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Abstract
The study of the complexity of the equation satisfiability problem in finite groups
had been initiated by Goldmann and Russell in (Inf. Comput. 178(1), 253–262, 2002)
where they showed that this problem is in P for nilpotent groups while it is NP-
complete for non-solvable groups. Since then, several results have appeared showing
that the problem can be solved in polynomial time in certain solvable groups G hav-
ing a nilpotent normal subgroup H with nilpotent factor G/H . This paper shows that
such a normal subgroup must exist in each finite group with equation satisfiability
solvable in polynomial time, unless the Exponential Time Hypothesis fails.
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1 Introduction

The study of equations over algebraic structures has a long history in mathematics.
Some of the first explicit decidability results in group theory are due to Makanin
[25], who showed that equations over free groups are decidable. Subsequently sev-
eral other decidability and undecidability results as well as complexity results on
equations over infinite groups emerged (see [5, 9, 23, 29] for a random selection).
Also the famous 10th Hilbert problem on Diophantine equations, that asks whether
an equation of two polynomials over the ring of integers has a solution, was shown
to be undecidable [26].

One can treat polynomials over a ring R to be terms over R with some variables
already evaluated by elements of R. The same can be done with groups to define
polynomials over a group G. Now the problem POLSAT(G) takes as input an equation
of the form t(x1, . . . , xn) = s(x1, . . . , xn) (or equivalently t(x1, . . . , xn) = 1, by
replacing t = s by ts−1 = 1), where s(x) and t(x) are polynomials over G, and
asks whether this equation has a solution in G. Obviously working with terms t, s
rather than polynomials this problem trivializes by setting all the xi’s to 1. Likewise
POLEQV(G) is the problem of deciding whether two polynomials t(x), s(x) are equal
for all evaluations of the variables x in G.

While for infinite groups G the problems POLSAT(G) and POLEQV(G) may
be undecidable, they are solvable in exponential time in finite realms. In fact,
POLSAT(G) is in NP, whereas POLEQV(G) is in coNP. Actually the hardest possi-
ble groups that lead to NP-complete POLSAT and coNP-complete POLEQV are all
groups that are not solvable [10, 15]. On the other hand it is easy to see that both
these problems can be solved in a linear time for all finite abelian groups.

Also in nilpotent groups both POLSAT and POLEQV can be solved in polynomial
time. While the running time of the first such algorithm for POLSAT, due to Gold-
mann and Russell [10], is bounded by a polynomial of very high degree (as this bound
was obtained by a Ramsey-type argument), the first algorithm for POLEQV (due to
[3]) is much faster. For polynomials of length � the running time for POLEQV(G) is
bounded by O

(
�k+1

)
, where k � log |G| is the nilpotency class of the group G. Very

recently two much faster algorithms for POLSAT(G) have been described. One by

[7] runs in O
(
�

1
2 |G|2 log|G|

)
steps. The other one, provided in [21], runs even faster

for all but finitely many nilpotent groups, i.e. in O
(
�|G|2+1

)
steps. The very same

paper [21] concludes this race by providing randomized algorithms for POLSAT and
POLEQV working in linear time for all nilpotent groups.

However, the situation for solvable but non-nilpotent groups has been almost com-
pletely open. Due to [13] we know that POLSAT and POLEQV for the symmetric
group S3 (and some others) can be done in polynomial time. More examples of such
solvable but non-nilpotent groups are provided in [8, 12]. Actually already in 2004
Burris and Lawrence [3] conjectured that POLEQV for all solvable groups is in P.
In 2011 Horváth renewed this conjecture and extended it to POLSAT [11]. Actually
these conjectures have been strongly supported also by recent results in [8], where
many other examples of solvable non-nilpotent groups are shown to be tractable.



Theory of Computing Systems

Up to recently, the smallest solvable non-nilpotent group with unknown complex-
ity was the symmetric group S4. One reason that prevented existing techniques for
polynomial time algorithms to work for S4 is that S4 does not have a nilpotent nor-
mal subgroup with a nilpotent quotient. Somewhat surprisingly, in [18] the first three
authors succeeded to show that neither POLSAT(S4) nor POLEQV(S4) is in P as long
as the Existential Time Hypothesis holds. Simultaneously, in [30] the fourth author
proved super-polynomial lower bounds on POLSAT and POLEQV for a broad class of
finite solvable groups—again unless ETH fails. Both the lower bounds in [18] and
[30] depended on the so-called Fitting length, which is defined as the length d of the
shortest chain

1 = G0 � G1 � . . . � Gd = G

of normal subgroups Gi of G with all the quotients Gi+1/Gi being nilpotent.
Indeed, the lower bounds in [30] apply to all finite solvable groups of Fitting

length at least four and to certain groups of Fitting length three. However, this class
of groups does not include S4—although its Fitting length is three.

The present paper extends these results by showing super-polynomial lower
bounds for the complexity of POLSAT(G) and POLEQV(G)—again depending on
the Fitting length. It strongly indicates that the mentioned conjectures by Burris and
Lawrence and by Horváth fail by showing the following result.

Theorem 1 If G is a finite solvable group of Fitting length d � 3, then both
POLSAT(G) and POLEQV(G) require at least 2�(logd−1 �) steps unless ETH fails.

The paper [2] contains all necessary pieces to provide for POLSAT(G) an upper
bound of the form 2O(logr �) with r � 1 depending on G whenever G is a finite
solvable group. This upper bound relies on the AND-weakness conjecture saying that
each CC0 circuit for the n-input AND function has at least 2nδ

gates. Thus, the AND-
weakness conjecture implies that the lower bounds in Theorem 1 cannot be improved
in an essential way.

Finally, we note that allowing to use definable polynomials as additional basic
operations to build the input terms t, s we may substantially shorten the size of
the input. For example with the commutator [x, y] = x−1y−1xy the expression
[. . . [[x, y1], y2], . . . , yn] has linear size, while when presented in the pure group
language it has exponential size. In this new setting POLSAT (and POLEQV) have
been shown [14, 22] to be NP-complete (or coNP-complete, respectively) for all
non-nilpotent groups. Actually our proof of Theorem 1 shows this as well.

Moreover, the paper [17] shows (in a very broad context of an arbitrary alge-
bra) that allowing such definable polynomials can be simulated by circuits over this
algebra.

2 Preliminaries

Complexity and the Exponential Time Hypothesis We use standard notation from
complexity theory as can be found in any textbook on complexity, e.g. [27].
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The Exponential Time Hypothesis (ETH) is the conjecture that there is some δ > 0
such that every algorithm for 3SAT needs time �(2δn) in the worst case where n is the
number of variables of the given 3SAT instance. By the Sparsification Lemma [20,
Thm. 1] this is equivalent to the existence of some ε > 0 such that every algorithm
for 3SAT needs time �(2ε(m+n)) in the worst case where m is the number of clauses
of the given 3SAT instance (see also [4, Thm. 14.4]). In particular, under ETH there
is no algorithm for 3SAT running in time 2o(n+m).

Another classical NP-complete problem is C-COLORING for C � 3. Given an
undirected graph Γ = (V , E) the question is whether there is a valid C-coloring
of Γ , i.e. a map χ : V → { 1, . . . , C } satisfying χ(u) �= χ(v) whenever {u, v} ∈
E. Moreover, by [4, Thm. 14.6], 3-COLORING cannot be solved in time 2o(|V |+|E|)
unless ETH fails. Since 3-COLORING can be reduced to C-COLORING for fixed C �
3 by introducing only a linear number of additional edges and a constant number of
vertices, it follows for every C � 3 that also C-COLORING cannot be solved in time
2o(|V |+|E|) unless ETH fails.

Groups and Commutators Throughout, we only consider finite groups G. We follow
the notation of [28]. For groups G and H we write H � G if H is a subgroup of G,
or H < G if H is a proper subgroup of G. Similarly we write H � G (or H � G)
if H is a normal subgroup of G (or a proper normal subgroup). For a subset X ⊆ G

we write 〈X〉 for the subgroup generated by X, and 〈〈X〉〉 = 〈 xg | x ∈ X, g ∈ G 〉 for
the normal subgroup generated by X.

We write [x, y] = x−1y−1xy for the commutator and xy = y−1xy for the
conjugation. Moreover, we write [x1, . . . , xn] = [[x1, . . . , xn−1], xn] for n � 3.

We will be also using commutator of (normal) subgroups (or even sub-
sets) X, Y, X1, . . . , Xk ⊆ G defined by [X, Y ] = 〈 [x, y] | x ∈ X, y ∈ Y 〉 and
[X1, . . . , Xk] = [[X1, . . . , Xk−1], Xk]. Note here that the commutator [H, K] is
a normal subgroup of G whenever H and K are. Finally, we put [x, k y] =
[x, y, . . . , y

︸ ︷︷ ︸
k times

] and [X, k Y ] = [X, Y, . . . , Y︸ ︷︷ ︸
k times

].

We will also need the concept of a centralizer of a subset X in G, which is defined
as CG(X) = { g ∈ G | [g, h] = 1 for all h ∈ X }. If N is a normal subgroup, then
CG(N) is a normal subgroup as well.

Below we collect some basic facts about commutators of elements and subgroups.

(2.1) For g, x, y, z, x1, . . . xn, y1, . . . yn ∈ G and normal subgroups K1, K2, M, N

of a group G and we have

(i) [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z.
(ii) [K1, K2] = [K2, K1] � K1 ∩ K2 and [K1K2, N] = [K1, N][K2, N].

(iii) If x ≡ y mod N and g ∈ M , then for all k ∈ N we have

[x, k g] ≡ [y, k g] mod [N, k M] .

(iv) If g ∈ M and xi ≡ yi mod N , then

[g, x1, . . . , xn] ≡ [g, y1, . . . , yn] mod [M, N].
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(v) For all f ∈ CG(N), g ∈ G, h ∈ N and k ∈ N we have

[hf , k g] = [h, k g] [f, k g] .

Proof (i) is a straightforward standard calculation (see also [28, 5.1.5]):

[x, z]y[y, z] = y−1(x−1z−1xz)y y−1z−1yz

= y−1x−1z−1xyz = (xy)−1z−1(xy)z = [xy, z]
The first part of (ii) is clear from the definition, while the second one follows

immediately from (i). To see (iii) and (iv), let g ∈ M , x, y ∈ G and h ∈ N with
hx = y to see that

[hx, g] = [h, g]x[x, g] ∈ [N, M][x, g] and

[g, hx] = [g, x][g, h]x ∈ [g, x][M, N].
Then our statements follow by induction.

Finally, for (v), let f ∈ CG(N) = { g ∈ G | [f, h] = 1 for all h ∈ N } and g ∈
G, h ∈ N . Then we have

[hf, g] = [h, g]f [f, g] = [h, g][f, g].
Since CG(N) is a normal subgroup, also [f, g] ∈ CG(N) so that we can then induct
on k.

Since G is finite, for all x, y ∈ G, there are i < j such that [x, i y] = [
x, j y

]
.

Writing k = j − i, we get [x, i y] = [
x, i+k y

]
for all sufficiently large i’s. For

each choice of x and y we might get a different value for k; yet, by taking a common
multiple of all the k’s, we obtain some ω ∈ N such that for all x, y ∈ G and all i � ω

we have [x, i y] = [
x, i+ω y

]
.

Since for normal subgroups M, N of G we have

M � [M, 1 N] � [M, 2 N] � . . . � [M, i N] �
[
M, i+1 N

]
� . . . ,

the finiteness of G ensures us that there is some k0 ∈ N such that
[
M, k0 N

] =
[M, k N] for all k � k0 and all normal subgroups M, N of G. We can assume that
ω � k0. It is clear that ω = |G|! is large enough, but typically much smaller values
suffice. Thus, we have:

(2.2) For x, y ∈ G, M, N � G and i, j � ω we have

– [x, i y] = [
x, i+ω y

]
,

– [M, i N] = [
M, j N

]
.

We fix ω = ω(G) throughout. Be aware that it depends on the specific group G.

Nilpotency and Fitting Series The k-th term of the lower central series is γk(G) =
[G, k G]. The nilpotent residual of G is defined as

⋂
k�0 γk(G) = γω(G) where ω

is as above (i.e. γω(G) = γi(G) for every i � ω). Recall that a finite group G is
nilpotent if and only if γω(G) = 1.

The Fitting subgroup Fit(G) is the union of all nilpotent normal subgroups. Let
G be a finite solvable group. It is well-known that Fit(G) itself is a nilpotent normal
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subgroup (see e.g. [16, Satz 4.2]). We will need the following characterization of the
Fitting subgroup due to Baer ([1, Satz L’], which is also an immediate consequence
of [28, 12.3.8]).

(2.3) Fit(G) = { g ∈ G | [h, ω g] = 1 for all h ∈ G }.
Now we define the upper Fitting series

1 = U0(G) � U1(G) � · · · � Uk(G) = G

by Ui+1(G)/Ui (G) = Fit(G/Ui (G)). If the group is clear, we simply write Ui

for Ui (G). The number of factors k is called the Fitting length of G (denoted by
FitLen(G)).

The following fact can be derived by a straightforward induction from the
characterization of Fit(G) as largest nilpotent normal subgroup.

(2.4) For H � G and g ∈ G we have

– Ui (H) = Ui ∩ H , for all i,
– FitLen(H) � i if and only if H � Ui ,
– FitLen 〈〈g〉〉 = i if and only if g ∈ Ui \ Ui−1.

Example 1 The symmetric group on four elements S4 has Fitting length 3 with 1 �
C2 × C2 � A4 � S4 being the upper (and also lower) Fitting series.

Example 2 If G1, . . . , Gk are nilpotent groups, then the Fitting length of the wreath
product G1 
 · · · 
 Gk is at most k (for a definition of wreath products, we refer to any
standard textbook like [28]). The Fitting length is exactly k if and only if there are
primes p1, . . . , pk with pi | |Gi | and pi �= pi+1 for all i.

More generally, every group of Fitting length k is a divisor (a quotient of a sub-
group) of such a wreath product of k nilpotent groups. As we do not rely on these
characterizations, we leave the proofs to the reader.

Equations in Groups A term (in the language of groups) is a word over an alphabet
X ∪ X−1 where X is a set of variables. A polynomial over a group G is a term
where some of the variables are replaced by constants—i.e., a word over the alphabet
G ∪ X ∪ X−1. Since we are dealing with finite groups only, a symbol X−1 ∈ X−1

for X ∈ X can be considered as an abbreviation for X|G|−1. We write s(x1, . . . , xn)

or short s(x) for a polynomial (resp. term) s with variables from { x1, . . . , xn }. There
is a natural composition of terms and polynomials: if r(x1, . . . , xn), s1, . . . , sn are
polynomials (resp. terms), we write r(s1, . . . , sn) for the polynomials (resp. terms)
obtained by substituting each occurrence of a variable xi by the polynomial (resp.
term) si .

A tuple (g1, . . . , gn) ∈ Gn is a satisfying assignment for s if s(g1, . . . , gn) = 1 in
G. The problems POLSAT(G) and POLEQV(G) are as follows: for both of them the
input is a polynomial s(x1, . . . , xn). For POLSAT(G) the question is whether there
exists a satisfying assignment, for POLEQV(G) the question is whether all assign-
ments are satisfying. Note here that these problems have many other names. For
example in in [10, 30], POLSAT is denoted by EQN-SAT and POLEQV by EQN-ID.
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Inducible Subgroups According to [10], we call a subset S ⊆ G inducible if S =
{ s(g1, . . . , gn) | g1, . . . , gn ∈ G } for some polynomial s(x1, . . . , xn) of G.

The importance of inducible subgroups lies in the observation that one can restrict
variables in equations to inducible subgroups (simply by replacing each variable
by the polynomial defining the inducible subgroup). This immediately gives the
following lemma.

Lemma 1 ([10, Lemma 8], [14, Lemma 9, 10]) If H is an inducible subgroup of G,
then

– POLSAT(H) is polynomial time many-one reducible to POLSAT(G),
– POLEQV(H) is polynomial time many-one reducible to POLEQV(G).

We will use this lemma to restrict our consideration for an appropriate subgroup
of the form γk(G). We will see that such subgroups are inducible.

3 Proof of Theorem 1

The proof of the theorem is based on coding (by group polynomials) functions
that imitate the behaviour of conjunctions. Unfortunately, the lengths of such n-ary
conjunction-like group polynomials are not bounded by any polynomial in n and,
therefore, they cannot be used to show NP-completeness of POLSAT.1 However, the

group polynomials we are going to produce have length bounded by 2O(n
1

d−1 ) where
d = FitLen(G). Given such relatively short conjunction-like group polynomials we
reduce graph coloring or 3SAT, depending on whether |G/H | � 3 for a carefully
chosen large subgroup H of G. In any case such reduction, together with the ETH,
would give the lower bound 2�(logd−1 �) for POLSAT(G).

To see how to produce such relatively short conjunction-like polynomials, we start
with the upper Fitting series of G

1 = U0 � U1 � · · · � Ud = G

to go downwards along this series and consecutively carefully choose hα ∈ Uα \Uα−1
on each level α = d, d − 1, . . . , 1 of this sequence. Then we get two different cosets
Uα−1 and hα ·Uα−1 which are supposed to simulate false and true values, respectively.

The conjunction-like polynomials are based on the terms q̃(k)(z, x1, . . . , xk) and
q(k)(z, x1, . . . , xk, w) for k � 0 defined by

q̃(0)(z) = z,

q̃(k)(z, x1, . . . , xk) =
[
q̃(k−1)(z, x1, . . . , xk−1), ω xk

]
, for k � 1, and

q(k)(z, x1, . . . , xk, w) = q̃(k+1)(z, x1, . . . , xk, w), for k � 0.

1In fact, the mentioned AND-weakness conjecture prevents the existence of such short – polynomial size –
“conjunction-like” expressions. On the other hand, our construction also shows that the strongest version
of the AND-weakness conjecture–a 2�(n) lower bound – does not hold.
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Note that our definition of the q(k)’s immediately yields

q(k+1)(z, x1, . . . , xk, w, w) = q(k)(z, x1, . . . , xk, w) (1)

The conjunction-like behaviour of the q(k)’s on the Uα-cosets is precisely described
in the following lemma.

Lemma 2 For any level 1 � α � d − 1 and hα+1 ∈ Uα+1 \ Uα there is some
hα ∈ Uα \ Uα−1 such that for each k ∈ N we have

q(k)(hα, x1, . . . , xk, hα+1) ∈
{

hα · Uα−1, if xi ∈ hα+1 · Uα for all i,
Uα−1, if xi ∈ Uα for some i.

Proof In this proof we may, without loss of generality, factor out our group G by
Uα−1, or equivalently assume that α = 1. This means that Uα = Fit(G) and so, by
Baer’s theorem (2.3), there is some a ∈ G with

[
a, ω hα+1

] �= 1. Let β ∈ N be
maximal such that

[
a, ω hα+1

] ∈ γβ(Uα) \ {1} for some a ∈ G. Now, we simply
put hα = [

a, ω hα+1
]
, to observe that hα = [

hα, ω hα+1
]

and 〈〈hα〉〉 � γβ(Uα). The
last inclusion gives that for all x1, . . . , xk+1 ∈ G we have q(k)(hα, x1, . . . , xk+1) ∈
γβ(Uα).

Suppose now that one of the xi’s is in Uα . Then q̃(i)(hα, x1, . . . , xi) =[
q̃(i−1)(hα, x1, . . . , xi−1), ω xi

] ∈ [Uα, ω Uα] = γω(Uα) = {1}. Hence, also
q(k)(hα, x1, . . . , xk, hα+1) = 1.

On the other hand, if all the xi’s are in the coset hα+1Uα , then, by (2.1.iv), we
have q(k)(hα, x1, . . . , xk, hα+1) ≡ q(k)(hα, hα+1, . . . , hα+1, hα+1) = hα modulo
[〈〈hα〉〉 ,Uα] � [γβ(Uα),Uα] � γβ+1(Uα). Hence, q(k)(hα, x, hα+1) = hαf for some
f ∈ γβ+1(Uα). Thus, all we have to show is that f ∈ Uα−1, or – in our setting – that
f = 1. To do this we induct on j � β + 1 to show that f ∈ γj (Uα) for all j ’s.

Starting with f ∈ γj (Uα) � γβ+1(Uα), we also have
[
f, ω hα+1

] ∈ γβ+1(Uα).
But now, maximality of β ensures us that

[
f, ω hα+1

] = 1. (2)

Obviously [f, g] ∈ γj+1(Uα) whenever f ∈ γj (Uα) and g ∈ Uα . This simply means
that f ∈ CG/γj+1(Uα)(Uα/γj+1(Uα)), and by (2.1.v) we obtain

[
hαf , ω hα+1

] ≡ [
hα, ω hα+1

] [
f, ω hα+1

]
mod γj+1(Uα). (3)

Summing up we get

hαf = [
hαf , ω hα+1

]
(by (1))

≡ [
hα, ω hα+1

] [
f, ω hα+1

]
mod γj+1(Uα) (by (3))

= hα · 1, (by (2))

so that f ∈ γj+1(Uα).
Going along the j ’s we arrive to the conclusion that f ∈ γω(Uα) = {1}, as

promised.

Now, picking hd ∈ G \ Ud−1, the consecutive use of Lemma 2 supplies us
with elements hd−1, . . . , h1 that allow us to define conjunction-like polynomials
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q(k)
α+1(x1, . . . , xk) = q(k)(hα, x1, . . . , xk, hα+1). Note here that, since the terms q(k)

use iterated commutators (ω ·(k+2) times), their sizes are exponential in k. However,
to get a conjunction on n = kd−1 elements we first split these elements into kd−2

groups, each having k elements. If there were only two cosets of G of Ud−1, then
applying to each such k element group the polynomial q(k)

d everything would be sent
into Ud−2 ∪ hd−1 · Ud−2. Now, we group the obtained kd−2 values into kd−3 groups,
each of size k and apply q(k)

d−1 to each such group. Repeating this procedure we finally

arrive into U1 ensuring that the appropriate composition of the q(k)
α ’s returns either

the value 1 or h1. One can easily notice that the size (i.e., length as a word) of such

composed polynomial is 2O(k) = 2O(n
1

d−1 ).
Unfortunately, the behaviour of the q(k)

d ’s and the entire long compositions can be
controlled only on two cosets of Ud−1. This requires |G/Ud−1| = 2— which very
seldom is the case. Thus, the very top level requires a very careful treatment. First, we
replace the group G with a smaller subgroup G0 of the same Fitting length but such
that G0 is abelian over its Ud−1. Then we find a normal subgroup Ud−1 � H � G0
so that we will be able to control the behaviour of the q(k)’s on all cosets of H in G0.
The first step towards realizing this idea is described in the next observation.

Lemma 3 In each finite solvable group G there is a subgroup G0 satisfying:

– G0 is inducible,
– FitLen(G0) = FitLen(G) = d , and
– G0/Ud−1(G0) is abelian.

Proof We simply set G0 = γm(G) where m is maximal with γm(G) �� Ud−1(G).
This secures FitLen(G0) = d . To see that all groups γj (G) in the lower central series

G = γ0(G) � γ1(G) � · · · � γω(G)

are inducible, we induct on j and argue like in [10, Lemma 5]. Let γj (G) be the image
of the polynomial p(x). Every element in γj+1(G) = [γj (G), G] is a product of at
most |G| elements of the form [z, y], where z ranges over γj (G) and y over entire
G. Thus, introducing new sequences of pairwise different variables x1, . . . , x|G| we
can produce γj+1(G) as the image of the polynomial

∏|G|
i=1[p(xi), yi].

Finally, G0/Ud−1(G0) is abelian as we have [G0, G0] = [γm(G), γm(G)] �
[γm(G), G] = γm+1(G) � Ud−1, where the last inclusion is a consequence of the
maximality of m.

From now on we simply change notation and replace our starting group G by
G0, or in other words we assume that G/Ud−1(G) is abelian. Now, to construct (and
control) the promised normal subgroup H first we pick K � G among the minimal
(with respect to inclusion) normal subgroups satisfying:

– [K, G] = K and
– FitLen(K) = d − 1.

Since γω(G) satisfies both above conditions, such K indeed exists.
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(3.1) K is indecomposable, i.e. if K = K1K2 for some K1, K2 � G then K = K1
or K = K2.

Proof Suppose that (K1, K2) is a minimal pair (coordinatewise) with K = K1K2.
Since K = [K, G] = [K1K2, G] = [K1, G][K2, G] and [Ki, G] � Ki , we
immediately get [Ki, G] = Ki for both i = 1, 2. Now if Ki < K , then mini-
mality of K gives FitLen(Ki) � d − 2. If this happens for both K1 and K2, then
d − 1 = FitLen(K) = FitLen(K1K2) = max { FitLen(K1), FitLen(K2) } � d − 2, a
contradiction.

By (3.1) we know that there exists the unique K0 � G with K0 < K and such that
there is no normal subgroup of G that lies strictly between K0 and K .

Note that, if a ∈ K \ K0, we cannot have 〈〈a〉〉 � K0. This gives

(3.2) For all a ∈ K \ K0 we have 〈〈a〉〉 = K .

The other consequence of the fact that the solvable group G has no normal
subgroups strictly between K0 and K is the following.

(3.3) K/K0 is abelian.

We will also need:

(3.4) [K0, ω G] � Ud−2(K).

Proof By our choice of ω, we have [[K0, ω G] , G] = [K0, ω G]. Since [K0, ω G] �
K0 is strictly contained in K and K was chosen to be minimal with [K, G] = K and
FitLen(K) = d − 1, we must have FitLen([K0, ω G]) � d − 2.

Now we are ready to define the normal subgroup H of G. We simply put H

to be the centralizer in G of K modulo K0, i.e the largest normal subgroup with
[H, K] � K0. Then obviously H = { g ∈ G | [K, g] � K0 }.
(3.5) Ud−1 � H < G. In particular, G/H is abelian.

Proof To see that H < G suppose otherwise, i.e. [K, G] � K0. This, however,
contradicts our choice of K to satisfy [K, G] = K .

The first inclusion is simply equivalent to [K,Ud−1] � K0. Indeed, since
FitLen(K) = d − 1, we have

[
K, ω Ud−1

]
� γω(Ud−1) � Ud−2 and, thus,

[K,Ud−1] < K . Since we assumed G/Ud−1 to be abelian, the second part of the
statement follows.

Directly from our definitions, we know that [x, y] ∈ K0 whenever x ∈ K and
y ∈ H . But the reason for our careful choice of K and then H was to have a precise
control over the behaviour of [x, y] for y in other cosets of H (and x still in K .)

Thus, for any g ∈ G we define a map ϕg : K → K/K0 by ϕg(x) = [x, g] · K0.
Since by (3.3) is K/K0 is abelian, using (2.1.i), one can easily check that ϕg is a
group homomorphism for all g ∈ G. Also we have ϕg(K0) � K0, i.e. the kernel
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of this homomorphism contains K0 so that ϕg actually induces a homomorphism
K/K0 → K/K0. We also write ϕg for this induced homomorphism.

(3.6) If g ∈ G \ H , then ϕg : K/K0 → K/K0 is an isomorphism.

Proof We start with showing that for g ∈ G

ϕg(x
b) = ϕg(x)b (4)

whenever x ∈ K and b ∈ G. Indeed, by (3.3), we can write bg = hgb for some
h ∈ H . Then we have

ϕg(x
b) = [xb, g] · K0

= (xb)−1 g−1b−1xbg · K0

= (xb)−1 b−1g−1h−1xhgb · K0

= (xb)−1 b−1g−1xgb · K0 (since h ∈ H)

= (x−1 g−1xg)b · K0

= ϕg(x)b.

To see that the kernel of the original ϕg is K0, pick a ∈ K \ K0, so that, by (3.2),
every element x ∈ K can be represented as x = ag1 · · · agn for some g1, . . . , gn ∈ G.
Now, if ϕg(a) = K0, then (4) gives ϕg(x) = K0 for all x ∈ K . This would however
put g into the centralizer H , contrary to our assumption.

Note that (4) means that ϕg is not only a group homomorphism but actually a
homomorphism of G-modules. Here K/K0 is a G-module under the action of G on
K/K0 via conjugation. In terms of modules the proof of (3.6) is stated even eas-
ier: The kernel of ϕg has to be a submodule of K/K0. However, by (3.2) K/K0 is
generated, as a G-module, by any of its non-trivial elements.

Remark 1 Notice, that for (3.6), we need G/H to be abelian. Indeed, in general, if
N is a minimal (and, thus, indecomposable) normal subgroup with [N, G] = N ,
the map N → N defined by x �→ [x, g] is not necessarily bijective for all
g �∈ CG(N). For instance take the semidirect product (C3 × C3) � D4 where
D4 = 〈

a, b
∣
∣ a2 = b2 = (ab)4 = 1

〉
is the dihedral group of order 8 and a acts by

exchanging the two components of C3 × C3 and b by inverting the second one.
Then, N = C3 × C3 is an indecomposable normal subgroup and [N, G] = N but
a �∈ CG(N) and [(1, 1), a] = [(2, 2), a] = 1, so x �→ [x, g] is not bijective on N

(here we use an additive notation for C3 = { 0, 1, 2 }).

We summarize our observations in the following claim.

(3.7) For all x ∈ K we have

q̃(1)(x, y) ∈
{

xK0, if y �∈ H,

K0, if y ∈ H .
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Proof Note first that ω was chosen to satisfy [x, ω y] = [x, 2ω y]. Moreover, for a
fixed g ∈ G the unary polynomial q̃(1)(x, g) acts on K as the composition ϕω

g of ϕg

with itself ω times. Now, if g �∈ H , then (3.6) yields that ϕω
g is the identity on the

quotient K/K0. Moreover, ϕω
g is constant K0 for g ∈ H .

With claim (3.7) we are ready to construct polynomials that will allow us to code
coloring or 3SAT at the very top level.

Lemma 4 There is h ∈ K \ Ud−2 and families of polynomials

r(k)(y1, . . . , yk) and

s(k)(y1,1, y1,2, y1,3 . . . , yk,1, yk,2, yk,3)

of length 2O(k) such that

r(k)(y) ∈
{

h · Ud−2, if yi �∈ H for all i,
Ud−2, if yi ∈ H for some i,

(5)

and

s(k)(y) ∈
{

h · Ud−2, if for all i there is some j with yi,j ∈ H,

Ud−2, if yi,1, yi,2, yi,3 �∈ H for some i.
(6)

Proof First, we use (3.7) and induct on k in order to see that for all a ∈ K \ K0 we
have

q̃(k)(a, y1, . . . , yk) ∈
{

aK0, if yi �∈ H for all i,

K0, if yi ∈ H for some i.

Now we fix some arbitrary a ∈ K \ K0 and g ∈ G \ H . Then obviously also
h = [a, ω g] ∈ K \ K0. Actually h �∈ Ud−2, as otherwise h ∈ Ud−2 ∩ K � K0.

Now, by (3.4) we know that M := [K0, ω G] � Ud−2(K). By (2.1.iii) it follows
that

q(k)(a, y1, . . . , yk, g) ∈
{

hM, if yi �∈ H for all i,

M, if yi ∈ H for some i.

Thus, r(k)(y1, . . . , yk) = q(k)(a, y1, . . . , yk, g) satisfies (5). Clearly, its length is in
2O(k).

To construct the polynomials s(k), we first define

p(x, y1, y2, y3) = x · q̃(3)(x, y1, y2, y3)
−1.

Then for all x ∈ K , by (3.7), we have

p(x, y1, y2, y3) ∈
{

K0, if yj �∈ H for all j,

xK0, if yj ∈ H for some j .

Now, with a, g, h and M as above, we proceed as with the r(k)’s to define

s̃(k)(y) = p(· · ·p(a, y1,1, y1,2, y1,3), . . . , yk,1, yk,2, yk,3)

and

s(k)(y) = [
s̃(k)(y), ω g

]
.
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As previously, (6) follows from (2.1.iii).

Our next claim summarizes Lemma 2 and 4.

Lemma 5 For 1 � α � d −1 there are elements hα �= 1 and families of polynomials

r(m)
α (y1, . . . , ym) and

s(m)
α (y1,1, y1,2, y1,3 . . . , ym,1, ym,2, ym,3)

of length 2O(m
1

d−α ) such that

r(m)
α (y) ∈

{
hα · Uα−1, if yi �∈ H for all i,

Uα−1, if yi ∈ H for some i,

and

s(m)
α (y) ∈

{
hα · Uα−1, if for all i there is some j with yi,j ∈ H,

Uα−1, if yi,1, yi,2, yi,3 �∈ H for some i.

Proof We induct downwards on α = d − 1, . . . , 2, 1. To start with we refer to 4 to
set hd−1 = h while r(m)

d−1(y) = r(m)(y) and s(m)
d−1(y) = s(m)(y).

Now let α < d − 1 and set k = ⌈
d−α
√

m
⌉

and � = ⌈
m
k

⌉
. By possibly duplicating

some of the variables we may assume that m = k�.
To define r(m)

α (y) = r(m)
α (y1, . . . , ym) we first refer to Lemma 2 to get hα from

hα+1 and then we set

r(m)
α (y) = q(k)

(
hα, r(�)

α+1(y1, . . . , y�), . . . , r
(�)
α+1(ym−�+1, . . . , ym), hα+1

)
,

where the polynomial r(�)
α+1 is supplied by the induction hypothesis. From Lemma 2

it should be clear that r(m)
α satisfies the condition claimed for it.

Also its length can be bounded inductively. Substituting to the polynomial

q(k)(hα, x1, . . . , xk, hα+1) of length 2O(k) (by Lemma 2) the k = m
1

d−α copies of

the polynomial r(�)
α+1 of length 2O

(
�

1
d−α−1

)
and using � = m

d−α−1
d−α we arrive at the

following bound for the length of r(m)
α

2O(k) · 2O(�
1

d−α−1 ) = 2
O

⎛

⎝m
1

d−α +
(

m
d−α−1
d−α

) 1
d−α−1

⎞

⎠

= 2
O

(
m

1
d−α +m

d−α−1
d−α

· 1
d−α−1

)

= 2
O

(
m

1
d−α

)

.

In a very similar way we produce s(m)
α (y) from the s(�)α+1’s by simply putting

s(m)
α (y) = q(k)

(
hα, s(�)α+1(y1,1, y1,2, y1,3, . . . , y�,1, y�,2, y�,3), . . .

. . . , s(�)α+1(ym−�+1,1, ym−�+1,2, ym−�+1,3, . . . , ym,1, ym,2, ym,3), hα+1
)
.
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Now we are ready to conclude our proof of Theorem 1. Recall that due to Lemma 3
we are working in the group G in which G/Ud−1G is abelian. We are going to reduce
3SAT or C-COLORING to POLSAT(G) and POLEQV(G) depending on whether C =
|G/H | > 2 or not. In either case the reduction from C-COLORING to POLSAT(G)

and POLEQV(G) works; however, the case C = 2 has to be treated in a different way
since 2-COLORING is decidable in polynomial time.

In our reduction the formula Φ from 3SAT (or a graph Γ from C-COLORING) is
transformed to a polynomial sΦ (or rΓ ) and a group element h1 so that the following
will hold:

(A) the length of sΦ (resp. rΓ ) is in 2O( d−1√m) where m is the number of clauses
(resp. the number of edges),

(B) sΦ (resp. rΓ ) can be computed in time 2O( d−1√m) (i.e., polynomial in the length
of sΦ (resp. rΓ )),

(C) if Φ is satisfiable (resp. Γ has a valid C-coloring), then sΦ = h1 (resp. rΓ =
h1) is satisfiable, and,

(D) if Φ is not satisfiable (resp. Γ does not have a valid C-coloring), then sΦ = 1
(resp. rΓ = 1) holds under all evaluations.

The latter two points imply that sΦ = h1 (resp. rΓ = h1) is satisfiable if and only
if Φ is satisfiable (resp. Γ has a valid C-coloring) and sΦ = 1 (resp. rΓ = 1) holds
identically in G if and only if Φ is not satisfiable (resp. Γ does not have a valid
C-coloring).

Now, if � denotes the input length for POLSAT or POLEQV (i.e. the size of sΦ or
rΓ ), then an algorithm for POLSAT or POLEQV working in 2o(logd−1 �)-time would
solve 3SAT (resp. C-COLORING) in time

2O( d−1√m) + 2o(logd−1(2
d−1√m)) = 2o(m),

contradicting ETH.
We start with describing the reduction from C-COLORING to POLSAT(G) and

POLEQV(G) where C = |G/H |. The quotient |G/H | serves as the set of colors. For
a graph Γ = (V , E) with E ⊆ (

V
2

)
, |V | = n and |E| = m, we use variables xv for

v ∈ V . For an edge {u, v} ∈ E the value of xux
−1
v (modulo H ) decides whether the

vertices u, v have the same color. To control whether the coloring of Γ is proper we
define the polynomial rΓ by putting

rΓ ((xv)v∈V ) = r(m)
1

(
(xux

−1
v ){u,v}∈E

)

where r(m)
1 and h1 are supplied by Lemma 5—and, thus, meet the length bound (A).

Point (B) is clear from the definition of the polynomial. Notice that the edges can
be fed into r(m)

1 in any order without affecting the final value of polynomials. Every
evaluation of the variables xv by elements of G defines a coloring χ : V → G/H

in a natural way. If this coloring is valid (i.e. χ(u) �≡ χ(v) mod H for every edge
{u, v} ∈ E), then all the expressions χ(u)χ(v)−1 are not in H and Lemma 5 ensures
us that rΓ ((xv)v∈V ) = h1. This shows (C).
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Conversely, by Lemma 5, for every evaluation of the xv’s by elements of G that
does not satisfy the equation rΓ ((xv)v∈V ) = 1, we have xux

−1
v �∈ H for all edges

{u, v}. This obviously yields a valid coloring of Γ —hence, it proves (D).
As 2-COLORING is solvable in polynomial time in the case |G/H | = 2, we inter-

pret 3SAT and use the two cosets of H in G as the true/false boolean values. We start
with the formula

Φ = (A1,1 ∨ A1,2 ∨ A1,3) ∧ · · · ∧ (Am,1 ∨ Am,2 ∨ Am,3),

where each literal Ai,j is either one of the boolean variables X1, . . . , Xn or its nega-
tion. First, we transform the literals Ai,j into the expressions xi,j that are supposed
to range over G by picking g ∈ G \ H and then setting

xi,j =
{

gxk, if Ai,j = Xk,

xk, if Ai,j = ¬Xk .

Finally, we set

sΦ(x1, . . . , xn) = s(m)
1

(
x1,1, x1,2, x1,3, . . . , xm,1, xm,2, xm,3

)

where again s(m)
1 is supplied by Lemma 5.

Now, given an assignment to the boolean variables X1, . . . , Xn, we obtain an
assignment for x1, . . . , xn by setting xi = g if Xi is true and xi = 1 if Xi is false.
It can be easily checked using Lemma 5 that the original assignment was satisfying
for Φ if and only if sΦ(x) = h1 is satisfied (notice that g2 ∈ H ). This shows (C).
On the other hand, if sΦ(x) �= 1, then, by Lemma 5, for all i there is some j with
xi,j ∈ H . Hence, if we assign true to Xk if and only if xk �∈ H , we obtain a satisfying
assignment for Φ—proving (D).

Notice that also in the case |G/H | � 3 it would be possible to describe a reduction
of 3SAT to POLSAT(G). However, in order to encode negations of literals, we need to
restrict the variables to only two possible values (modulo H ). This can be done using
the polynomials we constructed for the reduction from C-COLORING (which we can
use to “forbid” any undesired value). Nevertheless, the total construction would be
more complicated than the two individual reductions we described above.

4 Conclusion

With Theorem 1 in mind, one could suspect that finite solvable groups of Fitting
length 2 have polynomial time algorithms for POLSAT. As we have already men-
tioned, the very recent paper [8] shows that POLSAT is in P for many such groups,
in particular, for all semidirect products Gp � A, where Gp is a p-group and A

is abelian. This, however, does not cover e.g. the dihedral group D15. In fact, in
[19] POLSAT(D15) is shown not to be in P, unless ETH fails. On the other hand,
POLEQV(D15) ∈ P. Actually from [8] we know that POLEQV(G) ∈ P for each
semidirect product G = N � A where N is nilpotent and A is abelian. In fact,
D15 is the first known example of a group with polynomial time POLEQV and non-
polynomial (under ETH) POLSAT. The converse situation cannot happen as, for
a group G, POLSAT(G) ∈ P implies POLEQV(G) ∈ P. Indeed, to confirm that
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t(x) = 1 holds for all possible values of the x’s, we check that for no g ∈ G \ {1} the
equation t(x) = g has a solution.

We conclude our paper with two obvious questions.

Problem 1 Characterize finite solvable groups (of Fitting length 2) with POLSAT

decidable in polynomial time.

Problem 2 Characterize finite solvable groups (of Fitting length 2) with POLEQV

decidable in polynomial time.

Finally, we want to point out the consequences of our main result to another
problem: For a finitely generated (but possibly infinite) group with a finite set
of generators � the power word problem is as follows: The input is a tuple
(p1, x1, p2, x2, . . . , pn, xn) where the pi are words over � and the xi are integers
encoded in binary. The question is whether p

x1
1 · · · pxn

n evaluates to the identity of
the group. The complexity of the power word problem in a wreath product G 
 Z
where G is a finite group has a similar behaviour as POLEQV: if G is nilpotent, the
power word problem of G 
 Z is in polynomial time [6] (actually even in TC0) and,
if G is non-solvable, it is coNP-complete [24]. Indeed, in [6] a surprising connec-
tion to POLEQV has been pointed out: if G is a finite group, then POLEQV(G) can be
reduced in polynomial time to the power word problem of the wreath product G 
 Z.
In particular, Theorem 1 implies that the power word problem of G 
 Z where G is a
finite solvable group of Fitting length at least three is not in P assuming ETH.
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