p−1

i+1.

By our previous discussion, the following lemma is crucial:

Lemma 7 Every non-empty prefix w of an ω-word from L satisfies w �= ε in F(Σ),
i.e., red(w) �= ε.

In order to prove Lemma 7, the following technical lemma turns out be useful. It
ensures that in a factor pα+β

i wi p
α+β
i+1 in (1) not too much cancellation happens. More

precisely, it allows to show that red(pα+β
i wi p

α+β
i+1) starts with pi and ends with pi+1.

Lemma 8 Let p ∈ Ω ∪ Ω−1 and assume that v ∈ Γ ∗ satisfies one of the following
two conditions:

(i) v ∈ red(Γ ∗) \ p−1Γ ∗

4 Recall that ε is the identity element of F(Σ).

123

Theory of Computing Systems

(ii) v = wq ′, where q ′ �= ε is a prefix of qα+β for some q ∈ Ω ∪ Ω−1, w ∈
red(Γ ∗) \ (p−1Γ ∗ ∪ Γ ∗q−1), and if w = ε then p �= q−1.

Then p is a prefix of red(pα+βv). In addition, if case (ii) holds and q ′ = qα+β then
q is a suffix of red(pα+βv).

Proof If v ∈ red(Γ ∗)\ p−1Γ ∗ then p is a prefix of red(pα+βv) (note that α+β ≥ 2).
Now assume that (ii) holds, i.e., v = wq ′ where q ′ �= ε is a prefix of qα+β for some

q ∈ Ω ∪ Ω−1, w ∈ red(Γ ∗) \ (p−1Γ ∗ ∪ Γ ∗q−1), and if w = ε, then p �= q−1. It
suffices to show that p is a prefix of red(pα+βwq ′). Then by symmetry, q is a suffix
of red(pα+βwqα+β).

Since pα+β , w and q ′ are freely reduced, cancellations can only occur at the two
borders between pα+β , w and q ′. Let us start to reduce the word pα+βwq ′. Since p−1

is not a prefix of w and q−1 is not a suffix of w, the reductions at the two borders can
only consume |p| − 1 ≤ α − 1 symbols from the prefix of w and |q| − 1 ≤ α − 1
symbols from the suffix of w. If w is not completely cancelled during the reduction,
we obtain a freely reduced word of the form pα+β−1rsq ′′, where r is a non-empty
prefix of p, s is a non-empty factor of w, and q ′′ is a possibly empty factor of qα+β .
Thus, p is indeed a prefix of red(pα+βwq ′) = pα+β−1rsq ′′.

Let us now assume that w is completely cancelled during the reduction. Since w is
freely reduced, we obtain factorizations w = u−1t−1, p = ru, and q = ts. Moreover,
q ′ = tq ′′ and pα+βwq ′ is reduced to pα+β−1rq ′′. Now the word pα+β−1rq ′′ can
be further reduced at the border between the freely reduced words pα+β−1r and
q ′′. If |q ′′| < α then the reduction can continue for at most α − 1 steps. Then, the
free reduction of pα+βwq ′ consumes from pα+β only a suffix of length at most
2(α − 1) < α + β. Hence, the first copy of p survives.

We can therefore assume that |q ′′| ≥ α. This allows us to write q ′′ = sqks′ (recall
that q = ts and that the prefix t of q ′ was cancelled), where k ≥ 0 and s′ is a prefix
of q. We distinguish several cases:

– p �= q−1: then by Lemma 1 the reduction of pα+β−1rsqks′ can proceed for at
most |p| + |q| − 2 < β steps.

– p = q−1 and |r | �= |s|: then by Lemma 2 the reduction of pα+β−1rsqks′ can
proceed for at most |p| − 1 < α ≤ β steps.

– p = q−1 and |r | = |s|: we obtain p = ru and p−1 = ts, i.e., ru = s−1t−1. Since
|r | = |s| = |s−1| we have r = s−1 and u = t−1. Therefore w = u−1t−1 = u−1u.
Since w ∈ red(Γ ∗), we must have w = ε. Together with p = q−1 this yields a
contradiction to the assumptions of the lemma.

In total, during the free reduction of pα+βwq ′ only a suffix of pα+β of length< α+β

is cancelled. Hence, the first copy of p is not cancelled. This concludes the proof of
the lemma. ��
We can now prove Lemma 7.

Proof (Proof of Lemma 7) Let w be a non-empty prefix of an ω-word from L. We can
write w as

w = s pn11

k∏

i=1

(pα+β
i wi p

α+β
i+1 pni+1

i+1) t

123

Theory of Computing Systems

such that k ≥ 0 and for all i in the proper range we have

– ni ≥ 0,
– pi ∈ Ω ∪ Ω−1,
– s is a suffix of p1,
– wi ∈ red(Γ ∗) \ (p−1

i Γ ∗ ∪ Γ ∗ p−1
i+1),

– if wi = ε, then pi �= p−1
i+1.

Moreover, for the word t one of the following cases must hold:

– t is a prefix of pk+1,
– t = pα+β

k+1 wk+1 with wk+1 ∈ red(Γ ∗) \ p−1
k+1Γ

∗,
– t = pα+β

k+1 wk+1v with v a non-empty proper prefix of a word qα+β for some

q ∈ Ω ∪ Ω−1, wk+1 ∈ red(Γ ∗) \ (p−1
k+1Γ

∗ ∪ Γ ∗q−1), and if wk+1 = ε then
pk+1 �= q−1.

By Lemma 8 every word red(pα+β
i wi p

α+β
i+1) starts with pi and ends with pi+1. More-

over, red(t) is a prefix of pk+1 or, by Lemma 8, starts with pk+1. This implies that

red(w) = s pn11

k∏

i=1

(red(pα+β
i wi p

α+β
i+1) pni+1

i+1) red(t) �= ε.

This concludes the proof of the lemma. ��
Consider now a normalized and weakly folded power-compressed graph G. Recall
that decompress(G) is obtained from G by replacing every long edge e with label pz

by a simple path (or simple cycle) ρ with ι(e) = ι(ρ), τ(e) = τ(ρ) and λ(e) = λ(ρ).
The vertices of decompress(G) that are not already in G (i.e., the inner vertices of the
paths that replace the long edges) are also called the fresh vertices of decompress(G).
We say that a fresh vertex v of decompress(G) is protected if the following hold: let
e be the long edge of G such that v is an inner vertex of the path ρ that replaces e. Let
λ(e) = λ(ρ) = pz , where p ∈ Ω ∪ Ω−1 and z ≥ γ . Then the path ρ can be split into
two subpaths ρ1 and ρ2 such that ρ1 is a simple path from ι(e) to v and ρ2 is a simple
path from v to τ(e). Then v is protected if pα+β = pγ /2 is a prefix of λ(ρ1) and a
suffix of λ(ρ2). Intuitively, v is not too close to the two end points ι(e) and τ(e).

Lemma 9 LetG be a normalized and weakly folded power-compressed graph and let v
be a fresh and protected vertex of decompress(G). Let ρ be a non-empty path without
backtracking in decompress(G) that starts in v, i.e., ι(ρ) = v. Then λ(ρ) �= ε in
F(Σ).

Proof Let e be the edge in G such that decompressing e produces v and let ρ′ be
the simple path/cycle that replaces e. Let λ(e) = λ(ρ′) = pz with p ∈ Ω ∪ Ω−1

and z ≥ γ . If ρ is a simple subpath of ρ′ then λ(ρ) is a non-empty factor of pz and
therefore freely reduced.

Now assume that ρ is not a simple subpath of ρ′. By Lemma 7 it suffices to show
that λ(ρ) is a non-empty prefix of an ω-word from L. The path ρ has to leave the

123

Theory of Computing Systems

path ρ′ via ι(e) or τ(e). In both cases we can factorize λ(ρ) as λ(ρ) = spz11 w, where
p1 ∈ {p, p−1}, z1 ∈ N, and spz11 is a suffix of pz or a suffix of p−z . Moreover, since
the vertex v is protected we must have z1 ≥ γ /2.

The remaining word w can be factorized as

w = w1 p
z2
2 w2 p

z3
3 · · · wk−1 p

zk
k wk t

where every pzii is the label of a long edge of G (hence, pi ∈ Ω ∪ Ω−1 and zi ≥ γ)
and every wi is the label of a path consisting of short edges in G. For the word t , there
are two cases:

– t = ε or
– t �= ε arises from long edge e′ of G, in which case t is a non-empty prefix of λ(e′).
Hence, t is a non-empty prefix of a word pzk+1

k+1 for some pk+1 ∈ Ω ∪ Ω−1.

Since G is weakly folded, the following conditions hold:

– wi ∈ red(Γ ∗) (since ρ is without backtracking and the situation from condition
A on page11 does not occur in G),

– wi /∈ p−1
i Γ ∗ and wi /∈ Γ ∗ p−1

i+1 if pi+1 exists (since the situation from condition
B on page 11 does not occur in G),

– if wi = ε and pi+1 exists, then pi �= p−1
i+1 (since ρ is without backtracking and

the situation from condition A on page 11 does not occur in G).
This shows that λ(ρ) is a prefix of an ω-word from L. ��
Lemma 10 A given normalized and weakly folded power-compressed graph G can be
folded in polynomial time into a strongly folded power-compressed graph G′. We have
F(G) = F(G′).

Proof We first construct a power-compressed graphH by partially decompressing G.
Consider a long edge e in G. Let ι(e) = u, τ(e) = v and λ(e) = pz with p ∈ Ω ∪Ω−1

and z ≥ γ . We then replace e by

– a simple path ρ1 of new short edges going from u to a new vertex u′ and such that
λ(ρ1) = pγ /2 = pα+β ,

– a new edge from u′ to another new vertex v′ with label pz−γ (if z = γ then u′ = v′
and the new edge is not needed), and

– a simple path ρ2 of new short edges going from v′ to v and such that λ(ρ2) =
pγ /2 = pα+β .

The power-compressed graph H is not necessarily normalized (this is not needed).
We next fold short edges in H as long as possible. Thereby, the number of edges

decreases in each step (folding two short edges is a special case of a decreasing
fold). Hence, the process stops after polynomially many folding steps. Let H′ be the
resulting power-compressed graph. We show thatH′ is strongly folded, which proves
the lemma.

Assume the contrary. Then there exist two edges e1 �= e2 in decompress(H′)
such that ι(e1) = ι(e2) and λ(e1) = λ(e2). If e1 and e2 are already edges of H′,
then e1 and e2 are two short edges of H′ that can be folded, which is a contradiction.

123

Theory of Computing Systems

Therefore, w.l.o.g. e1 and τ(e1) must arise from decompressing a long edge of H′,
i.e., from replacing a long edge in H′ by a simple path of new short edges. Hence
τ(e1) is a fresh vertex of decompress(H′) and τ(e1) �= τ(e2). We clearly can also
fold decompress(H) (which is the same as decompress(G)) into decompress(H′).
There are vertices u1 �= u2 in decompress(H) such that ui is mapped to τ(ei) while
folding decompress(H) into decompress(H′). Moreover, also u1 must be a fresh
vertex of decompress(H). Due to the partial decompression of G intoH, u1 is a fresh
and protected vertex of decompress(G). By Lemma 6 there must exist a non-empty
path ρ in decompress(G) from u1 to u2 without backtracking such that λ(ρ) = ε in
F(Σ). But this contradicts Lemma 9. ��

Lemmas 4, 5 and 10 finally yield the main technical result of Section 3.4:

Corollary 1 A given power-compressed graph G can be folded in polynomial time into
a strongly folded power-compressed graph G′. We have F(G) = F(G′).

3.5 Power-Compressed SubgroupMembership Problem for Free Groups

We can now show the main result of Section 3:

Theorem 1 The power-compressed subgroupmembership problem for a f.g. free group
can be solved in polynomial time.

Proof Let w0, w1, . . . , wn be the input power words and let A = {w1, . . . , wn}. We
construct from A a power-compressed bouquet graph in the sameway as in Section 3.3
for uncompressedgraphs: to a non-emptypowerwordw = pz11 pz22 · · · pzkk weassociate
the power-compressed cycle graph

C(w) = ({v0, . . . , vk−1}, {e±1
i : 1 ≤ i ≤ k}, ι, τ, v0),

where ι(ei) = vi−1, λ(ei) = pzii , and τ(ei) = vi mod k . We then construct the power-
compressed bouquet graph B(A) by taking the disjoint union of C(w1), . . . , C(wn)

and then merging their base points. Using Corollary 1 we can foldB(A) in polynomial
time into a strongly folded power-compressed graph S(A). Let v0 be its base point.
As explained at the end of Section 3.2 we can view S(A) as a finite automaton, where
transitions are labelled with succinct words of the form pz with z given in binary
notation. By Lemma 3, S(A) accepts a freely reduced word g ∈ red(�∗) = F(Σ) if
and only if g belongs to the subgroup 〈red(w1), . . . , red(wn)〉 ≤ F(Σ). Since S(A)

is strongly folded, it is a deterministic automaton in the sense that the labels of two
outgoing transitions of a state do not have a non-empty common prefix.

For the rest of the proof it is convenient to switch from power words to straight-line
programs. A straight-line program is a context-free grammar P that produces exactly
one word that is denoted with val(P). By repeated squaring, our given power wordw0
can be easily transformed in polynomial time into an equivalent straight-line program.
Moreover, from a given straight-line program P over the alphabet Γ = Σ ∪Σ−1 one
can compute in polynomial time a new straight-line program Q such that val(Q) =
red(val(P)); see [22, Theorem 4.11]. Hence, we can compute in polynomial time

123

Theory of Computing Systems

a straight-line program Q for red(w0). The transition labels of the automaton S(A)

can be also transformed into equivalent straight-line programs; such automata with
straight-line compressed transition labels were investigated in [15]. It remains to check
in polynomial time whether the deterministic automaton S(A) accepts val(Q). This
is possible in polynomial time by [15, Theorem 1]. ��

4 Power-Compressed SubgroupMembership for Virtually Free
Groups

Amain advantage of the power-compressed subgroup membership problem is that its
complexity is preserved under finite index group extensions. The proof of the following
lemma follows [13], where it is shown that the complexity of the (ordinary) subgroup
membership problem is preserved under finite index group extensions. In order to
extend this result to the power-compressed setting, we make use of the conjugate
collection process for power words from [23, Theorem 6].

Lemma 11 Let G be a fixed f.g. group and H a fixed subgroup of finite index in G.5 The
power-compressed subgroup membership problem for G is polynomial time reducible
to the power-compressed subgroup membership problem for H.

Proof Using the following standard trick we can assume that H is a normal subgroup
of finite index inG: Let N be the intersection of all conjugate subgroups g−1Hg. Then
N is a normal subgroup of G and has still finite index in G (the latter is a well-known
fact). Since N ≤ H , the power-compressed subgroup membership problem for N is
polynomial time reducible to the power-compressed subgroup membership problem
for H . Hence, it suffices to show that the power-compressed subgroup membership
problem for G is polynomial time reducible to the power-compressed subgroup mem-
bership problem for N .

By the above consideration, we can assume that H is a normal subgroup of finite
index in G. Let us fix a symmetric generating Θ for H and let R ⊆ G be a (finite) set
of coset representatives for H with 1 ∈ R. Then Σ := Θ ∪ (R \ {1}) generates G. On
R we can define the structure of the quotient group G/H by defining r · r ′ ∈ R and
r ∈ R for r , r ′ ∈ R such that rr ′ ∈ H(r · r ′) and r−1 ∈ Hr . Recall that G and H are
fixed groups, hence r · r ′ and r can be computed in constant time. In [23, Theorem 6]
it is shown that the power word problem for G can be reduced in polynomial time (in
fact, in NC1) to the power word problem for H . The proof shows the following fact:
Fact 1. Given a power word w over the alphabet Σ we can compute in polynomial
time a power word w′ over the alphabet Θ and r ∈ R such that w = w′r in G.
Let us now take a finite list of power words w0, w1, . . . , wn over the alphabet Σ

and let gi ∈ G be the group element represented by wi . We want to check whether
g0 ∈ A := 〈g1, . . . , gn〉.

First we use Fact 1 and rewrite in polynomial time each power word wi as w′
i ri

with w′
i ∈ Θ∗ a power word and ri ∈ R. Let w′

i represent g
′
i ∈ H . By computing

the closure of {r1, r1, . . . , rn, rn} with respect to the multiplication · on R we obtain

5 It is well-known that in this situation H must be f.g. as well; see e.g. [32, 1.6.11].

123

Theory of Computing Systems

in constant time the set of all coset representatives r ∈ R such that Hr ∩ A �= ∅.
Let us denote this closure with V ⊆ R. Clearly, 1 ∈ V . If r0 /∈ V then we have
g0 = g′

0r0 /∈ A and we are done.
Claim 1. In polynomial time we can compute a finite list of generators for H ∩ A
written as power words over Θ .
For the proof of Claim 1 we follow [13]: we compute a power-compressed graph G
(in the sense of Section 3.2) as follows. All coset representatives from V are vertices
of G. Moreover, we add a simple path from r ∈ V to r ′ ∈ V labelled with the power
word wi iff r · ri = r ′ (1 ≤ i ≤ n). The corresponding inverse path (that consists of
the inverse edges) is of course labelled with w−1

i and we have r ′ · r i = r . The label of
a path from 1 ∈ V back to 1 ∈ V in the graph G belongs to {w1, w

−1
1 , . . . , wn, w

−1
n }∗

and hence can be viewed as a power word over the alphabet Σ . As such, it represents
an element of the group H ∩ A.

Fix a spanning tree of G, let E be the set of edges of G and let T ⊆ E be those edges
that belong to the fixed spanning tree. We then obtain a set of generators for H ∩ A
by taking for every edge e ∈ E \ T the circuit in G obtained by following the unique
simple path in T from 1 to ι(e), followed by the edge e, followed by the unique simple
path in T from τ(e) back to 1. Let xe ∈ {w1, w

−1
1 , . . . , wn, w

−1
n }∗ be the label of this

circuit. Every xe represents an element of H ∩ A and the set of all these elements (for
e ∈ E \T) is a generating set of H ∩ A; see [13] for details. Moreover, every xe can be
written as a power word over the alphabet Σ of polynomial length. Using Fact 1 we
can rewrite this power word in polynomial time into x ′

ere where x ′
e is a power word

over the alphabet Θ and re ∈ R. But since xe represents an element of H , we must
have re = 1. Hence the power words x ′

e represent a generating set of H ∩ A.
Now we can finish the proof of the lemma. We use the graph G defined above. Since
r0 ∈ V , there is a path from 1 to r0. Let x ∈ {w1, w

−1
1 , . . . , wn, w

−1
n }∗ be the label

of this path. It is a power word over Σ and by Fact 1, x can be rewritten into the
form yr for a power word y over Θ and r ∈ R. Clearly, we must have r = r0. In
the group G we have g0x−1 = g′

0r0r
−1
0 y−1 = g′

0y
−1 (here, the words x and y are

identified with the corresponding elements of G). Note that g′
0y

−1 is represented by
the power word w′

0y
−1 over the alphabet Θ . Since the word x represents an element

of A we have g0 ∈ A if and only if g0x−1 ∈ A if and only if g′
0y

−1 ∈ A if and
only if g′

0y
−1 ∈ H ∩ A. The latter is an instance of the power-compressed subgroup

membership problem for H since we have power-compressed generators for H ∩ A.
This concludes the proof. ��
From Theorem 1 and Lemma 11 we immediately obtain the following corollary:

Corollary 2 The power-compressed subgroup membership problem for a fixed f.g. vir-
tually free group can be solved in polynomial time.

The group GL(2,Z) consists of all (2×2)-matrices over the integers with determinant
−1 or 1. It is a well-known example of a f.g. virtually free group [36].We are interested
in the situationwhere group elements ofGL(2,Z) are represented by 4-tuples of binary
encoded integers. Testing whether such a 4-tuple belongs to GL(2,Z) is of course
possible in polynomial time.

123

Theory of Computing Systems

Lemma 12 From a given matrix A ∈ GL(2,Z) with binary encoded entries one can
compute in polynomial time a powerword over a fixed finite generating set ofGL(2,Z),
which evaluates to the matrix A.

Proof For the group SL(2,Z) of all (2×2)-matrices over the integers with determinant
1 the result is shown in [14], see also [10, Proposition 15.4]. Now, SL(2,Z) is a
normal subgroup of index two in GL(2,Z). Fix an arbitrary matrix B ∈ GL(2,Z)

with determinant −1. Given a matrix A ∈ GL(2,Z) with binary encoded entries and
determinant −1 we first compute the matrix AB−1 ∈ SL(2,Z). Using [14] we can
compute in polynomial time a power wordw for AB−1. Hence,wB (where B is taken
as an additional generator) is a power word for A. ��
Corollary 3 The subgroup membership problem for GL(2,Z) can be solved in polyno-
mial time when matrix entries are given in binary encoding.

Proof Since GL(2,Z) is f.g. virtually free, the power-compressed subgroup mem-
bership problem for GL(2,Z) can be solved in polynomial time by Corollary 2. By
Lemma 12 this shows Corollary 3. ��

5 The Finite Index Problem

For a f.g. group G with the finite generating set Σ we define the finite index problem
as follows, where as usual Γ = Σ ∪ Σ−1.
input: words w1, . . . , wn over the alphabet Γ .
output: the index (an element of N∪ {∞}) of the subgroup 〈g1, . . . , gn〉 ≤ G, where
gi is the group element represented by wi .
If the words w1, . . . , wn are represented as power words then we speak of the power-
compressed finite index problem.

Theorem 2 The power-compressed finite index problem for a f.g. free group can be
solved in polynomial time.

Proof We use the following criterion from [16]. Consider a f.g. subgroup 〈A〉 ≤ F(Σ)

with A ⊆ Γ + finite. We compute the folded (uncompressed) graph S(A) as described
before Lemma 3. Let v0 be the base point of S(A). We define the core of S(A),
denoted with core(S(A)), by removing from S(A) all vertices v �= v0 and edges e
that do not belong to a cycle without backtracking that contains the base point v0;
see also [16, Definitions 3.5 and 5.3]. This means that we delete as long as possible
vertices v �= v0 for which there is a unique edge e with τ(e) = v together with the
edges e and e−1.6 For instance, the core of the graph in Figure 1(f), where the origin
of the p4-labelled edge is the base point, is obtained by removing the b-labelled edge
and its target vertex. On the other hand, if the base point is the target of the p4-labelled
edge, then the core is obtained by removing the b-labelled edge and its target vertex
as well as the p4-labelled edge and its source vertex.

6 If A ⊆ red(Γ ∗) then S(A) is its own core; see the proof of [16, Proposition 3.8].

123

Theory of Computing Systems

Assume that core(S(A)) = (V , E, ι, τ, λ, v0). It is shown in [16, Proposition 8.3]
that 〈A〉 has finite index in F(Σ) if and only if core(S(A)) is a Γ -regular graph in
the sense that for every v ∈ V and every a ∈ Γ there is a (necessarily unique) edge
e ∈ E with ι(e) = v and λ(e) = a.

Let us now consider the case where the words in A are power words. We then
compute in polynomial time the power-compressed and strongly folded graph S(A) as
described in the proof of Theorem1.We compute the core of this graph in the sameway
as above by removing vertices v �= v0 of degree one together with the adjacent edges;
let us denote this core with C(A). It remains to check whether decompress(C(A)) is
Γ -regular. The case |Σ | = 1 is trivial. So, let us assume that |Σ | ≥ 2 (and hence
|Γ | ≥ 4). But then decompress(C(A)) has vertices of degree two if C(A) contains
long edges. To see this note that since C(A) is strongly folded, every edge label pz of
a long edge must be a freely reduced word. Hence, if C(A) contains long edges then
〈A〉 has infinite index in F(Σ). On the other hand, if C(A) only contains short edges,
then we can directly apply the above criterion from [16] in order to compute the index
[F(Σ) : 〈A〉]. ��

Lemma 13 Let G be a fixed f.g. group and H a fixed subgroup of finite index in G
(thus, H must be f.g. as well). The power-compressed finite index problem for G is
polynomial time reducible to the power-compressed finite index problem for H.

Proof As in the proof of Lemma 13 we can restrict to the case where H is a normal
subgroup of G. Otherwise we define N as the intersection of all conjugate subgroups
g−1Hg. Then N is a normal subgroup of finite index in G. Let d = [H : N] be the
index of N in H , which is a fixed constant. Assume that we can reduce in polynomial
time the power-compressed finite index problem for G to the power-compressed finite
index problem for N . The power-compressed finite index problem for N is polynomial
time reducible to the power-compressed finite index problem for H (for a f.g. subgroup
A ≤ N we have [N : A] = [H : A]/d). Hence, the power-compressed finite index
problem for G is polynomial time reducible to the power-compressed finite index
problem for H .

Let us now assume that H is normal subgroup of G and assume that we can solve
the power-compressed index problem for H in polynomial time. We take over all
notations from the proof of Lemma 13. Hence, A ≤ G is the f.g. subgroup whose
index [G : A] we want to compute and the generators of A are given as power words.

Recall that V ⊆ R is the set of coset representatives of H such that r ∈ V if and
only if Hr ∩ A �= ∅. We claim that |V | = [A : H ∩ A]. To see this choose for every
r ∈ V an arbitrary element gr ∈ Hr ∩ A. We then have Hr ∩ A = (H ∩ A)gr �= ∅.
Moreover, the sets Hr∩ A (r ∈ V) are pairwise disjoint; hence also the sets (H ∩ A)gr
(r ∈ V) are pairwise disjoint. Since A = ⋃

r∈V Hr∩ A = ⋃
r∈V (H ∩ A)gr , it follows

that the sets (H ∩ A)gr (r ∈ V) are the right cosets of H ∩ A in A. This shows that
|V | = [A : H ∩ A] < ∞. In particular, we can compute [A : H ∩ A] < ∞ in
constant time.

By Claim 1 from the proof of Lemma 13 we can compute in polynomial time a
finite list of generators for H ∩ A written as power words. Hence, we can compute the

123

Theory of Computing Systems

index [H : H ∩ A] in polynomial time. We now have

[G : H ∩ A] = [G : H] · [H : H ∩ A] = [G : A] · [A : H ∩ A]

and thus

[G : A] = [G : H] · [H : H ∩ A]
[A : H ∩ A] .

Here, [G : H] is a fixed constant, and [H : H ∩ A] and [A : H ∩ A] can be computed
in polynomial time. Hence, [G : A] can be computed in polynomial time. ��
Theorem 2 and Lemma 13 yield:

Corollary 4 The power-compressed finite index problem for a fixed f.g. virtually free
group can be solved in polynomial time.

With Lemma 12 and Corollary 4 we finally obtain:

Corollary 5 The finite index problem for GL(2,Z) can be solved in polynomial time
when matrix entries are given in binary encoding.

6 FutureWork

There is not much hope to generalize Corollary 3 to higher dimensions. For SL(4,Z)

the subgroup membership problem is undecidable and decidability of the subgroup
membership problem for SL(3,Z) is a long standing open problem [20].

A more feasible problem concerns the rational subset membership problem for
free groups when transitions are labelled with power words. It is easy to see that
this problem is NP-hard (reduction from subset sum) and we conjecture that it
belongs to NP. As a consequence this would show that the rational subset member-
ship problem for GL(2,Z) is NP-complete when the transitions of the automaton are
labelledwith binary encodedmatrices. The corresponding statement for PSL(2,Z)was
shown in [5].

Another interesting problem is whether the subgroup membership problem for a
free group can be solved in polynomial time, when all group elements are represented
by straight-line programs (which can be more succinct than power words). One might
try to show this using an adaptation of Stallings’s folding, but controlling the size of
the graph during the folding seems to be more difficult when the transition labels are
represented by straight-line programs instead of power words.

Acknowledgements This work was funded by the DFG project LO 748/12-1.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

123

Theory of Computing Systems

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Avenhaus, J., Madlener, K.: The Nielsen reduction and P-complete problems in free groups. Theo
Comput Sci 32(1–2), 61–76 (1984). https://doi.org/10.1016/0304-3975(84)90024-0

2. Avenhaus J, Wißmann D (1989) Using rewriting techniques to solve the generalized word problem in
polycyclic groups. In : Proceedings of the ACM-SIGSAM1989 International Symposium on Symbolic
and Algebraic Computation, ISSAC 1989, pp. 322–337. ACM Press. https://doi.org/10.1145/74540.
74579

3. Babai L, Luks EM, Seress V Á (1987) Permutation groups in NC. In: Proceedings of the 19th Annual
ACMSymposium on Theory of Computing, STOC 1987, pp. 409–420. ACM. https://doi.org/10.1145/
28395.28439

4. Bassino F, Kapovich I, Lohrey M, Miasnikov A, Nicaud C, Nikolaev A, Rivin I, Shpilrain V, Ushakov
A , Weil P (2020) Compression techniques in group theory. In: Complexity and Randomness in Group
Theory. De Gruyter, chapter 4. https://doi.org/10.1515/9783110667028

5. Bell PC, Hirvensalo M, Potapov I (2017) The identity problem for matrix semigroups in SL2(Z) is
NP-complete. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017. SIAM, pp. 187–206. https://doi.org/10.1137/1.9781611974782.13

6. Benois, M.: Parties rationnelles du groupe libre. Comptes rendus hebdomadaires des séances de
l’Académie des sciences, Séries A 269, 1188–1190 (1969)

7. Benois,M., Sakarovitch, J.:On the complexity of some extendedword problemsdefined by cancellation
rules. Inf Process Lett 23(6), 281–287 (1986). https://doi.org/10.1016/0020-0190(86)90087-6

8. Cadilhac M, Chistikov D, Zetzsche G (2020) Rational subsets of Baumslag-Solitar groups. In: Pro-
ceedings of the 47th International Colloquium on Automata, Languages, and Programming, ICALP
2020, vol 168 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 116:1–116:16. https://
doi.org/10.4230/LIPIcs.ICALP.2020.116

9. Delgado, J., Ventura, E.: Algorithmic problems for free-abelian times free groups. J Algebra 391,
256–283 (2013). https://doi.org/10.1016/j.jalgebra.2013.04.033

10. Diekert V, Elder M (2017) Solutions of twisted word equations, EDT0L languages, and context-free
groups. Proceedings of the 44th International Colloquium onAutomata, Languages, and Programming,
ICALP 2017, vol 80 of LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 96:1–96:14.
https://doi.org/10.4230/LIPIcs.ICALP.2017.96

11. Diekert V, Potapov I, Semukhin P (2020) Decidability of membership problems for flat rational subsets
ofGL(2,Q) and singularmatrices. In: Proceedings of the 45th international symposiumon symbolic and
algebraic computation, ISSAC 2020. ACM, pp. 122–129. https://doi.org/10.1145/3373207.3404038

12. Friedl, S.,Wilton,H.: Themembership problem for 3-manifold groups is solvable.AlgebraicGeometric
Topology 16(4), 1827–1850 (2016). https://doi.org/10.2140/agt.2016.16.1827

13. Grunschlag Z (1999) Algorithms in Geometric Group Theory. PhD thesis, University of California at
Berkley

14. Gurevich, Y., Schupp, P.E.: Membership problem for the modular group. SIAM J Comput 37(2),
425–459 (2007). https://doi.org/10.1137/050643295

15. Jeż, A.: The complexity of compressedmembership problems for finite automata. Theory ofComputing
Systems 55(4), 685–718 (2014). https://doi.org/10.1007/s00224-013-9443-6

16. Kapovich, I., Myasnikov, A.: Stallings foldings and subgroups of free groups. J Algebra 248(2),
608–668 (2002). https://doi.org/10.1006/jabr.2001.9033

17. Kapovich, I., Weidmann, R., Myasnikov, A.: Foldings, graphs of groups and the membership problem.
Int J Algebra Comput 15(1), 95–128 (2005). https://doi.org/10.1142/S021819670500213X

18. Kharlampovich, O., Miasnikov, A., Weil, P.: Stallings graphs for quasi-convex subgroups. J Algebra
488, 442–483 (2017). https://doi.org/10.1016/j.jalgebra.2017.05.037

19. Kharlampovich OG, Myasnikov AG, Remeslennikov VN, Serbin DE (2004) Subgroups of fully resid-
ually free groups: algorithmic problems. In: group theory, statistics, and cryptography, vol 360 of
contemporary mathematics. AMS, Providence, RI, pp. 63–101. https://doi.org/10.1090/conm/360

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0304-3975(84)90024-0
https://doi.org/10.1145/74540.74579
https://doi.org/10.1145/74540.74579
https://doi.org/10.1145/28395.28439
https://doi.org/10.1145/28395.28439
https://doi.org/10.1515/9783110667028
https://doi.org/10.1137/1.9781611974782.13
https://doi.org/10.1016/0020-0190(86)90087-6
https://doi.org/10.4230/LIPIcs.ICALP.2020.116
https://doi.org/10.4230/LIPIcs.ICALP.2020.116
https://doi.org/10.1016/j.jalgebra.2013.04.033
https://doi.org/10.4230/LIPIcs.ICALP.2017.96
https://doi.org/10.1145/3373207.3404038
https://doi.org/10.2140/agt.2016.16.1827
https://doi.org/10.1137/050643295
https://doi.org/10.1007/s00224-013-9443-6
https://doi.org/10.1006/jabr.2001.9033
https://doi.org/10.1142/S021819670500213X
https://doi.org/10.1016/j.jalgebra.2017.05.037
https://doi.org/10.1090/conm/360

Theory of Computing Systems

20. Khukhro EI,Mazurov VD (2020) Unsolved problems in group theory. The Kourovka notebook. CoRR,
arXiv:1401.0300v19, Problem 12.50

21. Ko S-K, Niskanen R, Potapov I (2018) On the identity problem for the special linear group and the
Heisenberg group. In: Proceedings of the 45th International Colloquium on Automata, Languages, and
Programming, ICALP2018, volume107ofLIPIcs. SchlossDagstuhl - Leibniz-Zentrum für Informatik,
pp. 132:1–132:15. https://doi.org/10.4230/LIPIcs.ICALP.2018.132

22. LohreyM (2014)TheCompressedWordProblem forGroups. SpringerBriefs inMathematics. Springer.
https://doi.org/10.1007/978-1-4939-0748-9

23. Lohrey M, Weiß A (2019) The power word problem. In: Proceedings of the 44th international sympo-
sium on mathematical foundations of computer science, MFCS 2019, volume 138 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pages 43:1–43:15. https://doi.org/10.4230/LIPIcs.MFCS.
2019.43

24. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1997). https://doi.org/10.1017/
CBO9780511566097

25. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer (1977). https://doi.org/10.1007/
978-3-642-61896-3

26. Mal’cev AI (1983) On homomorphisms onto finite groups. American Math Soc Trans, Series 2 119:
67–79. Translation from Ivanov. Gos. Ped. Inst. Ucen. Zap. 18 (1958) 49–60. https://doi.org/10.1090/
trans2/119

27. Markus-Epstein, L.: Stallings foldings and subgroups of amalgams of finite groups. Int J Algebra
Comput 17(8), 1493–1535 (2007). https://doi.org/10.1142/S0218196707003846

28. Mihaı̆lova KA (1966) The occurrence problem for direct products of groups. Math. USSR Sbornik
70:241–251, English translation

29. AlG, Myasnikov, Weiß, A.: Parallel complexity for nilpotent groups. Int J Algebra Comput 32(5),
895–928 (2022). https://doi.org/10.1142/S0218196722500382

30. Potapov I, Semukhin P (2017) Decidability of the membership problem for 2× 2 integer matrices. In:
Proceedings of the 28th annual ACM-SIAM symposium on discrete algorithms, SODA 2017. SIAM,
pp. 170–186. https://doi.org/10.1137/1.9781611974782.12

31. Rips, E.: Subgroups of small cancellation groups. Bulletin London Math Soc 4, 45–47 (1982). https://
doi.org/10.1112/blms/14.1.45

32. Robinson DJS (1996) A Course in the Theory of Groups, 2nd edn. Springer. https://doi.org/10.1007/
978-1-4419-8594-1

33. Romanovskiı̆ NS (1974) Some algorithmic problems for solvable groups. Algebra Logic 13:13–16,
English translation. https://doi.org/10.1007/BF01462922

34. Romanovskiı̆ NS (1980) The occurrence problem for extensions of Abelian groups by nilpotent groups.
Siberian Math J 21:273–276, English translation. https://doi.org/10.1007/BF00968275

35. Schupp, P.E.: Coxeter groups, 2-completion, perimeter reduction and subgroup separability. Geomet
Dedicata 96, 179–198 (2003). https://doi.org/10.1023/A:1022155823425

36. Serre, J.-P.: Trees. Springer (1980). https://doi.org/10.1007/978-3-642-61856-7
37. Silva, P.V., Soler-Escrivà, X., Ventura, E.: Finite automata for Schreier graphs of virtually free groups.

J Group Theory 19(1), 25–54 (2016). https://doi.org/10.1515/jgth-2015-0028
38. Sims CC (1971) Computation with permutation groups. In: Proceedings of the 2nd ACM symposium

on symbolic and algebraic manipulation, SYMSAC 1971. Association for Computing Machinery,
p 23–28. https://doi.org/10.1145/800204.806264

39. Stallings, J.R.: Topology of finite graphs. Invent Math 71(3), 551–565 (1983). https://doi.org/10.1007/
BF02095993

40. Touikan, Nicholas W. M.: A fast algorithm for Stallings’ folding process. Int J Algebra Comput 16(6),
1031–1045 (2006). https://doi.org/10.1142/S0218196706003396

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1401.0300v19
https://doi.org/10.4230/LIPIcs.ICALP.2018.132
https://doi.org/10.1007/978-1-4939-0748-9
https://doi.org/10.4230/LIPIcs.MFCS.2019.43
https://doi.org/10.4230/LIPIcs.MFCS.2019.43
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.1007/978-3-642-61896-3
https://doi.org/10.1090/trans2/119
https://doi.org/10.1090/trans2/119
https://doi.org/10.1142/S0218196707003846
https://doi.org/10.1142/S0218196722500382
https://doi.org/10.1137/1.9781611974782.12
https://doi.org/10.1112/blms/14.1.45
https://doi.org/10.1112/blms/14.1.45
https://doi.org/10.1007/978-1-4419-8594-1
https://doi.org/10.1007/978-1-4419-8594-1
https://doi.org/10.1007/BF01462922
https://doi.org/10.1007/BF00968275
https://doi.org/10.1023/A:1022155823425
https://doi.org/10.1007/978-3-642-61856-7
https://doi.org/10.1515/jgth-2015-0028
https://doi.org/10.1145/800204.806264
https://doi.org/10.1007/BF02095993
https://doi.org/10.1007/BF02095993
https://doi.org/10.1142/S0218196706003396

	Subgroup Membership in GL(2,Z)
	Abstract
	1 Introduction
	2 Preliminaries
	3 Stallings's Folding for Power-Compressed Words
	3.1 Combinatorics on Words
	3.2 Power-Compressed Graphs
	3.3 Folding Uncompressed Graphs
	3.4 Folding Power-Compressed Graphs
	3.5 Power-Compressed Subgroup Membership Problem for Free Groups

	4 Power-Compressed Subgroup Membership for Virtually Free Groups
	5 The Finite Index Problem
	6 Future Work
	Acknowledgements
	References

