
https://doi.org/10.1007/s00224-021-10034-z

The subset sum game revisited

Astrid Pieterse1 ·Gerhard J. Woeginger2

Accepted: 16 January 2021
© The Author(s) 2021

Abstract
We discuss a game theoretic variant of the subset sum problem, in which two play-
ers compete for a common resource represented by a knapsack. Each player owns
a private set of items, players pack items alternately, and each player either wants
to maximize the total weight of his own items packed into the knapsack or to mini-
mize the total weight of the items of the other player. We show that finding the best
packing strategy against a hostile or a selfish adversary is PSPACE-complete, and
that against these adversaries the optimal reachable item weight for a player cannot
be approximated within any constant factor (unless P=NP). The game becomes eas-
ier when the adversary is short-sighted and plays greedily: finding the best packing
strategy against a greedy adversary is NP-complete in the weak sense. This variant
forms one of the rare examples of pseudo-polynomially solvable problems that have
a PTAS, but do not allow an FPTAS (unless P=NP).

Keywords Multi-agent optimization · Computational complexity · Approximability

1 Introduction

The subset sum game is a combinatorial game for two players A and B with perfect
information. An instance of the game consists of m + n items and a knapsack of
capacity c. The A-items have weights a1, a2, . . . , am and belong to player A, while
the B-items have weights b1, b2, . . . , bn and belong to player B. Throughout we

An extended abstract of this paper has appeared in the Proceedings of the the 5th International
Conference on Algorithmic Decision Theory (ADT-2017).

� Gerhard J. Woeginger
woeginger@algo.rwth-aachen.de

Astrid Pieterse
astrid.pieterse@informatik.hu-berlin.de

1 Department of Computer Science, Humboldt University Berlin, Berlin, Germany

2 Department of Computer Science, RWTH Aachen, Aachen, Germany

/ Published online: 13 February 2021

Theory of Computing Systems (2021) 65:884–900

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10034-z&domain=pdf
http://orcid.org/0000-0001-8816-2693
mailto: woeginger@algo.rwth-aachen.de
mailto: astrid.pieterse@informatik.hu-berlin.de

assume that every item weight is bounded by the knapsack capacity c. The players
move alternately, and the instance specifies whether player A or player B makes the
first move. In every move, the active player picks one of his items (which has not
been picked in any earlier move) and puts it into the knapsack. As usual, an item
can only be added to the knapsack, if the overall weight of all packed items does not
exceed the knapsack capacity c. A player may pass on a move, in case none of his
items fits. The game ends as soon as none of the remaining unpacked items fits into
the knapsack.

We will always look at this game through the eyes of player A, whose goal is
simply to maximize the total weight of A-items in the knapsack. Player B will be
considered our adversary and enemy, who might behave in one of the following ways.

• Hostile: The objective of adversary B is to hurt player A as much as possible,
and to minimize the total weight of A-items in the knapsack.

• Selfish: The objective of adversary B is to get as much profit for himself as
possible, and hence to maximize the total weight of B-items in the knapsack.

• Greedy: The (short-sighted) objective of adversary B is to pack in every single
move a B-item of largest possible weight.

While the behavior of the greedy adversary is easy to understand (and easy to
predict), the behavior of the two other adversaries needs a more precise mathematical
definition that considers the game in extensive form. The hostile adversary and the
selfish adversary are defined via the underlying game tree; this tree is an acyclic
directed graph whose vertices correspond to the possible game configurations. A
configuration is fully specified by the current contents of the knapsack. For every
possible move in the game, the game tree contains a corresponding arc between the
two corresponding configurations. The initial configuration (with empty knapsack)
is denoted p0. Final configurations (where none of the remaining unpacked items fits
into the knapsack) have no out-going arcs.

Let us first specify the hostile adversary against some fixed (deterministic) strat-
egy σ of player A. For evaluating a final configuration p, we look at the contents of
the knapsack and use a(p) to denote the total weight of packed A-items. For eval-
uating a configuration q somewhere in the middle of the game, we enumerate all
configurations q1, . . . , qk that can be reached from q in a single move. If it is player
A’s turn then his strategy σ will lead him to a well-defined configuration qj , and we
define a(q) = a(qj). If it is player B’s turn then a(q) = mini a(qi). When the game
terminates, player A will end up with a total weight of a(p0).

Next let us specify the selfish adversary against a fixed (deterministic) strategy σ

of playerA. For evaluating a final configuration p, we denote by a(p) the total weight
of packed A-items and by b(p) the total weight of packed B-items. For evaluating a
configuration q in the middle of the game, let q1, . . . , qk denote the configurations
that can be reached from q in a single move.

• If it is player A’s turn, then strategy σ leads him from configuration q to a well-
defined configuration qj . We set a(q) = a(qj) and b(q) = b(qj).

• If it is player B’s turn, then b(q) = maxi b(qi). To make the game determinate,
we furthermore set a(q) = maxk a(qk) with k ∈ argmaxi b(qi).

885Theory of Computing Systems (2021) 65:884–900

This means that whenever the adversary may choose between several moves that
yield the same profit for himself, he will always pick the move that is best for player
A. We stress that all our results can be carried over to the variant where the selfish
adversary picks the move that is worst for player A. When the game terminates,
player A will reach a weight of a(p0) and player B will reach a weight of b(p0).

In this paper, we will study certain algorithmic questions centered around such
subset sum games. The central algorithmic decision problem is defined as follows:

Instance: A knapsack of capacity c; positive integer weights a1, a2, . . . , am and
b1, b2, . . . , bn; a starting player (A or B); a positive integer bound α; an adver-
sary type (hostile, selfish, greedy).

Question: Does player A have a deterministic strategy that allows him to pack
A-items of total weight at least α into the knapsack, if he plays the game against
a player B of the given adversary type?

The resulting three variants of the subset sum game will be denoted SSG-hostile,
SSG-selfish, and SSG-greedy. The respective optimization versions of the game ask
to find the largest possible weight α∗ that player A can pack, and the respective
approximation versions ask to find an approximation of this largest possible weight
α∗.

Knownand related results Motivated by certain applications in the area of operations
research, Darmann, Nicosia, Pferschy & Schauer [5] introduced the subset sum game
variant against the selfish adversary. They analyze a number of intuitive strategies
for the game, that are either pure greedy approaches or greedy-based strategies that
use some kind of bounded look-ahead. Among other results, they show that a certain
greedy strategy reaches a worst case ratio of 2 when it is applied against a selfish
adversary. We stress that this result assumes an oracle-access to the selfish adversary;
it works move by move through the entire game, and guarantees that at the very end
the weight of the packed item set is at least 50% of the weight reached by an optimal
strategy. As the selfish adversary has high computational complexity, this approach
does not yield a polynomial time algorithm in the classical sense, but just a policy
that can be applied while playing the game. In strong contrast to this, in the current
paper we will analyze these packing games by purely looking at the given instance,
and we do not assume cheap oracle-access to the computationally expensive behavior
of the adversary.

The combinatorics of the subset sum game is far from trivial and sometimes shows
a quite counter-intuitive behavior. For instance, our intuition tells us that it should
always be better to pack large items before small items. However, in [5] it is demon-
strated that for certain instances of SSG-selfish it might be optimal for player A to
first pack some smaller items and only later on pack large items. Another example
for this phenomenon can be found in our Example 2.2 presented in Section 2.

Caprara, Carvalho, Lodi & Woeginger [2, 3] study three packing games that are
centered around bilevel variants of the knapsack problem. These games consist of
only two rounds; the first player (called leader) packs some items in the first round,
and then the second player (called follower) reacts by packing some items in the

886 Theory of Computing Systems (2021) 65:884–900

second round. The objective value of the leader depends on the profits of all items in
the final packing. All bilevel packing games considered in [2, 3] are �

p

2 -complete,
most of them are inapproximable, and only one of them has a PTAS. Further knapsack
variants with game-theoretic flavor have been studied by Brotcorne, Hanafi & Mansi
[1], Carvalho, Lodi & Marcotte [4], Dempe & Richter [6], Fischer & Woeginger [7],
Nicosia, Pacifici & Pferschy [9], Pferschy, Nicosia & Pacifici [10], and Qiu & Kern
[11].

Our results We provide a complete picture of the computational complexity and the
approximability landscape of the subset sum game against the three adversaries types.

• The games against the hostile and selfish adversaries are both PSPACE-
complete. Unless P = NP , these games do not allow any polynomial time
approximation algorithm with constant worst case guarantee.

• The game against the greedy adversary is weakly NP-hard and pseudo-
polynomially solvable. This game yields one of the rare pseudo-polynomially
solvable problems that have a PTAS, but do not allow an FPTAS.

The rest of the paper is organized as follows. Section 2 states several techni-
cal observations. Section 3 proves the inapproximability results for SSG-hostile
and SSG-selfish (no constant factor approximation) and SSG-greedy (no FPTAS).
Section 4 pinpoints the computational complexity of SSG-greedy, and Section 5
derives a PTAS for SSG-greedy. Finally Section 6 derives the PSPACE-completeness
of SSG-hostile and SSG-selfish.

2 Technical Preliminaries

When we introduced the subset sum game in the first paragraph of this paper, we
stated that every instance of the game explicitly specifies whether player A or player
B makes the first move. The following observation shows that from the computa-
tional complexity point of view, there is no difference whether player A or player B

starts the game. In other words, this observation allows us to shift the first move from
player A to player B and vice versa.

Observation 2.1 For the games SSG-hostile, SSG-selfish, SSG-greedy, the compu-
tational complexity of the variant where player A has the first move coincides with
the computational complexity of the variant where the adversary B has the first
move.

Proof Take an arbitrary instance of the game where one of the two players is desig-
nated to make the first move. Increase the knapsack capacity to c′ := 2c + 1, create
one additional A-item of weight c + 1 and one additional B-item of weight c + 1 to
the item lists, and allow the other (non-designated) player to make the first move. It is
easily seen that in the new game, the only good move for the other player (no matter
whether he is hostile, selfish, or greedy) consists in packing the new item of weight

887Theory of Computing Systems (2021) 65:884–900

c +1. Afterwards, the remaining knapsack capacity drops down to c and we are back
at the original instance of the game with the same designated player to move.

The definitions of the two games SSG-hostile and SSG-selfish look very similar
to each other, and it might not be clear at first sight that these two definitions actually
yield two different games. The following instance illustrates that these two games
indeed are different.

Example 2.2 Consider the subset sum game with B-items 4,4,4,7,7, with A-items
6,6,11, and with a knapsack of capacity c = 24. The first move belongs to the
adversary B.

Figure 1 lists the full game tree for the game in Example 2.2. Every directed
arc describes a possible move. The label of the arc states the active player (A or
B), followed by the weight of the packed item; a dash indicates that the player
passes (as none of his remaining items can be packed). The number pairs in the
rectangular boxes indicate the values of the current configuration for the two play-
ers. The first number gives the highest reachable packed weight for player A.
The second number gives the packed weight for player B; it turns out (and the
reader may want to verify this) that with the sole exception of the root configu-
ration, the hostile adversary and the selfish adversary assign equal values to every
configuration.

In the root configuration, the adversary B has to choose between packing an item
of weight 4 (which eventually leads to profits of 12 for both players) and packing

12/12

12/12

12/11

12/11

11/12

11/12

11/12

11/11

12/11

12/11

 6/18

 6/18

 6/18 11/11

12/12 11/12 6/18 11/11

12/12 11/11

12/12

B4 B4 B4 B4

B4 B7

A6 A11

B7

A6

B4B4 B4

A− A−A6 A6

B7 B7

A6 A11

??/??

Fig. 1 The game tree for the instance in Example 2.2

888 Theory of Computing Systems (2021) 65:884–900

an item of weight 7 (which eventually leads to profits of 11 for both players). Hence
player A will make profit 11 against the hostile adversary and profit 12 against the
selfish adversary.

3 Inapproximability results

In this section, we derive two inapproximability results for the subset sum game.
Both results are derived by means of reductions from the NP-complete PARTICION

problem; see Garey & Johnson [8].

Problem: PARTICION

Instance: An integer U ≥ 3; positive integers u1, . . . , ut with
∑t

i=1 ui = 2U .
Question: Does there exist a subset J ⊆ {1, . . . , t} such that

∑
i∈J ui = U?

3.1 The hostile and the selfish adversary

Our first reduction from PARTICION will simultaneously settle the inapproximability
for the hostile and for the selfish adversary. Suppose for the sake of contradiction
that the optimal value α∗ in SSG-hostile or in SSG-selfish can be approximated in
polynomial time within a factor of r for some fixed real number r with 0 < r < 1.
Fix an integer R with R > 1/r . We take an arbitrary instance of PARTICION, and
construct the following instance of SSG-hostile and SSG-selfish from it.

• For i = 1, . . . , tR there is an A-item of weight 1.
• For i = 1, . . . , t , there is a B-item of weight tR ui .
• The capacity of the knapsack is c = tRU + t .
• Player A has the first move.

Lemma 3.1 If the PARTICION instance has answer YES, then player A packs a total
weight of at most t against a hostile or selfish adversary.

Proof Let J ⊆ {1, . . . , t} with
∑

i∈J ui = U . During the first t moves, player A

packs an A-weight of exactly t , while the adversary B packs the items of weight
tR ui with i ∈ J into the knapsack. As the B-weight in the knapsack is tR U , the
knapsack is full and the game terminates.

Lemma 3.2 If the PARTICION instance has answer NO, then player A can pack a
total weight of tR.

Proof The B-weight in the knapsack is always a multiple of tR. The largest such
multiple is tR U , which cannot be reached as the PARTICION instance has answer
NO. Hence the B-weight is at most tR (U − 1), and the remaining capacity left for
player A’s items is at least c − tR (U − 1) ≥ tR.

889Theory of Computing Systems (2021) 65:884–900

According to Lemmas 3.1 and 3.2, an approximation algorithm with worst case
guarantee r > 1/R can distinguish in polynomial time between YES-instances and
NO-instances of the PARTICION problem.

Theorem 3.3 Unless P = NP , the problems SSG-hostile and SSG-selfish do not
allow any polynomial time approximation algorithm whose worst case guarantee is
a fixed real number (that is independent of the instance size).

3.2 The greedy adversary

Now let us turn to our second reduction, to prove that the game against the greedy
adversary has no FPTAS assuming P �= NP . We take an arbitrary instance of
PARTICION, and construct the following instance of SSG-greedy from it.

• For i = 1, . . . , t , there is one corresponding dummy A-item of weight 4U and
one corresponding standard A-item of weight 4U +ui . Furthermore, there is one
special A-item of weight 3U − 1.

• For i = 1, . . . , t there is a B-item of weight 3U .
• The capacity of the knapsack is c = (7t + 1)U − 1.
• Player A has the first move.

Lemma 3.4 If the PARTICION instance has answer YES, then player A can pack a
total weight of (4t + 4)U − 1.

Proof Let J ⊆ {1, . . . , t} with ∑
i∈J ui = U . Then in his first t moves, player A

packs the |J | standard items of weight 4U + ui with i ∈ J together with t − |J |
dummy items of weight 4U . Consider the time point just after the t-th move of A

(and just before the t-th move of B): then the total A-weight in the knapsack equals
(4t + 1)U , the total B-weight in the knapsack is (3t − 3)U as all B-items have
identical weight, and the remaining knapsack capacity is 3U −1. Player B must pass,
as none of his items fits. Player A packs his special item 3U − 1 in his (t + 1)-th
move and thereby reaches a total packed A-weight of (4t + 4)U − 1.

Lemma 3.5 If the PARTICION instance has answer NO, then player A can never
pack a total weight above (4t + 2)U .

Proof Consider the time point just after the t-th move of player A (and before the
t-th move of player B), and let W denote the total A-weight in the knapsack at that
moment. We distinguish three cases.

First assume W ≤ (4t + 1)U − 1. Then B will pack his t-th item in his t-th
move and bring the packed B-weight up to 3tU . Then A will never bring the packed
A-weight above c − 3tU = (4t + 1)U − 1 in this case.

In the second case assume W ≥ (4t + 1)U + 1. Note that W ≤ (4t + 2)U , which
is the weight of the t heaviest standard A-items. Player B cannot pack his t-th item
and the packed B-weight stays at (3t − 3)U . The remaining knapsack capacity is

890 Theory of Computing Systems (2021) 65:884–900

c− (3t −3)U −W ≤ 3U −2. As no further A-item fits, the packed A-weight cannot
exceed (4t + 2)U in this case.

In the third case assume W = (4t + 1)U . The special A-item 3U − 1 cannot
contribute to W , as the total weight of the t − 1 heaviest standard items is at most
(4t − 2)U . Let J ⊆ {1, . . . , t} denote the set of all i for which the standard A-
item 4U + ui is in the knapsack. It is easy to see that this implies

∑
i∈J ui = U .

Hence the PARTICION instance has answer YES, so that the third case leads to a
contradiction.

Now suppose for the sake of contradiction that SSG-greedy allows an FPTAS. For
any instance of SSG-greedy and for any ε > 0, the FPTAS takes a running time
that is polynomially bounded in the instance size and in 1/ε, and then outputs an
approximation value α that is at least 1 − ε times the optimal value α∗. We execute
this FPTAS with precision ε = 1/(4t + 4) on the instance constructed above. The
resulting running time is polynomially bounded in the instance size. If the PARTICION

instance has answer YES, then by Lemma 3.4 we have

α ≥ (1 − ε) α∗ ≥ 4t + 3

4t + 4
((4t + 4)U − 1) > (4t + 3)U − 1.

If the PARTICION instance has answer NO, then by Lemma 3.5 we have α ≤ α∗ ≤
(4t + 2)U . Hence, by analyzing the value α generated by the FPTAS, we would be
able to separate in polynomial time the YES-instances from the NO-instances of the
PARTICION problem.

Theorem 3.6 Unless P = NP , problem SSG-greedy does not possess an FPTAS.

4 Complexity of the game against the greedy adversary

As problem PARTICION is weakly NP-hard, the reduction in Section 3.2 implies that
also problem SSG-greedy is weakly NP-hard. Our main goal in this section is to
show that SSG-greedy is pseudo-polynomially solvable. Note that for SSG-greedy,
a strategy of player A is fully specified by the ordered list of packed A-items. The
following lemma will be useful.

Lemma 4.1 (Darmann & al [5]) Against the greedy adversary, there exists an
optimal strategy for player A that packs the items in non-increasing order of weight.

Proof Consider an optimal strategy of playerA that (without loss of generality) packs
the items in order a1, a2, . . . , as . If the itemweights in this list are not non-increasing,
consider the smallest index k with ak < ak+1. If we swap items k and k+1 in the list,
the reactions of the greedy adversary will not change. We may repeat this swapping
step until the weights are non-increasing.

891Theory of Computing Systems (2021) 65:884–900

Let us assume that the A-items are ordered as a1 ≥ a2 ≥ · · · ≥ am and that
the B-items are ordered as b1 ≥ b2 ≥ · · · ≥ bn. By Lemma 4.1 there exists an
optimal strategy for player A that packs items in order of non-increasing weight.
For i = 0, . . . , m + 1, for j = 0, . . . , n + 1, and for WA = 0, . . . , c and
WB = 0, . . . , c, we introduce a corresponding state [i, j, WA, WB] that encodes the
following configuration that might potentially arise in some run of the game:

In configuration [i, j, WA, WB] player A is to move next. In his last move,
player A has packed the i’th A-item (where i = 0 means that no A-item has
been packed yet, and where i = m + 1 means that no further A-item fits).
Similarly, the greedy adversary B has packed the j ’th B-item in his last move.
The total weight of the packed A-items equals WA and the total weight of the
packed B-items equals WB .

For two configurations S ′ = [i′, j ′, W ′
A, W ′

B] and S = [i, j, WA, WB], it is easy
to check whether S can be reached from S′ by means of a move of player A and
a following counter-move by player B. In this case we must have i > i′, j > j ′,
WA = W ′

A + ai and WB = W ′
B + bj . Furthermore WA + WB ≤ c, and bj must be

the largest available B-item of size ≤ c − (W ′
A + W ′

B + ai).
This suggests the following approach. We generate all possible states

[i, j, WA, WB] where the variables i, j, WA, WB may take all possible values from
their ranges as listed above. Altogether this yields O(mnc2) states. Then we compute
for every pair S and S′ of states, whether S can be reached from S′. Next, we deter-
mine (by a standard depth-first-search traversal) all states that are reachable from
the starting configuration of the game. The maximum value WA among all reachable
states yields the largest possible weight α∗ that player A can pack. We summarize
the findings of this section.

Theorem 4.2 Problem SSG-greedy is weakly NP-complete and solvable in pseudo-
polynomial time O(m2n2c4).

The literature contains routine approaches that automatically translate certain
types of pseudo-polynomial algorithms into an FPTAS. These pseudo-polynomial
algorithms are usually based on dynamic programs, and the FPTAS rounds and
simplifies the state space of the DP so that the running time becomes poly-
nomial, whereas the error introduced by the rounding can be kept small; see
for instance Woeginger [14]. Unfortunately, the above pseudo-polynomial algo-
rithm for SSG-greedy does not fall into that category and does not allow such
an automatic translation. The main obstacle is the strict capacity constraint on
the values WA and on WB , which would only allow us to round one of these
two values (if we want to be able to control the introduced error), so that the
running time does not become truly polynomial. Note furthermore that Theo-
rem 3.6 explicitly excludes the existence of an FPTAS (unless P = NP). The
following section derives the strongest approximation result possible under these
circumstances.

892 Theory of Computing Systems (2021) 65:884–900

5 The Approximation Scheme

In this section, we derive a polynomial time approximation scheme (PTAS) for prob-
lem SSG-greedy. Our PTAS is based on the standard approaches from the literature
for approximating knapsack and subset sum problems; see for instance Shmoys &
Williamson [13]. Against the greedy adversary, the large A-items are handled by the
usual enumeration approach, whereas the smaller A-items are packed with a greedy
strategy. Throughout this section we will assume without loss of generality that player
A has the first move. The following technical lemma will be crucial for the error
analysis of the PTAS.

Lemma 5.1 Consider an instance of SSG-greedy, and let amax denote the weight of
the largest A-item. Let α∗ denote the total weight player A packs under an optimal
strategy, and let αG denote the total weight player A packs when he applies the
greedy strategy. Then

α∗ − amax < αG.

Proof Consider the first moment in time, where the greedy strategy for player A

cannot pack the largest available A-item (whose weight we denote by aG
q+1). Let

aG
1 ≥ aG

2 ≥ · · · ≥ aG
q denote the weights of the packed A-items at that moment, and

let bG
1 ≥ bG

2 ≥ · · · ≥ bG
q denote the weights of the packed B-items at that moment.

Note that amax ≤ c implies q ≥ 1. Furthermore we have

amax ≥ aG
q+1 > c −

q∑

i=1

aG
i −

q∑

i=1

bG
i ≥ c − αG −

q∑

i=1

bG
i . (1)

Now we turn to another run of the game. Let a∗
1 ≥ a∗

2 ≥ · · · denote the weights of the
packed A-items if player A follows an optimal strategy; let b∗

1 ≥ b∗
2 ≥ · · · denote the

weights of the B-items packed by the greedy adversary B against the optimal strategy
for player A, and let β∗ denote the overall weight of these items. We claim that

β∗ ≥
q∑

i=1

bG
i . (2)

Indeed, consider the smallest index r that satisfies bG
r �= b∗

r . We may assume r ≤ q,
as otherwise the inequality in (2) trivially holds. Note that

∑r−1
i=1 bG

i = ∑r−1
i=1 b∗

i by
the definition of r . Since aG

1 , . . . , aG
r are the r largest available A-item weights, we

furthermore have
∑r

i=1 aG
i ≥ ∑r

i=1 a∗
i . This yields

c −
r∑

i=1

aG
i −

r−1∑

i=1

bG
i ≤ c −

r∑

i=1

a∗
i −

r−1∑

i=1

b∗
i . (3)

Consider the moment where the greedy adversary B in his game against the optimal
strategy of player A decides to pack item weight b∗

r . By (3), at that moment the

893Theory of Computing Systems (2021) 65:884–900

remaining knapsack capacity is large enough to accommodate the B-item of weight
bG
r . As bG

r �= b∗
r this implies

bG
r < b∗

r . (4)

Next consider the moment where the greedy adversary B in his game against the
greedy strategy of playerA decides to pack theB-item of weight bG

r . At that moment,
the remaining knapsack capacity is too small to accommodate the also available
but larger B-item of weight b∗

r . Since this remaining knapsack capacity is at least∑q
i=r bG

i , we conclude
∑q

i=r bG
i < b∗

r . From this we derive

β∗ ≥
r∑

i=1

b∗
i =

r−1∑

i=1

b∗
i + b∗

r =
r−1∑

i=1

bG
i + b∗

r >

r−1∑

i=1

bG
i +

q∑

i=r

bG
i , (5)

which completes the proof of (2). Finally, by combining α∗ + β∗ ≤ c with (1) and
(2) we also complete the proof of the lemma.

We turn to the description of the PTAS. We assume that the A-items are ordered
as a1 ≥ a2 ≥ · · · ≥ am and the B-items are ordered as b1 ≥ b2 ≥ · · · ≥ bn. We
will furthermore assume by Lemma 4.1 that both players pack their items in order of
non-decreasing weight. Let ε with 0 < ε < 1 be a small positive real number; for the
sake of simplicity we will assume that the reciprocal value 1/ε is integer.

Let S be a subset of A-items with |S| ≤ 1/ε, and let ak denote the lowest weight
A-item in S (that is, the item with largest index in S). We run the following two-phase
procedure on S by simulating a game of player A against the greedy adversary.

• The first phase consists of the first |S| moves. Player A packs the items in S in
non-increasing order of weight.

• The second phase consists of the remaining moves. Player A ignores all A-items
with indices up to k, and plays greedily with the A-items with indices at least
k + 1.

In case we cannot pack all the items of S in the first phase, we call set S infeasible
and ignore it. Otherwise, set S is feasible and the procedure yields a certain total
packed weight for player A that we denote α(S). The PTAS outputs the maximum
value α(S) over all feasible sets S.

Now consider an optimal strategy for player A that packs a sequence of items with
weights a∗

1 ≥ a∗
2 ≥ · · · ≥ a∗

t . If t ≤ 1/ε, then the items in the sequence form a
feasible set S∗. In this case our PTAS analyzes S∗ in the first phase, and eventually
outputs the optimal objective value α∗ = α(S∗). If t > 1/ε, then define S∗ as the set
of the 1/ε largest items in the sequence; note that S∗ is a feasible set. What does our
two-phase procedure do with S∗?
• The first phase simply follows the first 1/ε moves of the optimal strategy: player

A packs the first 1/ε items from the optimal sequence, and the greedy adversary
picks the largest B-items that fit. As player A altogether packs 1/ε items during
the first phase, the smallest item weight in S∗ is at most εα∗.

• The second phase is only played with the A-items that are smaller than the small-
est item in S∗, and hence have weight at most εα∗. The knapsack capacity is the
remaining capacity that has not been used in the first phase.

894 Theory of Computing Systems (2021) 65:884–900

Let α+
1 denote the total A-weight packed during the first phase, and let α+

2 denote
the total A-weight packed during the second phase. Let α∗

1 denote the weight of the
items in S∗, and let α∗

2 = α∗ − α∗
1 denote the weight of the remaining items in the

optimal packing for A. Clearly α∗
1 = α+

1 , and Lemma 5.1 yields that α∗
2 −εα∗ ≤ α+

2 .
These two inequalities imply

α(S∗) = α+
1 + α+

2 ≥ α∗
1 + (α∗

2 − εα∗) = (1 − ε) α∗.

As the PTAS yields a strategy with profit at least α(S∗), this yields the desired
approximation guarantee. Up to polynomial factors, the time complexity of the PTAS
is proportional to the number of analyzed sets S, which is bounded by m1/ε. This
completes our analysis and yields the following theorem.

Theorem 5.2 Problem SSG-greedy has a polynomial time approximation scheme.

6 The PSPACE Completeness Result

In this section we determine the computational complexity of the problem variants
with a hostile or selfish adversary. Both problems are PSPACE-complete, and the
proof is done by means of a polynomial time reduction from the following variant of
the quantified satisfiability problem.

Problem: QUANTIFIED 1-IN-3-SAT
Instance: Two sets X = {x1, . . . , xs} and Y = {y1, . . . , ys} of Boolean vari-
ables. A Boolean formula φ overX∪Y in conjunctive normal form with clauses
C1, . . . , Ct ; every (disjunctive) clause Cj consists of exactly three literals.
Question: Assuming that a clause in φ is satisfied if and only if it contains
exactly one true literal, is ∀x1∃y1∀x2∃y2 . . . ∀xs∃ys φ true?

As usual, we interpret a quantified formula as a game between a universal
player (controlling the universal quantifiers) and an existential player (control-
ling the existential quantifiers). The goal of the existential player is that in the
end formula φ evaluates to true, whereas the universal player wants to prevent
this.

Lemma 6.1 QUANTIFIED 1-IN-3-SAT is PSPACE-complete.

Proof The reduction is done from the classic QUANTIFIED 3-SATISFIABILITY

problem, whose PSPACE-completeness was established by Schaefer [12]:

Problem: QUANTIFIED 3-SATISFIABILITY

Instance: Two sets X′ = {x′
1, . . . , x

′
r} and Y ′ = {y′

1, . . . , y
′
r} of Boolean vari-

ables. A Boolean formula φ′ over X′ ∪ Y ′ in conjunctive normal form, where
every (disjunctive) clause consists of exactly three literals.
Question: Assuming that a clause in φ is satisfied if and only if it contains at
least one true literal, is ∀x ′

1∃y′
1∀x′

2∃y′
2 . . .∀x′

r∃y′
r φ′ true?

895Theory of Computing Systems (2021) 65:884–900

We start from an arbitrary instance of QUANTIFIED 3-SATISFIABILITY, and trans-
late it into an equivalent instance of QUANTIFIED 1-IN-3-SAT. The new instance
contains all variables in X′ and Y ′. For every clause (x ∨ y ∨ z) in φ′, we introduce
twelve new variables a1, a2, a3, b1, b2, b3, and d1, d2, d3, d4, d5, d6 together with the
following four clauses: (¬x ∨a1∨b1), (¬y ∨a2∨b2), (¬z∨a3∨b3), (a1∨a2∨a3).
Note that whenever at least one of x, y, z is true, there is a way of choosing a1, a2, a3
and b1, b2, b3, so that each of the four clauses contains exactly one true literal; and
vice versa, whenever each of the four clauses contains exactly one true literal, then at
least one of x, y, z must be true. This is essentially the classic reduction for 1-IN-3-
SAT of Schaefer; see Garey & Johnson [8]. Note furthermore that the di are dummy
variables, that do not occur in any clause.

The string of quantifiers in the QUANTIFIED 1-IN-3-SAT instance starts with the
string ∀x1∃y1 . . .∀xs∃ys , followed by an alternating string of universally quantified
dummy variables di and existentially quantified variables ai and bi . The formula
φ consists of all the four-tuples of clauses introduced above. It can be seen that
the considered instance of QUANTIFIED 3-SATISFIABILITY has answer YES, if
and only if the newly constructed instance of QUANTIFIED 1-IN-3-SAT has answer
YES.

Now we turn to the PSPACE-hardness proofs for SSG-hostile and SSG-selfish.
We present a single reduction that simultaneously settles both cases. We start from
an arbitrary instance of QUANTIFIED 1-IN-3-SAT with 2s variables x1, . . . , xs and
y1, . . . , ys and with t clauses, and we construct the following subset sum game from
it.

All item weights will be specified in decimal representation, and will all have at
most 2s + t + 3 digits. The first 2s digits (in the high positions) form the so-called
variable piece; the (2i − 1)th such digit from the left corresponds to the Boolean
variable xi , and the (2i)th digit from the left corresponds to the Boolean variable yi .
The three digits after the variable piece form the so-called middle piece. The last t

digits (in the low positions) form the so-called clause piece; the j th such digit from
the left in the clause piece corresponds to clause Cj . The item weights are defined as
follows.

• For every literal � ∈ {xi, xi} with 1 ≤ i ≤ s there is a corresponding item B(�).
The decimal representation of its weight has a 1-digit in the position correspond-
ing to xi in the variable piece. The middle piece digits and all other digits in the
variable piece are 0. Furthermore, the clause piece has a digit 1 in the position
corresponding to clause Cj if � occurs in Cj ; otherwise, the digit is 0.

• Symmetrically, for every literal � ∈ {yi, yi} with 1 ≤ i ≤ s there is a corre-
sponding item A(�). The decimal representation of its weight has a 1-digit in the
position corresponding to yi in the variable piece. The middle piece digits and
all other digits in the variable piece are 0. Furthermore, the clause piece has a
digit 1 in the position corresponding to clause Cj if � occurs in Cj ; otherwise,
the digit is 0.

• For every variable xi and every variable yi , there is a corresponding threat item
T (xi) respectively T (yi). The decimal representation of the weight has a 1-digit

896 Theory of Computing Systems (2021) 65:884–900

in the position corresponding to that variable in the variable piece. All other digits
are 0.

• Furthermore, there are four verification items V1, V2, V3, U with weights w(V1),
w(V2), w(V3), w(U). All digits in the variable pieces of these item weights are
0. The middle pieces of w(V1), w(V2), w(V3), w(U) respectively are 111, 100,
010, 011. All other digits in the four decimal representations are 0, with the sole
exception of the lowest digit in the weight of V1, which is set to 1.

We stress the following property of our construction: if we add up the weights of any
subset of items in decimal, then there will be no carry overs from one position to the
next one. The knapsack capacity c has digits 1 in all 2s + t + 3 positions. The goal
weight α of playerA is defined as follows: The decimal representation of α has a digit
1 in the even positions in the variable piece (that is, in the positions corresponding to
variables yi), a middle piece 011, and digits 0 in the remaining positions. Finally, we
define an auxiliary number β (with digits 1 in middle piece and clause piece, and 0s
in the variable piece). The decimal representations of all the introduced numbers are
summarized in Figure 2.

All items A(yi) and A(yi), all threat items T (xi), and the verification item U

belong to player A. All items B(xi) and B(xi), all threat items T (yi), and the verifi-
cation items V1, V2, V3 belong to player B. Player B has the first move. The question
is to decide whether player A can pack a total weight of at least α (in which case we
say that player A wins the game).

Lemma 6.2 Assume that playerA and the (hostile or selfish) adversaryB both apply
optimal strategies. Then in round 2i − 1 (with 1 ≤ i ≤ s), the adversary B either

Fig. 2 Summary of the decimal representation of the item weights

897Theory of Computing Systems (2021) 65:884–900

packs item B(xi) or item B(xi). In round 2i (with 1 ≤ i ≤ s), player A either packs
item A(yi) or item A(yi).

Proof We assume inductively that up to round 2k (with 0 ≤ k ≤ s−1), the statement
holds and both players have followed the described moves. Let d denote the current
contents of the knapsack at th beginning of round 2k. Then the decimal representation
of d has digits 1 in the first 2k positions of the variable piece. This implies that none
of the remaining items A(yi), A(yi), T (yi), B(xi), B(xi), T (xi) with 1 ≤ i ≤ k can
be picked anymore: their weight is so large that they do not fit into the remaining
empty part of the knapsack. All other items (the four verification items and the items
corresponding to variables xi or yi with i ≥ k + 1) are small enough to fit.

First we consider a hostile adversary B. If B neither packs item B(xk) nor B(xk)

in round 2k + 1, then player A can react in the next round by packing the threat item
T (xk). This immediately brings A’s weight above the threshold α, so that A wins the
game. Hence the hostile B must pack B(xk) or B(xk) in round 2k + 1. If A then does
neither pack A(y1) nor A(y1) in round 2k +2, the adversary will pack the threat item
T (yk) in his next move. In this case A will never be able to pack A(yk) or A(yk) or
T (xk) in the future, and his weight will permanently stay below α. Hence the claimed
statement also holds up to round 2k + 2.

Next we consider a selfish adversary B. If B neither packs item B(xk) nor B(xk)

in round 2k + 1, then player A can react in the next round by packing the threat
item T (xk). Exactly as in the hostile case, the weight of player A then exceeds the
threshold α, and A wins the game. On the other hand, the selfish player B will never
be able to compensate for the loss of B(xk) and B(xk). All in all, this means that the
selfish B must pack item B(xk) or B(xk) in round 2k + 1. Finally, we may argue
exactly as in the hostile case that player A then must pack item A(y1) or A(y1) in
round 2k + 2, Hence, also in the selfish case the claimed statement holds up to round
2k + 2.

Lemma 6.3 Let c′ denote the remaining knapsack capacity at the end of round 2s.
Let w(A) and w(B) denote the weight packed by player A and the (hostile or selfish)
adversary B in rounds 2s + 1, 2s + 2, 2s + 3.

(S1) If c′ ≥ w(V1) then w(A) = 0 and w(B) = w(V1).
(S2) If c′ = w(V1) − 1 then w(A) = w(U) and w(B) = w(V2) or w(B) =

w(V3).
(S3) If c′ ≤ w(V1) − 2 then w(A) = 0 and w(B) = w(V2) + w(V3).

Proof By the preceding lemma, after the first 2s rounds the knapsack will contain
exactly one of the items B(xi) and B(xi) and exactly one of the items A(yi) and
A(yi) for 1 ≤ i ≤ s. This implies c′ ≤ β. Note that player B is to move in round
2s + 1. Note furthermore that w(B) ≤ w(V1).

Now if c′ ≥ w(V1), then the (hostile or selfish) adversary B will pack verification
item V1 in round 2s+1. Thereby the selfish adversaryB reaches his maximal possible
profit, and the hostile adversary B prevents player A from packing further items.

898 Theory of Computing Systems (2021) 65:884–900

Once B has packed item V1, the game is over as no further items fit into the knapsack.
This establishes (S1). Next, if c′ = w(V1) − 1 then item V1 does not fit anymore
into the knapsack. Player B packs item V2 (or as hostile adversary, B perhaps packs
item V3). Player A reacts by packing U . The rest capacity of the knapsack is now
smaller than any remaining item, and the game is over. This shows (S2). Finally, if
c′ ≤ w(V1) − 2 then the (hostile or selfish) adversary B will pack item V2 in round
2s + 1. This brings the remaining knapsack capacity below w(U), so that player A

must pass in round 2s + 2. Then player B packs item V3 in round 2s + 3, and the
game is over. This establishes (S3).

By Lemmas 6.2 and 6.3, player A will win the game if configuration (S2) occurs
after round 2s, and he will lose the game under configurations (S1) and (S3). If player
B is hostile, then his goal will be to avoid configuration (S2). If player B is selfish,
then he will also avoid configuration (S2), as both (S1) and (S3) yield a better profit
for him. Hence in either case, the objective of player A is to reach configuration (S2)
and the objective of the adversary is exactly to avoid this configuration (S2).

Now let us finally connect our analysis to the considered instance of QUANTIFIED

1-IN-3-SAT. By Lemma 6.2, after the first 2s rounds the knapsack contains exactly
one of items B(xi) and B(xi) and exactly one of items A(yi) and A(yi) for 1 ≤
i ≤ s. We construct the following truth setting T ∗ from this packing: If the knapsack
contains B(xi) (respectively B(xi)) then variable xi is set to true (respectively false),
and if the knapsack contains A(yi) (respectively A(yi)) then variable yi is set to true
(respectively false). The remaining knapsack capacity c′ at the end of round 2s equals
w(V1) − 1, if and only if under truth setting T ∗ every clause in formula φ contains
exactly one true literal. In other words, for player A reaching configuration (S2) in
the subset sum game is equivalent to reaching a satisfying truth setting T ∗ for the
QUANTIFIED 1-IN-3-SAT instance.

This yields a natural bijection between the moves of the players in the QUANTI-
FIED 1-IN-3-SAT instance and the moves of the players in the constructed instance
of SSG-hostile and SSG-selfish. This implies PSPACE-hardness of these games.
Furthermore, these games can be fully analyzed with polynomial space by a depth-
first-search traversal of the underlying game tree; this yields containment in PSPACE.
We summarize our findings in the following theorem.

Theorem 6.4 The games SSG-hostile and SSG-selfish both are PSPACE-complete.

7 Final Remarks

We have analyzed the three variants SSG-hostile, SSG-selfish, and SSG-greedy
of the subset sum game. Our analysis fully describes the complexity and the
approximability landscape of these three games.

The two games SSG-hostile and SSG-selfish look and behave very similarly. In
fact, a single proof (for Theorem 6.4) suffices to settle the complexity status of both
problems, and a single proof (for Theorem 3.3) settles their approximability sta-
tus. We do not have a good understanding of the actual differences between these

899Theory of Computing Systems (2021) 65:884–900

two games. In particular, the following question (motivated by the game instance in
Example 2.2) remains open: What is the computational complexity of deciding for a
given instance of the subset sum game, whether player A can enforce a strictly larger
profit against a selfish adversary than against a hostile adversary? We suspect this
problem to be computationally intractable.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

1. Brotcorne, L., Hanafi, S., Mansi, R.: A dynamic programming algorithm for the bilevel knapsack
problem. Oper. Res. Lett. 37, 215–218 (2009)

2. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A complexity and approximability study of the
bilevel knapsack problem. SIAM J. Optim. 24, 823–838 (2014)

3. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: Bilevel knapsack with interdiction constraints.
INFORMS J. Comput. 28, 319–333 (2016)

4. Carvalho, M., Lodi, A., Marcotte, P.: A polynomial time algorithm for a continuous bilevel knapsack
problem. Oper. Res. Lett. 46, 185–188 (2018)

5. Darmann, A., Nicosia, G., Pferschy, U., Schauer, J.: The subset sum game. Eur. J. Oper. Res. 233,
539–549 (2014)

6. Dempe, S., Richter, K.: Bilevel programming with Knapsack constraint. CEJOR 8, 93–107 (2000)
7. Fischer, D., Woeginger, G.J.: A faster algorithm for the continuous bilevel knapsack problem. Oper.

Res. Lett. 48, 784–786 (2020)
8. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness.

Freeman, San Francisco (1979)
9. Nicosia, G., Pacifici, A., Pferschy, U.: A Stackelberg knapsack game with weight control. Theor.

Comput. Sci. 799, 149–159 (2019)
10. Pferschy, U., Nicosia, G., Pacifici, A.: On a Stackelberg subset sum game. Electron Notes Discrete

Math. 69, 133–140 (2018)
11. Qiu, X., Kern, W.: Improved approximation algorithms for a bilevel knapsack problem. Theor.

Comput. Sci. 595, 120–129 (2015)
12. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst.

Sci. 16, 185–225 (1978)
13. Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms. Cambridge University

Press, Cambridge (2011)
14. Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of a fully

polynomial time approximation scheme (FPTAS)? INFORMS J. Comput. 12, 57–75 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

900 Theory of Computing Systems (2021) 65:884–900

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

	The subset sum game revisited
	Abstract
	Introduction
	Known and related results
	Our results

	Technical Preliminaries
	Inapproximability results
	The hostile and the selfish adversary
	The greedy adversary

	Complexity of the game against the greedy adversary
	The Approximation Scheme
	The PSPACE Completeness Result
	Final Remarks
	References

