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Abstract

We study the complexity of the Distributed Constraint Satisfaction Problem (DCSP)
on a synchronous, anonymous network from a theoretical standpoint. In this set-
ting, variables and constraints are controlled by agents which communicate with
each other by sending messages through fixed communication channels. Our results
endorse the well-known fact from classical CSPs that the complexity of fixed-
template computational problems depends on the template’s invariance under certain
operations. Specifically, we show that DCSP(I") is polynomial-time tractable if and
only if I is invariant under symmetric polymorphisms of all arities. Otherwise, there
are no algorithms that solve DCSP(I") in finite time. We also show that the same
condition holds for the search variant of DCSP. Collaterally, our results unveil a fea-
ture of the processes’ neighbourhood in a distributed network, its iterated degree,
which plays a major role in the analysis. We explore this notion establishing a tight
connection with the basic linear programming relaxation of a CSP.
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Theory of Computing Systems

1 Introduction

The Constraint Satisfaction Problem (CSP) consists of a collection of variables and
a collection of constraints where each constraint specifies the valid combinations of
values that can be taken simultaneously by the variables in its scope. The goal is
to decide if there exists an assignment of the elements of a domain to the variables
which satisfies all constraints. The CSP is a very rich mathematical framework that
is widely used both as a fruitful paradigm for theoretical research, and as a powerful
tool for applications in Al, such as scheduling and planning [19, 23].

While, in its full generality, the finite-domain CSP is known to be NP-complete,
applying specific restrictions on the instances can yield tractable subclasses of the
problem. One of the most studied approaches consists in requiring that, in each con-
straint, the set of allowed combinations for its values be drawn from a prescribed set
", usually called the constraint language or the template. Thanks to the proof of the
CSP dichotomy conjecture obtained separately in [10] and [30], which culminated a
decades-long research program, it is possible to determine the complexity (P or NP-
complete) of each family of CSPs, CSP(I"), which is obtained by fixing I". This proof
confirmed that the complexity of the constraint satisfaction problem is deeply tied
to certain algebraic properties of the constraint language. Specifically, it depends on
whether or not the constraint language is invariant under certain operations known as
its polymorphisms. The polymorphisms of a constraint language enforce a symme-
try on the space of solutions of a CSP instance that can possibly be exploited by an
algorithm. This connection with algebra is also present in our work.

We study the computational complexity of the distributed counterpart of CSP,
which is known as DCSP. This was introduced by Yokoo et al. [27] as a formal
framework for the study of cooperative distributed problem solving. In particular,
we consider a deterministic, synchronous, anonymous network of agents controlling
variables and constraints, and we study the complexity of message passing algo-
rithms on this network. A number of practical applications can be encoded in the
DCSP model, for instance resource allocation tasks in wireless networks, routing,
networking, and mobile technologies (see for instance [7, 11]).

We notice that this framework is general enough to encompass some simple Graph
Neural Network architectures (see for example [15, 22]). In particular, when training
a GNN to classify graphs, it is customary that the GNN network ignores the node
label when updating its feature vector. This is, in fact, essential as otherwise there
would be no way to apply the network trained on a given graph to another one. How-
ever, whereas in all variants of GNNs the computation is limited to a reduced number
of operations over feature vectors, in the DCSP model the computation at each node is
governed by an arbitrary algorithm. GNNs have a wide range of applications includ-
ing molecule classification or image classification (see [6] for example). Recently,
GNNs have been deployed to solve CSPs [24].

While there are a variety of well-performing distributed algorithms for constraint
satisfaction and optimisation (see for instance [12, 21, 29]), the theoretical aspects of
distributed complexity are to date not well understood. In this paper we initiate the
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study of the complexity of DCSP parametrized by the constraint language, obtaining
a complete characterization of its tractable classes. More specifically, building on
the connection between the CSP and algebra, we show that for any finite constraint
language I', the decision problem for DCSP(I") is tractable whenever I is invariant
under symmetric polymorphisms of all arities, where an operation is symmetric if its
result does not depend on the order of its arguments. Otherwise, there are no message
passing algorithms that solve DCSP(I"). Collaterally, we show that the same holds
for the search problem for DCSP.

Our work begins with the identification of a feature of the nodes in a distributed
network, its iterated degree, which plays a major role in how messages are trans-
mitted in the network. The iterated degree is an extension of the similar concept
introduced in the study of the isomorphism problem which turns out to have a variety
of alternative characterizations in terms of fractional isomorphisms, the Weisfeiler-
Leman test, and definability with counting logics (see [15]). It turns out that, due
to the network anonymity, in every distributed algorithm all equivalent agents (with
respect to iterated degree) must necessarily behave identically at each round. A simi-
lar phenomenon has been observed independently in the context of GNNs in [22, 25]
leading to further study in [3].

We use this fact to show that, under the absence of symmetric polymorphisms
of any arity in T, it is always possible to construct two instances of DCSP(I"), one
satisfiable and the other unsatisfiable, that cannot be distinguished by any message
passing algorithm in an anonymous network.

On the other hand, invariance under symmetric polymorphisms is connected with
the basic linear programming relaxation of a CSP instance. More precisely, if I has
symmetric polymorphisms of all arities then one can decide the satisfiability of every
instance of CSP(I") by checking whether its basic linear programming relaxation is
feasible (see for instance [5]). Whereas it is not clear how to directly use this fact to
obtain a distributed algorithm for DCSP(I"), it can be applied to establish a structure
theorem that unveils a simple yet surprising structure in the solution space of every
satisfiable instance in DCSP(I"): it must contain a solution that assigns the same value
to all variables that have the same iterated degree. The proof of the structure theorem
uses the weighted majority algorithm, a weight update method that is widely used
in optimisation and machine learning applications (see [2]). The structure theorem is
key in the proof of the positive results as it allows to run an adapted variant of the
Jjpq-consistency algorithm [18] that overcomes the absence of unique identifiers for
the variables, by using instead their iterated degree.

This paper is organised as follows. In Section 2 we introduce some definitions
and technical concepts about the DCSP model. In Section 3 we present the basic
LP relaxation for CSPs and we show its connection to the symmetry on the solution
space, culminating in the statement of the structure theorem. Section 4 is dedicated to
the proof of the dichotomy theorem for the complexity of DCSP, with the hardness
results in Section 4.1, the details of the distributed algorithm for tractable languages
in Section 4.2, and its extension to the search problem in Section 4.3. Finally, in the
Conclusion we discuss some directions into which our work could be extended.
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2 Preliminaries

Constraint Satisfaction Problems An instance [ of the finite-domain Constraint Sat-
isfaction Problem (CSP) is a triple (X, D, C) where X is a set of variables, D is a
finite set called the domain, and C is a set of constraints where a constraint ¢ € C
is a pair (s, R) where R C DX is a relation over D of positive integer arity &, and
s is a tuple of k variables, known as the scope of c. We use arity(-) to denote the
arity of a relation, tuple, or constraint and we write x € ¢ for any variable x in the
scope of c¢. An assignment v : X — D is said to be satisfying if for all constraints
¢ = (s, R) € C we have v(s) € R, where v is applied to s coordinate-wise. Usually
we denote the number of variables by n and the number of constraints by m.

Let I' be a set of relations over some finite domain D, and let CSP(I") denote
the set of CSP instances with all constraint relations lying in I'. In this context, I"
is known as the constraint language. Throughout this paper, we will assume that I"
is always finite. Then, the decision problem for CSP(I") is the problem of deciding
whether a satisfying assignment exists for an instance I € CSP(I"). The search prob-
lem for CSP(I") is the problem of deciding whether a satisfying assignment exists
and, if it does, to find one such assignment.

The Distributed Model We consider the DCSP model of [27] with some small mod-
ifications. The basic idea is to assign the task of solving a constraint satisfaction
problem to a multi-agent system. In the original model, which assumes that all con-
straints are binary [28, 29], the assumption is that each variable is controlled by an
agent, and two agents can communicate with one another if and only if they share
a constraint. Here we deviate slightly from the original model to allow for non-
binary constraints and we assume that both variables and constraints are controlled
by distributed agents in the network. An instance [12] of the Distributed Constraint
Satisfaction Problem (DCSP) is a tuple (A, X, D, C, o), where X, D, and C are as
in the classical CSP, A is a finite set of agents, and « : X U C — A is a surjective
function which assigns the control of each variable x € X and each constraint ¢ € C
to an agent «(x), a(c) respectively. For the purpose of this paper, we assume that
there are exactly n 4+ m agents, and therefore each agent controls exactly one vari-
able or one constraint. Under this assumption, there is a one-to-one correspondence
between instances of CSP and DCSP, and thus we shall switch freely between them,
while maintaining the distinction between agents and their controlled variables and
constraints for clarity when discussing distributed algorithms.

Distributed Networks and Message Passing We now present some fundamental con-
cepts relating to the message-passing paradigm for distributed networks. For a
general introduction to distributed algorithms, we refer the reader to [13]. A dis-
tributed system consists of a finite set of agents or processes, which are connected
through communication channels to form a network. Any process in the network can
perform events of three kinds: send, receive and internal. Send and receive events are
self-explanatory, as they denote the sending or receiving of a message over a com-
munication channel. Any kind of local computation performed at the process level,
as well as state changes and decisions, are classified as internal events.
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We assume a fully synchronous communication model, meaning that the send
event at a process a and the corresponding receive event at a process a’ can be con-
sidered de facto as a unique event, with no time delay. As a whole, a synchronous
system proceeds in rounds, where at each round a process can perform some internal
computation and then send messages to and receive messages from its neighbours.
A round needs to terminate at every process before the next round begins. Note that
while for simplicity we assume a synchronous network, all our algorithms can be
adapted to asynchronous systems by applying a simple synchronizer. Nonetheless,
we point out that our negative results rely on the network operating in synchronous
rounds.

We make the fundamental assumption that the network is anonymous, meaning
that variables, constraints and agents do not have IDs. For practical purposes, we
still refer to variables and constraints with names (such as x;, ¢;), however these
cannot be communicated through the channels. The assumption of anonymity can
have various practical justifications: the processes may actually lack the hardware
to have an ID, or they may be unable to reveal their ID due to security or privacy
concerns. For instance, the basic architecture of GNNs is anonymous. This is a very
desirable property as it allows to deploy GNNs in different networks than those in
which they were trained.

We assume that all the processes run locally the same deterministic algorithm,
therefore IDs cannot be created and deadlocks cannot be broken by for instance
flipping a random coin. Hence, the lack of IDs makes the processes essentially indis-
tinguishable from one another - except, as we will see later, for the structure of their
neighbourhood in the network.

Leader election is a procedure by which the processes in a network select a single
process to be the leader in a distributed way. If a leader is elected, then she can, for
instance, dictate the output to the other processes. Moreover, all the information about
the instance can be gathered to the leader, which if the network had unique IDs, would
be sufficient to solve the CSP locally at the leader. It is a well-known result that there
does not exist a terminating deterministic algorithm to elect a leader in an anony-
mous ring [1]. Therefore, the assumptions of anonymity and determinism ensure that
the DCSP model is intrinsically different from the (centralised) CSP framework, and
open up the way for establishing novel, non-trivial complexity results. We remark
that while considerable effort has been put into characterizing under what condi-
tions an anonymous network is able to elect a leader [8, 26] or compute relations
[9], our work focuses on characterizing the complexity of the DCSP as parametrised
by the constraint language. Therefore, all of our algorithms work regardless of the
topology of the network, and hence regardless of whether or not a leader can be
elected.

The encoding of a DCSP instance into the message passing framework is straight-
forward. The processes correspond to the agents of the network, and there is a
labelled communication channel between a variable agent «(x) and a constraint agent
a(c) if and only if x € c. More formally, the Factor Graph [12] G of an instance
I = (X, D, C) of CSP is the undirected bipartite graph with vertex set XUC and edge
set {{x, ¢} | x € c}. Each edge in G that is incident to a variable x and a constraint ¢
where ¢ = (s, R) has a label £, ¢y = (S, R) for § = {i | s[i] = x}, where for a tuple
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t, t[i] denotes the i™ entry of t.! Then, the message passing network corresponds to
the factor graph where every node (variable or constraint) is replaced by their associ-
ated agent and every edge by a communication channel of the same label. Note that
between any two agents there is at most one channel. If privacy is a concern, we point
out that labeling channels does not reveal any more information about the processes
than what is strictly necessary for the problem instance to be well defined. It is easy
to prove (see Appendix B) that in the case that all relations are binary, the original
model where only variables are controlled by agents is equivalent to our model.

We say that I is connected if G is connected in the standard graph-theoretic sense.
Unless explicitly stated we only consider instances whose factor graph consists of a
unique connected component.

At the start of an algorithm, a process only has access to very limited information.
All processes know the total number n of variables in the CSP instance, the total num-
ber m of constraints, the labels of the communication channels that they are incident
to in the network, and naturally whether they are controlling a variable or a con-
straint. During a run of the algorithm a process can acquire further knowledge from
the messages that it receives from its neighbours. We assume that at any time each
process is in one of a set of states, a subset of which are terminating states. When it
enters a terminating state, a process performs no more send or internal events, and all
receive events are disregarded. The local algorithm is then a deterministic function
which determines the process’s next state, and the messages it will send to its neigh-
bours. The output of such function only depends on the process’s current knowledge
(including the messages it has received so far), and on its state. We allow processes
to send different messages through different channels. However, since processes can
only distinguish the channels based on their labels, identical messages must be sent
through channels with identical labels. Note that the power of the model would not
decrease if only one message was allowed to be passed through all the channels,
since a process can simulate sending a separate message through each channel by
tagging each message with the label of the desired channel and concatenating them
in a unique string. This, however, comes at the cost of increased message size. More-
over, if a process needs to broadcast multiple messages, these can be concatenated
into one. We say that an algorithm terminates when all processes are in a terminat-
ing state. For a precise formalisation of the definition of distributed algorithm, see
Appendix A.

We say that a distributed algorithm solves an instance / of DCSP if the algorithm
terminates and at termination every process correctly outputs that / is satisfiable if
it is, and that it is not satisfiable otherwise. Moreover, we consider the search ver-
sion of DCSP, denoted DCSP-Search. In the search version, if the input instance /
is satisfiable, at termination every variable process «(x) must additionally specify a
value v(x) € D suchthatv : X — D is a satisfying assignment. For every constraint
language I', we denote by DCSP(I") and DCSP-Search(I") the restrictions of DCSP
and DCSP-Search, respectively, to instances containing only constraint relations
from I'.

'For mathematical clarity, we label edges with the relation itself. However, in algorithmic applications,
every relation can be substituted with a corresponding symbol.
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Fig. 1 Both graphs depicted above are 3-regular and hence they have the same iterated degree sequence.
However, they are clearly not isomorphic, since the left graph is bipartite while the right one is not

In terms of algorithmic complexity, there are a number of measures that can be
of interest. Time complexity, which is our primary concern, corresponds to the total
amount of time required for the algorithm to terminate, including the time needed
for internal events. This is closely related to the number of rounds of the algorithm,
which is another measure that we are concerned with. Message complexity and bit
complexity measure the total number of messages and bits exchanged respectively.
These can be bounded easily from the maximum size of a message.

Iterated Degree and Degree Sequence We present a number of concepts from graph
theory that carry over to CSPs. Their adaptation to DCSPs is straightforward in all
cases. In an undirected graph G, the degree of a vertex v is the number of edges
incident at v. The zeroth iterated degree of v is equal to its degree. For k > 1, the k"
iterated degree of v is the multiset of (k — 1)"* degrees of v’s neighbours in G. The
k' iterated degree sequence of a graph is the multiset of k" iterated degrees of its
vertices.

Example 1 In the context of graph theory the colour refinement algorithm, which
calculates the iterated degree sequence of a graph, is often used as a simple heuristic
for the graph isomorphism problem. If two graphs are isomorphic then they must
have the same iterated degree sequence, but the opposite is not true (see for example
Fig. 1).

We extend the notion of iterated degree to CSPs as follows. Consider the labelled
factor graph G of an instance I described in the previous paragraph. In what follows
it will be convenient to allow instances / with a disconnected factor graph G;. Let
v be a node of G; and denote its neighbourhood in the factor graph by N (v). The
(zeroth) degree, denoted §p(v), of a node in the factor graph is simply a symbol that
distinguishes variables from constraints: we set §o(x) = ‘@ for all x € X and
30(c) = ‘A’ forall ¢ € C. The k' iterated degree® (k > 1) of a node v is defined
as 6 (v) = {({v,w), Sk—1(w)) | w € N(v)}}, where the notation {{...}} stands for

2We remark that the notions of degree and iterated degree are well-defined concepts in graph theory. We
borrow this terminology to refer to the analogous concepts in CSPs.
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multiset. We write v ~% v/ if 8;(v) = 8 (v'), and simply v ~5 v’ if v ~& v/ for
all k > 0. In this case, we say that v and v’ are iterated degree equivalent. It can be
shown (see the following proposition) that as k increases, the partition induced by ng gets
more refined, and indeed it reaches a fixed point for some k < 2n where n = | X|.

Proposition 1 Let I = (A, X, D, C, a) be an instance of DCSP(I") and let v, v’ €
X UC. Letk > 2n where n = | X|. Then, v ~I(§ v implies v ~5 V.

Proof We start by showing that for all non-negative integers k, kK’ with k < k’, the
partition induced by ~§/ on X U C is at least as refined as the partition induced
by ~]§. The proof goes by induction. Let v, v’ be arbitrary nodes in G;. Clearly if
8o(v) # 8o(v'), then 8;(v) # 8 (V') for all k € N, so in particular §1(v) # 81 (V).
Now assume that for all v, v € X U C, §;(v) = 8¢ (v") implies 8x—1(v) = Sp—1(v").
Then it is a clear consequence of the definition of 8 that 8x41(v) = S+ (V) =
8k (v) = 8;(v') for all v, v’ € X U C too as required.

Now it remains to show that if v N(%” v/, then v ~§ v/ for all k > 2n. The result is
immediate if we replace 2n by n + m. To achieve 2n we use the fact that the factor
graph is bipartite. Denote by P¥ and QF the partitions induced by ~1§ on X and C
respectively and note that if PX~2 = P¥ then (P*, Q) is a fixed point. We notice
that P¥~2 = P* must occur for some k < 2n and we are done. O

The notion of iterated degree is strikingly relevant in our work as it captures what
it means for two processes in a network to be indistinguishable. This implies that no
distributed algorithm can differentiate between two iterated degree equivalent nodes,
as we illustrate in the following result.

Proposition 2 Let I = (A, X, D, C, @) be an instance of DCSP(I") whose factor
graph is not necessarily connected and consider two nodes v, v’ in Gj. Then, v ~5 v’
if and only if any terminating decision algorithm over I outputs the same decision at
a(v) and a(v'). Furthermore, if v,v' € X and I is satisfiable, then any terminating
search algorithm outputs the same values v(v) = v(v") at a(v) and o (v").

Proof (=). At the beginning of the algorithm, all processes are in the same state. Let
v be a node in the factor graph of /, and denote by s; the message broadcast at time
t by a(v) to its neighbours. For any two nodes v, v’, 81 (v) = 81 (v') is equivalent to v
and v’ having the same initial knowledge — that is, v and v’ are either both variables
or both constraints and their adjacent channels have the same multiset of labels. This
means that the first internal and send events are the same at «(v) and at «(v'), hence
5] = sl"/. Then, it is easy to see by induction that §,(v) = & (V) = s/ = s,’/,
which in turn implies that

v~y v = s/ =5/ atalltimest=1,2,...

This implies that at any time 7, «(v) and @ (v’) send and receive the same messages,
so they have the same knowledge and hence the internal events at a(v) and «(v’) are
the same at all time. In particular, if the algorithm terminates, then the terminating
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state is the same at «(v) and «(v’), and therefore the decision and, in case of search,
the value of v at o (v) and «(v’) are the same.

(«). Consider the algorithm that calculates the iterated degree at each node (we
detail the procedure in the proof of Theorem 15). If v %5 v/, then we can find an
algorithm that on the basis of the iterated degree gives different outputs at «(v) and
a(v). O

Example 2 Let " = {#p} where #p is the inequality relation on the Boolean domain
B = {0, 1}, thatis, Zg = {(0, 1), (1, 0)}. Let I be an instance of DCSP(I") with vari-
ables {x1, ..., x,} and constraints ((x1, x2), #B), ((x2, X3), #B), - . . , ((Xn, X1), #B).
That is, I can be seen as a directed ring. If n is even, then clearly I is satisfi-
able. Therefore, if there was a distributed algorithm that solved the search version
of DCSP(I'), any two agents controlling two consecutive variables x;, x;41 should
output at termination a partial assignment v for their controlled variable such that
v(x;j) # v(xj+1). But it is easy to see that all variable agents in / have the same
iterated degree, and so by Proposition 2, such an algorithm cannot exist.

The following is a direct consequence of Proposition 2. We say that two instances
I and I’ have the same iterated degree sequence if there exists a bijection y between
the nodes of G and the nodes of G such that for every £ > 0 and every node v
of Gy, the k' degree of v in I is equal to the k" degree of y (v) in I’. We note
that in this case, if we construct the (disconnected) instance I U I’ containing all the
variables and constraints in I and I’, then v ~s y (v) for every node v of G;. Hence
the result below follows.

Corollary 3 Let 1,1’ € DCSP(T') have the same iterated degree sequence. Then
with both inputs any terminating decision algorithm will report the same decision.

Example 3 Let I' = {#p} be as in Example 2 and consider the two instances pic-
tured in Fig. 1 (where nodes represent variables and edges represent constraints). By
Corollary 3, any terminating decision algorithm will report the same decision on both
instances. However, one of the instances is satisfiable and the other is not, so there
cannot be a distributed algorithm that solves DCSP(T").

Polymorphisms Let R be a k-ary relation over a finite domain D. An £-ary polymor-
phism of R is an operation f : D¢ — D such that the coordinate-wise application
of f to any set of £ tuples from R gives a tuple in R. More precisely, for any
ty,...,t, € R, we have that (f(t([1], ..., t[1]),..., f(t1[k], ..., te[k])) € R. We
say that a function f is a polymorphism of a constraint language I if f is a polymor-
phism of all relations R € I'. Equivalently, we say that I is invariant under f. The
set of polymorphisms of a constraint language I will be denoted by Pol(I"). There
is a particular construction of a CSP instance that is closely related to the clone of
polymorphisms of the corresponding constraint language. Let I be a constraint lan-
guage over a finite domain D. For any positive integer r, the indicator problem of
order r for I is the instance I = (X, D, C) € CSP(I') where X = D" and C con-
tains for every relation R € I' and for every t;,...,t, € R, the constraint (s, R)
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where s[i] = (ti[i], ..., t.[i]) foreveryi € {1, ..., arity(R)}. It follows easily that
for every v : D" — D, v satisfies [ if and only if v is a polymorphism of I".

An (-ary operation f is said to be symmetric if for all xg, ..., x, and for all
permutations o of {1, ..., £} we have that f(x1,...,x¢) = f(Xoq1), - .-, Xo(0))-

Example 4 Once again let #p be as in Example 2. It is easy to see that the ternary
minority operation f given by f(x,y,z) = x @ y @ z is a polymorphism of #p.
On the other hand, one can show that #p does not have symmetric polymorphisms
of arity 2. In particular, let t; = (0, 1) and t; = (1, 0). Since a symmetric binary
operation f needs to satisfy f(0, 1) = f(1, 0), the coordinate-wise application of f
to t1, to would yield a reflexive tuple, which cannot possibly belong to #p.

Our work unveils a novel structure in the space of solutions of a CSP instance
that is deeply connected to the symmetry of its polymorphisms. In particular, Pol(I")
containing symmetric polymorphisms of all arities is equivalent to the existence of
a satisfying assignment to every satisfiable instance of CSP(I") that preserves the
partition induced by ~;s. This is the main result of Section 3.

pp and efpp definability We conclude this section by presenting a notion of defin-
ability for relations that is closely associated to polymorphisms. A relation R C
D is said to be primitive positive definable, most commonly shortened to pp-
definable, from a constraint language I over the same domain D if there exists a
pair ((x,...,xx), I) with I = (X, D, C) an instance of CSP(I' U {egp}) where
eqp = {(d,d) | d € D} is the equality relation, and x1, .. ., x; are distinct variables
in X such that for every tuple t € DX

t € R < thereis asolution v of I such that t[i] = v(x;) forall 1 <i < k.

A constraint language I" is pp-definable from I if all the relations in ' can be
pp-defined from I'. The following complexity reduction between CSP classes is well
known.

Theorem 4 (see [4]) Let T, TV be finite constraint languages. If T pp-defines T",
then CSP(I"') is log-space reducible to CSP(T).

However, in the distributed setting, allowing equality introduces a few tech-
nical difficulties. Fortunately, this obstacle could be overcome by considering a
more restricted notion of pp-definability which, following [17], we shall call efpp-
definability, where equality is not allowed. More precisely, we shall say that a relation
R is equality-free primitive positive definable (efpp-definable, for short) from I' if it
is pp-definable and, in addition, the instance / witnessing the pp-definition belongs
to CSP(I"). That is, we are not allowed to use the equality relation in the instance,
unless, of course, it belongs already to I'. Then, we have:

Proposition 5 Let T, T be finite constraint languages, and assume that T is efpp-

definable from I'. If DCSP(I") is solvable in polynomial time (resp. finite time) then
so is DCSP(I™).
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Proof Given an algorithm Alg that solves DCSP(I") we can design a new algorithm
Alg’ for DCSP(I'’) that given an instance I’ = (A’, X/, D, C’, a’) of DCSP(I")
simulates the execution of Alg with the instance I = (A, X, D, C, «) of DCSP(I")
defined as follows. For every constraint ¢ = ((s1,...,sk), R) in C’, consider the
pair ((x1, ..., xx), Ir) defining R over I" and replace constraint ¢ by the instance /.
(meaning all its variables and constraints) obtained from /g by renaming the variables
so that x; = s; for every 1 < i < k and the rest of variables in I, are fresh. Note that
Ir (and hence I.) does not contain equalities. Then « is defined such that it agrees
with o’ over X’ and, as usual, every variable and constraint in / is controlled by a
different agent.

The simulation is as follows. At each round, for every x € X’, @’(x) simulates the
execution of a(x) as in Alg, and for every ¢ € C’, a’(c) simulates the execution of all
constraints and fresh variables in /.. We note that no new communication channels
need to be created as this simulation is done internally by «’(c). The transmission
of messages can be also easily simulated for every pair of neighbours «(x) and a(c)
in I. In fact, if x ¢ X’, then both a(x) and a(c) are simulated by the same agent
a’(c) in I’ (and, hence, no communication is required). Otherwise, if x € X', a(x) is
simulated by &'(x) and «(c) is simulated by some neighbour o’ (c) of a(x). O

Remark 6 We note here that for every r > 1, the indicator problem of order r for
I constitutes an efpp-definition of the |D|"-ary relation U encoding the set of all
polymorphisms of arity r. It then follows from Proposition 5 that if DCSP(I") is
solvable in finite time then so is DCSP({U}).

3 Basic Linear Programming Relaxation

For any CSP instance I = (X, D, C) there is a LP relaxation (usually called basic
LP relaxation, see for example [20]) denoted BLP(/), which is defined as follows.
It has a variable v(x, d) for each x € X and d € D, and a variable v(c, t) for each
c € Candt € R where R is the constraint relation of ¢. All variables must take
values in the range [0, 1]. The value of v(x, d) is interpreted as the probability that
v is assigned to d. Similarly, the value of v(c, t) is interpreted as the probability that
the scope of ¢ is assigned component-wise to the tuple t. In this paper we only deal
with a feasibility problem (that is, there is no objective function). The variables are
restricted by the following equations:

Zv(x,d):l forallx € X (1)
deD
Z v(c,t) —v(sc[i]l,d) =0 forallc e C,alli e{1,..., arity(c)},and alld e D (2)

teR,
tlil=d

where we denote the relation and scope of a constraint ¢ by R, and s, respectively.

We say that BLP decides CSP(T") if for every instance I € CSP(I"), I is satisfiable
whenever BLP(/) is feasible. We will use the following well-known result.
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Theorem 7 (see [20]) If " has symmetric polymorphisms of all arities, then BLP
decides CSP(I"). Moreover, if I € CSP(I") is satisfiable then it has a solution v such
that for all x, x' with v(x,d) = v(x', d) foralld € D, we have v(x) = v(x").

Proof 1Tt is clear that if there is no feasible solution to BLP(/), then [ is not satis-
fiable, regardless of the polymorphisms of I'. So let I' be such that Pol(I") contains
symmetric polymorphisms of all arities and let / be an instance of CSP(I") such that
BLP([]) is feasible. We can assume that there exists some natural number n such that
in the feasible solution to BLP(/), all variables take rational values of the form % for
some integer r. That is, forall x € X,d € D,c € C and t € R, (where R, is the
relation of ¢) there exist corresponding integers such that

r(x,d) r(c,t)

and v(c, t) = .
n

v(x,d) =

Let f be a symmetric polymorphism of I" of arity n. For every x € X we shall
denote by f the value of f when applied to an n-tuple where each d € D appears
exactly r(x, d) times. We claim that the assignment v : X — D given by v(x) = f;
satisfies I. To see this, consider an arbitrary constraint ¢ = (s, R). Denote by t’
the tuple obtained by applying f coordinate-wise to n tuples ti, ..., t, chosen as
follows: each tuple t € R is chosen exactly r(c, t) times. Clearly t' € R since f is
a polymorphism of R. So, to show that c is satisfied by v, it is enough to show that
v(s[i]) = t'[i]. Now, t'[i] is the result of applying f to the set of the i'" elements
of ty,...,t,. Butany d € D occurs in ti[i], ..., t,[i] exactly Ztmzd r(c,t) =
n - v(s[i], d) = r(s[i], d) times, and so, given that f is symmetric, we have

il = foi) = vl
as required. O

The following theorem reveals a useful structure inside the solutions of the
BLP.

Theorem 8 Ler [ = (X, D, C) be an instance of CSP(I") such that BLP(I) is feasi-
ble. Then, BLP(I) has a feasible solution such that for every x, x' € X with x ~5 x’
and everyd € D, v(x,d) = v(x', d).

Proof We start by rewriting the program in the form
Iwvel0,11Y Bv>b. 3)

by replacing every equality a = b by the inequalities a > b and —a > —b.

It will be convenient to index the rows and columns of B not using positive
integers. Let us start with the columns. Each column is associated to a variable of
BLP(I), i.e, a variable of the form v(x,d), x € X,d € D orv(c,t),c € C,t € R..
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In the first case, we index the corresponding column with the pair (x, d) whereas in
the second case we index it with the pair (c, t), and we denote by V' the set of all such
indices.

Now, let us turn our attention to the rows. Every equation in (1) gives rise to two
rows that we shall index with (x, +) and (x, —). Similarly, every equation in (2) also
gives rise to two rows that we shall index with (c, i, d, +) and (c,i,d, —). Let us
denote by W the set of all indexes for rows.

We shall see later how to define an oracle which, given a probability W-vector
p (i.e, a vector p with non-negative entries such that the sum of all its entries is 1),
outputs a vector v which is a solution to the weaker problem

Iwvelo,11Y p'Bv=p’b 4)

if one exists, or correctly states that no such vectors exist otherwise. Note that if a
solution exists to (3), then it is necessarily also a solution to (4), while the opposite
is not true in general.

For every w € W, let us denote by B,, the row corresponding to w. If w = (x, +)
then, since the vector returned by the oracle satisfies v € [0, 11V it follows easily
that By, v — b[w] € [—1, |D|]. Similarly, if w = (c,i,d, +) then B,v — b[w] €
[—1, maxger |R]]. It follows that by setting £ = 1 and p = max{|D|, maxger |R|}
any such oracle-given vector v satisfies the following condition: there is a fixed subset
J € W (consisting precisely of the positive rows) such that

Byv —blw] € [-£,p] Yw e J,
B,v —blw] € [—p, €] Yw & J.

Such an oracle is known as a (£, p)-bounded oracle. Then we have:

Theorem 9 ([2]) Let ¢ > 0 be an arbitrary error parameter. Suppose that there
exists an (£, p)-bounded oracle for the feasibility problem (4). Assume that { > %
Then there exists an algorithm which either finds v such that Bv > b — ¢ whenever
such v exists, or correctly concludes that no such v exists otherwise. Such algorithm

makes O(Lp log(|W|)/&?) calls to the oracle.

The algorithm that Theorem 9 refers to is Multiplicative Weight Update (MWU),
a well-known technique that is widely used in optimisation and machine learning.
MWU was discovered independently by researchers of different communities; for a
survey of its different variants we refer the reader to [2]. The version that is relevant
to our paper is described in Algorithm 1. Recall that the algorithm assumes that there
is a feasible solution.
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Algorithm 1 Multiplicative weight update.

Initialisation: Fix n € [0, %] and let w(D be a W-vector, whose entries, called
weights, are initially set to 1.

fort=1,...,T do

Compute the probability vector p) = #t)w(’ ), where

o () = Y| Wl

Let v(¥) be a solution satisfying (p?)” Bv\") > (p'))Tb given by oracle O
Compute the losses £) = %(BV(Z) —b)

Compute the new weights w0 = w® © (1 — 7€) (where © denotes the
element-wise product)

end
= L5 T O
returnv := 5> /_;V

We shall see that if we choose the oracle O wisely then for every x, x’ € X with
x ~s x’ and every d € D, the solution returned by the MWU algorithm assigns the
same value to v(x, d) and v(x’, d).

To see this we need some more notation. We note that ~; induces in a natural way
an equivalence relation ~y on V. In particular, we have that v, v’ € V are ~y -related
ifv=(x,d)andv' = (x’,d) where x ~5 x’andd € D,orv = (c,t) and v’ = (c/, t)
where ¢ ~5 ¢’ and t € R, (note that, necessarily, R, = R.). Similarly ~s induces an
equivalence relation, denoted ~y , on W. More specifically, we have that w, w’ € W
are ~w-related if w = (x,s) and w’ = (x/,s) where x ~5 x’ and s € {4, —} or

w = (c,i,d,s)and w’ = (c/,i,d,s) wherec ~5 c',i € {1,...,arity(c)},d € D,
and s € {+, —}.
Now, we say that a V-vector v is ~y-preserving if v[v] = v[v'] whenever

v ~y v and we similarly define ~w-preserving W-vectors. So it is enough to
show that there exists some oracle O that guarantees that at each iteration ¢ of the
WMU algorithm, v(*) is ~y-preserving. To this end we need the following easy
properties.

Claim 1 For all ~y-preserving V-vectors v and for all ~y -preserving W-vectors w,
we have that

1. Bvis ~-preserving;

2. w! B is ~y-preserving.

Proof of Claim 1. We include only the proof of (2) as the proof of (1) is analogous
and, indeed, simpler. Let v := w’ B. An easy computation shows that

v(x,d) = w(x, +) — w(x, —) — Z Z (W(e,i,d,+) —w(c,i,d, —))

ceCy 1<i<arity(c)
sclil=x
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where we write C, to denote the set of all constraints in C where x appears in the
scope, and
vie. = Y (Wi d, +) —w(c,id, -))
1<i<arity(c)
tlil=d

It is immediate to see that, if w is ~y -preserving, then v(c, t) = v(c’, t) whenever
¢ ~s c'. Let us show that v(x,d) = v(x’, d) whenever x ~g x’. Since w is ~w-
preserving we have that w(x, s) = w(x’, s) for s € {+, —} and hence we only need
to show that ¢, (Cy) = ¢,/ (C,/) where ¢, (Cy) is a shorthand for

Z Z (W(C’iad’ +) —w(c,i,d, —))

ceCy 1<i<arity(c)
sclil=x

and ¢,/ (C,) is defined analogously.

Now, for every R € TI', every S C {l,...,arity(R)}, and every class [c] of
equivalent constraints, let Cy g s ¢ be the set of constraints in C, that belong to
[c], whose constraint relation is R, and whose scope s satisfies the following: (i €
S) & sli] = x foreveryi € {1,...,arity(R)}. Note that since Cy and C,/ can
be partitioned as the union of sets of this form it is only necessary to show that
©x(Cx,R,s,1c]) = ©x'(Cx r,s.[c]) for every choice of R, S, and [c]. To see this it is

enough to note that |Cx g s [¢c]| = |Cy’ Rr,s.[c]| (because x ~;s x”) and that, since w is
~w-preserving, for every constraint ¢’ € [c] and every choice of d, i, and s, we have
w(c',i,d,s) =w(c,i,d,s). O

Proof Now, consider the oracle O that, given a W-vector p, returns the V-vector v
defined as v[v] = 1if pT B[v] is positive and v[v] = 0 otherwise. Since v maximizes
pTBV under the restriction v € [0, 1]" it follows that v satisfies (4). Furthermore, it
is easy to see that if p is ~-preserving then v is ~y-preserving.

Now, note that by definition both w'l) - which is an all-ones W-vector - and b are
~w-preserving. It follows easily by induction that for each ¢, v(*) is ~y -preserving
and w¥) is ~y-preserving. Hence, if we call algorithm WMU iteratively with T —
oo we obtain in the limit a feasible solution satisfying the conditions of the statement.
We note here that, although we have not included explicitly any inequalities requiring
that all the variables in BLP(/) take values in the range [0, 1], this is guaranteed by
the fact that all the entries of the vector returned by O are in the range [0, 1]. This
concludes the proof of Theorem 8. O

We finalize the section by presenting the theorem on the structure of the solution
space of CSP instances.

Theorem 10 Let I' be a finite constraint language. The following are equivalent:

1. T has symmetric polymorphisms of all arities.
For all satisfiable instances I = (X, D, C) € CSP(I") there exists a satisfying
assignment v : X — D such that for all pairs of variables x,x’ € X, if x ~5 x’
then v(x) = v(x').
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Proof (1)= (2). Let I be a satisfiable instance of CSP(I"), where I" has symmetric
polymorphisms of all arities. Consider the solution of BLP(/) given by Theorem 8
and note that it satisfies v(x, d) = v(x’, d) for all x ~5 x" and all d € D. Then, by
Theorem 7, I has a solution v which satisfies v(x) = v(x’) for all x ~g x’.

(2)= (1). Let I" satisfy (2) and let r > 1. We shall prove that I" has a symmetric
polymorphism of arity r. Let I = (X, D, C) be the indicator problem of order r.
Recall that every solution to I corresponds to an r-ary polymorphism of I", and hence
the indicator problem is always satisfiable since for instance the projection to the
first coordinate is a polymorphism of I'. Let v be a solution of the indicator problem
which satisfies condition (2). It is easy to show by induction that for every tuple

(t1....,t;) € D", every permutation o of {1, ..., r}andevery k > 0, (t{, ..., 1) ng
(ts(1), - - - » to(r)) Which implies that v(t1, ..., %) = v(t5(1), - - ., to (). We conclude
that v is symmetric as required. O

4 The Complexity of DCSP

The primary goal of this section is to prove the main theorem of this paper, namely,
the dichotomy theorem for tractability of DCSP(I"), which we now state.

Theorem 11 DCSP(I") is solvable in polynomial time if and only if Pol(I') contains
symmetric polymorphisms of all arities. Otherwise, DCSP(I") cannot be solved in
finite time.

We show hardness of constraint languages that do not have symmetric polymor-
phisms of all arities in Section 4.1 and tractability of the remaining languages in
Section 4.2. In addition, in Section 4.3 we extend the decision algorithm so that,
additionally, it also provides a solution to the search problem. Hence we have:

Theorem 12 DCSP-Search(I") is solvable in polynomial time if and only if Pol(I")
contains symmetric polymorphisms of all arities. Otherwise, DCSP-Search(I") can-
not be solved in finite time.

4.1 Intractable Languages

In this section we focus on intractable languages, that is, the hardness part of
Theorem 11.

Theorem 13 Let " be a constraint language on a finite domain D. If Pol(I") does
not contain symmetric operations of all arities, then there is no algorithm that solves
DCSP(T") in finite time.

Schematically, the proof goes as follows. Assume that I does not have symmetric
polymorphisms of some arity . Consider the relation U defined by the set of solu-
tions of the indicator problem of order r. It can be shown that if DCSP(I") is solvable
in polynomial (or finite) time then so is DCSP({U}). Then, we show that there always
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exist two connected instances of DCSP({U}), of which one is satisfiable and the other
one is not, that have the same iterated degree sequence. Therefore, any algorithm will
return the same output on both instances, meaning that one of these outputs is wrong.
Before embarking on the proof we state the following useful combinatorial lemma.

Lemma 14 Let 0 < k < d be positive integers. If n is a large enough multiple of k,
then there exists a collection S ofnk k-element subsets of {0, 1, ..., kn—1} satisfying
the following properties:

(@) S contains every k-element subset of {0, ...,d — 1}

(b) Every element of {0, 1, ..., kn — 1} appears in the same number of sets of S.

(¢) Ifk = 2, the k-uniform hypergraph with vertex set given by {0, 1, ..., kn — 1}
and edge set given by S is connected.

Proof If k = 1 we can just define S to be the set containing all singletons in
{0,1,...,kn — 1} so we can assume that k > 2. Pick some »n that is a multiple of
k and consider the subsets of {0, 1, ..., kn — 1}. We say that one such set is bad if

S = S+4i mod kn for some i # 0, and good otherwise where the right-hand side of
the equation is a shorthand for the set {s +i mod kn | s € S}. The following facts
hold. O

Claim2 If n > @, then all subsets of {0, ..., d — 1} are good.

Proof of Claim 2.LetS C {0, ...,d—1} and assume that S is bad. Then, there exists
i such that §$ = S +i mod kn. Denote by s, the smallest element of S. Then, we
need s, + i € S, which implies thati < d — 1. On the other hand, kn + s, = x + i
for some x € S, implying that kn + s, < 2(d — 1) < kn, a contradiction. ]

Claim 3 There are at least n* good sets.

Proof of Claim 3. Let S be a bad set and let 0 < i < kn be minimal such that
S = S+i. We note that S is fully determined by SN[0, i — 1] and i. Now, we observe
that since 0 < i, it follows that |S N [0,i — 1]| < k/2 and, hence, there are at most
i*? < (kn)k/2 choices for SN[0,i — 1]. If s € S and S is bad it follows that s + j - i
mod kn € S for every integer j. Since S has k elements it follows that i - j = kn for
some j < k. Hence, we have at most k choices for i. Hence, in total we have at most
O(nk/ 2) bad sets. This implies that there are at least (kk”) — O(nk/ 2y good sets, which
is at least n* for n large enough.

Therefore, consider the collection of good k-element subsets of {0, 1, ..., kn—1}.
We say that two sets S, S’ are related if S = S’ + i mod kn for some i # 0. Note
that, since we are only considering good sets, every class of related sets has exactly
kn members and, hence, there are at least n*/kn many classes. Also it is immediate
that every class of related sets satisfies condition (b).
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Hence, to construct S we just need to remove some of the classes of good sets so
that we end up having exactly n*/kn classes, which corresponds to n¥ sets. We have
to keep all the classes containing one of the sets of condition (b), which is always
possible if we pick n large enough so that (¢) < n*.

It only remains to show that the hypergraph with vertex set {0, 1, ..., kn — 1} and
edge set S is connected. To do this it is sufficient to show thateachi € {0, 1, ..., kn—
1} is connected to, say, vertex O by a walk. This is immediate to see as, for instance,
So=1{0,1,...,k— 1} € S (because Sy C {0, 1,...,d — 1}) and therefore S; :=
So+ieSforalli € {0,1,...,kn — 1}, hence, the sets Sy, Sy, ..., Sj_k+1 witness
that 0 and i are connected. O

Proof of Theorem 13 Assume that Pol(I') does not contain symmetric polymor-
phisms of arity » > 2. Fix any arbitrary order ti, ..., t|p|r on the tuples of D" and
consider the relation U defined as

{(f(t1),..., f(tpy)) | f is a polymorphism of I' of arity r}

This is, U is the set of solutions of the indicator problem of order r. Given that
U is efpp-definable from I', it follows from Proposition 5 and Remark 6 that if
DCSP({U}) is not solvable in finite time then neither is DCSP(T").

Partition D" into equivalence classes where two tuples t,t' € D" are related,
denoted t = t/, if there exists some permutation o on {l, ..., r} such that t'[i] =
tlo(i)] foreveryi € {1, ..., r}. We shall use DL to refer to the collection of classes
and [t]= to refer to the class of tuple t. For every t € D", define kj_ to be the
number of tuples in [t]=. Then we can choose an integer n large enough such that for
every t € D", n is a multiple of kp¢g_, and n satisfies Lemma 14 for k = kjg_ and
d = kpy_ - |D]. Notice that since Pol(I") does not contain symmetric polymorphisms
of all arities, we must have that | D| > 2, and hence there is some [t]= € DL such
that k[t]E > 2.

We are now ready to construct two instances I; and I> of DCSP({U}), which
are indistinguishable with respect to their iterated degree sequence, but differ with
regards to satisfiability. The two instances have the same set of variables, defined to
be _U[t]EeD; Vitj. where Vi = {v{tJE | 0 < i < ky_n} is a set of kjgy_n distinct
variables.

We start by constructing the constraints of the unsatisfiable instance /1, which we
will do in two stages. First, for every class [t]=, let Syj_ be the collection of nki=
sets of cardinality kj¢_ given by Lemma 14, as before with d = kg _ - |D| and
k = kiyj_. Note that each set in Sy¢j_ defines naturally a subset of Vyj_ so we shall
abuse notation and assume that Sy¢)_ is a collection of subsets of V[¢)_.

To simplify notation it will be convenient to use S as a shorthand for the indexed
family {Syg_ | [tl= € DL}. Now let S be {Spy_ | [tl= € DL} satisfying Sj_ € Sy
for every [t]= € DLZ. We associate to S the constraint (s, U) where the scope s is con-
structed as follows. Before defining s we need some preparation. Recall that every
coordinate of U, and hence of s, is associated to a tuple t € D", so we can talk of
the class [t]= to which each coordinate belongs. In particular, there are kj¢_ coordi-
nates in s of class [t]=. Hence, by fixing some arbitrary ordering we can use s’m ,
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i =1,..., k. to refer to the coordinates in s of class [t]=. Then, informally, Spt)_
describes which variables from UR]E, R vﬁ[]']jn_l to use in order to fill coordinates

s’mz, i =1,..., kyj_. Formally, for every [t]= € D_ andeachi =1, ..., kg, Sft]E
is assigned to the i’ element in Sj¢)_ in increasing order.
We add such a constraint for each of the Ijyj_epr nkiti= = n(P ") possible choices

for S. Therefore, after the first stage we have exactly n(/PI") constraints.

In the second stage we add more constraints which will yield the particular sym-
metry of ;. Note that every permutation o on {1, ..., r} induces a permutation o’
on the coordinates of U in a natural way. Specifically, if coordinate i of U is asso-
ciated to tuple t;, then o’(i) = j where t; = (t;[c(1)],..., t{[o(r)]). Then, in the
second stage, for each permutation o on {1, ..., r} and for every constraint (s, U)
added in the first stage we add the constraint (s’, U) where for every 1 < i < |DJ",
s'[i] = s[o’(i)]. Therefore, after the second stage we have a total of m = r! - n{P1"
constraints as needed.

We now turn to />. The constraints are constructed in a similar way, but instead
of using the family S in the first stage, we use a different family S'. In particular, for
each class [t]=, /[t]f is obtained by partitioning V[¢)_ in k(j_ blocks of consecutive

elements, so that each block has exactly n elements. Then, SE tl contains the nkiti=
sets that can be obtained by selecting one element from each block. The second stage
is done exactly as in /7.

We need to show that I; and I, are connected. Notice that in both instances each
constraint (s, U) spans all subsets V|¢_, so in both cases it is sufficient to prove
that the subgraph of the factor graph induced by the constraint set together with one
of these subsets V|¢_ is connected. Pick any t € D" with kyg;_ > 2. Then, from
part 14 of Lemma 14, the hypergraph (Vj¢_, S)_) is connected, and since for every
St € Spg. there is some constraint in /; that all the variables in Syyj_ participate
in, V|q)_ satisfies the aforementioned connectedness condition in /1, meaning that I
is connected. As for I, the reasoning is the same except that we are left to show
that whenever k[y)_ > 2, the hypergraph with vertex set {0, 1, ..., kn — 1} and edge
set S’ is connected. This is immediate as by construction of S, any two vertices in
{0, 1, ..., kn — 1} either belong to two separate blocks, in which case they share an
edge, or they belong to the same block, in which case they both share an edge with
any other vertex in any other block. O

Claim 4 I and I, have the same iterated degree sequence.

Proof of Claim 4. Let [t]= € DL. First, we observe that in both instances after the
first stage, every variable of Vjy_ appears in the same number of constraints. More
specifically, every variable in V|¢_ appears in an n-fraction of the constraints added
in stage 1. In the case of instance / this is due to the fact that Syg_ satisfies condition
14 in Lemma 14 and in instance I, this follows from the fact that SE tl contains all
possible sets obtained by choosing an element within each one of the blocks of size
n. After the second stage (in both /1 and I since the second stage is common) every
variable in V|¢)_ still participates in an n-fraction of the total number of constraints. In
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addition, it follows easily that the positions of the scope in which a variable in Vy_
participates distribute evenly among the kpg_ positions associated to t. That is, in
both instances, we have that for every [t]= € DL, every variable x € V|¢_, and every
position i associated to [t]= there are exactly # constraints in which x appears at

position i of the scope, where m = r! - n!Pl". Using this fact it is very easy to prove
that /7 and I, have the same iterated degree sequence. Formally, one could show by
induction on k that for every [tl= € DL and x1, x2 € Vjy_, 8;1 (x1) = 8,52 (x2) and
that for any two constraints c1, ¢z in I and I, respectively 8,{‘ (c1) = 8,? (c2). Here

we are using 5,5‘ () and 8,? (-) to denote the k' degree of a node in the factor graphs
of I and I, respectively. U

Claim 5 Instance I; is unsatisfiable while instance I is satisfiable.

Proof of Claim 5. We start by showing that /; is not satisfiable. Assume by contra-
diction that I has a satisfying assignment v. For each class [t]=, consider the values
given by v to the first d variables v, ..., vg—1 in Vjg_. Since d = kjyj_ - | D], it fol-
lows by the pigeon-hole principle that at least k[y)_ of these variables are assigned by
v to the same value of D. Let Sjyj_ be a subset of V|¢j_ containing k[¢)_ of these vari-
ables (we know that this subset belongs to Syj_ by condition 14 of Lemma 14). Now
consider the constraint (s, U) in I associated to S := {Sy_ | [t]l= € DL}, which
belongs to I;. If v is a solution to 7, then the restriction of v to s corresponds to
an r-ary polymorphism of I". But v assigns the same value to any two related tuples
t = t/, which implies that v is symmetric, a contradiction.

We now turn our focus to I5. Let f be any r-ary polymorphism of I (for exam-
ple the i th (1 <i<r) projection operation defined as f(xq,...,x;) = x;). We
shall construct a solution v of I in the following way. Recall that in the definition of
I we have partitioned the elements of Vj¢_ in kp¢_ consecutive blocks. In the first
stage, all the elements in each block are placed in the same coordinate of U. So, if
ti, ..., tpyr are the tuples associated to coordinates 1, ..., |D|" and hence blocks
1,...,|D|" respectively, then we only need that all variables in the i th block are
assigned to f(t;) to satisfy all constraints added in the first stage. This assignment
also satisfies the constraints added in the second stage, because if f is an r-ary poly-
morphism of I', then for every permutation o on {1, ..., r}, the operation g defined
as g(x1, ..., %) = f(Xs(1)s - - - » X (r)) 18 also a polymorphism of I". O

Proof To sum up, we constructed two connected instances /1 and I, the latter of
which is satisfiable while the former is not, which have the same iterated degree
sequence. It follows from Corollary 3 that any distributed algorithm will give the
same output on both instances, meaning that no algorithm can solve DCSP({U}).
As anticipated at the beginning of the proof then it follows that there are also no
algorithms that solve DCSP(I"). O
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4.2 Tractable Languages

In this section we turn our attention to the tractable case. In particular we shall show
the following:

Theorem 15 Let I' be a constraint language that is invariant under symmetric poly-
morphisms of all arities. Then there is an algorithm Alg that solves DCSP(I"). The
total running time, number of rounds, and maximum message size of Alg are, respec-
tively, O(n’mlogn), O(n?), and O(mlogn) where n and m are the number of
variables and constraints, respectively, of the input instance.

Note that this implies the “if”” part of Theorem 11. Alg is composed of two phases.
In the first phase, a distributed version of the colour refinement algorithm allows
every process to calculate its iterated degree. Then, thanks to Theorem 10 we can use
the degree of a variable as its ID for the second phase, implying that a distributed
adapted version of the jpg-consistency algorithm [18] where messages are tagged
with a process’s iterated degree solves the decision problem for I'.

Distributed Colour Refinement Let I = (A, X, D, C, @) be an instance of DCSP(I")
and let n = |X| and m = |C|. There is a very natural way to calculate an agent’s
iterated degree in a distributed way, both for variables and for constraints. This is
a mere adaptation of the 1-dimensional Weisfeiler-Leman algorithm, also known as
colour refinement, an algorithm that partitions the vertices of a graph into classes by
iteratively distinguishing them on the basis of their degree (see for example [15, 16]).
The algorithm proceeds in rounds. At round k = 0, each agent «(v) forv € X U C
computes do(v) and broadcasts it to all its neighbours. At round k > 0, each agent
a(v) knows the (k — 1) degrees of its neighbours which it had received in the
previous round, uses them to compute & (v), and broadcasts it to its neighbours. If
k = 2n then for every x, x’ € X satisfying x ng x" we have that x ~ x’, which
implies that we can essentially regard the k" iterated degree as the unique common
ID for all variables that are iterated degree equivalent. Then in 2n rounds each agent
a(v) can compute d,(v), where we use §o as a shorthand for 65,. As we described
it, the distributed colour refinement algorithm is not particularly efficient in terms of
message complexity. Although this is not necessary to achieve polynomial time, we
can reduce the space required to encode 8o, (V).

Lemma 16 Let spax denote the size of the encoding of 800 (v). A modified version
of the distributed colour refinement algorithm that runs over O(n?) rounds achieves
smax = O(logn). The time at each round and the maximum size of a message are
both bounded above by O(mspqy).

Proof We describe a variation of the distributed colour refinement algorithm
that achieves the required bounds. After computing the k" degree and before
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proceeding to compute the (k + 1) degree, all agents broadcast their k' degree
to their neighbours. At the next round, every agent broadcasts all the k' degrees
received (removing repetitions) to its neighbours so that in 2n rounds every agent has
received a complete list of all the k" degrees of all nodes. Every agent «(v) orders
all k' degrees (this can easily be done in such a way that all agents produce the same
order), and sets 8 (v) to be the rank of its own degree in the order. Then it proceeds
to send out this new encoding of &;(v) and to calculate §;1(v) accordingly.

In this way, we have symax = O(log(n+m)) = O(logn). Note that the total number
of rounds of this algorithm is O(n?) and that, provided every set of degrees is stored
as an ordered array, the cost of each computation done locally by an agent at a given
round is bounded above by the size, O((n + m)smax) = O(msmax), of the largest
message sent. Note that in order to obtain these bounds we have used the standard
facts that any instance of CSP over a fixed finite constraint language I is such that
m = O(n") and n = O(rm), where r is the largest arity of a relation in I". O]

As we will see, the price of an increase in the number of rounds (from n to n?)
is compensated by the effect of sp,x on both time complexity and the size of the
messages.

The Distributed Consistency Algorithm It is well known that if a constraint language
I" has symmetric operations of all arities then it satisfies the so-called bounded width
property (see [5]). We avoid introducing the formal definition of bounded width as
it is not needed in our results and refer the reader to [5] for reference. Informally, a
constraint language I" has bounded width if CSP(I") can be solved by a local con-
sistency algorithm. This is a large class of problems which includes many languages
that are not solvable by BLP, such as for instance the Boolean inequality relation
#p of Example 2. Now, it has been shown in [18] that if I" has bounded width and
I € CSP(I') satisfies a combinatorial condition called jpg-consistency, then I has a
solution. Instead of stating literally the result in [18] we shall state a weaker version
that uses a different notion of consistency, more suitable to the model of distributed
computation introduced in the paper.

A set system S is a subset of X x D. We shall use Sy to denote the set {d € D |
(x,d) € S}. A walk of length ¢ (in instance /) is any sequence xocg - . . c¢—1X¢ Where
Xo, - .., X¢ are variables, co, ..., cg—1 are constraints, and x;, x;+1 € ¢; for every
0 < i < £. Note that walks are precisely the walks in the factor graph Gy (in the
standard graph-theoretic sense) starting and finishing in X.

Let S be a set system, p be a walk, and B € S, where x is the starting node of
p. The propagation of B via p under S, denoted B +g p, is the subset of D defined
inductively on the length € of p as follows. If £ = 0 then B +g p = B. Otherwise,
p = p’co_1x¢ where p’ is a walk of length £ — 1 ending at x;_1. Letc,_1 = (s, R).
Then we define B +g p to contain all e € D such that there exists d € B +g p’ and
t € R such that for every 1 <i < arity(R), t[i] satisfies the following conditions:

1. t[i] € Sspiys
2. ifs[i] = x¢_; thent[i] =d, and
3. if s[i] = x¢ then t[i] = e.
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We are now ready to state the result from [18] that we shall use.

Theorem 17 (follows from [18]) Let I be an instance of CSP(I") where T has
bounded width and let S be a set system such that S, # O for every x € X and such
that for every walk p starting and finishing at the same node x and for every d € S,
d belongs to {d} +s p. Then I is satisfiable.

Our goal is to design a distributed algorithm that either correctly determines that
an instance / is unsatisfiable, or produces a set system S verifying the conditions of
Theorem 17. This is not possible in general due to the fact that agents are anonymous
and hence a hypothetical algorithm that would generate a walk in a distributed way
would be unable to determine if the initial and end nodes are the same. However,
thanks to the structure established by Theorem 10, this difficulty can be overcome
when I' has symmetric polymorphisms of all arities because, essentially, the iterated
degree of a node can act as its unique identifier. To make this intuition precise we
will need to introduce a few more definitions.

We say that a pair (x, d) € S is S-supported if for every walk p starting at x and
finishing at a node y with x ~; y, we have that {d} 4+ p contains d.

Remark 18 We note that if (x,d) € S is not S-supported and p = xpcg...x¢ is a
walk of minimal length among all walks witnessing that (x, d) is not S-supported
then ¢ < n2!P!. Indeed if we let B; = {d} + xoco...xi,i = 0, ..., £ then we have
that (x;, B;) # (xj, Bj) forevery 0 <i < j < £, since otherwise the shorter walk
Xoco ... x;cj...xy would contradict the minimality of p. Since there are n choices
for each x; and 2!P! choices for B;, the bound follows.

We say that a set system S is safe if for every solution v € I we have
v(x) =v(y) forallx,y € X withx ~s y = v(x) € S, forall x € X.

Then, we have

Lemma 19 Let S be a safe set system and let (x,d) € S be a pair that is not S-
supported. Then S \ {(x, d)} is safe.

Proof Let v be any solution in [ satisfying v(y) = v(z) for every y,z € X with
y ~s zand let p = xocp...xp be any walk in S witnessing that (x, d) is not S-
supported, (i.e, p is such that xo = x, xo ~s x¢, and d & {d} +s p). Since S is safe
we have that v(y) € Sy for every y € X. It remains to see that v(x) # d, so that the
safety condition remains unaltered when (x, d) is removed. First, it follows easily by
induction that for every 1 < i < £, v(x;) € {v(x)} +5 p; where p; = xocp ... Xx;.
Then, since v(xy) € {v(x)} +5 p, v(x) = v(xy), and d ¢ {d} +5 p, it follows that
v(x) #d. O

Our distributed consistency algorithm (that is, the second phase of Alg) works as
follows. Every variable agent o(x) maintains a set Sy € D in such a way that the
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set system S is guaranteed to be safe at all times. As a result of an iterative process
S is modified. We shall use S’ to denote the content of S at the " iteration, where
an iteration is, in turn, a loop of T = 2n(2!P! + 1) = O(n) consecutive rounds. The
rationale behind this exact value will be made clear later. Initially, S)? is set to D for
every x € X. Atiteration i fori > 1, S is obtained by removing all the elements in
Si=1 that are not S~ !-supported. Then, in at most n|D| = O(n) iterations we shall
obtain a fixed point S°°.

The key observation is that when I has symmetric polymorphisms of all arities,
the satisfiability of / can be determined from S°°. Indeed, if S¢° = ¢ for some
x € X then we can conclude from the fact that S* is safe and Theorem 10 that / has
no solution. Otherwise, S satisfies the conditions of Theorem 17 and, hence, I is
satisfiable.

It remains to see how to compute S*! from §’. In an initial preparation step for
every iteration, every variable agent a(x) sends S: to all its neighbours. To compute
Si+1 the algorithm proceeds in rounds. All the messages sent are sets containing
triplets of the form (6o, d, B) where d € D, B C D, and § is the iterated degree
of some variable x € X. It follows from the fact that there are at most n possibilities
for the degree of a variable that the size of each message is O (nsmax)-

The agents controlling variables and constraints alternate. That is, variables per-
form internal and send events at even rounds and receive messages at odd rounds,
while constraints perform internal and send events at odd rounds and receive mes-
sages at even rounds. More specifically, in round j = 0 of iteration i, every
variable agent «(x) sends to its neighbours the message M containing all triplets
of the form (8o0(x), d, {d}) with d € S)"C. At round 2j for j > 0, a(x) computes
M = My U---UM, where My, ..., M, are the messages it received at the end of
round 2j — 1. Subsequently, for every triplet (600, d, B) € M with §oo = o0(X)
and d ¢ B, a(x) marks d as ‘not S’-supported’. Finally, it sends message M to
all its neighbours. This computation can be done in time O(rnsmax) = O(MnSmax)
provided that each message is stored as an ordered array.

In round 2 + 1, every constraint agent «(c) computes from the messages M
(received from each neighbour & (x) in the previous round) the set M, which contains
for every variable y € ¢ and every (8, d, B) in M,, the triplet (60, d, B +gi p)
where p = ycx. Finally, it sends to each neighbour «(x) the corresponding message
M. Note that while a(c) doesn’t know the address of « (x) specifically, knowing the
label of the channel that connects them is sufficient to calculate M/ correctly and
send the message accordingly. Moreover, for given y and x, a(c) can compute B+ p
in O(1) time as a(c) knows both Si, and S )’C Hence, since the arity of the relations is
fixed (as I' is fixed) the total running time at iteration 2j + 1 of a constraint agent
a(c) is O(nsmax).

Now it is immediate to show by induction that for every j > 0, every x € X and
¢ € C with x € c the message sent by a(x) to «e(c) at the end of round 2 is precisely

{(boc(¥),d, {d}+p) | yeX,d € st p is a walk of length j of the form p =y ... x}
and the message sent by «(c) to o(x) at the end of round 2 + 1 is precisely

{boo(¥),d,{d}+p)|ye X,de S;,, p is a walk of length j + 1 of the form p = y...cx}.
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By Remark 18 only 2n2/P! = T —2n iterations are needed to identify all elements
in S’ that are not S’-supported. Hence, after exactly T — 2n rounds every variable
agent a(x) computes S:*! by removing all the elements in S’ that are marked as
“not S’-supported”. If S'+! = ¢, then a(x) initiates a wave, which is propagated by
all its neighbours, broadcasting that an inconsistency was detected. In this case, in
at most 2n additional rounds all agents can correctly declare that / is unsatisfiable.
Otherwise, a new iteration begins.

To sum up, the distributed consistency algorithm consists of O(n) iterations con-
sisting, each, of O(n) rounds where the total running time for internal events at a
given round is O(mnsmax) and the maximum size of each message transmitted is
O(nsmax). Together with the bounds given by Lemma 16 for the distributed colour
refinement phase, this completes the proof of Theorem 15.

4.3 The Search Algorithm

We conclude by presenting the proof of Theorem 12. The hardness part follows
immediately from Theorem 11 as the search problem is as difficult as the decision
problem. For the positive result we shall present an adaptation of the algorithm solv-
ing the decision version. Let I be an instance of DCSP-Search(I") where I" contains
symmetric polymorphisms of all arities. In what follows we shall use intensively the
fact that Pol(I") is closed under composition. Let / € D be minimal with the prop-
erty that f(D) = J for some unary polymorphism f in Pol(T"). It is fairly standard
to show that for every r > 0 there is a r-ary symmetric operation g in Pol(I") such
that g(x, ..., x) = x for every x € J. Indeed, let f satisfy f(D) = J and let g’ be
any r-ary symmetric polymorphism in Pol(I"). Then the unary operation / defined by
h(x) = fog'(x,...,x) is aunary polymorphism of I'. By the choice of f we have
h(D) C J. We note that 1(J) = J since otherwise 4% would contradict the mini-
mality of f. Consequently, & restricted to J is a (partial) isomorphism, and so 4!
preserves all relations of I" restricted to the subdomain J. Hence, the r-ary operation
g defined as g = h~! o f o g’ satisfies the claim. This implies that if we enlarge the
constraint language by adding all singletons {d}, d € J, the resulting constraint lan-
guage, which we shall denote by I", still has symmetric polymorphisms of all arities.
For convenience we also include D in T".

The algorithm has two phases. In the first phase it runs the decision algorithm to
determine whether the instance is satisfiable. As a byproduct, every variable agent
a(x) has computed its iterated degree doo(x) and knows as well its rank in a pre-
scribed ordering of all variable degrees 8})0, ..., 6L, r < n. This (partial) order will
be used to coordinate between the agents. An i-agent, | < i < r is any agent «(x)
with 8 (x) = 8@0. We also assume a fixed ordering on the elements in D. If the
instance is unsatisfiable nothing else remains to be done so from now on we shall
assume that the instance is satisfiable.

In the second phase the algorithm searches for a solution. Every variable agent
o(x) maintains a set Fy € D with the property that there is a solution v that falls
within the set system F, i.e, such that v(x) € F, for every x € X. Initially every
agent «(x) sets Fy = D so it is only necessary to make sure that this condition
is preserved during the execution of the algorithm. The second phase contains two
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nested loops. The outer loop has r iterations and the inner loop consists of at most
| D| iterations so that we shall use iteration (i, d) to indicate the run of the algorithm
atthei =1, ..., r iteration of the outer loop and at the iteration d of the inner loop.

At the beginning of iteration (i, d) every variable agent «(x) defines S, € D to
be Sy = {d} whenever «(x) is an i-agent and S, = F, elsewhere. Then it runs the
distributed consistency algorithm starting at S obtaining a fixed point S°°. We note
that since all initial sets S, belong to I'" and I'" contains symmetric polymorphisms of
all arities then the obtained fixed point S° correctly determines whether there exists
a solution v that falls within S. Then every i-agent a(x) checks whether S° = ¢.
In case of positive answer nothing else is done and round (i, d) finishes. Otherwise,
there must be a solution v that falls within S, so a(x) sets F to {d} and starts a wave
to indicate to all processes that the i*”* iteration of the outer loop is finished and that
the next iteration of the outer loop can start. When the r iterations of the outer loop
have been completed the set system F contains only singletons. The assignment that
sets every variable x € X to the only element in F) is necessarily a solution. This
concludes the proof of Theorem 12.

5 Conclusion

We analysed the complexity of the distributed constraint satisfaction problem on
a synchronous, anonymous network parametrised by the constraint language. We
showed that, depending on the polymorphisms of I', DCSP(I") is either solvable in
polynomial time, or not solvable altogether. A number of natural open questions arise
in this context. For instance, it is not clear whether asynchronous networks are strictly
more powerful than their synchronous counterpart. Moreover, it would be interesting
to explore the role of allowing agents to make random choices - provided this is not
used to create and share unique IDs.

In the spirit of [14], one could consider characterizing the structural restrictions on
tractable distributed CSPs, or in other words, determining which classes of networks
are tractable in the DCSP framework, regardless of the constraint language. The start-
ing point for this analysis could be the work on fibrations by Boldi et al. (see for
example [8, 9]). In particular, we propose the question of establishing a connection
between the universal fibration of a graph and its iterated degree sequence.

Appendix A: The Distributed Formalism

In this section we formalize the definition of the distributed system model which was
used throughout the paper. Note that for simplicity, here we describe a distributed
system which only allows message broadcast (as opposed to allowing different mes-
sages to be sent through channels with different labels). Nonetheless, as pointed out
in Section 2, this does not decrease the expressive power of the system.

Let N denote the set of positive integers and Ng := N U {0}. For a (possibly
infinite) set S, we use Ng (as an extension of the power set notation 25) to denote
the set of all multisets containing just elements from S. Let ¥ be a finite alphabet.
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A message is a finite string of symbols from X, that is, an element of X*. A process
(also called an agent) is a 7-tuple (X, A, L, O, q,, O, F) where A is a finite set
known as the memory alphabet, L is a finite set of labels, Q is a finite set of states,
qo € Q is the initial state, Q y C Q denotes the subset of terminal states, and F is a
Turing-computable function

FIQXA*XNSXE*—)QXA*XE*

which takes as input the current state, the memory tape, and the multiset of labelled
messages received at the previous round, and outputs a new state, an updated memory
tape, and a message to be broadcast to the process’s neighbours. We require that
terminal states are fixed points of F' in the sense that forallg € Q, A € A*, and
M e Ny it holds that
F(q. A, M) =(q, 4, ¢)

where ¢ € X* denotes the empty string. An output of the function F — that is, a triplet
c=1(q,X,s) € Qx A* x T* —is called a configuration of the process.

In this paper, a message-passing network is an edge-labelled graph whose vertex
set is a set of identical processes and where the label set of the network corresponds
to the label set of the processes. The neighbourhood of a process i in the network
is denoted N (i). Given a message-passing network G with vertex set [p], a run of
F over G with initial memory (Al, R Ag ) is a collection of p sequences of con-
figurations ci, ¢{,c}..., i € [p] where ¢! = (g!,Al,s]), such that g} = qo is
the initial state, sé = ¢ is the empty string, and for all # > O and all i € [p],
(@11 Mgrs 810 = Flgg, A, My), where M; = {{(£ ), s]) | j € N(@)}} and
ii,jy € L denotes the label of edge {i, j}. A run is said to be terminating if there
exists some integer 7 such that, for each i € [p], q’T € QO (and hence, by definition
of F, q,i = qiT for all t+ > T). The output of the run is the set of terminal memory
tapes AiT,i € [pl.

We point out that, while for convenience we define runs to be infinite sequences
of configurations, for all practical purposes one can assume that a process effectively
halts as soon as it reaches a terminating state.

Notice that, given p identical processes, a run of the algorithm is fully determined
by the connectivity and labels of the network, and by the choice of initial memory )»6
for each of the p processes. This is generally fairly limited as each process acquires
new information via message passing. It could, for instance, contain the processes’
unique identifiers if these were available (this is clearly not the case for anonymous
networks like the one that we address in this paper). In the case of the DCSP message
passing network, the connectivity is as described in Section 2. In particular, the net-
work is bipartite and each edge with its corresponding label describes how a variable
participates in a constraint. The initial memory is limited to the numbers n and m of
variables and constraints respectively in the DCSP instance, and to a bit which speci-
fies if the process is controlling a variable or a constraint. In particular, it contains no
identifier nor any other information about the input instance. Moreover, in the case
of DCSP the function F can depend on the constraint language, since this is fixed,
but not on the specifics of the input instance. Finally, we remark that while F does
not depend explicitly on the round z, this can be stored and updated in the process’s
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memory, and the messages can even be tagged with a time stamp if this is needed for
synchronization purposes, for example, due to hardware issues.

Appendix B: Binary Structures

Throughout the paper, we assumed that both variables and constraints are controlled
by agents in a distributed network (in this section, we will refer to this as model 1).
However, when all the constraint relations in I are binary it is also valid and, indeed,
more common to assume that only variables are controlled by agents, and there is a
communication channel between any two variable agents «(x) and o (x") whenever x
and x’ share a constraint (model 2) which is labelled with the constraint relation and
the direction of the constraint.

It is very easy to see that in the binary case both models are equivalent. Indeed,
for every CSP instance (X, D, C), let (A1, X, D, C,«ay) and (Az, X, D, C, ) be
the associated DCSP instances in model 1 and 2 respectively. It is easy to see that
every algorithm in model 2 can be easily simulated by an algorithm in model 1. In
particular, it is only necessary that at round 2j every variable agent o1 (x) replicates
the j! " round of ap (x) (while every constraint agent 1 (¢) remains idle). Then, round
2j + 1 is used to replicate the messages sent at round j. That is, whenever o (x)
sends a message to a neighbour a(x”) at round j, o1 (x) sends a message to o (c) at
round 2/, where c is the constraint shared by x and x’. At round 2 + 1 then o (c)
forwards the message to oy (x').

Similarly, any algorithm in model 1 can be replicated in model 2. In this case, at a
given round j, every agent a(x) simulates the internal computation done at round j
by o1 (x) and all its neighbours.
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