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Abstract
The NP-complete VERTEX COVER problem asks to cover all edges of a graph by a
small (given) number of vertices. It is among the most prominent graph-algorithmic
problems. Following a recent trend in studying temporal graphs (a sequence of
graphs, so-called layers, over the same vertex set but, over time, changing edge sets),
we initiate the study of MULTISTAGE VERTEX COVER. Herein, given a temporal
graph, the goal is to find for each layer of the temporal graph a small vertex cover and
to guarantee that two vertex cover sets of every two consecutive layers differ not too
much (specified by a given parameter). We show that, different from classic VERTEX

COVER and some other dynamic or temporal variants of it, MULTISTAGE VERTEX

COVER is computationally hard even in fairly restricted settings. On the positive side,
however, we also spot several fixed-parameter tractability results based on some of
the most natural parameterizations.

Keywords Parameterized algorithmics · NP-completeness · Temporal graphs · Data
reduction

An extended abstract of this paper appeared in Proceedings of the 14th International Symposium on
Parameterized and Exact Computation (IPEC’19), LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019, 148(14):1–14 [1]. This paper contains all details and proofs missing in the
extended abstract. Till Fluschnik acknowledges support by the DFG, project TORE (NI 369/18).

� Till Fluschnik
till.fluschnik@tu-berlin.de

� Philipp Zschoche
zschoche@tu-berlin.de

Rolf Niedermeier
rolf.niedermeier@tu-berlin.de

Valentin Rohm
valentinl.rohm@campus.tu-berlin.de

1 Algorithmics and Computational Complexity, Technische Universität Berlin, Berlin, Germany

–

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-022-10069-w&domain=pdf
https://orcid.org/0000-0003-2203-4386
https://orcid.org/0000-0003-1703-1236
http://orcid.org/0000-0001-9846-0600
mailto: till.fluschnik@tu-berlin.de
mailto: zschoche@tu-berlin.de
mailto: rolf.niedermeier@tu-berlin.de
mailto: valentinl.rohm@campus.tu-berlin.de


1 Introduction

VERTEX COVER asks, given an undirected graph G and an integer k ≥ 0, whether
at most k vertices can be deleted from G such that the remaining graph contains no
edge. VERTEX COVER is NP-complete and it is a formative problem of algorithmics
and combinatorial optimization. We study a time-dependent, “multistage” version,
namely a variant of VERTEX COVER on temporal graphs. A temporal graph G is
a tuple (V , E, τ ) consisting of a set V of vertices, a discrete time-horizon τ , and
a set of temporal edges E ⊆ (

V
2

) × {1, . . . , τ }. Equivalently, a temporal graph G
can be seen as a vector (G1, . . . , Gτ ) of static graphs (layers), where each graph is
defined over the same vertex set V . Then, our specific goal is to find a small vertex
cover Si for each layer Gi such that the size of the symmetric difference Si�Si+1 =
(Si \ Si+1) ∪ (Si+1 \ Si) of the vertex covers Si and Si+1 of every two consecutive
layers Gi and Gi+1 is small. Formally, we thus introduce and study the following
problem (see Fig. 1 for an illustrative example).

Throughout this paper we assume that 0 < k < |V | because otherwise we have
a trivial instance. In our model, we follow the recently proposed multistage [2–14]
view on classical optimization problems on temporal graphs.

In general, the motivation behind a multistage variant of a classical problem such
as VERTEX COVER is that the environment changes over time (here reflected by the
changing edge sets in the temporal graph) and a corresponding adaptation of the cur-
rent solution comes with a cost. In this spirit, the parameter � in the definition of
MULTISTAGE VERTEX COVER allows to model that only moderate changes con-
cerning the solution vertex set may be wanted when moving from one layer to the
subsequent one. Indeed, in this sense � can be interpreted as a parameter measuring
the degree of (non-)conservation [15, 16].

It is immediate that MULTISTAGE VERTEX COVER is NP-hard as it generalizes
VERTEX COVER (τ = 1). We will study its parameterized complexity regarding
the problem-specific parameters k, τ , �, and some of their combinations, as well as
restrictions to temporal graph classes [17, 18].

Fig. 1 An illustrative example with temporal graph G = (G1,G2,G3) over the vertex set V =
{v1, . . . , v4}. A solution S = ({v2, v3}, {v3}, {v1, v3}) for k = 2 and � = 1 is highlighted
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Related Work The literature on vertex covering is extremely rich, even when focus-
ing on parameterized complexity studies. Indeed, VERTEX COVER can be seen as
“drosophila” of parameterized algorithmics. Thus, we only consider VERTEX COVER

studies closely related to our setting. First, we mention in passing that VERTEX

COVER is studied in dynamic graphs [19, 20] and graph stream models [21]. More
importantly for our work, Akrida et al. [22] studied a variant of VERTEX COVER

on temporal graphs. Their model significantly differs from ours: they want an edge
to be covered at least once over every time window of some given size �. That is,
they define a temporal vertex cover as a set S ⊆ V × {1, . . . , τ } such that, for every
time window of size � and for each edge e = {v, w} appearing in a layer con-
tained in the time window, it holds that (v, t) ∈ S or (w, t) ∈ S for some t in the
time window with (e, t) ∈ E . For their model, Akrida et al. ask whether such an S

of small cardinality exists. Note that if � > 1, then for some t ∈ {1, . . . , τ } the
set St := {v | (v, t) ∈ S} is not necessarily a vertex cover of layer Gt . For � = 1,
each St must be a vertex cover of Gt . However, in Akrida et al.’s model the size of
each St as well as the size of the symmetric difference between each St and St+1 may
strongly vary. They provide several hardness results and algorithms (mostly referring
to approximation or exact algorithms, but not to parameterized complexity studies).

A second related line of research, not directly referring to temporal graphs though,
studies reconfiguration problems which arise when we wish to find a step-by-step
transformation between two feasible solutions of a problem such that all interme-
diate results are feasible solutions as well [23, 24]. Among other reconfiguration
problems, Mouawad et al. [25, 26] studied VERTEX COVER RECONFIGURATION:
given a graph G, two vertex covers S and T each of size at most k, and an inte-
ger τ , the question is whether there is a sequence (S = S1, . . . , Sτ = T ) such
that each St , 1 ≤ t ≤ τ , is a vertex cover of size at most k. The essential differ-
ence to our model is that from one “sequence element” to the next only one vertex
may be changed and that the input graph does not change over time. Indeed, there
is an easy reduction of this model to ours while the opposite direction is unlikely to
hold. This is substantiated by the fact that Mouawad et al. [25] showed that VER-
TEX COVER RECONFIGURATION is fixed-parameter tractable when parameterized
by vertex cover size k while we show W[1]-hardness for the corresponding case of
MULTISTAGE VERTEX COVER.

Finally, there is also a close relation to the research on dynamic parameterized
problems [16, 27]. Krithika et al. [27] studied DYNAMIC VERTEX COVER where one
is given two graphs on the same vertex set and a vertex cover for one of them together
with the guarantee that the cardinality of the symmetric difference between the two
edge sets is upper-bounded by a parameter d . The task then is to find a vertex cover
for the second graph that is “close enough” (measured by a second parameter) to the
vertex cover of the first graph. They show fixed-parameter tractability and a linear
kernel with respect to d .

Our Contributions Table 1 summarized our results, focusing on the three perhaps
most natural parameters. We highlight a few specific results. MULTISTAGE VER-
TEX COVER remains NP-hard even if every layer consists of only one edge; not
surprisingly, the corresponding hardness reduction exploits an unbounded number τ
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Table 1 Overview of our results. The column headings describe the restrictions on the input and each row
corresponds to a parameter. p-NP-hard, PK, and NoPK abbreviate para-NP-hard, polynomial-size problem
kernel, and no problem kernel of polynomial size unless coNP ⊆ NP/poly

general layers tree layers one-edge layers

0 ≤ � < 2k � ≥ 2k 0 ≤ � < 2k � = 1

NP-hard NP-hard NP-hard NP-hard

(Theorem 4.1(i)) (Theorem 4.1(ii))

τ p-NP-hard p-NP-hard p-NP-hard FPT, PK

(Theorem 4.1) (Theorem 4.1) (Theorem 4.1) (Observation 6.1)

k XP, W[1]-h., FPT†, NoPK XP, W[1]-h. open, NoPK

(Theorem 5.1) (Observation 3.5, (Theorem 5.1, (Theorem 6.1)

Theorem 6.1) Corollary 5.3)

k + τ FPT, PK FPT, PK FPT, PK FPT, PK

(Theorem 6.2) (Theorem 6.2) (Theorem 6.2) (Theorem 6.2)

of time layers. If there are one two layers, however, one of them being a tree and
the other being a path, then again MULTISTAGE VERTEX COVER already becomes
NP-hard. MULTISTAGE VERTEX COVER parameterized by solution size k is fixed-
parameter tractable if � ≥ 2k, but becomes W[1]-hard if � < 2k. Considering
the tractability results for DYNAMIC VERTEX COVER [27] and VERTEX COVER

RECONFIGURATION [25], this hardness is surprising; it is our most technical result.
Furthermore, MULTISTAGE VERTEX COVER parameterized by k with � ≥ 2k does
not admit a problem kernel of polynomial size unless coNP ⊆ NP/poly. Finally, for
the combined parameter k+τ we obtain polynomial-sized problem kernels (and thus
fixed-parameter tractability) in all cases without any further constraints.

Outline In Section 2, we provide some preliminaries. For MULTISTAGE VERTEX

COVER, we provide some first and general observations in Section 3, study the
parameterized complexity regarding k in Section 5, and discuss the possibilities for
efficient data reduction in Section 6. We conclude in Section 7.

2 Preliminaries

We denote by N and N0 the natural numbers excluding and including zero, respec-
tively. For two sets A and B, we denote by A�B := (A \ B) ∪ (B \ A) =
(A ∪ B) \ (A ∩ B) the symmetric difference of A and B, and by A 	 B the disjoint
union of A and B. For static graphs, we use standard notations [28].

Temporal Graphs A temporal graph G is a tuple (V , E, τ ) consisting of the set V of
vertices, the set E of temporal edges, and a discrete time-horizon τ . A temporal edge e
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is an element in
(
V
2

) × {1, . . . , τ }. Equivalently, a temporal graph G can be defined
as a vector of static graphs (G1, . . . , Gτ ), where each graph is defined over the same
vertex set V . We also denote by V (G), E(G), and τ(G) the set of vertices, the set
of temporal edges, and the discrete (and finite) time-horizon of G, respectively. The
underlying graph G↓ = G↓(G) of a temporal graph G is the static graph with vertex
set V (G) and edge set {e | ∃t ∈ {1, . . . , τ (G)} : (e, t) ∈ E(G)}.

Parameterized Complexity Theory Let � be a finite alphabet. A parameterized prob-
lem L is a subset L ⊆ {(x, k) ∈ �∗ × N0}. An instance (x, k) ∈ �∗ × N0 is
a yes-instance of L if and only if (x, k) ∈ L (otherwise, it is a no-instance).
Two instances (x, k) and (x′, k′) of parameterized problems L, L′ are equivalent
if (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L′. A parameterized problem L is fixed-
parameter tractable (FPT) if for every input (x, k) one can decide whether (x, k) ∈
L in f (k) · |x|O(1) time, where f is some computable function only depending
on k. A parameterized problem L is in XP if for every instance (x, k) one can
decide whether (x, k) ∈ L in time |x|f (k) for some computable function f only
depending on k. A W[1]-hard parameterized problem is fixed-parameter intractable
unless FPT=W[1].

Given a parameterized problem L, a kernelization is an algorithm that maps any
instance (x, k) of L in time polynomial in |x| + k to an instance (x′, k′) of L (the
problem kernel) such that

(i) (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L, and
(ii) |x′| + k′ ≤ f (k) for some computable function f (the size of the problem

kernel) only depending on k.

3 Basic Observations

In this section, we state some preliminary simple-but-useful observations on MULTI-
STAGE VERTEX COVER and its relation to VERTEX COVER.

Observation 3.1 Every instance (G, k, �) of MULTISTAGE VERTEX COVER

with k ≥ ∑τ(G)
i=1 |E(Gi)| is a yes-instance.

Proof Clearly, a graph with m edges always admits a vertex cover of size m. Hence,
there is a vertex cover S ⊆ V of size k of G↓(G), and hence, S is a vertex cover for
each layer. The vector (S1, . . . , Sτ ) with Si = S for all i ∈ {1, . . . , τ } is a solution
for every � ≥ 0.

Next, we state that if we are facing a yes-instance, then we can assume that there
exists a solution where each layer’s vertex cover is either of size k or k − 1.

Observation 3.2 Let (G, k, �) be an instance of MULTISTAGE VERTEX COVER. If
(G, k, �) is a yes-instance, then there is a solution S = (S1, . . . , Sτ ) such that |S1| =
k and k − 1 ≤ |Si | ≤ k for all i ∈ {1, . . . , τ }.
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Proof We first show that there is a solution S = (S1, . . . , Sτ ) for I := (G, k, �)

such that |S1| = k. (Recall that we assume k < |V (G)|.) Towards a contradiction
assume that such a solution does not exist. Let S = (S1, . . . , Sτ ) be a solution such
that |S1| is maximal over all solutions for I . Let i ∈ {1, . . . , τ } be the maximum
index such that Sj ⊆ Sj−1, for all j ∈ {2, . . . , i}. If i = τ , then we have that
|Sj | ≤ |S1| < k for all j ∈ {1, . . . , τ }. Hence, we can find a subset X ⊆ V \ S1 such
that (S1 ∪ X, . . . , Sτ ∪ X) is a solution. This contradicts |S1| being maximal. Now
let i < τ . Hence, there is a vertex v ∈ Si+1 \ Si . Now we can adjust the solution by
adding v to Sj for all j ∈ {1, . . . , i}. This contradicts |S1| being maximal. Hence,
there is a solution S = (S1, . . . , Sτ ) such that |S1| = k.

Let Ψ be the set of solutions such that the first vertex cover is of size k. Assume
towards a contradiction that all solutions in Ψ contain a vertex cover smaller
than k−1. LetΨi ⊆ Ψ be the set of solutions such that for each (S1, . . . , Sτ ) ∈ Ψi we
have that |Si | < k − 1 and |Sj | ≥ k − 1 for all j ∈ {1, . . . , i − 1}. Let i ∈ {1, . . . , τ }
be maximal such that Ψi �= ∅. Furthermore, let S = (S1, . . . , Sτ ) ∈ Ψi such that |Si |
is maximal over all solutions in Ψi . Hence, there is a vertex v ∈ Si−1 \ Si . We
distinguish two cases.

(a): Assume that there is a p ∈ {i + 1, . . . , τ } such that there is a w ∈ Sp \ Sp−1
and Sj ⊆ Sj−1 for all j ∈ {i + 1, . . . , p − 1}. The idea now is to keep v and add w

in the i-th layer and then remove v in the p-th layer. We can achieve this by simply
setting Sq := Sq ∪ {v, w} for all q ∈ {i, . . . , p − 1}.

(b): Assume that Sj ⊆ Sj−1 for all j ∈ {i + 1, . . . , τ }. In this case we take an
arbitrary vertex w ∈ V \ Si and set Sq := Sq ∪ {v, w} for all q ∈ {i, . . . , τ }.

In either of the cases (a) or (b), the obtained solution either contradicts that |Si | is
maximal, or that i is maximal, or that every solution in Ψ contains a vertex cover of
size smaller than k − 1.

With the next two observations, we show that the special case of MULTISTAGE

VERTEX COVER with � = 0 is equivalent to VERTEX COVER under polynomial-time
many-one reductions.

Observation 3.3 There is a polynomial-time algorithm that maps any instance (G =
(V , E), k) of VERTEX COVER to an equivalent instance (G, k, �) of MULTISTAGE

VERTEX COVER where � = 0 and every layer Gi contains only one edge.

Proof Let the edges E = {e1, . . . , em} of G be ordered in an arbitrary way. Set τ =
m and � = 0. Set Gi = (V , {ei}) for each i ∈ {1, . . . , τ }. We claim that (G =
(V , E), k) is a yes-instance of VERTEX COVER if and only if (G, k, �) is a yes-
instance of MULTISTAGE VERTEX COVER.

(⇒) Let S be a vertex cover of G of size at most k. Set Si := S for all i ∈
{1, . . . , τ }. Clearly, Si is a vertex cover of Gi for all i ∈ {1, . . . , τ } of size at
most k. Moreover, by construction, Si�Si+1 = 0 for all i ∈ {1, . . . , τ − 1}. Hence,
(S1, . . . , Sτ ) forms a solution to (G, k, �).

459Theory of Computing Systems (2022)  66:454 483–



(⇐) Let S = (S1, . . . , Sτ ) be a solution to (G, k, �). Observe that | ⋃i Si | ≤ k. It
follows that there are at most k vertices covering all edges of the layers Gi , that is,
E = ⋃τ

i=1 E(Gi), and hence they cover all edges of G.

Observation 3.4 There is a polynomial-time algorithm that maps any instance (G,

k, �) of MULTISTAGE VERTEX COVER with � = 0 to an equivalent instance (G, k)

of VERTEX COVER.

Proof Now let (G = (V , E, τ ), k, 0) be an arbitrary instance of MULTISTAGE VER-
TEX COVER. Construct the instance (G↓, k) of VERTEX COVER. We claim that
(G, k, 0) is a yes-instance if and only if (G↓, k) is a yes-instance.

(⇐) Let S ⊆ V be a vertex cover of size at most k. Since S is a vertex cover
for G↓, S covers each layer of G. Hence, Si := S for all i ∈ {1, . . . , τ } forms a
solution to (G, k, 0).

(⇒) Let (S1, . . . , Sτ ) be a solution to (G, k, 0). Clearly, since � = 0, we have
that Si = Sj for all i, j ∈ {1, . . . , τ }. Thus, S := S1 is a vertex cover for G↓, and
hence the claim follows.

Finally, the special case of MULTISTAGE VERTEX COVER with � ≥ 2k (that is,
where vertex covers of any two consecutive layers can be even disjoint) is Turing-
reducible to VERTEX COVER.

Observation 3.5 Any instance (G, k, �) of MULTISTAGE VERTEX COVER with � ≥
2k and G = (G1, . . . , Gτ ) can be solved by deciding each instance of the
set {(Gi, k) | 1 ≤ i ≤ τ } of VERTEX COVER-instances.

Proof For each of the layers Gi , i ∈ {1, . . . , τ }, we can construct an instance of
VERTEX COVER of the form (Gi, k). We can solve each instance independently, since
the symmetric difference of any two size-at-most-k solutions is at most 2k ≤ �.

4 Hardness for Restricted Input Instances

MULTISTAGE VERTEX COVER is NP-hard as it generalizes VERTEX COVER (τ = 1).
In this section, we prove that MULTISTAGE VERTEX COVER remains NP-hard on
inputs with only two layers (one consisting of a path and the other consisting of a
tree), and on inputs where every layer contains only one edge.

Theorem 4.1 MULTISTAGE VERTEX COVER is NP-hard even if

(i) τ = 2, � = 0, and the first layer is a path and the second layer is a tree, or
(ii) every layer contains only one edge and � ≤ 1.

Remark 4.1 Theorem 4.1(i) is tight regarding τ since VERTEX COVER (i.e., MUL-
TISTAGE VERTEX COVER with τ = 1) on trees is solvable in linear time. Theorem
4.1(ii) is tight regarding � because if � > 1, then Observation 3.5 is applicable.
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It is known that VERTEX COVER remains NP-complete on cubic Hamiltonian
graphs when a Hamiltonian cycle is additionally given as part of the input [29]: 1

Proposition 4.1 There is a polynomial-time algorithm that maps any instance (G =
(V , E), k, C) of HCVC to an equivalent instance (G, k′, �′) of MULTISTAGE VER-
TEX COVER with τ = 2 and the first layer G1 being a path and the second layer G2
being a tree.

Proof Let e ∈ E(C) be some edge of C, and let P = C − e be the Hamiltonian
path obtained from C when removing e. Let E1 := E(P ), and E2 := E \ E(P ). Set
initially G1 = (V , E1) and G2 = (V , E2). Note that G1 is a path. Moreover, observe
that G2 is the disjoint union of |V |/2 − 2 paths of length one and one path of length
three: the graph G−E(C) is a matching of size |V |/2. This is because each vertex is
of degree three inGand each vertex is adjacent to two vertices inC. Thus, all vertices
in G−E(C) have degree one. Since G−E(C) = G2 − e, edge e connects two paths
of length one to one path of length three in G2. Add two special vertices z, z′ to V .
In G1, connect z with z′ and with one endpoint of P . In G2, connect z with z′ and
with exactly one vertex of each connected component. Set k′ = k + 1 and �′ = 0.
We claim that (G = (V , E), k, C) is a yes-instance if and only if (G, k′, �′) is a
yes-instance.

(⇒) Let S′ be a vertex cover of G of size at most k. We claim that S′ := S ∪ {z} is
a vertex cover for both G1 and G2. Observe that G1[E1] and G2[E2] are subgraphs
ofG, and hence all edges are covered by S′. Moreover, all edges inGi−Ei , i ∈ {1, 2},
are incident with z and hence covered by S′.

(⇐) Let (S1, S2) be a minimal solution to (G, k′, �′)with S′ := S1 = S2 and |S′| ≤
k′. We can assume that z ∈ S′ since the edge {z, z′} is present in both G1 and G2,
and exchanging z in z′ does not cover less edges. Moreover, we can assume that
not both z and z′ are in S′ due to the minimality of S′. Let S := S′ \ {z}. Observe
that S covers all edges in E1 ∪ E2 and, hence, S forms a vertex cover of G of size at
most k = k′ − 1.

Note that with Observation 3.3, we already proved that MULTISTAGE VERTEX

COVER is NP-hard even if � = 0 and each layer contains only one edge. In order
to prove Theorem 4.1(ii) (with � = 1), we adjust the polynomial-time many-one
reduction behind Observation 3.3.

1A graph is cubic if each vertex is of degree exactly three; a graph is Hamiltonian if it contains a subgraph
being a Hamiltonian cycle, that is, a cycle that visits each vertex in the graph exactly once.
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Proposition 4.2 There is a polynomial-time algorithm that maps any instance (G =
(V , E), k) of VERTEX COVER to an equivalent instance (G, k′, �′) of MULTISTAGE

VERTEX COVER where �′ = 1 and every layer Gi contains only one edge.

Proof Let the edges E = {e1, . . . , em} of G be arbitrarily ordered. Set τ = 2m.
Set V ′ = V ∪ W , where W = {w1, . . . , w2m}. Set G2i−1 = (V ′, {ei}) and G2i =
(V ′, {wi, wi+m}) for each i ∈ {1, . . . , m}. Set k′ = k + 1 and �′ = 1. We claim that
(G = (V , E), k) is a yes-instance of VERTEX COVER if and only if (G, k′, �′) is a
yes-instance of MULTISTAGE VERTEX COVER.

(⇒) Let S be a vertex cover of G of size at most k. Set S2i−1 := S, and S2i :=
S∪{wi} for all i ∈ {1, . . . , m}. Clearly, Si is a vertex cover ofGi for all i ∈ {1, . . . , τ }
of size at most k′ = k + 1. Moreover, by construction, Si�Si+1 ≤ 1 for all i ∈
{1, . . . , 2τ − 1}. Hence, (S1, . . . , Sτ ) forms a solution to (G, k′, �′).

(⇐) Let S = (S1, . . . , Sτ ) be a solution to (G, k′, �′). Observe that | ⋃i Si | ≤
k + τ . We know that |W ∩ ⋃

i Si | ≥ τ . It follows that there are at most k vertices
covering all edges of the layers G2i−1, that is, covering E = ⋃m

i=1 E(G2i−1), and,
hence, covering all edges of G.

Theorem 4.1 directly follows from Proposition 4.1 and 4.2.

5 Parameter Vertex Cover Size

In this section, we study the parameter size k of the vertex cover of each layer for
MULTISTAGE VERTEX COVER. VERTEX COVER and VERTEX COVER RECONFIG-
URATION [25], when parameterized by the vertex cover size, are fixed-parameter
tractable. We prove that this is no longer true for MULTISTAGE VERTEX COVER

(unless FPT = W[1]).

Theorem 5.1 MULTISTAGE VERTEX COVER parameterized by k is in XP and W[1]-
hard.

We first present the XP-algorithm (Section 5.1), and then prove the W[1]-hardness
(Section 5.2) and discuss its implications.

5.1 XP-Algorithm

Here, we prove the following.

Proposition 5.1 Every instance (G, k, �) of MULTISTAGE VERTEX COVER can be
decided in O(τ(G) · |V (G)|2k+1) time.

In a nutshell, to prove Proposition 5.1 we first consider for each layer all vertex
subsets of size at most k that form a vertex cover. Second, we find a sequence of
vertex covers for all layers such that the sizes of the symmetric differences for every
two consecutive solutions is at most �. We show that the second step can be solved via
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computing a source-sink path in an auxiliary directed graph that we call configuration
graph (see Fig. 2 for an illustrative example).

Definition 5.1 Given an instance I = (G, k, �) of MULTISTAGE VERTEX COVER,
the configuration graph of I is the directed graph D = (V , A, γ ) with V = V1 	
· · · 	 Vτ 	 {s, t}, being equipped with a function γ : V → {V ′ ⊆ V (G) | |V ′| ≤ k}
such that

(i) for every i ∈ {1, . . . , τ (G)}, it holds true that S is a vertex cover of Gi of size
exactly k − 1 or k if and only if there is a vertex v ∈ Vi with γ (v) = S,

(ii) there is an arc from v ∈ V to w ∈ V if and only if v ∈ Vi , w ∈ Vi+1,
and γ (v)�γ (w) ≤ �, and

(iii) there is an arc (s, v) for all v ∈ V1 and an arc (v, t) for all v ∈ Vτ .

Note that Mouawad et al. [25] used a similar configuration graph to show fixed-
parameter tractability of VERTEX COVER RECONFIGURATION parameterized by
the vertex cover size k. In the multistage setting, the configuration graph is too
large for showing fixed-parameter tractability regarding k. However, we show an
XP-algorithm regarding k to construct the configuration graph.

Lemma 5.1 The configuration graph of an instance (G, k, �) of MULTISTAGE

VERTEX COVER, where G has n vertices and time horizon τ ,

(i) can be constructed in O(τ · n2k+1) time, and

Fig. 2 Illustrative example of a configuration graph. (a) Temporal graph instance I = (G, k, �) from Fig. 1
with G = (G1,G2,G3), k = 2, and � = 1. (b) Configuration graph of I from (a); a directed s-t path is
highlighted corresponding to the solution depicted in Fig. 1
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(ii) contains at most τ · 2nk + 2 vertices and (τ − 1)n2k + 4nk arcs.

Proof Compute the set S = {V ′ ⊆ V (G) | k − 1 ≤ |V ′| ≤ k} in O(nk) time. For
each layer Gi and each set S ∈ S, check in O(|E(Gi)|) time whether S is a vertex
cover for Gi . Let Si ⊆ S denote the set of vertex covers of size k−1 or k of layer Gi .
For each S ∈ Si , add a vertex v to Vi and set γ (v) = S. Lastly, add the vertices s

and t . Hence, we can construct the vertex set V of the configuration graph D of
size τ · 2nk + 2 in O(nk+2 · τ) time. For every i ∈ {1, . . . , τ − 1}, and every v ∈ Vi

and w ∈ Vi+1, check whether γ (v)�γ (w) ≤ � in O(k) time. If this is the case, then
add the arc (v, w). The latter steps can be done in O(n2k+1 · (τ − 1)) time, because
there are at most n2k arcs from Vi to Vi+1, for all i ∈ {1, . . . τ − 1}. Finally, add
the arc (s, v) for each v ∈ V1 and the arc (v, t) for each v ∈ Vτ in O(nk) time,
because |V1|, |Vτ | ≤ nk . This finishes the construction of D = (V = V1 	 · · · 	Vτ 	
{s, t}, A, γ ). Note that we added at most (τ − 1)n2k + 4nk arcs to D.

The crucial observation is that we can decide any instance by checking for an s-t
path in its configuration graph.

Lemma 5.2 A MULTISTAGE VERTEX COVER-instance I = (G, k, �) is a yes-
instance if and only if there is an s-t path in the configuration graph D of I .

Proof Let D = (V = V1 	 · · · 	 Vτ 	 {s, t}, A, γ ).
(⇒) Let (S1, . . . , Sτ ) be a solution to (G, k, �). By Observation 3.2, we can

assume without loss of generality that k − 1 ≤ |Si | ≤ k, for all i ∈
{1, . . . , τ }. Hence for each Si , there is a vi ∈ Vi such that γ (vi) = Si , for
all i ∈ {1, . . . , τ }. Note that the arc (vi, vi+1) is contained in A for each i ∈
{1, . . . , τ − 1} since γ (vi)�γ (vi+1) = Si�Si+1 ≤ �. Hence, P = ({v1, . . . , vτ } ∪
{s, t}, {(s, v1), (vτ , t)} ∪ ⋃τ−1

i=1 {(vi, vi+1)}) is an s-t path in D.
(⇐) Let P = ({v1, . . . , vτ }∪ {s, t}, {(s, v1), (vτ , t)}∪⋃τ−1

i=1 {(vi, vi+1)}) be an s-
t path in D. We claim that (γ (vi))i∈{1,...,τ } forms a solution to (G, k, �). First, note
that for all i ∈ {1, . . . , τ }, γ (vi) is a vertex cover for Gi of size at most k. Moreover,
for all i ∈ {1, . . . , τ −1}, γ (vi)�γ (vi+1) ≤ � since the arc (vi, vi+1) is present in D.
This finishes the proof.

Eventually, we are ready to prove Proposition 5.1.

Proof of Proposition 5.1 First, compute the configuration graph D of the instance
(G = (V , E, τ ), k, �) of MULTISTAGE VERTEX COVER in O(τ · |V |2k+1) time
(Lemma 5.1(i)). Then, find an s-t path in D with a breadth-first search in O(τ ·|V |2k)
time (Lemma 5.1 (ii)). If an s-t path is found, then return yes, otherwise return no
(Lemma 5.2).

Remark 5.1 The reason why the algorithm behind Proposition 5.1 is only an XP-
algorithm and not an FPT-algorithm regarding k stems from the fact that we do not
have a better upper bound on the number of vertices in the configuration graph for
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(G, k, �) than O(τ(G) · |V (G)|k). This is because we check for each subset of V (G)

of size k or k − 1 whether it is a vertex cover in some layer.
This changes if we consider MINIMAL MULTISTAGE VERTEX COVER where we

additionally demand the i-th set in the solution to be a minimal vertex cover for
the layer Gi . Here, we can enumerate for each layer Gi all minimal vertex cov-
ers of size at most k (and hence all candidates for the i-th set of the solution) with
the folklore search-tree algorithm for vertex cover. This leads to O(2kτ (G)) many
vertices in the configuration graph (for MINIMAL MULTISTAGE VERTEX COVER)
and thus to fixed-parameter tractability of MINIMAL MULTISTAGE VERTEX COVER

parameterized by the vertex cover size k.

It is unlikely (unless FPT=W[1]), however, that one can substantially improve the
algorithm behind Proposition 5.1, as we show next.

5.2 Presumable Fixed-Parameter Intractability

Here, we show that MULTISTAGE VERTEX COVER isW[1]-hard when parameterized
by k. This hardness result is established by the following parameterized reduction
from the W[1]-complete CLIQUE problem [30], where, given an undirected graph G

and a positive integer k, the question is whether G contains a clique of size k (that is,
k vertices that are pairwise adjacent and k is the parameter).

Proposition 5.2 There is an algorithm that maps any instance (G, k) of CLIQUE

in polynomial time to an equivalent instance (G, k′, �) of MULTISTAGE VERTEX

COVER with k′ = 2
(
k
2

) + k + 1, � = 2, and each layer of G being a forest with O(k4)

edges.

In the remainder of this section, we prove Proposition 5.2. We next give the con-
struction of the MULTISTAGE VERTEX COVER instance, then prove the forward
(Section 5.2.1) and backward (Section 5.2.2) direction of the equivalence, and finally
(in Section 5.2.3) put the pieces together and derive two corollaries.

We construct an instance of MULTISTAGE VERTEX COVER from an instance of
CLIQUE as follows (see Fig. 3 for an illustrative example).

Construction 5.1 Let (G = (V , E), k) be an instance of CLIQUE with m := |E| and
E = {e1, . . . , em}. Let

K := (
k
2

)
, k′ := 2K + k + 1, and κ := K + k + 3.

We construct a MULTISTAGE VERTEX COVER instance (G, k′, �) with � := 2, where
we construct the temporal graph G = (V ′, E, τ ) as follows. Let V ′ be initialized
to V ∪ E (note that E simultaneously describes the edge set of G and a vertex subset
of G). We add the following vertex sets

Ut := {ut
j | j ∈ {1, . . . , K}} for every t ∈ {1, . . . , κ + 1}, and

C := {c1, . . . , c2mκ+1} (we refer to C as the set of center vertices).
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Fig. 3 Illustration of Construction 5.1 on an example graph (left-hand side) and the first seven layers of
the obtained graph (right-hand side). Dashed vertical lines separate layers, and for each layer all present
edges (but only their incident vertices) are depicted. Star-shapes illustrate star graphs with k′ + 1 leaves.
Vertices in a solution (layers’ vertex covers) are highlighted

Let E be initially empty. We extend the set V ′ and define E through the τ := 2mκ +1
layers we construct in the following.

1. In each layerGi with i being odd, make ci the center of a star with k′+1 leaves.2

2. In each layer G2mj+1, j ∈ {0, . . . , κ}, make each vertex in Uj+1 the center of
a star with k′ + 1 leaves.

3. For each j ∈ {0, . . . , κ − 1}, in each layer G2mj+i with i ∈ {1, . . . , 2m + 1},
make u

j+1
x adjacent to u

j+2
x for each x ∈ {1, . . . , K}.

4. For each even i, add the edge {ci, ci+1} to Gi and to Gi+1.
5. For each j ∈ {0, . . . , κ −1}, for each i ∈ {1, . . . , m}, in G2mj+2i , make cj2m+2i

adjacent to ei = {v, w}, v, and w.

This finishes the construction of G. �

The construction essentially repeats the same gadget (which we call phase)
κ times, where the layer 2m · i + 1 is simultaneously the last layer of phase i and the
first layer of phase i + 1. In the beginning of phase i, a solution has to contain the
vertices of Ui . The idea now is that during phase i one has to exchange the vertices
of Ui with the vertices of Ui+1.

It is not difficult to see that the instance in Construction 5.1 can be computed in
polynomial time. Hence, it remains to prove the equivalence stated in Proposition
5.2. We prove the forward and the backward direction in Sections 5.2.1 and 5.2.2,
respectively, and finally prove Proposition 5.2 in Section 5.2.3.

2A star (graph) is a tree where at most one vertex (the so-called center) has degree larger than one.
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5.2.1 Forward Direction

The forward direction of Proposition 5.2 is—in a nutshell—as follows: If V ′ ∪ E′
with V ′ ⊆ V and E′ ⊆ E corresponds to the vertex set and edge set of a clique
of size k, then there are K layers in each phase covered by V ′ ∪ E′. Hence, hav-
ing K layers where no vertices from C have to be exchanged, in each phase t we can
exchange all vertices from Ut to Ut+1. Starting with set S1 := U1 ∪ V ′ ∪ E′ ∪ {c1}
then yields a solution.

Lemma 5.3 Let (G, k) be an instance of CLIQUE and (G, k′, �) be the instance
of MULTISTAGE VERTEX COVER resulting from Construction 5.1. If (G, k) is a
yes-instance, then (G, k′, �) is a yes-instance.

Proof Let G′ = (V ′, E′) be the clique of size k in G. We construct a solution S =
(S1

1 , . . . , S
1
2m, S1

2m+1 = S2
1 , . . . , S

κ
2m+1 = Sκ+1

1 ) for (G, k′, �) in the following way.
For each t ∈ {1, . . . , κ + 1} we set St

1 := V ′ ∪ E′ ∪ Ut ∪ {c(t−1)2m+1}, which is a
vertex cover of size k′ for G(t−1)2m+1.

Now, for each t ∈ {1, . . . , κ}, we iteratively construct vertex covers for the layers
(t − 1)2m + 2 until t2m in the following way. Let T := (t − 1) · 2m. Let i ∈
{1, . . . , 2m − 1}, and assume that the set St

i is already constructed and is a vertex
cover forGT +i (this is possible due to the definition of St

1). We distinguish two cases.

Case 1: i is odd. We know that cT +i ∈ St
i . If (St

i \ {cT +i}) ∪ {cT +i+2} is a vertex
cover for GT +i+1, then we set St

i+1 := (St
i \ {cT +i})∪{cT +i+2}. Otherwise we set

St
i+1 := (St

i \ {cT +i}) ∪ {cT +i+1}. In both cases St
i+1 is a vertex cover for GT +i+1

and either St
i+1 ∩ C = {cT +i+1} or St

i+1 ∩ C = {cT +i+2}.
Case 2: i is even. We know that cT +i or cT +i+1 is in St

i . If cT +i ∈ St
i , then we

set St
i+1 = (St

i \ {cT +i}) ∪ {cT +i+1}, which is a vertex cover for GT +i+1. If
cT +i+1 ∈ St

i , then St
i is already a vertex cover for GT +i+1 and the vertices in

V ′ ∪ E′ cover all edges incident with cT +i in the graph GT +i . In this case we say
that G′ covers the layer T + i and set St

i+1 = (St
i \ {ut

j }) ∪ {ut+1
j }, where ut

j is an
arbitrary vertex in St

i ∩ Ut .

Observe that the clique G′ covers K even-numbered layers in each phase. Hence,
we replace, during phase t ∈ {1, . . . , κ} (that is, from layer (t −1)2m+1 to t2m+1),
the vertices Ut with the vertices Ut+1. This also implies that the symmetric differ-
ence of two consecutive sets in S is exactly 2 = �. It follows that S is a solution
for (G, k′, �).

5.2.2 Backward Direction

In this section, we prove the backward direction for the proof of Proposition 5.2.
We first show that if an instance of MULTISTAGE VERTEX COVER computed by
Construction 5.1 is a yes-instance, then it is safe to assume that two vertices are
neither deleted from nor added to a vertex cover in a consecutive step (we refer to
these solutions as smooth, see Definition 5.2). Moreover, a vertex from the vertex
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set C is only exchanged with another vertex from C and, at any time, there is exactly
one vertex from C contained in the solution (similarly to the constructed solution in
Lemma 5.3. We call these (smooth) solutions one-centered (Definition 5.3). We then
prove that there must be a phase t for any one-centered solution where at least

(
k
2

)

times a vertex from “past” sets Ut ′ , t ′ ≤ t , is deleted. This at hand, we prove that
such a phase witnesses a clique of size k.

The fact that a solution needs to contain at least one vertex from C at any time
immediately follows from the fact that there is either an edge between two vertices
in C or there is a vertex in C which is the center of a star with k′ + 1 leaves.

Observation 5.2 Let (G, k′, �) from Construction 5.8 be a yes-instance. Then for
each solution (S1, . . . , Sτ ) it holds true that |Si ∩ C| ≥ 1 for all i ∈ {1, . . . , τ (G)}.

In the remainder of this section, we denote the vertices which are removed from
the set Si−1 and added to the next set Si in a solution S = (. . . , Si−1, Si, . . . )

by

Si−1 � Si := (Si−1 \ Si, Si \ Si−1).

If Si−1 \Si or Si \Si−1 have size one, then we will omit the brackets of the singleton.

Definition 5.2 A solution S = (S1, . . . , Sτ ) for (G, k′, �) from Construction 5.8 is
smooth if for all i ∈ {2, . . . , τ } we have |Si−1 \ Si | ≤ 1 and |Si \ Si−1| ≤ 1.

In fact, if there is a solution, then there is also a smooth solution.

Observation 5.3 Let (G, k′, � = 2) from Construction 5.1 be a yes-instance. Then
there is a smooth solution (S1, . . . , Sτ ).

Proof By Observation 3.1, we know that there is a solution S = (S1, . . . , Sτ ) such
that |S1| = k′ and k′ − 1 ≤ |Si | ≤ k′ for all i ∈ {1, . . . , τ }. Hence, for all i ∈
{2, . . . , τ } it holds true that

∣
∣|Si | − |Si−1|

∣
∣ ≤ 1. By Construction 5.8, we have that

|Si�Si−1| ≤ � = 2, for all i ∈ {2, . . . , τ }. It follows that |Si−1 \ Si | ≤ 1 and
|Si \ Si−1| ≤ 1, and thus, S is a smooth solution.

Our next goal is to prove the existence of the following type of solutions.

Definition 5.3 A smooth solution S = (S1, . . . , Sτ ) for (G, k′, �) from Construc-
tion 5.1 is one-centered if

1. for all i ∈ {1, . . . , τ } it holds true that |Si ∩ C| = 1, and
2. for all i ∈ {2, . . . , τ } and Si−1 � Si = (α, β) it holds true that α ∈ C ⇐⇒ β ∈

C.

With the next two lemmata, we prove that in case of a yes-instance, a one-
centered solution exists. We first show that if the output instance of Construction 5.1
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is a yes-instance, then there is a solution where c1 ∈ C is the only vertex from C in
the first set of the solution.

Lemma 5.4 Let (G, k′, �) from Construction 5.1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ ) for (G, k′, �) such that S1 ∩ C = {c1}.

Proof Suppose towards a contradiction that such a smooth solution does not exist.
Since we know from Observation 5.2 that there is at least one smooth solution, our
assumption means that, in every smooth solution the first vertex cover S1 contains
at least two vertices from C (due to Observation 5.1, S1 must contain at least one).
Let Ψ be the set of smooth solutions with |S1 ∩ C| being minimal, where S1 is the
first vertex cover. Let S = (S1, . . . , Sτ ) ∈ Ψ be a smooth solution such that the
value i := min{j ∈ {1, . . . , τ } | cj ∈ S1 \ {c1}} is maximal. Let S ′ = (S′

1, . . . , S
′
τ )

be initially S.
Suppose that ci was moved out of the solution before the i-th layer. That is, there is

a j ∈ {1, . . . , i −1} such that Sj �Sj+1 = (ci, α). Let j ′ := min{j ∈ {1, . . . , i −1} |
Sj �Sj+1 = (ci, α)} be the smallest among them. Then, set S′

q := Sq \{ci} for all q ∈
{1, . . . , j ′ − 1} to get a feasible solution (note that S′

j ′−1 � S′
j ′ = (∅, α) is feasible

since |S′
j ′−1| ≤ k − 1). This contradicts the minimality of S regarding |S1 ∩ C|.

Hence, suppose that there is no such j , that is, there is no j ∈ {1, . . . , i − 1} such
that Sj �Sj+1 = (ci, α). If Si∗ \ {ci} is a vertex cover of layer Gi∗ for all i∗ ≤ i, then
setting S′

q := Sq \ {ci}, for all q ∈ {1, . . . , p} with p := max{p′ ∈ {1, . . . , τ } | ∀q ∈
{1, . . . , p′} : ci ∈ Sq}, yields a feasible solution. This contradicts the minimality
of S regarding |S1 ∩ C|.

Finally, suppose that there is no j ∈ {1, . . . , i − 1} such that Sj � Sj+1 = (ci, α)

(and hence ci ∈ Si) and Si∗ \ {ci} is no vertex cover of layer Gi∗ , with i∗ ≤ i smallest
possible. Note that i∗ ∈ {i − 1, i}, and we distinguish the two cases.
Case 1: i∗ = i. Let Si−1 � Si = (α, β) for some α, β (each being possibly the

empty set). Note that β �= ci . Then for all q ∈ {1, . . . , i − 1} do the following (we
distinguish two cases):

Case 1.1: β = cr with r < i. We remove ci from the first i − 1 vertex covers
and β from all vertex covers after i containing β. Formally, set S′

q := Sq\
{ci} and S′

q ′ := Sq ′ \ {β} (i.e. S′
i−1 � S′

i = (α, ci)) for all q ′ ∈ {i, . . . , p}
with p := max{p′ ∈ {1, . . . , τ } | ∀p′′ ∈ {i, . . . , p′} : β ∈ Sp′′ }. Recall that ci

is dispensable from the first i − 1 vertex covers, Si \ {β} is a vertex cover of Gi

(since, if i is odd, then ci is the center of a star, or if i even, then β is isolated),
and β is isolated in all layers after the i-th one. Moreover, from the (i − 1)-st
to i-th vertex cover, we exchange α by ci instead of α by β. Hence, the obtained
sequence is a solution. This contradicts the minimality of S regarding |S1 ∩ C|.

Case 1.2: β = cr with r > i, or β �∈ C. We replace ci by β in the first i − 1
vertex covers. Formally, set S′

q := (Sq \ {ci}) ∪ {β} (note that S′
i = Si

and hence S′
i−1 � S′

i = (α, ci)). Note that if there is a p ∈ {2, . . . , i − 1}
with Sp−1 �Sp = (β, x) or Sp−1 �Sp = (x, β), then we get S′

p−1 �S′
p = (∅, x)

and S′
p−1 � S′

p = (x, ∅), respectively. Recall that ci is dispensable from the
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first i − 1 vertex covers, and β is still contained in each vertex cover it con-
tained before the modification. Moreover, from the (i − 1)-st to the i-th vertex
cover, we exchange α by ci instead of α by β. Hence, the obtained sequence is
a solution. In the case of β = cr with r > i, this contradicts the fact that ci is
maximal regarding i. In the case of β �∈ C, this contradicts the minimality of S
regarding |S1 ∩ C|.

Case 2: i∗ = i − 1. It follows that i is odd. Let Si−2 �Si−1 = (α, β) for some α, β

(each being possibly the empty set). Note that β �= ci . Since Si−1 \ {ci} is not a
vertex cover of Gi−1, we have that ci−1 �∈ Si−1. It follows that β �= ci−1. Then
for all q ∈ {1, . . . , i − 2} do the following (we distinguish two cases):
Case 2.1: β = cr with r < i − 1. We remove ci from the first i−2 vertex covers

and β from all vertex covers after (i − 2)-nd containing β. Formally, set S′
q :=

Sq\{ci} and S′
q ′ := Sq ′ \{β} (i.e. S′

i−2�S′
i−1 = (α, ci)) for all q ′ ∈ {i−1, . . . , p}

with p := max{p′ ∈ {1, . . . , τ } | ∀p′′ ∈ {i − 1, . . . , p′} : β ∈ Sp′′ }. Recall
that ci is not part of any of the first i − 2 vertex covers and β is isolated in all
layers after the (i − 2)-nd one. Moreover, from the (i − 2)-nd to i-th vertex
cover, we exchange α by ci instead of α by β. Hence, the obtained sequence is
a solution. This contradicts the minimality of S regarding |S1 ∩ C|.

Case 2.2: β = cr with r > i, or β �∈ C. We replace ci by β in the first i − 2
vertex covers. Formally, set S′

q := (Sq \ {ci}) ∪ {β} (note that S′
i−1 = Si−1

and hence S′
i−2 � S′

i−1 = (α, ci)). Note that if there is a p ∈ {2, . . . , i − 1}
with Sp−1 �Sp = (β, x) or Sp−1 �Sp = (x, β), then we get S′

p−1 �S′
p = (∅, x)

and S′
p−1 � S′

p = (x, ∅), respectively. Note that ci is isolated in the first i − 2
layers, and β is still contained in each vertex cover it was contained in before
the modification. Moreover, from the (i−2)-nd to the (i−1)-st vertex cover, we
exchange α by ci instead of α by β. Hence, the obtained sequence is a solution.
If β = cr with r > i, then this contradicts the fact that ci is maximal regarding i.
If β �∈ C, then this contradicts the minimality of S regarding |S1 ∩ C|.

In every case, we obtain a contradiction, concluding the proof.

Next, we show that there are solutions such that whenever we remove a vertex in
the set of center verticesC from the vertex cover, then we simultaneously add another
vertex from C to the vertex cover. Formally, we prove the following.

Lemma 5.5 Let (G, k′, �) from Construction 5.1 be a yes-instance. Then there is a
smooth solution (S1, . . . , Sτ ) with S1 ∩C = {c1} such that for all i ∈ {1, . . . , τ } with
Si−1 � Si = (α, c) and c ∈ C we also have α ∈ C.

Proof Suppose towards a contradiction the contrary. That is, let for every smooth
solution (S1, . . . , Sτ ) exist an i ∈ {1, . . . , τ } with Si−1 � Si = (α, c) and c ∈ C

and α �∈ C. Let Ψ be the non-empty (due to Lemma 5.4) set of smooth solutions
(S1, . . . , Sτ ) with |S1 ∩ C| = 1. Let Ψ ′ ⊆ Ψ be the set of smooth solutions that
maximizes the first index i with Si−1 � Si = (α, cq) with cq ∈ C and α �∈ C. Among
those solutions, consider S = (S1, . . . , Sτ ) ∈ Ψ ′ to be the one with q being maximal.
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Note that due to Observation 5.10, we have that |Si−1 ∩ C| ≥ 1. Let S′
j

:= Sj for
all j ∈ {1, . . . , τ }.
Case 1: i > 1 is odd. Since ci is the center of a star in layer i, ci has to be in Si .

We distinguish three subcases regarding the relation of q and i, that is, the cases
of q being smaller than, equal to, or larger than i.

Case 1.1: q < i. We remove cq from the longest sequence of vertex covers con-
taining cq starting from the i-th vertex cover. Formally, set S′

j := (Sj \ {cq})
(i.e., S′

i−1�S′
i = (α, ∅)) for all j ∈ {i, . . . , q ′} with q ′ := max{q ′′ ∈ {i, . . . , τ } |

∀j ∈ {i, . . . , q ′′} : cq ∈ Sj }. Note that cq with q < i is isolated in all layers
after the i-th one and Si \ {cq} is a vertex cover of layer Gi since ci ∈ Si . It fol-
lows that (S′

1, . . . , S
′
τ ) is again a feasible smooth solution contradicting i being

maximal.
Case 1.2: q = i. We have ci �∈ Si−1. Since the edge {ci−1, ci} must be covered

in layer Gi−1, it follows that ci−1 ∈ Si−1. Moreover, ci−1 ∈ Si (and possibly
more subsequent vertex covers) since α �∈ C. As ci−1 is isolated in all layers
after the i-th and ci ∈ Si , we remove ci−1 and add α in the i-th and subsequent
layers (i.e., instead of exchanging α with cq from the (i − 1)-st to the i-th
layer, we exchange ci−1 with cq ). Formally, set S′

p := (Sp \ {ci−1}) ∪ {α}
(i.e., S′

i−1 � S′
i = (ci−1, cq)) for all p ∈ {i, . . . , j}, where j > i is minimal

such that Sj−1 � Sj = (ci−1, x), or τ if such a j does not exist. If there is a
minimal j > i such that Sj−1 � Sj = (ci−1, x), then set S′

p := (Sp \ {α}) (i.e.,
S′

j−1 � S′
j = (α, x)) for all p ∈ {j, . . . , q ′} with q ′ := max{q ′′ ∈ {i, . . . , τ } |

∀p ∈ {i, . . . , q ′′} : α ∈ Sp}. Suppose that between i and j , there are j1 and j2
such that Sj1−1�Sj1 = (y, α) and Sj2−1�Sj2 = (α, y′). Note that S′

j1−1�S′
j1

=
(y, ∅) and S′

j1−1 � S′
j1

= (∅, y′). It follows that (S′
1, . . . , S

′
τ ) is again a feasible

smooth solution, contradicting i being maximal.
Case 1.3: q > i. Then ci ∈ Si−1. Let q∗ ≤ q be the smallest index with Sq∗ \

{cq} being no vertex cover of Gq∗ . Note that q∗ ∈ {q − 1, q}. Observe that if
no such q∗ exists, then we can exclude cq from all vertex cover starting from
the i-th one. Formally, set S′

j := Sj \ {cq} (i.e., S′
i−1 � S′

i = (α, ∅)) for all j ∈
{i, . . . , q ′} where q ′ := max{q ′′ ∈ {i, . . . , τ } | ∀j ∈ {i, . . . , q ′′} : cq ∈ Sj },
contradicting the fact that i is maximal. We distinguish two cases:

Case 1.3.1: q∗ = q. Let Sq−1 � Sq = (β, d). Note that if d = cq , then we
remove cq from all vertex covers before the q-th one, yielding a contradiction
to i being maximal. We distinguish two cases regarding d .

Case 1.3.1.1: d = cp with p < q. Instead of adding cq to the i-th vertex
cover, we add cq instead of d to the q-th vertex cover (recall that cq is
dispensable from all vertex covers before the q-th). Note that if q is even,
then d is isolated in all layers after the (q − 1)-st one, and if q is odd,
then Sq \ {d} is a vertex cover of Gq (since cq is added to Sq ) and d is
isolated in all layers after the q-th one. Formally, set S′

j := Sj \ {cq}
(i.e., S′

i−1 � S′
i = (α, ∅)) for all j ∈ {i, . . . , q − 1}. Moreover, set S′

j :=
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(Sj \{d})∪{cq} (i.e., S′
q−1�S′

q = (β, cq)) for all j ∈ {q, . . . , q ′}with q ′ :=
max{q ′′ ∈ {q, . . . , τ } | ∀j ∈ {q, . . . , q ′′} : d ∈ Sj }. The obtained
sequence is a solution.

Case 1.3.1.2: d �∈ C or if d = cp, then p > q. Instead of introducing cq in
the i-th and d in the q-th vertex cover, we swap their timings and intro-
duce d in the i-th vertex cover and cq in the q-th vertex cover. Set S′

j =
(Sj \ {cq})∪{d} (i.e., S′

i−1 �S′
i = (α, d)) for all j ∈ {i, . . . , q −1}. More-

over, set S′
j = Sj ∪{cq} (i.e., S′

q−1�S′
q = (β, cq) or S′

q−1�S′
q = (β, ∅)) for

all j ∈ {q, . . . , q ′} with q ′ := max{q ′′ ∈ {q, . . . , τ } | ∀j ∈ {q, . . . , q ′} :
cq ∈ Sj }. Recall that cq is dispensable from all vertex covers before
the q-th one. Hence, the obtained sequence is a solution.

In either case, we have that (S′
1, . . . , S

′
τ ) is a feasible solution contradict-

ing either i being maximal (d �∈ C, or d = cp with p < q) or q being
maximal (d = cp with p > q).

Case 1.3.2: q∗ = q − 1. It follows that q must be odd and that cq−1 �∈ Sq−1.
Let Sq−2 � Sq−1 = (β, d). Note that d �= cq−1 and that if d = cq , then
we remove cq from all vertex covers before the (q − 1)-st one, yielding a
contradiction to i being maximal. We distinguish two cases regarding d .

Case 1.3.2.1: d = cp with p < q − 1. Instead of adding cq to the i-th ver-
tex cover, we add cq instead of d to the (q − 1)-st vertex cover. Formally,
set S′

j = Sj \ {cq} (i.e., S′
i−1 � S′

i = (α, ∅)) for all j ∈ {i, . . . , q − 2}.
Moreover, set S′

j = (Sj \ {d}) ∪ {cq} (i.e., S′
q−2 � S′

q−1 = (β, cq)) for
all j ∈ {q − 1, . . . , q ′} with q ′ := max{q ′′ ∈ {q − 1, . . . , τ } | ∀j ∈
{q − 1, . . . , q ′′} : d ∈ Sj }. Since d = cp for p < q − 1 and q is odd, d is
isolated in all layers after the (q − 2)-nd. Hence, the obtained sequence is
a solution.

Case 1.3.2.2: d �∈ C or if d = cp, then p > q. Instead of introducing cq in
the i-th and d in the (q − 1)-st vertex cover, we swap their timings and
introduce d in the i-th vertex cover and cq in the (q − 1)-st vertex cover.
Set S′

j := (Sj \{cq})∪{d} (i.e., S′
i−1 �S′

i = (α, d)) for all j ∈ {i, . . . , q −
2}. Moreover, set S′

j := Sj ∪ {cq} (i.e., S′
q−2 � S′

q−1 = (β, cq) or S′
q−2 �

S′
q−1 = (β, ∅)) for all j ∈ {q − 1, . . . , q ′} with q ′ := max{q ′′ ∈ {q −

1, . . . , τ } | ∀j ∈ {q−1, . . . , q ′} : cq ∈ Sj }. Note that cq is isolated before
the (q − 1)-st layer, and d appears in a superset of vertex covers after the
modification. Hence, the obtained sequence is a solution.

In either case, we have that (S′
1, . . . , S

′
τ ) is a feasible solution contradict-

ing either i being maximal (d �∈ C, or d = cp with p < q) or q being
maximal (d = cp with p > q).

Case 2: i > 1 is even. Then ci−1 ∈ Si−1 and cq ∈ {ci, ci+1}. Since ci−1 is isolated
in all layers after the (i−1)-st, we can exchange ci−1 instead of α by cq . Formally,
set S′

j
:= (Sj \ {ci−1}) ∪ {α} (i.e., S′

i−1 � S′
i = (ci−1, cq)) for all j ∈ {i, . . . , q ′}
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with q ′ := max{q ′′ ∈ {i, . . . , τ } | ∀j ∈ {i, . . . , q ′′} : ci−1 ∈ Sj }. Then
(S′

1, . . . , S
′
τ ) is a feasible solution contradicting i being maximal.

Combining Observation 5.1 and Lemma 5.5, we can assume that for every given
yes-instance, there is a solution which is one-centered.

Corollary 5.1 Let (G, k′, �) from Construction 5.1 be a yes-instance. Then there is
a solution S which is one-centered.

In the remainder of this section, for each t ∈ {1, . . . , κ + 1} let the union of all Ui

be denoted by

Ût := ⋃t
i=1 Ui .

We introduce further notation regarding a one-centered solution S := (S1
1 , . . . ,

S1
2m+1 = S2

1 , . . . , . . . , S
κ
1 , . . . , Sκ

2m+1) for (G, k′, �). Here, St
i is the i-th set of phase t

and thus the (2m(t − 1) + i)-th set of S. The set

Y t
i := {ej ∈ St

i ∩ E | 2j ≥ i} (1)

is the set of vertices ej from E in St
i such that the corresponding layer for ej in phase

t is not before the layer i in phase t . The set

F t
i := {j > i | St

j−1 � St
j = (u, β) with u ∈ Ût } (2)

is the set of layers from G in phase t where a vertex from Ût is not carried over to the
next layer’s vertex cover. We now show that there is a phase t where |F t

1 | ≥ K .

Lemma 5.6 Let S = (S1
1 , . . . , S

1
2m+1 = S2

1 , . . . , . . . , S
κ
1 , . . . , Sκ

2m+1) be a one-
centered solution to (G, k′, �) from Construction 5.1. Then, there is a t ∈ {1, . . . , κ}
such that |F t

1 | ≥ K .

Proof Suppose towards a contradiction that for all t ∈ {1, . . . , κ} it holds true
that |F t

1 | < K . Then, for each i ∈ {2, . . . , κ + 1}, we have that |Si
1 ∩ Ûi−1| ≥ i − 1.

Since S is a solution, we know that Uκ+1 ⊆ Sκ+1
1 and hence |Sκ+1

1 ∩ Uκ+1| = K .
Thus, we have that

|Sκ+1
1 | ≥ |Sκ+1

1 ∩ Uκ+1| + |Sκ+1
1 ∩ Ûκ | ≥ K + κ − 1 = 2K + k + 2 > k′,

contradicting S being a solution.

In the remainder of this section, the value

f t
i := |St

i ∩ Ûκ+1| − K (3)

describes the number of vertices in Ûκ+1 which we could remove from St
i such that

St
i is still a vertex cover for G2m(t−1)+i (the i-th layer of phase t). Observe that
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f t
i ≥ 0 for all t ∈ {1, . . . , κ} and all i ∈ {1, . . . , 2m + 1}, because we need in each

layer exactly K vertices from Ûκ+1 in the vertex cover.
We now derive an invariant which must be true in each phase.

Lemma 5.7 Let S = (S1
1 , . . . , S

1
2m+1 = S2

1 , . . . , . . . , S
κ
1 , . . . , Sκ

2m+1) be a one-
centered solution to (G, k′, �) from Construction 5.1. Then, for all t ∈ {1, . . . , κ} and
all i ∈ {1, . . . , 2m + 1}, it holds true that |F t

i | − |Y t
i | ≤ f t

i .

Proof Let t ∈ {1, . . . , κ} be arbitrary but fixed. For all i ∈ {1, . . . , 2m + 1} let
εi := |F t

i | − |Y t
i | − f t

i .

We claim that εi − εi−1 ≥ 0 for all i ∈ {1, . . . , 2m + 1}. Since S is one-centered,
in Table 2 all relevant tuples for St

i−1 � St
i are shown. As each relevant tuple results

in εi − εi−1 ∈ {0, 1, 2}, the claim follows.
We want to prove that εi ≤ 0 for all i ∈ {1, . . . , 2m + 1}. So, assume towards

a contradiction that there is a j ∈ {1, . . . , 2m + 1} such that εj > 0. Since εi −
εi−1 ≥ 0 for all i ∈ {1, . . . , 2m + 1}, we have that ε2m+1 > 0, which is equivalent
to |F t

2m+1| − |Y t
2m+1| > f t

2m+1. By definition, we have that |Y t
2m+1| = 0 (see (1))

and |F t
2m+1| = 0 (see (2)). Moreover, since S is a solution and each vertex cover

needs at least K vertices from Ûτ , we have that f t
2m+1 ≥ 0. It follows that 0 =

|F t
2m+1| − |Y t

2m+1| > f t
2m+1 ≥ 0, yielding a contradiction.

Next, we prove that in a phase t with |F t
1 | ≥ K , there are at most k vertices from V

contained in the union of the vertex covers of phase t .

Lemma 5.8 Let S = (S1
1 , . . . , S

1
2m+1 = S2

1 , . . . , . . . , S
κ
1 , . . . , Sκ

2m+1) be a one-
centered solution to (G, k′, �) from Construction 5.1, and let t ∈ {1, . . . , κ} be such
that |F t

1 | ≥ K . Then, | ⋃2m+1
i=1 St

i ∩ V | ≤ k.

Table 2 Overview of all tuples of St
i−1 � St

i relevant in the proof of Lemma 5.17 and their possible values
of εi − εi−1 = |F t

i | − |F t
i−1| − (|Y t

i | − |Y t
i−1|) − (f t

i − f t
i−1)

St
i−1 � St

i |F t
i | − |F t

i−1| −(|Y t
i | − |Y t

i−1|) −(f t
i − f t

i−1) εi − εi−1

(u, β) β ∈ E ∈ {−1, 0} ∈ {0, 1} 1 ∈ {0, 1, 2}
β ∈ Ûκ+1 ∈ {−1, 0} 1 0 ∈ {0, 1}
β ∈ V , β = ∅ ∈ {−1, 0} 1 1 ∈ {1, 2}

(α, u) α ∈ E 0 ∈ {1, 2} -1 ∈ {0, 1}
α ∈ V , α = ∅ 0 1 -1 0

(α, v) α ∈ E 0 ∈ {1, 2} 0 ∈ {1, 2}
α ∈ V , α = ∅ 0 1 0 1

(α, e) α ∈ V 0 1 0 1

α ∈ E, α = ∅ 0 ∈ {0, 1} 0 ∈ {0, 1}

In the tuples, u, v, and e represent some vertices from Ûκ+1, V , and E, respectively
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Proof From Lemma 5.7, we know that |Y t
1 | ≥ K − f t

1 . Let

|Y t
1 | = K − f t

1 + λ

for some λ ∈ N0, and let εi = |F t
i | − |Y t

i | − f t
i , for all i ∈ {1, . . . , 2m + 1}.

We now show that there are at most λ layers where we exchange a vertex currently
in the vertex cover with a vertex in V . Let i ∈ {2, . . . , 2m + 1} such that St

i−1 � St
i =

(α, v) with v ∈ V . From Table 2 (recall that one-centered solutions are smooth), we
know that εi ≥ εi−1 + 1.

Assume towards a contradiction that there are λ + 1 many of these exchanges.
Then, there is a j ∈ {1, . . . , 2m + 1} such that

εj ≥ ε1 + λ + 1 = |F t
1 | − |Y t

1 | − f t
1 + λ + 1

≥ K − (K − f t
1 + λ) − f t

1 + λ + 1 ≥ 1 ⇐⇒ |F t
j | − |Y t

j | > f t
j .

This contradicts the invariant of Lemma 5.7.
In the beginning of phase t , we have at most k − λ vertices from V in the vertex

cover because

|St
1 ∩ V | ≤ K + k − |Y t

1 | − f t
1 = K + k − (K − f t

1 + λ) − f t
1 = k − λ.

Since there are at most λ many exchanges St
i−1 � St

i = (α, v) where v ∈ V and i ∈
{2, . . . , 2m + 1}, we know that the vertex set

⋃2m+1
i=1 St

i ∩ V is of size at most k.

We are set to prove the backward direction of Proposition 5.2.

Lemma 5.9 Let (G, k) be an instance of CLIQUE and (G, k′, �) be the instance
of MULTISTAGE VERTEX COVER resulting from Construction 5.1. If (G, k′, �) is a
yes-instance, then (G, k) is a yes-instance.

Proof Let (G, k′, �) be a yes-instance. From Corollary 5.16 it follows that there
is a one-centered solution S = (S1

1 , . . . , S
1
2m+1 = S2

1 , . . . , . . . , S
κ
1 , . . . , Sκ

2m+1) for

(G, k′, �). By Lemma 5.6, there is a t ∈ {1, . . . , κ} such that |F t
1 | ≥ K = (

k
2

)
. By

Lemma 5.8, we know that | ⋃2m+1
i=1 St

i ∩ V | ≤ k. Now we identify the clique of size

k in G. Since |F t
1 | ≥ K , we know that, by Construction 5.1, at least K = (

k
2

)
layers

are covered by vertices in V ∪ E ∪ Ûκ+1 ∪ {ct
2j+1 | j ∈ {1, . . . , m}} in phase t . Note

that each of these layers corresponds to an edge e = {v, w} in G and that we need in
particular the vertices v and w in the vertex cover. Since we have at most k vertices
in

⋃2m+1
i=1 St

i ∩ V , these vertices induce a clique of size k in G.

5.2.3 Proof of Proposition 5.2 and two corollaries

We proved the forward and backward direction of Proposition 5.2 in Sections 5.2.1
and 5.2.2, respectively. It remains to put everything together.

Proof of Proposition 5.2 Let (G, k) be an instance of CLIQUE and (G, k′, �) be the
instance of MULTISTAGE VERTEX COVER resulting from Construction 5.1. Observe
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that Construction 5.1 runs in polynomial time, and that each layer of G is a forest with
O(k′2) edges. We know that if (G, k) is a yes-instance of CLIQUE, then (G, k′, �)
is a yes-instance of MULTISTAGE VERTEX COVER (Lemma 5.3), and vice versa
(Lemma 5.9). Finally, the W[1]-hardness of CLIQUE [30] regarding k and the fact
that k′ ∈ O(k2) then finish the proof.

From a motivation point of view, it is natural to assume that the change over
time modeled by the temporal graph is rather of evolutionary character, meaning
that the difference of a layer to its predecessor is limited. However, Proposition 5.2
gives a bound (in terms of the desired vertex cover size in input instance) on the
number of edges of each layer. In particular, we also obtain the following W[1]-
hardness.

Corollary 5.2 MULTISTAGE VERTEX COVER parameterized by the maximum num-
ber maxi∈{1,...,τ } |E(Gi)| of edges in a layer is W[1]-hard, even if each layer is a
forest.

Thus, we cannot hope for fixed-parameter tractability of MULTISTAGE VERTEX

COVER when parameterized for example by the combination of k and the maximum
size of symmetric difference between two consecutive layers.

Furthermore, we can turn the instance (G, k′, �) resulting from Construction 5.1
into an equivalent instance (G′, k′′, �) where each layer is a tree as follows. Set k′′ :=
k′ + 1. Add a vertex x to G. In each layer of G, make x the center of a star with k′′
(new) leaf vertices, and connect x with exactly one vertex of each connected com-
ponent. Note that, in every solution, x is contained in a vertex cover for each layer
in G′.

Corollary 5.3 MULTISTAGE VERTEX COVER parameterized by k is W[1]-hard,
even if each layer is a tree.

Note, however, that in Corollary 5.3, maxi∈τ |E(Gi)| is unbounded and we cannot
hope to strengthen the reduction in this sense because if each layer is a tree, then we
have exactly |V | − 1 edges in each layer. This would contradict Proposition 5.1.

6 On Efficient Data Reduction

In this section, we study the possibility of efficient and effective data reduction for
MULTISTAGE VERTEX COVER when parameterized by k, τ , and k + τ , that is,
the possible existence of problem kernels of polynomial size. We prove that unless
coNP ⊆ NP/poly, MULTISTAGE VERTEX COVER admits no problem kernel of size
polynomial in k even on quite restricted inputs (Section 6.1). Yet, when combining k

and τ , we prove a problem kernel of size O(k2τ) (Section 6.2). Moreover, we prove
a problem kernel of size 5τ when each layer consists of only one edge (Section 6.3).
Recall (from Theorem 4.1) that MULTISTAGE VERTEX COVER is para-NP-hard
regarding τ even if each layer is a tree.
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6.1 No Problem Kernel of Size Polynomial in k for Restricted Input Instances

In this section, we prove the following.

Theorem 6.1 Unless coNP ⊆ NP/poly, MULTISTAGE VERTEX COVER admits no
polynomial kernel when parameterized by k, even

(i) if each layer consists of one edge and � = 1, or
(ii) if each layer is planar3 and � ≥ 2k.

Recall that MULTISTAGE VERTEX COVER parameterized by k is fixed-parameter
tractable in case of (ii) (see Observation 3.5), while we left open whether it also holds
true in case (i).

We prove Theorem 6.1 using AND-compositions [31].

Definition 6.1 An AND-composition for a parameterized problem L is an algo-
rithm that, given p instances (x1, k), . . . , (xp, k) of L, computes in time polynomial
in

∑p

i=1 |xi | an instance (y, k′) of L such that

1. (y, k′) ∈ L if and only if (xi, k) ∈ L for all i ∈ {1, . . . , p}, and
2. k′ is polynomially upper-bounded in k.

The following is the crucial connection to polynomial kernelization: If a param-
eterized problem whose unparameterized version is NP-hard admits an AND-
composition, then coNP ⊆ NP/poly [32]. Note that coNP ⊆ NP/poly implies a
collapse of the polynomial-time hierarchy to its third level [33].

In the proof of Theorem 6.1(i), we use an AND-composition. The idea is to take
p instances of MULTISTAGE VERTEX COVER on the same vertex set with � = 1 and
identical k, and stack all these instances one after the another in the time dimension.
Here, we connect the i-th instance with (i + 1)-st instance by just repeating the first
layer of the (i+1)-st instance so often such that there is enough time to transfer from
a solution of the i-th instance to a solution of the (i +1)-st instance without violating
the upper bound on the symmetric difference between two consecutive vertex covers.
Formally, we use the following construction.

Construction 6.1 Let (G1, k, �), . . . , (Gp, k, �) be p instances of MULTISTAGE

VERTEX COVER where � = 1 and each layer of each Gq = (V , Eq, τq), q ∈
{1, . . . , p}, consists of one edge. We construct an instance (G = (V , E, τ ), k, �)

of MULTISTAGE VERTEX COVER as follows. Denote by (Gi
1, . . . , G

i
τi
) the

sequence of layers of Gi . Initially, let G be the temporal graph with layer
sequence ((Gi

j )1≤j≤τi
)1≤i≤p. Next, for each i ∈ {1, . . . , p − 1}, insert between Gi

τi

and Gi+1
1 the sequence (H i

1, H
i
2, . . . , H

i
2k) := (Gi

τi
, Gi+1

1 , . . . , Gi+1
1 ). This finishes

the construction. Note that τ := 2k(p − 1) + ∑p

i=1 τi .

3A graph is planar if it can be drawn on the plane such that no two edges cross each other.
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In the next two propositions, we prove that Construction 6.1 forms AND-
compositions, then used in the proof of Theorem 6.1(i).

Proposition 6.1 MULTISTAGE VERTEX COVER where each layer consists of one
edge and � = 1 admits an AND-composition when parameterized by k.

Proof We AND-compose MULTISTAGE VERTEX COVER where each layer consists
of one edge. Let I1 = (G1 = (V , E1, τ1), k, �), . . . , Ip = (Gp = (V , Ep, τp), k, �)

be p instances of MULTISTAGE VERTEX COVER with � = 1 where each layer
consists of one edge. Apply Construction 6.1 to obtain instance I = (G =
(V ,G, τ ), k, �) of MULTISTAGE VERTEX COVER. We claim that I is a yes-instance
if and only if Ii is a yes-instance for all i ∈ {1, . . . , p}.

(⇒) If I is a yes-instance, then for each i ∈ {1, . . . , p}, the subsequence of the
solution restricted to the layers (Gi

j )1≤j≤τi
forms a solution to Ii .

(⇐) Let (Si
1, . . . , S

i
τi
) be a solution to Ii for each i ∈ {1, . . . , p}.

Clearly, (Si
1, . . . , S

i
τi
) forms a solution to the layers (Gi

j )1≤j≤τi
. For Hi

1, let T i
1 =

Si
τi

\ {v} for some v such that the unique edge of Hi
1 is still covered. Next, set T i

2 =
T i
1 ∪ {w}, where w ∈ Si+1

1 with w being incident with the unique edge of Hi
2. Now,

over the next 2k − 2 layers, transform T i
2 into Si+1

1 by first removing layer by layer
the vertices in T i

2 \Si+1
1 (at most k−1 many vertices), and then layer by layer add the

vertices in Si+1
1 \ T i

2 (again, at most k − 1 vertices). This forms a solution to I .

Turning a set of input instances of MULTISTAGE VERTEX COVER with only one
layer (τ = 1) additionally being a planar graph into a sequence gives an AND-
composition to be used in the proof of Theorem 6.1(ii).

Proposition 6.2 MULTISTAGE VERTEX COVER where each layer is planar and � ≥
2k admits an AND-composition when parameterized by k.

Proof We AND-compose MULTISTAGE VERTEX COVER where the temporal graph
has only one layer which is planar (and � ≥ 2k) into MULTISTAGE VERTEX COVER

with � ≥ 2k. Let (G1, k, �′), . . . , (Gp, k, �′) be p instances of MULTISTAGE VER-
TEX COVER with one layer being a planar graph. Construct a temporal graph G with
layers (G1, . . . , Gp). Set � := 2k. This finishes the construction. It is not difficult to
see that (G, k, �) is a yes-instance of MULTISTAGE VERTEX COVER if and only if
(Gi, k) is a yes-instance of VERTEX COVER for all i ∈ {1, . . . , p}.

Proposition 6.1 and 6.2 at hand, we are set to prove this section’s main result.

Proof of Theorem 6.1 Using Drucker’s result [32] for AND-compositions, Proposi-
tion 6.1 and 6.2 prove Theorem 6.1(i) and (ii), respectively. Recall that MULTISTAGE

VERTEX COVER where each layer consists of one edge (Theorem 4.1) and MUL-
TISTAGE VERTEX COVER on one layer being a planar graph (basically, VERTEX

COVER on planar graphs) [34] are NP-hard.
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6.2 A Problem Kernel of Size O(k2τ )

MULTISTAGE VERTEX COVER remains NP-hard for τ = 2, even if each layer is
a tree (Theorem 4.1). Moreover, MULTISTAGE VERTEX COVER does not admit a
problem kernel of size polynomial in k, even if each layer consists of only one edge
(Theorem 6.1). Yet, when combining both parameters, we obtain a problem kernel of
cubic size.

Theorem 6.2 There is an algorithm that maps any instance (G, k, �) of MULTI-
STAGE VERTEX COVER in O(|V (G)|2τ) time to an instance (G′, k, �) of MULTI-
STAGE VERTEX COVER with at most 2k2τ(G) vertices and at most k2τ(G) temporal
edges.

To prove Theorem 6.2, we apply three polynomial-time data reduction rules. These
reduction rules can be understood as temporal variants of the folklore reduction rules
for VERTEX COVER. Our first reduction rule is immediate.

Reduction Rule 6.1 (Isolated vertices) If there is some vertex v ∈ V such that e ∩
{v} = ∅ for all e ∈ E(G↓), then delete v.

For VERTEX COVER, when asking for a vertex cover of size q, there is the well-
known reduction rule dealing with high-degree vertices: If there is a vertex v of
degree larger than q, then delete v and its incident edges and decrease q by one.
For MULTISTAGE VERTEX COVER a high-degree vertex can only appear in some
layers, and hence deleting this vertex is in general not correct. However, the following
is a temporal variant of the high-degree rule (see Fig. 4 for an illustration).

Reduction Rule 6.2 (High degree) If there exists a vertex v such that there is an
inclusion-maximal subset ∅ �= J ⊆ {1, . . . , τ } such that degGi

(v) > k for all i ∈ J ,
then add a vertex wv to V and for each i ∈ J , remove all edges incident to v in Gi ,
and add the edge {v, wv}.

Fig. 4 Illustration of Reduction Rule 6.2, exemplified for two vertices u, v and k = 5. Each ellipse for a
graph Gi and G′

i , respectively, represents Gi − {u, v} and G′
i − {u, v,wu,wv}. The vertices wv,wu (gray

squares) are introduced by the application of Reduction Rule 6.8. Note that u (v) has a high degree in G1
(G2) and G4
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We now show how Reduction Rule 6.2 can be applied and that it does not turn a
yes-instance into a no-instance or vice versa.

Lemma 6.1 Reduction Rule 6.2 is correct and exhaustively applicable in O(|V |2
τ) time.

Proof (Correctness) Let I = (G, k, �) be an instance with G = (G1, . . . , Gτ ), and
let I ′ = (G′, k, �) be the instance with G′ = (G′

1, . . . , G
′
τ ) obtained from I applying

Reduction Rule 6.2 with vertex v and index set J . We prove that I is a yes-instance
if and only if I ′ is a yes-instance.

(⇒) Let (S1, . . . , Sτ ) be a solution to I . Observe that for all i ∈ J , degGi
(v) > k

and hence v ∈ Si . It follows that (S1, . . . , Sτ ) is a solution to I ′.
(⇐) Let (S′

1, . . . , S
′
τ ) be a solution to I ′. Observe that for each i ∈ J , S′

i ∩
{v, wv} �= ∅. Set Si := (S′

i \ {wv}) ∪ {v} for all i ∈ J . Note that Si is a vertex
cover for Gi since v covers all its incident edges and Si \ {v} is a vertex cover
for Gi − {v} = G′

i − {v, wv}. For each i ∈ {1, . . . , τ } \ J , set Si := S′
i if wv �∈ S′

i ,
and Si := (S′

i\{wv})∪{v} otherwise. Note that Si is a vertex cover ofGi = G′
i−{wv}.

Finally, observe that |Si | ≤ |S′
i | for all i ∈ {1, . . . , τ }, and that |Si�Si+1| ≤ � for

all i ∈ {1, . . . , τ − 1}. It follows that (S1, . . . , Sτ ) is a solution to I .
(Running time) For each vertex, we count the number of edges in each layer. If

there are more than k edges in one layer, then we remember the index of the layer.
For each layer, we compute for each vertex the degree and make the modification.
Once for some v vertex wv is introduced, we add a pointer from v to wv , and add the
edge {v, wv} in subsequent layers when needed. Hence, in each layer we touch each
edge at most twice, yielding O(|V (G)|2) time per layer.

Similarly as in the reduction rules for VERTEX COVER, we now count the number
of edges in each layer: if more than k2 edges are contained in one layer, then no set
of k vertices, each of degree at most k, can cover more than k2 edges.

Reduction Rule 6.3 (no-instance) If neither Reduction Rule 6.1 nor Reduction Rule
6.2 is applicable and there is a layer with more than k2 edges, then output a trivial
no-instance.

We are ready to prove that when none of the Reduction Rules 6.1, 6.2 and 6.3 can
be applied, then the instance contains “few” vertices and temporal edges.

Lemma 6.2 Let (G, k, �) be an instance of MULTISTAGE VERTEX COVER such
that none of Reduction Rules 6.1, 6.2 and 6.3 is applicable. Then G consists of at
most 2k2τ(G) vertices and k2τ(G) temporal edges.

Proof Since none of Reduction Rules 6.1 and 6.2 is applicable, for each layer it
holds true that there is no isolated vertex and no vertex of degree larger than k. Since
Reduction Rule 6.3 is not applicable, each layer consists of at most k2 edges. Hence,
there are at most k2τ temporal edges in G. Consequently, due to Reduction Rule 6.1,
there are at most 2k2τ vertices in G.
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We are ready to prove the main result of this section.

Proof of Theorem 6.2 Given an instance I = (G, k, �) of MULTISTAGE VERTEX

COVER, apply Reduction Rules 6.1, 6.2 and 6.3 exhaustively in O(|V (G)|2τ(G))

time either to decide that I is a trivial no-instance or to obtain an instance (G′, k, �)

equivalent to I . Due to Lemma 6.2, G′ consists of at most 2k2τ(G) vertices and at
most k2τ(G) temporal edges.

6.3 A Problem Kernel of Size 5τ

MULTISTAGE VERTEX COVER, even when each layer is a tree, does not admit a
problem kernel of any size in τ unless P = NP. Yet, when each layer consists of only
one edge, then each instance of MULTISTAGE VERTEX COVER contains at most τ

edges and, hence, at most 2τ non-isolated vertices. Thus, MULTISTAGE VERTEX

COVER admits a straight-forward problem kernel of size linear in τ .

Observation 6.3 Let (G, k, �) be an instance of MULTISTAGE VERTEX COVER

where each layer consists of one edge. Then we can compute in O(|V (G)| · τ) time
an instance (G′, k, �) of size at most 5τ(G).

Proof Let (G, k, �) be an instance of MULTISTAGE VERTEX COVER where each
layer of G = (V , E, τ ) consists of one edge. Observe that we can immediately output
a trivial yes-instance if k ≥ τ (Observation 3.1) or � ≥ 2 (Observation 3.5). Hence,
assume that k ≤ τ −1 and � ≤ 1. Apply Reduction Rule 6.1 exhaustively on (G, k, �)

to obtain (G′, k, �). Since there are τ edges in G, there are at most 2τ vertices in G′.
It follows that the size of (G′, k, �) is at most 5τ .

7 Conclusion

We introduced MULTISTAGE VERTEX COVER, proved its NP-hardness even on very
restricted input instances, and studied its parameterized complexity regarding the
natural parameters k, �, and τ (all given as part of the input). The technical high-
light is the W[1]-hardness described in Section 5.2 which, because it holds on very
restricted instances of MULTISTAGE VERTEX COVER, may turn out to be useful to
provide W[1]-hardness results for other problems in the multistage setting. We leave
open whether MULTISTAGE VERTEX COVER parameterized by the vertex cover size
bound k is fixed-parameter tractable when each layer consists of only one edge
(see Table 1). Moreover, it is open whether MULTISTAGE VERTEX COVER remains
NP-hard on two layers each being a path (which would strengthen Theorem 4.1(i)).
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