Theory of Computing Systems (2021) 65:736-776
https://doi.org/10.1007/500224-020-10021-w

®

Check for
updates

Finite Sequentiality of Unambiguous Max-Plus Tree
Automata

Erik Paul’

Accepted: 20 November 2020/ Published online: 26 March 2021
© The Author(s) 2021

Abstract

We show the decidability of the finite sequentiality problem for unambiguous max-
plus tree automata. A max-plus tree automaton is called unambiguous if there is at
most one accepting run on every tree. The finite sequentiality problem asks whether
for a given max-plus tree automaton, there exist finitely many deterministic max-plus
tree automata whose pointwise maximum is equivalent to the given automaton.

Keywords Weighted tree automata - Max-plus tree automata - Finite sequentiality -
Decidability - Ambiguity

1 Introduction

A max-plus automaton is a finite automaton which assigns real numbers to words
over a given alphabet. The transitions of a max-plus automaton each carry a weight
from the real numbers. To every run of the automaton, a weight is associated by
summing over the weights of the transitions which constitute the run. The weight of
a word is given by the maximum over the weights of all runs on this word.

More generally, max-plus automata and their min-plus counterparts are weighted
automata [7, 13, 26, 37, 38] over the max-plus or min-plus semiring. Min-plus
automata were originally introduced by Imre Simon as a means to show the decid-
ability of the finite power property [41, 42]. Since their introduction, max-plus and
min-plus automata have enjoyed a continuing interest [8, 12, 15, 18, 22, 25] and they

This article belongs to the Topical Collection: Special Issue on Theoretical Aspects of Computer
Science (2019)
Guest Editors: Rolf Niedermeier and Christophe Paul

This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduiertenkolleg 1763
(QuantLA).

P4 Erik Paul
epaul @informatik.uni-leipzig.de

I Leipzig University, Leipzig, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-020-10021-w&domain=pdf
http://orcid.org/0000-0002-0814-598X
mailto: epaul@informatik.uni-leipzig.de

Theory of Computing Systems (2021) 65:736-776 737

have been employed in many different contexts. To only name some examples, they
can be used to determine the star height of a language [17], to prove the termination of
some string rewriting systems [43], and to model certain discrete event systems [23].
Additionally, they appear in the context of natural language processing [29], where
for reasons of numerical stability, probabilities are often computed in the min-plus
semiring as negative log-likelihoods.

A very prominent open question about max-plus automata is the sequentiality
problem, the problem of deciding whether for an arbitrary max-plus automaton there
exists a deterministic equivalent. A max-plus automaton is called deterministic or
sequential if at most one of its states is initial and for each pair of a state and an input
symbol, there is at most one valid transition into a next state. Although the decid-
ability of this problem is unknown for max-plus automata in general, it is known to
be decidable for the subclasses of unambiguous [29], finitely ambiguous [22], and
even polynomially ambiguous [21] automata. A max-plus automaton is called unam-
biguous if there exists at most one accepting run on every word. It is called finitely
ambiguous if the number of runs on each word is bounded by a global constant. If on
every word the number of accepting runs is bounded polynomially in the length of
the word, the automaton is said to be polynomially ambiguous. Note that the ambigu-
ity of a max-plus automaton is a decidable property, as it is easily reduced to deciding
the ambiguity of a finite automaton. Deciding the sequentiality of a finite automaton
is trivial, polynomial time algorithms for deciding the unambiguity, the finite ambi-
guity, and the polynomial ambiguity of a finite automaton can be found in [9, 40,
44]. Furthermore, the classes of functions definable by deterministic, unambiguous,
finitely ambiguous, polynomially ambiguous, and arbitrary max-plus automata form
a strictly ascending hierarchy [19, 22, 28].

A decidability problem which is closely related to the sequentiality problem is the
finite sequentiality problem. The finite sequentiality problem asks whether a given
max-plus automaton can be represented as a pointwise maximum of finitely many
deterministic max-plus automata. In [18], it was left as an open question to determine
the decidability of the finite sequentiality problem for finitely ambiguous max-plus
automata. It was shown only recently that for the classes of unambiguous as well
as finitely ambiguous automata, the finite sequentiality problem is decidable [3,
4]. The class of functions which allow a finitely sequential representation by max-
plus automata lies strictly between the classes of functions definable by deterministic
and by finitely ambiguous max-plus automata, and it is incomparable to the class of
functions definable by unambiguous max-plus automata [22].

In this paper, we show that the finite sequentiality problem is decidable for unam-
biguous max-plus tree automata. Max-plus tree automata are a generalization of
max-plus automata and operate on trees instead of words. In particular, max-plus
tree automata are weighted tree automata [1, 6, 14, 16] over the max-plus semir-
ing. Applications for max-plus tree automata include proving the termination of
certain term rewriting systems [24], and they are also commonly employed in nat-
ural language processing [33] in the form of probabilistic context-free grammars.
Our approach to show the decidability of the finite sequentiality problem employs
ideas from [4]. In [4], the fork property is shown to be a decidable criterion to deter-
mine the existence of a finitely sequential equivalent. More precisely, unambiguous

@ Springer

738 Theory of Computing Systems (2021) 65:736-776

max-plus word automata are shown to possess a finitely sequential representation
if and only if they do not satisfy the fork property. It is shown elementarily that
an unambiguous automaton satisfying the fork property cannot possess a finitely
sequential equivalent. The proof for the existence of a finitely sequential represen-
tation in case that the fork property is not satisfied, on the other hand, relies on
the construction of finitely many unambiguous max-plus automata whose point-
wise maximum is equivalent to the original automaton, and which all satisfy
the twins property. It was shown by Mohri [29] that an unambiguous max-plus
automaton which satisfies the twins property is determinizable. A finitely sequential
representation is thus found by determinizing the unambiguous automata.

For tree automata, we generalize the fork property to the tree fork property by
adding a condition which accounts for the nonlinear structure of trees. We then prove
that an unambiguous max-plus tree automaton possesses a finitely sequential rep-
resentation if and only if it does not satisfy the tree fork property. As in the word
case, the most challenging part of the proof is to show the existence of a finitely
sequential representation whenever the tree fork property is not satisfied. Like in
the proof for word automata, we construct finitely many unambiguous max-plus tree
automata which possess a deterministic equivalent. However, we need to take a dif-
ferent approach in order to obtain these automata. In [4], a modified Schiitzenberger
covering [35, 36, 39] is first constructed from the unambiguous max-plus automa-
ton, from which in turn an automaton is constructed which monitors the occurrence
of certain states of the modified Schiitzenberger covering. This latter automaton
is then decomposed into the finitely many unambiguous automata. This approach,
however, is not applicable to trees, as the monitoring of states requires all relevant
states to occur linearly. This happens trivially for word automata due to the inher-
ent linear structure of words, but for tree automata examples can be found where
relevant states occur nonlinearly. The approach we use here relies on constructing
a max-plus automaton which tracks certain pairs of states of the original automa-
ton. When applied to word automata, this immediately yields an automaton which
can be decomposed into the desired unambiguous automata. Unfortunately, for tree
automata this tracking of pairs of states again fails due to states occurring nonlin-
early. Surprisingly however, our construction can be applied to the Schiitzenberger
covering of the original tree automaton, as the states relevant for tracking all occur
pairwise linearly in the Schiitzenberger covering. The most difficult part of our proof
is to show that the Schiitzenberger covering indeed has the property we just indicated.

An extended abstract of this paper appeared as [32]. This paper differs from it in
the following way. First, full proofs are included. Second, we combine some known
results and ideas to obtain the decidability of the sequentiality problem for unambigu-
ous max-plus tree automata. This result has never been stated explicitly, but follows
rather easily from the main result of [11] and an idea from [29]. As this result fits
the theme of our paper quite nicely, we decided to include it. Third, we show that
it is decidable in PSPACE whether an unambiguous max-plus tree automaton satis-
fies the tree fork property. In [32], we only outlined the decidablity of the tree fork
property. Fourth, we now give some examples to better illustrate the properties of the
Schiitzenberger covering. Finally, we have added a section in which we investigate
additional properties of the Schiitzenberger covering. The main motivation for this

@ Springer

Theory of Computing Systems (2021) 65:736-776 739

last section is to provide a deeper insight into the Schiitzenberger covering, but it also
outlines a slightly different path we could have taken for our proof.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by | X|.
For two sets X and Y and a mapping f: X — Y, we call X the domain of f, denoted
by dom(f), and Y the range of f, denoted by range(f). For a subset X’ C X, we
call the set f(X') = {y € Y | 3x € X': f(x) = y} the image or range of X’
under f. The restriction of f to X', denoted by f [y, is the mapping f|y/: X' — Y
defined by f[y/(x) = f(x) for every x € X’. For an element y € Y, we call the set
f~Yy) = {x € X | f(x) = y} the preimage of y under f. For a second mapping
g: X — Y,wewrite f = gifforall x € X we have f(x) = g(x).

Let N = {0, 1, 2,...}. By N* we denote the set of all finite words over N. The
empty word is denoted by ¢, and the length of a word w € N* by |w|. The set N*
is partially ordered by the prefix relation <, and totally ordered with respect to the
lexicographic ordering <;. Two words from N* are called prefix-dependent if they
are in prefix relation, and otherwise they are called prefix-independent.

A ranked alphabet is a pair (I, tk), often abbreviated by I", where I” is a finite
set and rky: I” — N a mapping which assigns a rank to every symbol. For every
m > 0 we define '™ = rk,?1 (m) as the set of all symbols of rank m. The rank of I
is defined as rk(I") = max{rky(a) | a € I'}.

The set of (finite, labeled, and ordered) I -trees, denoted by T, is the set of all
pairs t = (pos(), label,), where pos(t) C N* is a finite non-empty prefix-closed
set of positions, label;: pos(t) — I is a mapping, and for every w € pos(t) we
have wi € pos(?) iff 1 < i < rkp(label;(w)). We write #(w) for label;(w) and |¢|
for |pos(t)|. We also refer to the elements of pos(¢) as nodes, to ¢ as the root of ¢,
and to prefix-maximal nodes as leaves. The height of t is defined as height() =
maXyepos(r) |w|. For a leaf w € pos(t), the set {v € pos(¢) | v <, w}is called a
branch of t.

Now let s, € Tr and w € pos(t). The subtree of t at w, denoted by t[,, is
a I'-tree defined as follows. We let pos(¢],,) = {v € N* | wv € pos(r)} and for
v € pos(t[,), we let label;; (v) = f(wv).

The substitution of s into w of t, denoted by t(s — w), is a I'-tree defined as
follows. We let pos(t(s — w)) = (pos(t) \ {v € pos(?) | w <, vh Ufwv | v €
pos(s)}. For v € pos(t(s — w)), we let label, (s)y (v) = s(u) if v = wu for some
u € pos(s), and otherwise label; (s) (V) = 1 (v).

Fora € '™ and trees #4, . . ., tm € Tr, we also write a(tq, ..., t;;) to denote the
tree r with pos(¢#) = {e} U {iw | i € {l,...,m}, w € pos(t;)}, label,(¢) = a, and
label, (iw) = ;(w). Fora € I'Y, the tree a() is abbreviated by a.

For a ranked alphabet I', a tree over the alphabet I, = (I" U {¢}, ki U {¢ — 0})
is called a I"-context. Let t € Tr, be a I'-context and let wy, ..., w, € pos(t) be
a lexicographically ordered enumeration of all leaves of ¢ labeled ¢. Then we call ¢
an n-I"-context and define ¢;(r) = w; fori € {1, ..., n}. For an n-I"-context ¢ and
contexts t1, ...,t, € Tr,, wedefine t(t, ..., t,) = t{ty = O1(t)) ... {tn = On(®))

@ Springer

740 Theory of Computing Systems (2021) 65:736-776

by substitution of ¢, ..., t, into the ¢-leaves of . A 1-I"-context is also called a
I"-word. For a I'-word s, we define s° = ¢ and s"T! = s(s") forn > 0.

A commutative semiring is a tuple (K, &, O, 0, 1), abbreviated by K, with
operations sum @ and product © and constants 0 and 1 such that (K, &, 0) and
(K, ©®, 1) are commutative monoids, multiplication distributes over addition, and
k ©0 =00« = 0 for every x € K. In this paper, we only consider the max-
plus semiring Rpax = (R U {—o0}, max, +, —o0, 0) where the sum and the product
operations are max and +, respectively, extended to R U {—o0} in the usual way.

A max-plus weighted bottom-up finite state tree automaton (short: max-plus-WTA)
over I' is a tuple A = (Q, I', u, v) where Q is a finite set (of states), I" is a ranked
alphabet (of input symbols), Ufrlf(:%) O™ x '™ x O — Ry (the function of
transition weights), and v: Q — Rpax (the function of final weights). We define
A4 = dom(p). A tuple (p, a, q) € A 4 is called a transition and (p, a, q) is called
valid if u(p,a, q) # —oo. A state ¢ € Q is called final if v(g) # —oo.

For a tree t € Ty, a mapping r: pos(t) — Q is called a quasi-run of A on t. For
a quasi-run r on and a position w € pos(¢) with t (w) = a € I'™, the tuple

tt, r,w) = (r(wl),...,r(wm), a, r(w))

is called the transition at w. The quasi-run r is called a (valid) run if for every w €
pos(¢) the transition t.(¢, r, w) is valid with respect to .A. We call a run r accepting if
r(e) is final. By Run 4 (¢) and Acc 4(¢) we denote the sets of all runs and all accepting
runs of A on ¢, respectively. For a state ¢ € Q, we denote by Run 4 (¢, ¢) the set of
all runs r € Run_4(¢) such that r(¢) = g.

For arun r € Run 4(¢), the weight of r is defined by

wiA(,r) = Y (b, w),
wepos(t)

The behavior of A, denoted by [.A], is the mapping defined for every ¢ € Tr by

[Al(r) = max (wta(t,r) +v(r(e))),
reAcc 4 (1)

where the maximum over the empty set is —oo by convention.

For a max-plus-WTA A = (Q, I', u, v), arun of A on a I"-context ¢ is a run of
the max-plus-WTA A" = (Q, I, i/, v) on ¢, where 1/ (¢, g) = 0 forall g € Q and
w'(d) = n(d) forall d € A 4. We denote Runf4(t) = Run 4 (¢) and for r € RunOA(t)

write Wtf4(t, r) = wty (t,r). For an n-I'-context t € T, and states qo, ..., gx,
we denote by Runf4(q1, .oy qn, 1, qo) the set of all runs r € Runjl(t) such that
r(e) = qo and r(Q;(t)) = g; forevery i € {1,...,n}. For a I'-word s, we write

p ﬁ) q if there exists arunr € Runf4(p, s, g) with Wtf4(s, r) = x. In this case, r is

said to realize pmq. Note that r € Runf4(s) implies x # —oo.

Similar to trees, we define restrictions, substitutions, and powers of runs as fol-
lows. Lett,s € Tr,r € Run4(t), w € pos(t), and ry € Run 4(s) with rs(¢) = r(w).
Then we define r[,, € Run4(¢],) by r[,,(v) = r(wv) for every v € pos(t],,). We
define r(ry; — w) € Runy(t(s — w)) by r{ry, > w)(v) = rsy(u) if v = wu for
some u € pos(s), and r(ry — w)(v) = r(v) otherwise. For a I'-word s and a run

@ Springer

Theory of Computing Systems (2021) 65:736-776 741

r € Run’(s) with () = r(01(s)), we let v = 01 (s) and define r*" = {¢ > r(e)}
and r" Y = (P10 5) € RunoA(s"H) forn > 0.

For a max-plus-WTA A, we define a relation < on Q by p < g iff there exists a
I'-word s € Tr, such that Runf4(q, s, p) # 0. We call A trim if for every p € Q
there exists t € Tr, r € Acc4(t), and w € pos(t) with r(w) = p. The trim part of
A is the automaton obtained from A by removing all states p € Q for which no such
t, r,and w exist. This process obviously has no influence on [.A].

A max-plus-WTA A is called deterministic or sequential if for every m > 0,
aeI'™ and p € Q™, there exists at most one ¢ € Q with u(p, a,q) # —oo.
We call A unambiguous if |[Acc4(t)| < 1 for every t+ € Tr. We call the behavior
[A] of A finitely sequential if there exist finitely many deterministic max-plus-WTA
At ..., Ay over I' such that [A] = max]_, [A;], where the maximum is taken
pointwise.

3 Main Result

We will show that for an unambiguous max-plus-WTA A, it is decidable whether
its behavior [.A] is finitely sequential. Moreover, if it is finitely sequential, we will
obtain that the deterministic max-plus-WTA Ay, ..., A, can be effectively con-
structed. For this, we follow ideas from [4], where the decidability of the finite
sequentiality problem was proved for unambiguous max-plus word automata.

The general outline of our proof is similar to that of [4] and presents itself as
follows. We introduce the tree fork property and show that it is decidable whether
an unambiguous max-plus-WTA A satisfies this property. Then we show that the
behavior of an unambiguous max-plus-WTA is finitely sequential if and only if it
does not satisfy the tree fork property. In conclusion, we obtain the decidability of
the finite sequentiality problem for unambiguous max-plus-WTA.

Elementary proof methods can be used to show that [.4] is not finitely sequential
if A satisfies the tree fork property. On the other hand, if .4 does not satisfy the tree
fork property, we show how to construct finitely many unambiguous max-plus-WTA
whose pointwise maximum is [.A], and which all satisfy the twins property [29].
Every unambiguous max-plus-WTA which satisfies the twins property possesses an
effectively constructable deterministic equivalent [11]. Thus, we obtain finitely many
deterministic max-plus-WTA whose pointwise maximum is [.A], which is hence
finitely sequential.

We begin by showing that the Lipschitz property of deterministic max-plus word
automata [22, 29] also holds for deterministic max-plus tree automata. On words,
this Lipschitz property can be formulated follows. Let A be a deterministic max-
plus word automaton and let L be the largest weight, in terms of absolute value,
occurring in A (excluding —oo). Then for two words w; = wuv; and wy = uv;
which have an accepting run in A, the difference between [.A](w;) and [.A] (wz) can
be at most |L|(Jvy| + |v2| + 2). This is clear since the unique runs of .4 on w; and
w, will be identical on the prefix u, and then with every remaining letter of each
word the difference between both runs cannot grow more than |L|. For deterministic
max-plus-WTA, we can show a similar statement as follows.

@ Springer

742 Theory of Computing Systems (2021) 65:736-776

Lemma 1 (c.f. [22, End of Section 2.4][29, Section 3.2]) Let A = (Q, I, u, v) be
a deterministic max-plus-WTA, let X = (u(A4) Uv(Q)) \ {—oo}, and let L =
maxyex |x|. Furthermore, let t|, 1 € Tr be two trees with [A](t;) # —oo and
[A](2) # —o0 and let wy € pos(t;) and wy € pos(ty) be two positions such that
111y, = 2]y, Then witht = 11|, we have

LAl 1) — [A] ()| < L(t1] + |22] = 2]¢] + 2).
Proof Since A is deterministic, there exists exactly one run r; € Acc4(f;) and

exactly one run r, € Acc 4(#2). Likewise, there exists exactly one run r € Run 4 (7).
Due to 1 [wl =t [wz = t, we thus have rq [wl =nr [wz = r. It follows that

ILA] () — [A] @)l

wepos(t]) wepos(t)

=/ > u(t(zl,rl,w»w(n(e))—(> u(rt(rz,rz,w>>+v(r2<e>>)

= > uGErw)tveiE) - | Y . w) + ()
wepos(t1) wepos(t2)
_‘(wl Sp w) =(w> Sp w)

< L(tl =t + D+ L] — [t + 1)
=Ll + |2l =2t +2).

O

Next, we recall the twins property. Let I" be a ranked alphabet. We begin by intro-

ducing the concepts of siblings and twins. Intuitively, two states are called siblings

if they can be “reached” by the same tree. Two siblings are called twins if for every

I"'-word which can “loop” in both states, the maximal weight for the loop is the same
in both states.

Definition 1 Let A = (Q, I, i, v) be a max-plus-WTA. Two states p,g € Q
are called siblings if there exists a tree u € T such that Runy(u, p) # ¢ and
Run 4 (u, g) # . We recall that Run 4 (u, p) and Run 4(u, ¢) contain only valid runs.
Two siblings p, g are called twins if for every I"-word s and weights
x = max wt% (s, 1) y = max wté (s, 1),
reRunA(p,s,p) reRunA(q,s,q)
we have x = y whenever x # —oo and y # —oo holds. Here, the maximum over
the empty set is —oo by convention.

A max-plus-WTA is said to satisfy the twins property if all of its siblings are twins.
For unambiguous max-plus-WTA, the twins property is a criterion for deciding the
sequentiality problem. An unambiguous max-plus-WTA possesses a deterministic
equivalent if and only if it satisfies the twins property. For words, this result is due to
[29, Theorem 12], for trees, we cite the following cite the following theorem which
states that the twins property is a sufficient condition for determinizability.

@ Springer

Theory of Computing Systems (2021) 65:736-776 743

Theorem 1 ([11, Lemma 5.10]) Let A be a trim unambiguous max-plus-WTA. If
A satisfies the twins property, there exists a deterministic max-plus-WTA A’ with
[A] = [A’] which can be effectively constructed.

The converse, namely that the twins property is also a necessary condition for
determinizability, follows from the Lipschitz property of deterministic max-plus
automata. For max-plus word automata, consider the following. If an unambiguous
max-plus word automaton A does not satisfy the twins property, we can find states p
and g which are siblings and not twins. We assume that our witnesses for this are u
and s as above. Then we consider words of the form w; = usNv pand wy = us™ Vg,
where v, and v, are two fixed words which lead from p and ¢, respectively, to some
final state. For every fixed L € R, we can choose N sufficiently large to ensure that
[[A](w1) = [AJ(w2)| > |L|(Jvp|+ lvg| +2). Due to the Lipschitz property of deter-
ministic max-plus automata, it is thus not possible to determinize A if it does not
satisfy the twins property. For trees, we can proceed in the same way.

Lemma 2 Let A be a trim unambiguous max-plus-WTA. If there exists a determinis-
tic max-plus-WTA A’ with [A] = [A’], then A satisfies the twins property.

Proof We follow the idea for the proof of [29, Theorem 9]. Let A = (Q, I', u, v) be
a trim unambiguous max-plus-WTA and let p, g € Q be siblings, i.e., there exists
atree u € Tr and runs r” € Rung(u, p) and r? € Rung(u, q). Lets € Tr, be a

I'-word such that pg p and qﬂ)q for weights x, y € R. Since A is trim, there

. A A dplz liglz .
exist I"-words i, ii; € Tr, such that p—L p’ and g——>¢’ for two final states

P'.q" € Q and weights z,,z, € R. We let k, = wta(u,r?) + z, + v(p’) and

kg = wta(u,r?) + z4 + v(q’) and for n > 1 define the trees t[(,") = Up(s"(u)) and

tq(") = ftq (s"(u)). Due to the unambiguity of A, we see that for every n > 1 we

have

[[A]](tl()")) =Kkp+nx
[[A]](t;")) = Kq + ny.

Assume that there exists a deterministic max-plus-WTA A’ with [A] = [A']. Then
by Lemma 1, there exists L € R such that for all # > 1 we have

ITA]GS?) = [ATE] < ILIdp] + lig| + 2).
From the equations above we thus obtain that for every n > 1 we have
lkp — kg +n(x —)| < |LI(ip| + lig| + 2).
This can only hold if x = y. It follows that .4 satisfies the twins property. O

The twins property is decidable for both max-plus word automata [2, 5, 20, 29,
30] and max-plus tree automata [10, Section 3]. Thus, by combining Lemma 2 with

@ Springer

744 Theory of Computing Systems (2021) 65:736-776

the results from [11] (see Theorem 1) and [10], we obtain the decidability of the
sequentiality problem for unambiguous max-plus tree automata.

Theorem 2 For an unambiguous max-plus-WTA A it is decidable whether there
exists a deterministic max-plus-WTA A" with [A] = [A']. If such an automaton A’
exists, it can be effectively constructed.

Deciding whether a max-plus word automaton satisfies the twins property is
PSPACE-complete [20]. For max-plus tree automata, the problem is thus PSPACE-
hard, but no upper complexity bound is stated in [10]. Note that in general, it
is undecidable whether two given siblings are twins [20], but for so-called cycle-
unambiguous max-plus automata, it was shown to be decidable on both words
[2, Section 4] and trees [11, Section 5.4]. A max-plus tree automaton A = (Q, I,
W, v) is called cycle-unambiguous if for every I'-word s € T, and every state
q € Q, there is at most one run which loops s in g, i.e., the set Runf4(q, s,q) is
either a singleton or empty. It is easy to see that every trim unambiguous max-plus
tree automaton is cycle-unambiguous. Thus, for every two states of an unambiguous
max-plus tree automaton, it is decidable whether they are twins. As we will employ
the reasoning from [11] in more detail, we provide a short direct proof.

Lemma 3 ([11, Section 5.4]) Let A = (Q, I', u, v) be a cycle-unambiguous max-
plus-WTA. Two states p,q € Q are siblings if and only if there exists a tree u € T
of height at most | Q|? such that Run 4 (u, p) # @ and Run 4 (u, q) # @. Two siblings
p.q € Q are not twins if and only if there exists a I'-word s of height at most 4|Q|?

such that pgp and ng with x # y.

Proof Let p,q € Q be two states. First, to check whether p and ¢ are siblings, we
see as follows that it suffices to check whether they can both be reached by a tree u of
height at most |Q|?. Assume we have a tree u € T and two runs r” € Run 4 (¢, p)
and r¢ € Run4(t, ¢). If height(u) > |Q|?, then by pigeon hole principle, we can find
a simultaneous loop in r? and r9; that is, we can find two positions w; <, wy in u
with r?(w1) = r?(w;) and also r(w;) = r?(w7). By removing everything between
w1 and wy from u, we obtain the smaller tree u(u[,,, — wi) which still reaches p
and q.

If p and g are siblings, we see as follows that we only need to check I'-words
s of height at most 4|Q|? to decide whether p and ¢ are twins. Assume p and g
are not twins and our witness for this is the I"-word s with height(s) > 4| Q2. Let
rp € Runf4(p, s, p) be the run on s which loops in p with weight x = wtf4(s, rp) and
let r; € Run% (g, s, q) be the run on s which loops in ¢ with weight y = wt% (s, ry).
Furthermore, let w € pos(s) with |w| = height(s) and let w’ € pos(s) be the longest
common prefix of w and ¢ (s). Then either |w’| > 2|Q|* or |w| — |w'| > 2|0/,
or both. In the first case, there exist two disjoint simultaneous loops in r, and r,
above {1 (s). More precisely, by pigeon hole principle we can find positions w; <),
wy <p w3 <, wg wWith wy <, w <, Q1(s) in s for which (r”(wy), r?(wy)) =
rP(wa), r1(wy)) and (#rP(w3), r4(w3)) = (rP(wy4), r?(wy)). In the second case,
there exist two disjoint simultaneous loops in r,, and r, which are prefix-independent

w3

@ Springer

Theory of Computing Systems (2021) 65:736-776 745

from ¢1(s). That is, there exist positions w; <, w2 =<, w3 <, w4 with
w' <, wy and wy <, w in s for which (r”(wy), r4(w1)) = (r”(w2), r(w>)) and
(r?(w3), rf(w3)) = (r’ (wa), rf(ws)).

Let x12 and x34 be the weights of the loops in the run 7, and let yj2 and y34 be
the weights of the loops in the run r¢. We obtain a smaller I"-word s” and runs r;,
and rt’l of distinct weights which loop in p and ¢, respectively, by removing either
one of the two loops or both loops as follows. If x — x12 # y — y12, we remove
the wi-wy loop. Otherwise, if x — x314 # y — y34, we remove the w3-w4 loop. If
we have both x — x12 = y — y;2 and x — x34 = y — y34, we obtain that 2x —
X12 — X34 = 2y — y12 — y34. From x # y, it follows that x — x12 — x34 # y —
Y12 — Y34, SO we remove both loops. From the cycle-unambiguity of A, we see that
these two runs are the only runs on the smaller I"-word, so we have found a smaller
witness. O

There exist unambiguous max-plus automata which cannot be determinized, but
whose behavior is finitely sequential [22, Section 3.1], see also Fig. 1. Thus, for the
finite sequentiality problem we inevitably have to deal with unambiguous automata in
which not all siblings are twins. In the following, we will call two such states rivals.
For cycle-unambiguous automata, thus in particular for unambiguous automata, the
following definition is equivalent to being siblings and not twins.

Definition 2 Let A = (Q, I', i, v) be a max-plus-WTA. Two states p,g € QO
are called rivals if there exists a tree u € T such that Rung(u, p) # ¥ and

Runy(u, q) # ¥ and a I'-word s such that pgp and ng with x # y. In this
case, u and s are also said to be witnesses for the fact that p and ¢ are rivals.

If A is cycle-unambiguous, p and g are rivals if and only if they are siblings and
not twins as we do not have to consider a maximum over runs. Also note that by our
definition of Runf4 (s), we have x £ —oo and y # —oo above.

We now turn to the tree fork property which, as we will show, is satisfied by an
unambiguous max-plus-WTA if and only if its behavior is not finitely sequential. The
property consists of two separate conditions. The first condition intuitively states that
there exist two rivals p and ¢ and a I"-word ¢ which can loop in p, and which can
also lead from p to ¢g. The second condition states that there exist two rivals which
can occur at prefix-independent positions.

al0 all
GO0 =G0
al0 all
0

Fig. 1 A max-plus word automaton A over the alphabet {a} which is unambiguous, whose behavior is
finitely sequential, but which does not satisfy the twins property as p and ¢ are siblings but not twins. The
behavior [.A] of A assigns 0 to all words of odd length and |w| to all words w of even length

@ Springer

746 Theory of Computing Systems (2021) 65:736-776

Definition 3 Let A = (Q, I', 1, v) be a max-plus-WTA. We say that A satisfies the

tree fork property if at least one of the following two conditions is satisfied.

(1) There existrivals p,q € Q and a I'-word ¢ with ptﬁ) p and ptlﬁ)q for some
weights z,, z; € R. In this case, t is also called a p-q-fork.

(i1) There exist rivals p,g € Q,a2-I'-contextt € Tr,,andarunr € Runf4(t)
with r(01(1)) = p and r (¢2(2)) = q.

The tree fork property can be regarded as an extension of the fork property which was
introduced in [4] and which for max-plus word automata plays the same role as the
tree fork property does for max-plus tree automata. Condition (i) is essentially a tree
version of the fork property. Casually put, if we take only condition (i) and replace
“I'-word” by “word”, we obtain the fork property. The automaton depicted in Fig. 2
is unambiguous and satisfies the fork property. Condition (ii) is new and possesses
no counterpart in the fork property.

We have the following theorem which relates the tree fork property to the finite
sequentiality problem.

Theorem 3 Let A = (Q, T, u,v) be a trim unambiguous max-plus-WTA over
I". Then there exist deterministic max-plus-WTA Ay, ..., Ay, over I' with [A] =
max_, [A;] if and only if A does not satisfy the tree fork property. If such automata
Al ..., A, exist, they can be effectively constructed. Furthermore, there is a
PSPACE-algorithm to decide whether A satisfies the tree fork property. In particular,
the finite sequentiality problem is decidable for unambiguous max-plus-WTA.

Proof Here, we only show that it is decidable whether A satisfies the tree fork prop-
erty. The existence of a PSPACE-algorithm for deciding the tree fork property is
deferred to Lemma 4. The rest of the proof is deferred to Sections 3.1 and 3.2, where
we show that the behavior of A is finitely sequential if and only if .4 does not satisfy
the tree fork property.

To decide whether A satisfies condition (i), we first show that if there exists a p-
g-fork 1 for two rivals p and ¢, then there exists a p-g-fork ¢’ of height at most 2| Q2.
The argumentation for this is similar to the proof of Lemma 3 that the property of

alO
b|1 b|—1

BORIoN

Fig. 2 An unambiguous max-plus word automaton A over the alphabet {a, b} which satisfies the fork
property. With u = a and s = b, we see that p and ¢ are rivals, and a is a p-g-fork. All b’s after the last a
in a word are treated differently from the b’s before the last a. A deterministic automaton cannot “guess”
which a is the last in the word, and since there may be arbitrarily many a’s in a word, even finitely many
deterministic automata cannot compensate this inability to guess

@ Springer

Theory of Computing Systems (2021) 65:736-776 747

being siblings is decidable. Assume that ¢ is a p-g-fork with height(r) > 2|Q|? and

. t‘z p fIZ .
that 7, and r, are runs that realize p—2> p and p—q—>q for some weights z,,, z; € R.

We let w € pos(z) be a position with |w| = height(¢) and let w’ be the longest
common prefix of w and ¢1(¢). Then either |w’| > |Q|* or |w| — |w’| > |Q|?, or
both. In the first case, there exist by pigeon hole principle two positions w; <, w in
t with wy <, w’ <p O1(®) and (r,(w1), ry(w1)) = (rp(w2), rg(w2)). In the second
case, there exist two positions wy <, wz int with w’ <, wy and (r,(w1), rg(w1)) =
(rp(w2), r4(w2)). By removing the part of ¢ between w; and wy, we obtain that
t" = t(t],, — wi) is a p-g-fork as well. Iterating this process, we obtain a p-g-fork
of height at most 2| Q|

Next, we identify all pairs of rivals, which is possible since by Lemma 3, we can
decide for every pair of states whether they are siblings and not twins. Then, for every
pair of rivals p, g and all I"-words ¢ of height at most 2| Q |2, we check whether 7 is a
p-q-fork. If this yields no p-g-fork, A does not satisfy condition (i).

In order to decide whether A satisfies condition (ii), we first compute the rela-
tion < on Q. This is possible since Q is a finite set and < is the smallest transitive
and reflexive relation satisfying ©(qi, ..., qm,a,qo) # —00 — qo < g; for all
transitions (g1, ..., qm,a,qo) € Agq and i € {1,...,m}. Then, by the trimness of
A, condition (ii) is satisfied if and only if there exist two rivals p and ¢, a tran-
sition (g1, ...,qm,a,qo) € A4 with u(qy,...,qm,a,qo) # —oo, and indices
i,jel{l,...,m}withi # j,q; < p,andgq; < gq. O

Let A = (Q, I', i, v) be a cycle-unambiguous max-plus-WTA. In the following
lemma, we present a nondeterministic PSPACE-algorithm which admits a successful
run if and only if A satisfies the tree fork property. By Savitch’s determinization
theorem, deciding the tree fork property is thus in PSPACE. We do not make any
statement about the hardness of the problem. We define the size |.A| of A as the size
of its representation, i.e.,

Al =0+ > (m+2),
(111 ----- qm aqu)EA.A
(g, ---s Gm, a, qo)# — 00

where we assume that weights can be stored in constant space. Then we have the
following lemma.

Lemma 4 The problem of deciding whether a cycle-unambiguous max-plus-WTA
satisfies the tree fork property is in PSPACE.

Proof Let A = (Q, I', i, v) be a cycle-unambiguous max-plus-WTA and let A =
{d € A4 | n(d) # —oo} be the set of all valid transitions of A.

For the algorithm, we nondeterministically guess two states p, ¢ and deterministi-
cally verify whether they are rivals and satisfy either condition (i) or condition (ii) of
the tree fork property. If they are rivals and satisfy at least one of the conditions, the
algorithm terminates successfully, otherwise it does not. Thus, the algorithm admits
a successful run if and only if A satisfies the tree fork property.

@ Springer

748 Theory of Computing Systems (2021) 65:736-776

Enumerating All Pairs of Siblings We enumerate all siblings of .4 using the following
reachability algorithm. We initialize the set of all pairs § € O x Q which are siblings
with S = . Then we iterate the following operation.

Let 8 = S. For every two transitions (p1, ..., pm, @, po), (41, .-+ qm, a, qo) €
A, add (po, qo) to 8" if {(p1,q1), ..., (Pm,qm)} € S.If & = S, store S as the
set of all siblings and terminate. If S C §’, let S = S’ and continue the iteration.
This iteration terminates after at most |Q x Q| = |Q|? steps and therefore runs in
polynomial time. In particular, this part of the algorithm is in PSPACE and the output
S can be stored in polynomial space.

Test for Siblings If (p, ¢) € S, then p and ¢ are siblings and the algorithm continues,
otherwise it is not successful.

Deciding Condition (i) We initialize the set of all pairs of states reachable from (p, p)
by R = {(p, p)}. Then we iterate the following operation.

Let R’ = R. For every two transitions (p1, ..., pm, @, po), (g1, -, qm, d, qo) €
A, add (po, q0) to R"if {(p1,q1),.... (Pm-gm)} S S and R N {(p1,q1), ...,
(Pm>qm)} # 8.1 (p,q) € R, there exists a p-g-fork and the algorithm continues
to “Test for rivals”. If (p, q) ¢ R’ and R C R’, the algorithm sets R = R’ and con-
tinues the iteration in search for a p-g-fork. If (p, g) ¢ R’ and R = R’, the search
for a p-g-fork failed and the algorithm continues to “Deciding condition (ii)”. This
iteration also terminates after at most | Q|2 steps and is thus in PSPACE.

Deciding Condition (ii) We initialize set of states reachable from p by R, = {p}.
Then we iterate the following operation.

Let R;, = R,. For every transition (p1,..., pm,a, po) € A, add po to R;p if
R,N{p1,....pm} #90.1f R;, = R, store R, as the set of all states reachable from
p.IfR, C R;), let R, = R;, and continue the iteration.

In the same fashion, we compute the set R, of all states reachable from g. This
part of the algorithm runs in polynomial time and the sets R, and R, can thus be
stored in polynomial space.

Next, we verify for every transition (py, ..., pm,a, po) € A whether there exist
indices i, j with 1 <i < j < m such that p; € R, and p; € R,. If such a transition
is found, condition (ii) is satisfied and the algorithm continues to “Test for rivals”.
Otherwise, p and ¢ satisfy neither condition (i) nor condition (ii) of the tree fork
property and the algorithm is not successful.

Test for Rivals Finally, we verify that there exists a I"-word s such that pg p and

ng with x # y. By Lemma 3, it suffices to consider /"-words of height at most

4|Q|?. As even with this size restriction, we can not necessarily store such a I"-word

s in polynomial space, we guess s dynamically and verify that it satisfies pﬂ p and
qs—|y>q with x # y.

More precisely, we guess the positions of s and their labels in lexicographic order.
Whenever we have guessed all subtrees below a node w € pos(s), we compute two

tuples of weights for this node, one each for p and ¢. The tuple for p is defined as

@ Springer

Theory of Computing Systems (2021) 65:736-776 749

follows. If s[,, contains a leaf ¢, the tuple contains for each state py € Q an entry
with the weight of the unique run from Runf4 (p, sl Po)- If s does not contain a leaf
©, the tuple contains for each state pp € Q an entry with the weight of the unique run
from Runf4 (s[> Po)- The tuple for g is defined similarly. After this computation, the
subtrees below w and all data stored about them is discarded.

This procedure allows us to compute the weights of the unique runs from
Runf4 (p, s, p) and Runf4 (g, s, q) without fully storing the runs in memory. Since s
is bounded in height by 4| Q|? and the rank of our symbols is bounded by rk(I"), at
every point in time we have to store information for at most rk(I”) - 4] 01> +1 posi-
tions of s, where the “+ 1" stems from the root. For each of these positions, we store
the position itself, which is of length at most 4| Q|?, the label of this position, and two
tuples of weights, each of length |Q|. Thus, guessing s and computing the weights x
and y above can be realized in polynomial space.

In the following, we present a more detailed version of the algorithm we just
described. We fix an enumeration Q = {qi, ..., g,} of Q. First, we initialize a single
bit b with 0 in which we store whether we have already guessed a context symbol ¢
for s. Then we set w = ¢ as the next position to process and execute the following
algorithm.

Part 1. Guess label for w

If |lw| < 4/Q*and b = 0, guess alettera € I' U {o}.

If jlw| < 4|Q|*>and b = 1, guess a lettera € I

If jlw| = 4|Q|> and b = 0, guess a letter a € " U {o}.

If |lw| =4|Q*and b = 1, guess a letter a € ro,

Store the pair (w, a).

Ifa=o9¢,setbtol.

Ifa € 'Y U {0}, continue to “Part 2”.

Iftkr(a) > 0, set w = wl as the next position to process and continue to “Part 1”.

Part 2. Combine weights for w

Let a be the label we guessed for w, i.e., the letter a for which we have stored the
pair (w, a) in our memory. Let m = rkr, (a) be the rank of a. By assumption, we

have already p_rocessed all subtrees below w and thus, for eachi € {1,...,m} we
have tuples O,)7(’) € R"max for wi. If a = ¢, then for each j € {1, ..., n}, let
xj =0if g; = p and x; = —o0 otherwise, and let y; = 0if g; =g and y; = —00
otherwise. If a # ¢, compute for every j € {1, ..., n} the weights
R . . . (eY) (m)
Y= max G @ @0 Gi) XA X
-) . . (€] (m)
Vi = lsjl’rfi_);ﬁg‘(u(qh,...,qj,,,,a,ql)er,-l +.o+y0)
Stpre the tuples X = (x1,...,x,) and y = (y1, ..., ¥») for w and discard the tuples
x®, y(l) for all positions wl, ..., wm and discard all tuples of the form (wi, a’).

Then choose the next position to process as follows. If w = ¢, continue to “Part 3”.
Otherwise, we can write w = vi with i € N. Let @’ be the label we guessed for v. If
i = rky(a’), redefine w = v as the next position to process and continue to “Part 2”.

@ Springer

750 Theory of Computing Systems (2021) 65:736-776

If i < rkp(a’), redefine w = v(i + 1) as the next position to process and continue to
“Part 1.

Part 3. By assumption, we have computed tuples of weights x, y € R"max for
. Let i, j be the indices such that p = g; and ¢ = ¢;. If b = 1 and
x; # yj, the algorithm terminates successfully. Otherwise, the algorithm is
not successful.

O
The following two sections are dedicated to completing the proof of Theorem 3.

3.1 Necessity

In this section, we show that if an unambiguous max-plus-WTA A satisfies either
condition (i) or condition (i) of the tree fork property, then [.A] is not finitely
sequential. For condition (i), we adapt the corresponding proof from the word case
[4, Theorem 2]. The proof relies on the Lipschitz property of deterministic max-plus
automata and its approach is similar to the proof of Lemma 2 that the twins property
is a necessary condition for determinizability.

Theorem 4 Let A be a trim unambiguous max-plus-WTA over I'. If A satisfies con-
dition (i) of the tree fork property, then there do not exist deterministic max-plus-WTA
At ..., Ay over I with [A] = max!_, [A;].

Proof For contradiction, assume that A satisfies condition (i) of the tree fork prop-
erty and that there exist deterministic max-plus-WTA Aj, ..., A, over I with
[A] = max!_, [A;]. We write A; = (Q;, I', i, v;) and let N = max_, |Q;|. Let
P.q,t, Zp, Zq be as in condition (i) of the tree fork property and for the rivals p and
q,letu,s, x,y be as in the definition of rivals. We let r” € Run4(u, p) and define

Zu = Wt (u, r?). Furthermore, by trimness there exists a I'-word & with qﬂq f
for some weight z; € R and some state gy € Q with v(gf) # —o0.

We define the constant L € R to be the largest weight, in terms of absolute value,
which occurs in the automata A, ..., A, as follows. We let X = (J!_, ui(A4,) U
v; (Q;) and define L = maxyex\{-oo} |X|. Furthermore, we define natural numbers
Ny, ..., N, inductively as follows. We let N, = 0 and if Nyy1, ..., N, are defined,
then we define N; such that forall k € {{ + 1, ..., n} we have

k
Nilx =yl > L{G=Dltl+ | D Nils| | +2la] +2

i=l+1
k—1
+k=Dlzpl+ | D Nilxl | + Nelyl.
i=l+1
We define trees t), ..., t, inductively by 1) = sNo(z(u)) and t/2+1 = sNer (t(1))s

for clarity, in the word case we would have t,/C = utsNogsN1 ... 15Nk Then for k €

@ Springer

Theory of Computing Systems (2021) 65:736-776 751

{1,...,n}, weletty = 12(1‘12). Due to the unambiguity of A, we see that for every
k e{l,...,n}wehave
k—1
[A) (1) = z4 + kzp + (Z N,-x) + 24 + Nky +z5 +v(gy).
i=0

Thus, for k > [, we have

k—1
ILAL @) = [AT@D)| = INiGx =) + (k= Dzp + | D Nix | + Nyl
i=l+1
k—1
> Nilx =yl = (k= Dlzpl = | Y Nilx| | = Nalyl
i=I+1
k
> L G=Dltl+ | Y Nilsl | +20al+2
i=l+1

Note that the first inequality is an application of the reverse triangle inequality. The
second inequality follows from the definition of N;. Now let j € {1, ..., n}, then by
choice of L and because A ;j is deterministic, we have by Lemma 1 that

k
I[A;] @) — [A;]@l = L | (k= Dlel + ZNiISI + 20| +2

i=l+1

In conclusion, we have n + 1 trees f;, and n automata 4;, so by pigeonhole prin-
ciple and the assumption that [A] = max/_, [A;], there must be j € {1,...,n}
and k,[€ {0,...,n} with k > [such that [A](%) = [A;](%) and [A](#) =
[A;](t). However, we have |[A](t%x) — [A](#)] > [[A;](t%) — [A;](#)], which is a

contradiction. O

Next, we address condition (ii) of the tree fork property. On words, states cannot
occur in prefix-independent positions. Thus, this condition is new for the tree case.
Intuitively, the reason that the behavior of an unambiguous max-plus-WTA A cannot
be finitely sequential if it satisfies condition (ii) is as follows. Assume we have a
2-I"-context ¢ and two rivals p and ¢ as in condition (ii) and let # and s be as in
the definition of rivals. Then we can construct trees of the form ¢ (s" (1), s" (1)) such
that, by increasing n, the difference between the weights on the two subtrees s” ()
is arbitrarily large. However, every deterministic automaton necessarily assigns the
same weight to both subtrees.

Theorem 5 Let A be a trim unambiguous max-plus-WTA over I'. If A satisfies

condition (ii) of the tree fork property, then there do not exist deterministic max-plus-

WTA Ay, ..., A, over I' with [A] = max!_, [A;].

@ Springer

752 Theory of Computing Systems (2021) 65:736-776

Proof For contradiction, we assume that A satisfies condition (ii) of the tree fork
property and that there exist deterministic max-plus-WTA Ay, ..., A, over I" with
[A] = max]_, [A;]. First, we construct a tree of the above mentioned form
t(s"(u), s"(u)) and choose n large enough to ensure that in each of the deterministic
automata, some sub-/"-word s™ of s” loops in some state. Then we show that every
choice of a weight for such a loop leads to a contradiction.

Let p, q,t,r be as in condition (ii) of the tree fork property, v; = ¢1(¢), and
vy = Q2(t). For the rivals p and ¢, let u and s be as in the definition of rivals
and v = Q1(s). We let v} € Rung(u, p), r} € Runy(u, q), r! € Runf4(p, s, p),
and rd € Runf4(q, s, q). Furthermore, we write A; = (Q;, I', u;, v;) and let N =
max’_ |Qil.

By the following argument, we may assume that v(r(g)) # —oo. By trimness,
there exists a I"-word s” and a run r” € Run®(s"”) with r”(¢1(s")) = r(e) and
v(r”(e)) # —oo. Thus, if v(r(g)) = —oo, we can consider the 2-I"-context s” (¢)
with the run " (r — {1(s”)) instead of 7 and r.

We now consider the tree ¢’ = ¢ (s™ (u), sV (1)) together with the run

r =N — 0Ny = (DY - 0Ny =).

Since r’ € Runy(#') and v(r'(e)) # —oo, we have [A](") # —oo, so for some
j € {1,...,n} we have [A;](r) = [A](*"). By pigeonhole principle, since N >
|Ql, we have r’'(viv"!) = r'(viv™) for some ny,ny € {0,..., N} with ny < ny.
Since A; is deterministic, we also obtain r'(v2v"™) = r’(v20"2) = r’(viv"™). Let

m = np —ny and let x, y, z € R be the weights such that pﬂp and qﬂ)q in A

and r’(vlv'“)s—‘zw’(vlv”l) in A;. In particular, x # y. We may assume that x < y.
We consider two cases.
First, if z > % (x + y), then for the tree 1+ = t sVt (), sV (1)) we obtain

m%lx [A ™)

v

[A;1G) = [A;]¢) +z

v

[A;]@") + %(x +y)
[A () +mx = [AJ¢™).

Note that this follows because A and .A; are both unambiguous, i.e., if we construct
an accepting run on a given tree, we know that the weight of this run must be the
weight assigned to the tree by the automaton.

For the other case, namely that z < %(x + y), we see that for the tree =~ =

t(sN), sV ™ (1)) we obtain

\

v

‘?:af‘ [A]G¢T) = [Aj]eT) = [Aj]@) -z

v

[A;]¢" — %(x +y)
[A;1¢") —my = [A]¢7).

In both cases, we see that [LA] = max!_, [.A;] does not hold, which is a contradiction.
O

\

@ Springer

Theory of Computing Systems (2021) 65:736-776 753

Together, Theorems 4 and 5 show that if a trim unambiguous max-plus-WTA
satisfies the tree fork property, then its behavior is not finitely sequential.

3.2 Sufficiency

In this section, we show that the behavior of an unambiguous max-plus-WTA A
which does not satisfy the tree fork property is finitely sequential. For simplicity,
we begin with a description of our method of proof on max-plus word automata and
compare it to the proof method of Bala and Koninski [4].

Both proofs work by distributing the runs of A across a finite set of unam-
biguous max-plus word automata such that all of these automata satisfy the twins
property. This distribution essentially has the aim of separating the rivals of A.
By Theorem 1, these unambiguous automata can then be determinized. The major
difference between our approach and that of [4] lies in the way we obtain these
unambiguous automata. To understand our approach, let p and g be two rivals
of A. Furthermore, let u = uj---u, be a word for which there exist valid runs

uj uz Un—1 Up ui us Up—1 Uy
r? = pp—p1—...—pp-1—pandr! = gqp—q1— ... —>qu—1—q of A
on u. We also define p, = p and g, = q.

We now show that the first occurrence of either p or g in the runs r” and r? serves
as a “distinguisher” between the two runs. We let i be the smallest index with the
property that p; € {p, q}. Similarly, we let j be the smallest index with the property

UjlUp Ujt1Un

that g; € {p, q}. We obtain valid runs p;——— p and g
Now assume it would hold thati = j and p; = g}, i.e., the first occurrences are at
the same position in the word, and also the states at this position are the same in both

runs. Then with = u; 41 - - - u,, we see that we have valid runs p; LN p and p; N q,
where p; € {p, ¢}. Thus, A would satisfy the fork property. Since our assumption is
that A4 does not satisfy the fork property, we have either i # j or p; # ¢q;.

This fundamental property is also used in the corresponding proof of [4], but
our way of exploiting it differs from [4]. In their proof for word automata, Bala
and Koniriski use this property implicitly to show that certain states of a modified
Schiitzenberger covering of A occur at most once in every run [4, Lemma 6]. They
can therefore construct a new max-plus automaton which for each run keeps a record
of all occurrences of these states. The above mentioned unambiguous automata are
then obtained by separating runs with differing records into different automata. For
tree automata, the number of these occurrences is unfortunately not bounded, for
reasons which we will also indicate below.

For now, we continue outlining our new approach, which is to construct an
automaton which adds a distinguishing marker to every run when first encountering
one of the rivals p or g. This marker consists of a number, which is used to distin-
guish occurrences at different positions, and the state from {p, ¢} which was visited
first. Whenever reading a letter which causes some valid run to visit p or g for the
first time, the automaton selects the smallest marker which was not used by any valid
run on the prefix read so far, and annotates it to the run. For example, assume that
neither p nor g occur in any valid run the word u, but that our run r on ua leads to p.
Then r obtains the marker 1,. Now assume there is a valid run on uaa which leads

@ Springer

754 Theory of Computing Systems (2021) 65:736-776

to p and which visited neither p nor g before that. Then this run obtains the marker
2p, since 1, is already assigned to r. Next, assume that after reading uaaa another
marker for p has to be assigned, and that » cannot be extended to a valid run on uaa.
Then we assign the marker 1,, as now no valid run on uaa exists to which the marker
1, is assigned. See Fig. 3 for an example of this annotation process on the word aaa
for the automaton depicted there.

With this procedure, runs like »” and r¢ above receive different markers since
either one run obtains a marker later than the other, and therefore a different marker,
or at least the states they visit first are different, which also leads to different markers.
To separate the rivals of A, we can thus make a copy of A for every marker, and
only allow runs which carry the respective automaton’s marker. Whenever a different
marker would be assigned, the execution of the run is blocked.

Note here that the number of markers we need for this annotation process is
bounded. Since the automaton .4 is unambiguous, the number of valid runs on every
given word is bounded by the number of states in .A. If this were not the case, there
would exist two distinct valid runs on the same word which lead to the same state,
from which a counterexample to the unambiguity of A could be constructed. In par-
ticular, the number of markers assigned at any given “time” is bounded by the number
of states of A.

All of this can easily be generalized to the situation where there is more than
one pair of rivals. Then, runs simply obtain a marker for each pair of rivals of the
automaton, and the copies of A allow a distinguished marker for each of these pairs.

Unfortunately, these ideas do not translate to trees as easily. For example, consider
the runs in Fig. 4. Intuitively, both runs should obtain the marker 1,. However, since
p and g are rivals, this marker does not serve the purpose of distinguishing runs as
it does in the word case. The first p occurs in different subtrees of both runs, thus
the annotation of distinct markers is not possible. Also, it is easy to construct an
automaton where a rival p can occur at arbitrarily many pairwise prefix-independent
positions, thus a simple lexicographic distinction is not possible. This is also the
reason why the approach from [4] does not work for tree automata.

Our solution is to distribute not the runs of the automaton A, but the runs of its
Schiitzenberger covering. The Schiitzenberger covering of a max-plus automaton A
is a max-plus automaton which possesses the same behavior as A. It has already been
employed in a number of decidability results for max-plus automata [3, 4, 22, 31]. Its

alo b|1l b| -1
— 40 — 9o i q0 ~a> q0
o al0 » al0 0 ~ ™~ ~
— P, 1p D, 2;0 p73p Db, lp
T T T ~ NN
0 0 0 — ¢, 14 q,1p q,2p q,3p

Fig. 3 On the left, an unambiguous max-plus word automaton over the alphabet {a, b} which does not
satisfy the twins property but whose behavior is finitely sequential. On the right, an illustration of the runs
of the automaton on the words ¢, a, aa, and aaa together with appropriate markers. Arrows indicate a
transition. The states p and g are rivals with witnesses u = ¢ and s = b

@ Springer

Theory of Computing Systems (2021) 65:736-776 755
s B OTIENOY
w(p,a,q) =0
p(p,b,p) =1

P q

w(g,b,q) = =1

w(p, 0, ¢,p) = p(qo, p,c,q) =0 a a a a
P

wu(d,p) = p(d,q0) =0 4o qo p

Fig. 4 Two accepting runs of the max-plus tree automaton A = ({qo, p, g}, I', i, v) over the ranked
alphabet I" = {a, b, ¢, d} where ¢ € 'Y aber® andd e ', Al unspecified weights are assumed
to be —oo. The states p and ¢ are rivals

construction is inspired by a paper of Schiitzenberger [39] and was made explicit by
Sakarovitch in [35], see also [36].

To better explain the idea behind its construction, we first point out a certain aspect
of the classical powerset construction for finite automata [34]. Assume that D is the
result of applying the powerset construction to an NFA 5. Then we might say that for
a word w = wjw;, the state which D is in after reading the prefix w is the set of all
states which B could be in after reading w;. Similarly, the Schiitzenberger covering
of a max-plus automaton .4 annotates to every state of a run of .4 on a word w the set
of all states which “A could be in” at this point, i.e., which can be reached by some
valid run on the considered prefix of w. Like the powerset construction, these ideas
easily carry over to trees.

The reason we consider the Schiitzenberger covering of A is that each pair p, q
of its rivals satisfies the following property. For every tree ¢, either (1) p and q do
not occur together in any run on ¢ or (2) p and q occur only linearly, i.e., there is a
distinguished branch of ¢ such that for every run on #, all occurrences of p and q lie
on this branch. In particular, the situation of Fig. 4 is not possible. All pairs which
satisfy the first condition can simply be separated into different automata, all pairs
which satisfy the second condition can be handled like in the word case. The proof
of this is non-trivial and needs some preparation. We begin with the formal definition
of the Schiitzenberger covering.

For the rest of this section, let A = (Q, I', i, v) be a trim unambiguous max-plus-
WTA which does not satisfy the tree fork property.

Definition 4 (Schiitzenberger covering, [35]) The Schiitzenberger covering S =
(Qs, T, ns, vs) of A is the trim part of the max-plus-WTA (Q x P(Q), I', u', V)
defined for a € I" with rkj (@) = m and (po, Po), ..., (Pm, Pn) € O X P(Q) by

W ((p1, P1). ... (Pms Pm). a, (po, Po)) =
w(pts..., pm-a, po) if Ph={gqo€ Q| 3q1,...,9m) € P1 X ... X Py with
w(qu, ..., qm, a, go) # —o0}

—00 otherwise
v (po, Po) = v(po).

@ Springer

756 Theory of Computing Systems (2021) 65:736-776

Weletrmy: OxP(Q) —> Q,(p, P)— pandm: OQxP(Q) — P(Q),(p, P)—~ P
be the projections.

It is elementary to show that for a run of S on a tree ¢, the second entry of the
state at a position w consists of all states of .4 which can be reached by a valid run
of A on ¢t],. In particular, every two runs on the same tree coincide on their second
entries. Furthermore, projecting all states of a run of S to their first coordinate yields
a run of A, and the weights of these runs coincide. It follows that S is unambiguous
and satisfies [S] = [.A]. Also, S is trim by definition.

We can also make the following observation about the rivals of S. Let p and q be
rivals of S and let # and s be as in the definition of rivals. Since all runs of S on u
coincide on the second entry of the state at the root, p and q also coincide on their
second entry. Moreover, as projecting the runs of S on u and s to their first entries
yields runs of .4 on u and s, respectively, we additionally see that the first entries of
p and q are rivals in \A. Thus, if two states p, q € Qs arerivalsin S, thenp = (p, P)
and q = (¢, P) for some set P C Q and two states p, g € Q which are rivals in .A.

In the Schiitzenberger covering of the automaton from Fig. 4, only the states
(p,{p,q}) and (q, {p, q}) are rivals. See also Fig. 5 for the runs of the Schiitzen-
berger covering on the trees from Fig. 4. In the following lemma, we formally show
that the properties we just described indeed hold for S.

Lemma 5 Lett € Tr be a tree. Then the following statements hold.

(i) For every runr € Runs(t) and position w € pos(t) we have mp o r(w) =
{pe Q|3 eRuny(tl,, p)}
(ii) For every two runs ri, ry € Rung(t), it holds that o o ri=m o ;.
(iii) The projection w1 induces a bijection w1 : Runs(t) — Run 4(t) byr — myor.
(iv) For every run r € Runs(t) and every position w € pos(t), we have m o
r(w) € m or(w).
(v) S is trim, unambiguous, and satisfies [S] = [A].

(vi) For every I'-word s and two states p,q € Qs with pgq, we have
|
71 (p) =1 (q).

(ps {p,q0}) (g0,{P,q0}) (g0, {p;90}) (P, {P;q0})

Fig. 5 Two accepting runs of the Schiitzenberger covering of the automaton from Fig. 4. The states
(p,{p,q}) and (q, {p, q}) are rivals. The state (p, {p, qo}) is not the rival of any state

@ Springer

Theory of Computing Systems (2021) 65:736-776 757

(vii) Iftwo states p,q € Qs are rivals in S, then p = (p, P) and q = (g, P) for
some set P C Q and two states p, q € Q which are rivals in A.

Proof (i) Lett € Tr and r € Rung(t) and for contradiction, let w € pos(¢)
be a prefix-maximal position for which (i) does not hold. We deduce that (i)
holds for w. We let a = ¢(w), m = rkr(a), and write r(w) = (p, P) and
r(wi) = (p;, P;) fori e {1,..., m}.

First, let ¢ € P, then there are states (q1,...,qm) € P1 X ... X Py, with
w(qi,---5qm,a,q) #—oo. By assumption, forevery i € {1, ..., m} we find
arun r; € Runy(z[,,;, g:)- Then the quasi-run r": pos(¢[,,) — QO defined by
r'(¢) = g and r'(iv) = r;(v) is arun of A on ¢ [, with r/(¢) = g.

On the other hand, let r’ € Run4(¢],,) and let ¢ = r’(¢). Then for every
i €{1,...,m} wehave that r'[; € Run4(¢[,;), so by assumption, r'(i) € P;.
Moreover, u(r’(1),...,r'(m),a, q) # —o00,s0 g € P. Thus, (i) holds for w,
which is a contradiction, so w does not exist.

(ii) follows from (i).

(iii) Lett € Tr. By definition of ug, it is clear that for » € Rung(#) we have
w1 or € Run4(¢). The injectivity of 71 : Rung(#) — Run 4 (¢) follows from
(ii) since for every two runs ri,rp € Rung(#) we have mp o ry = m o 3.
For surjectivity, we let ' € Run4(f) and define a run r € Rung(z) induc-
tively as follows. For a leaf w € pos(r), we let r(w) = ('(w), {po € O |
w(t(w), po) # —oo}). For w € pos(z) with rkr(#(w)) = m such that r is
defined on wl, ..., wm with m; o r(wi) = P;, we let r(w) = (r'(w), {po €
Q| 3p1,.-.spm) € Pt X ... X Py with u(pi, ..., pm,a, po) # —00}).
Then r € Rung(¢) and my or = 1.

(iv) follows from (i) and (iii).

(v) & is trim by definition. Let # € Tr. By definition of wg, for every run » €
Rungs(¢) we have wtg(t, r) = wt 4 (¢, 1 or). By definition of vg, we also have
vs(r(e)) = v(m or(e)). By (iii), we thus have |Accs(?)| = |Accq(?)| < 1,
which means § is unambiguous, and [S](¢) = [A](?).

(vi) Letsbea I'-word and p, q € Qg be two states with p s—‘x> q, then there exists
arun r € Rung(p, s, q) with wtg(s,7) = x. By definition of us, we have

my or € Run%(s) and wt (s, r) = wt (s, w1 o r), so 71 (p) LLY m1(q).

(vii) Letp,q € Qg berivalsin S and write p = (p, P,), q = (q, Py). Letu € Tr
and s € Tr, be as in the definition of rivals and let P € Rung(u, p) and
r% € Runs(u, q). By (ii), we have P, = m o rP(s) = mp o r(e) = P,. By
(iii), we have 71 o r? € Runy4(u, p) and 71 o rY € Runy(u, q), so p and ¢

are siblings. Finally, from (p, P,) ﬂ) (p, Pp) and (g, Py) ﬂ) (g, Py), we

obtain by (vi) that p LY pandgq b, q.Since x # y, p and g are rivals in A.
O

In the theorems to follow, we will use fact (vii) of Lemma 5 without explicit further
notice.

In order to prove some deeper results about the rivals of S, we need two prepara-
tory lemmata. As a first simplification, we show that we may assume that two rivals

@ Springer

758 Theory of Computing Systems (2021) 65:736-776

p and g of A are always comparable with respect to the relation <. To see this,
note that by condition (ii) of the tree fork property, p and ¢ may not occur in
prefix-independent positions in a run. If in addition, p and g can also not appear in
prefix-dependent positions in a run, they never appear together in the same run of 4.
Thus, we can create two copies of .4, one in which we remove p and one in which
we remove ¢, and the pointwise maximum of these two automata will be equivalent
to the behavior of A.

Lemma 6 We may assume that for all rivals p,q € Q we have either p < q or
q < p, or both.

Proof Let p,q € Q be rivals for which neither p < g nor ¢ < p. Then we can
show that p and g never occur together in the same run as follows. Assume we have
atreet € Tr,arunr € Runy(¢), and positions wi, wy € pos(t) with r(wy) = p
and r(wy) = g. Then w; and wy may not be prefix-independent since p and g are
rivals, and by assumption .4 does not satisfy condition (ii) of the tree fork property.
However, if w; and w; are prefix-dependent, we have a witness for either p < g or
g < p. This is a contradiction, and thus r as chosen does not exist.

Welet Q1 = O\ {p}, Q2 = 0O\ {g}, and let A4; = (Qi, I', i, vi) for
i = 1,2, where u; and v; are the appropriate restrictions of p and v to the state
sets Q;. As p and ¢ do not occur together in any run of 4, every run of A is also
a run of at least one of the automata A;, A,. Thus, we have [A] = max?_, [4;]
and both A; and Aj; are trim and unambiguous and do not satisfy the tree fork
property.

This procedure can be iterated to separate all rivals which are not in <-relation.
The termination of this procedure is guaranteed by the fact that the set of states
becomes strictly smaller with every iteration. Eventually, we find trim unambigu-
ous max-plus-WTA Ay, ..., Ay, all of which do not satisfy the tree fork property,
such that [A] = max]_, [A;] and all rivals in an automaton .4; are pairwise in
<-relation.]

Next, we note an elementary statement about self-maps f: X — X. Namely, if
X is a finite set and f: X — X a mapping, then for every a € X there exists some
element b € X and an integer n > 1 such that after n iterations of f, both a and
b are mapped to b. To see this, consider the elements a, f(a), fz(a), ey f|X|(a).
By pigeon hole principle, there are numbers 0 < m; < my < |X| with f"!(a) =
f™2(a). Then if we choose n > m| as a multiple of mo, —m and b = f"(a), we see
that f"(a) =b = f"(b).

Lemma 7 Let X be a finite set and f: X — X a mapping. Then for every a € X,
there exists an element b € X and an integer n > 1 with f"(a) = b = f"(b). Here,
™" is the n-th iterate of f, i.e., fO = idx and "' = fo f™.

We now identify the first important property which all rivals of S satisfy. Namely,

if P C Q is the second entry of some rival, then it cannot occur in the form of a
“triangle” in any valid run of S. More precisely, if we have a run r and positions w,

@ Springer

Theory of Computing Systems (2021) 65:736-776 759

wvy, and wvy such that the second entry of r(w), r(wvy), and r(wvy) is P, then wv;
and wv; are prefix-dependent.

Lemma 8 Let (p, P), (q, P) € Qg be rivals in S. Furthermore, let t' € Tr be
atree, v’ € Rung(t’) a run of S on t', and w1, wy € pos(t') be positions in t'. If
o1’ (8) = mor'(wy) = mp or'(wy) = P, then wy and w; are prefix-dependent.

Proof We proceed by contradiction and assume that ¢/, ¥/, wy, w as in the statement
of the lemma exist such that w; and w; are prefix-independent. We show that then,
A satisfies condition (i) of the tree fork property. For the rivals (p, P) and (g, P),
let u and s be as in the definition of rivals and let v = {(s). As the proof is rather
technical, we first provide a proof sketch and then follow up with a more precise
presentation of the argumentation. See also Fig. 6 for some visual aid.

By assumption, u can reach (p, P) and s can loop in (p, P), thus the trees sPlw)
and s!PI"" (u) canreach (p, P). Due to the construction of S, this means both of these
trees can also reach the states of ’ at w; and wy. In particular, there exists a run of S
on the tree t = ¢/ (s'l(u) — wl)(s‘P“P‘ () — w») and for this run, the second entry
of every state at the beginning or end of an s-loop is P. In addition, ¢ leads to a state
with second entry P, so there in fact exist | P| runs of S on ¢, one for each state in P.
We let rq, ..., r|p| be the projections of these runs to their first entry and obtain | P|
runs of A on ¢ where for each run the state at the root and all states at the beginning
or end of an s-loop are from P.

By pigeonhole principle, there is some subloop s” below w» which loops in all
runs at the same time, i.e., where for some n; we have r; (wov™) = r; (wov™" ") for
all runs r;. For each r;, we let ¢; = r;(wpv™) € P be the state which r; loops in and
let x; be the weight of this loop.

If x; # x; for some i and j, the states ¢; and g; are rivals in A with witnesses
u and s". By Lemma 6, we may therefore assume g; < g;. Again by pigeon hole
principle, the run r; loops below w; in s™ for some m > 1 with some state p; € P,
say with weight y;. Due to x; # x;, we have mx; # ny; or mx; # ny;. Since u can
reach every state from P, the state p; is thus a rival of g; or ¢; with witnesses u and
s, From the existence of r; and the assumption that g; < g, we see that p; can
occur prefix-independently both from g; and from g;. This is a contradiction to the
assumption that A does not satisfy the tree fork property. It must therefore hold that
Xl = ... =X|P|.

P
S\p\\ I

| BB
A A

@ Springer

Fig.6 An illustration for the proof of Lemma 8

760 Theory of Computing Systems (2021) 65:736-776

We let x and y be the weights such that A loops s in p with weight x and in ¢ with
weight y. Then from x # y it follows that nx # x; or ny # x1, so the states g; are
either all rivals of p or all rivals of g with witnesses u and s”. We assume all g; to be
rivals of p and apply Lemma 7 to the mapping f: P — {q1,...,q|p|},7i(e) = qi
with a = p to obtain g; € P and m > 1 such that f"(p) = q; = f™(g;). Then
with § = 1(¢ — wov"!), we see that the I'-word §™ is a g -p-fork, i.e., A satisfies
condition (i) of the tree fork property.

We now turn to the more technical presentation of the proof. We define the tree
t =t (s"Pl(u) — w) (s () = w>) and construct a run r € Rung(t) of S on ¢

as follows. By assumption, there exists a run 7P € Rung(u, (p, P)) and a run ry €

|P]
Run%((p, P), s, (p, P)). We let | = rIP1™ (P — yIPly and r = P17 @ pp
s\p p 1 A ,

vlPI™) Then r] € Rung(s'”!(w), (p, P)) and r}; € Rung(s'?1" (), (p, P)).

By Lemma 5(iv), we have 7y or’(w;), 1 or'(w2) € P, so by Lemma 5(i) we can
find r/ € Run 4 (s'?1(u)) with r}'(€) = 711 o r'(wy) and r € Run4(s'P"" (u)) with
ry(e) = 7 o r' (wa). Then r = /(' (r]) — wi) (' () — w2) € Rung(r) is a
run of S on ¢ and we have 72 o r(wv') = P for 0 < i < |P| and 73 o r(wov') = P
for0 <i < |P|Pl.

By Lemma 5(i) and because mpo0r(¢) = P, we cannow find |P|runs 7y, ..., 7 p| €
Run 4(#) on ¢ such that {ri(¢), ..., rp|(e)} = P. We have r;(wav') € P for every
je{l,....|P|}and every i € {0,...,|P|'Pl}. For each i € {0, ..., |P|/"l}, we
define the tuple g; = (r1(wav'), ..., r|p‘(w2vi)). Since g; € PP for every i, we
can find ny < ny with g,, = g, by pigeonhole principle. Let n = ny — n and write
dn, = (q1, ..., q|P))-

We now show that qi, ..., gp| are either all rivals of p, or they are all rivals

of g. For this, note first that g; Y—lxj> gj for all j € {1,...,|P|} with weights
X1, ..., x;p| € R. Also, by the existence of the run P on u and Lemma 5(i), all states
in P are siblings.

We show first that x; = ... = x|p|. We assume that by contradiction, x; # x; for
somei # j.Then ¢; and ¢; are rivals in A with witnesses « and 5. By Lemma 6, we
can therefore assume that g; < g; or g; < q;. We assume ¢; < ¢; and let sj. beal-

word such that there exists a run r € Rung (qj, s; gi). Furthermore, by pigeonhole
principle, we can find my,my € {0,...,|P|} with r;(wiv™) = rj(wv™?) and
my < my. We let p; = ri(wv™') and m = my — m and show that p; is a rival of
either g; or g ;. We have p,-s—‘y'}p,- for some weight y; € R. Since p; € P, we know

nm

[ny s mx;

that p;, g;, and g; are all siblings. Also, we have p; > i Dis qi qi, and

s"M mx .
qj SN qj- Since x; # x;j, we have ny; # mx; or ny; # mxj, or both. Thus, p;

is arival of either g; or of q;.

Under these assumptions, we see that A satisfies condition (ii) of the tree fork
property as follows. Either the 2-I"-context f; = (¢ — wv™){(¢ — wyv")
together with the run r; [o) or the 2-I"-context 1, = 11(, s;.) together with the

run r; [pos(,l)(r;'. — Oo(t1)) is a witness for condition (ii) to be satisfied. Since our

@ Springer

Theory of Computing Systems (2021) 65:736-776 761

assumption for this section is that A does not satisfy the tree fork property, this is a
contradiction. In conclusion, x| = ... = xp|.
To see that q, .. ., g|p| are either all rivals of p, or they are all rivals of ¢, consider

the following. Using the same arguments as above, we find foreveryi € {1, ..., |P|}

. s"|nx s" |ny s"|xy
arun r?% € Runy4(u, g;). Furthermore, we have p —— p,q — ¢, and ¢; —

g; forevery i € {1,...,|P]}. Since x # y, we have either nx # x| or ny # Xxi.
Without loss of generality, we assume nx # x1, thus all g; are rivals of p.
We now show that A satisfies condition (i) of the tree fork property. We define

amapping f: P — {q1,...,qp|} by ri(¢) — ¢q; fori € {1,...,|P|}; recall that
{g1,....qp)} S P, {ri(e),....rp|(e)} = P, and ri(e) # rj(e) fori # j. By
Lemma 7, there exists m > 1l andi € {1,...,|P|} with f™(p) = q¢i = f"(q).

om smy .,/
From this, we obtain that with § = (¢ — wyv™!) we have qis—lz>q,- and q,-&p
for weights z, 7 € R. As p and ¢; are rivals, this means that .4 satisfies condition (i)
of the tree fork property. O

In the previous lemma, we showed that if P is the second entry of some rival
from S, then states with second entry P do not occur in the form of a triangle. In
the next lemma, we show that even prefix-independent occurrences are restricted to
a certain degree. Namely, if we have two rivals (p, P) and (¢, P) with p < g, then
all occurrences of P as a second entry are prefix-dependent on (p, P).

Lemma 9 Let (p, P), (q, P) € Qs be rivals in S with p < q. Furthermore, let
t' € Tr be a tree, r' € Rung(t') a run of S on t', and w| € pos(t’) a position in
t' with r'(wy) = (p, P). Then all positions wy € pos(t') with 3 o r'(wy) = P are
prefix-dependent on w.

Proof We proceed by contradiction and take (p, P), (¢, P), t’, r’, wy as in the state-
ment of the lemma and assume that there exists a position wy € pos(t’) which is
prefix-independent from w; and for which 73 o r’(w;) = P. We show that under
these assumptions, A satisfies condition (ii) of the tree fork property. For the rivals
(p, P) and (g, P), let u and s be as in the definition of rivals and let v = {1 (s). As
in the proof of the previous lemma, we first provide a short proof sketch, see also
Fig. 7 for some visual aid.

t/ t
B ———
(p,P) (—P) (p,P) (—P)
" S A
. 5Pl
(—P) —

Fig.7 An illustration for the proof of Lemma 9

@ Springer

762 Theory of Computing Systems (2021) 65:736-776

As we have seen in the proof of Lemma 8, the tree s!P1(u) can reach (p, P), so
due to the construction of S, it can also reach the state of ' at w,. Thus, there exists
arun of S on the tree r = ¢'(s!P!(u) — w») for which the state at wy is (p, P) and
for which the second entry of every state at the beginning or end of an s-loop is P.
We let r be the projection of this run to the first entries of the states.

By pigeonhole principle, we find some subloop s” below wy in which loops in
a state p’ € P. Let z be the weight of this loop and let x and y be the weights such
that A loops s in p with weight x and in ¢ with weight y. Due to x # y, we have
nx # z or ny # z. Since u can reach every state from P, the state p’ is a rival of
p or g with witnesses u# and s”. From the fact that r(w;) = p and the assumption
that p < g, we see that p’ can occur prefix-independently both from p and from
q. This is a contradiction to the assumption that A does not satisfy the tree fork
property.

In more detail, the proof is as follows. We define the tree t = 1’ (s!Pl(u) — wn)
and construct a run 7 € Run4(¢) of A on ¢ as follows. By assumption, there exists
arun rP € Runs(u, (p, P)) and a run ry € Rung((p, P), s, (p, P)). We let rj =

riPI P s IPly Then r) € Rung(s'"l(w), (p, P)).

By Lemma 5(iv), we have 71 o r’(w) € P, so by Lemma 5(i) we can find r} €
Run 4(s'Pl(u)) with /() = 71 o r/(w2). Then r = 71 (') (r) — ws) € Run4(?) is
arun of A on ¢ and we have r(wov') € P for0 <i < |P|.

By pigeonhole principle, we can find ny,ny € {0,...,|P|} with r(wyv") =
r(wpv™) and ny < ny. We let p’ = r(wjv™) and n = ny — n; and show that

p’ is a rival of either p or g. We know that p’ e p’ for some weight z € R.

Since p’ € P, we can also find a run r”" € Run_4(u, p’) which means that p’ is
a sibling of both p and ¢. We now have p’—s—lgp’, p—s—‘gp, and qs—@—;q. Since

X # y, we have nx # z or ny # z, or both. Thus, p’ is a rival of either p or
of g.

We see that A satisfies condition (ii) of the tree fork property as follows. Since
we assumed p < g, there exists a I™-word s/ and a run rj € Run® (¢, Sy D).
Therefore, either the 2-I"-context t; = (¢ — wji){¢ — wov™) together
with the run r|pa;,) or the 2-I'-context 1, = 1 (sé] , ©) together with the run
r[pos(tl)(r(f — O1(r1)) is a witness for condition (ii) to be satisfied. Since our
assumption for this section is that A does not satisfy the tree fork property, this is a
contradiction. O

We can now prove that every run of S satisfies at least one of the following two
conditions. If (p, P) and (g, P) are rivals in S with p < ¢, then for every run r of
S on a tree ¢ either (i) (p, P) does not occur in r or (ii) all states with second entry
P occur along a distinguished branch of ¢. This property enables us to apply the idea
from the word case of using markers to indicate the first visit of a rival in a run. If u is
a witness for (p, P) and (g, P) to be siblings, there is in particular a run on u which
leads to (p, P). This run then satisfies condition (ii) and since by Lemma 5(ii) the
second entries of runs on the same tree coincide, all states with second entry P occur
along a distinguished branch of u in every run of S on u. This is true in particular for
the two rivals (p, P) and (g, P).

@ Springer

Theory of Computing Systems (2021) 65:736-776 763

Theorem 6 Let (p, P), (q, P) € Qs be rivals in S with p < q. Then for every
tree t € Tr and every runr € Runs(t) of S on t, at least one of the following two
conditions holds.

(i) The state (p, P) does not occurinr, i.e., r(w) % (p, P) for all w € pos(t).
(ii) All states with second entry P occur linearly in r, i.e., for all wi, wy € pos(t)
with my o r(wy) = m o r(wz) = P we have wi <, wy or wy <, wy.

Proof Let (p, P), (q, P), t, r be as in the statement of the theorem. Assume that (i)
does not hold, i.e., there is a position w € pos(¢) with r(w) = (p, P). Let wi, wy €
pos(?) be two positions with my or(w;) = mpor(wy) = P. By Lemma 9, we see that
then w; and w; are prefix-dependent on w. From the definition of the prefix relation,
we see that if either w; <, w or wy <, w, then all three positions are in prefix
relation. We thus consider the case that w <, wy and w <, wy. In this case, we see
from Lemma 8 that w; and w; are prefix-dependent as follows. We write w; = wuv;
and wy = wv, and define ¢ = ¢],, and ' = rJ,. Then we have ' € Rung(¢'),
r'(e) = (p, P),and w3 o r'(v)) = mp o r'(vp) = P. Thus, by Lemma 8 the positions
vy and v; are prefix-dependent. [

In the following example, we illustrate some more complex interactions which
may exist between rivals, in particular between the rivals of a Schiitzenberger
covering.

Example 1 We extend the max-plus-WTA from Fig. 4 to an automaton A =
({qo., p, P, p", q}, T, 1, v) over the alphabet I = {a, b, ¢, d, e, f} where f € ',
celP a,b,e e 'V andd € 'Y, As this example is somewhat complex, we
first give some intuition of what we are trying to show with the example and how we
achieve this.

Let P = {p,p’,p”,q} and let S be the Schiitzenberger covering of 4. We
construct A such that it satisfies the following conditions.

(i) A is unambiguous and does not satisfy the tree fork property. We achieve
unambiguity simply by making .4 top-down deterministic.
(ii)) The problem showcased in Fig. 4 still occurs, i.e., a nonlinearity in the first
occurrence of rivals.
(iii) The state g is a rival of all of p, p’, and p”.
(iv) Wehave p”’ < ¢ < p < g < p’. In particular, we cannot trivially separate
these states to different automata.
(v) 1In S, the state (g, P) is arival of all of (p, P), (p’, P), and (p”, P).
(vi) In S, we have (p”, P) < (¢, P) < (p, P) < (g, P), i.e., these three states
cannot be trivially separated, and we have (p”, P) < (p/, P).
(vii) In S, the state (p/, P) may occur at arbitrarily many pairwise prefix-
independent positions in the same run.

The sole purpose of the letter ¢ is to ensure condition (ii). The purpose of b is to
ensure conditions (iii) and (v), the purpose of a is to ensure the first part of condition
(vi), the purpose of e is to ensure the second part of condition (vi), and the purpose
of f is to ensure condition (vii).

@ Springer

764 Theory of Computing Systems (2021) 65:736-776

It is surprising that an automaton with the properties above exists since (1) The-
orem 6 tells us that whenever (p”, P) occurs in a run, then all states with second
entry P occur at pairwise prefix-dependent positions, (2) both (p”, P) and (p’, P)
may occur together in the same run, and (3) the state (p’, P) may occur at two
prefix-independent positions in the same run. We define v and v as follows.

n(d, qo) = pnd, p) =p(d, p’)y =0

u(p, qo. ¢, p) = n(qo, p. ¢, q) = u(p', qo. ¢, p') = n(p’, q0. ¢, p”) =0
w(p.b, p) =pn(p'.b,p")=u@p". b, p" =1

uig,b,q) =—1

u(p,a,q) =pulg,a,p) =u(p',a p)=ng,ap’) =0

u(p,e p)=u(g.e.q) = u(p'.e.p) =up.e p” =0

w(qo, P', qo. frq) = mw(p'. qo. p's £, p)) =0

v(p”) =0

All unspecified weights are —oo. The trees in Fig. 8 together with the runs given on
them showcase the above transitions in a more graphical way.

With witnesses u = c¢(d,d) and s = b(o), we see that conditions (iii)

0 0 0
and (v) above are satisfied. Due to (g, P)) (p, P) @) (g, P) ac) (p”, P)

0 .. . _—
and (p/, P)ﬂ)(p”, P), we see that condition (vi) is also satisfied. Let Py =

{q0, p, p'}, then the tree in Fig. 9 together with the run of S on it illustrates that
(p’, P) may occur nonlinearly, i.e., condition (vii) is satisfied as well.

This scenario does not violate Theorem 6 since (p’, P) can occur nonlinearly only
“below” an f. By construction of A, there is a prefix-minimal position labeled f
in every tree which both contains an f and possesses a valid run of A. Below this
prefix-minimal f, only go and p’ may occur, and all occurrences of p, g, p” are
between the root and the prefix-minimal f. In S, one can check that P cannot occur

Fig.8 An illustration of the transitions of .A

@ Springer

Theory of Computing Systems (2021) 65:736-776 765

Fig.9 The state (p’, P) may
occur nonlinearly

(p', Po) (q0, Po) (p", Po) (qo, Po)

as the second entry of a state above the prefix-minimal f in any run; to see this, note
that the second entry of the state at f is necessarily one of {p’}, {g}, {p’, ¢}. Thus, if
(p’, P) occurs nonlinearly in a run on a tree, then no run on this tree can visit any of
the states (p, P), (¢, P), (p”, P).

We note that the states p and p’ are also rivals in A with witnesses u = d and
s = a(b(a(o))). Furthermore, S contains many more rivals than the ones men-
tioned above, among others the rivals (p’, {p’, ¢}) and (¢, {p’, q}) with witnesses
u = f(d,d,d) and s = b(¢) and the rivals (p, {p, p/, p"}) and (p’, {p, p’, p"})
with witnesses u = a(f(d, d, d)) and s = a(b(a(o))).

We are now ready to construct the automaton which tracks the first occurrences
of rivals, and whose runs we will later distribute across multiple automata in order to
separate all rivals.

Construction 1 Let Ry, ..., R, € Qg be an enumeration of all (unordered) pairs
of rivals of S, i.e., foralli € {1, ..., n} we have R; = {(p;, P;), (g;, P;)} such that
(pi, P;) and (g;, P;) are rivals in S and for every two rivals (p, P), (¢, P) € Qs,
we have R; = {(p, P), (q, P)} forsomei € {1, ..., n}. Since by Lemma 6, we may
assume that all rivals in A are in <-relation, we assume in the following that p; and

g; are named such that p; < g; foralli € {1, ..., n}.
For each pair of rivals R;, we define a set of markers by ; = {0, |Q| + 1} U
({1,...,1Q]} x R;). The set of all combined records of markers is defined by I =

I x ... x I,. Fora € I, we denote by a[i] the i-th entry of a.

Intuitively, the states of our new automaton will consist of a state from S together
with a record of markers from /. However, in order to properly update markers, we
need to know in each step the records of all other runs as well. Thus, our states will
be from Qs x I x P(Qs x I).

In order to define the transition function of our new automaton, we first define how
markers are updated. In some sense, this is similar to the context successor defined
in [4]. Assume we transition into the state q € Qg, we have m subtrees below our
current position in the tree, the runs we consider on these subtrees have obtained
markers ay, ..., ay, € I, and the sets of states we could be in on these trees, together
with their markers, are given by Ay, ..., A;; € Os x 1.

Every pair (p,a) € Ay corresponds to exactly one run of S on the k-th subtree
together with its markers. Since S is unambiguous, we can therefore assume that
|Ax| < |Q]. Also, since ai is the marker of a run on the k-th subtree, we may assume
that (Qs x {ax}) N Ax # 0.

@ Springer

766 Theory of Computing Systems (2021) 65:736-776

Fork € {1,...,m}andi € {1, ..., n}, we define the sets of unassigned counters
Belil € {1,...,|Ql} by
Belil=A{1,..., 100\ {j | 3(p, a) € A with ali] € {j} x R;}.

Then if for all k € {1, .. .,ml we have [Ax| < |Q] and (Qs X {ax}) N Ax # @, we
define the record of markers b for our current position by (explanations below)

0 ifm=0andq ¢ R;
1, q ifm=0andq € R;
arli] ifk € {1,..., m} satisfies:
bli]l = a[i] = Oforall l # k and either ai[i] # Oor q ¢ R;

(min Bi[i],q) ifq € R;andk € {1, ..., m} satisfies: ax[i] = 0 and
forall/ # kand all (p,a) € A;: ali]=0
[ol+1 otherwise

fori € {l,...,n}. If |[Ax] > |Q] or Os x {ax} N Ax = @ for some k, we let
b[1]=...=b[n]=10|+ 1.

Note that min Bg[i] in above case distinction always exists since |Ax| < |Q],
(QOs x {ax}) N Ax # @, and in the case in question we have ax[i] = 0. We define
I(q,ar,...,am, A1, ..., Ayp) = b.

Case 1 of the definition above means our current position is a leaf and q is not from
R;, so we assign the dummy marker 0. Case 2 means our current position is a leaf
and q is from R;, so we assign the marker (1, q). Case 3 means that either (1) there
is exactly one subtree below our current position which already obtained a marker
different from 0 and we keep this marker for our current position, or (2) the markers
of all subtrees are 0 and q is also not from R;, so we continue with the dummy
marker 0.

Case 4 means the markers of all subtrees below our current position are 0, the
state q is from R;, and there is at most one subtree on which runs exist that obtained
a marker for R;. Then, we take the smallest number which is not already used in a
marker for R; in any run on this subtree, and use this number together with q as the
marker for our current position.

Case 5, the “otherwise-case”, applies in two situations. This case means that either
(1) two distinct subtrees below our current position have already obtained a marker,
or that (2) all markers below our current position are 0 and q is from R;, but we
cannot apply case 4 as there are two distinct subtrees on which runs exist which
obtained markers for R;. In other words, markers were assigned nonlinearly, and our
run satisfies only condition (i) of Theorem 6. In this case, we assign the dummy
marker |Q| + 1.

The extra case covers the situation where in case 4, the set By[i] would be empty.
This case is necessary to ensure our definition is formally complete, but in our
applications of the operator Z it will not actually occur.

@ Springer

Theory of Computing Systems (2021) 65:736-776 767

V&ie define our “run-marking” max-plus-WTA B = (Q, I, i, v) as follows. We
let Q' = 0s x I x P(Qs x I) and let B be the trim part of the automaton
B = (Q, T, /, V) defined for a € I' with rkj(a) = m and (pg, ag, Aog), - . .,

P> G, Am) € Qs x I X P(Qs x I) by

/j‘/((plv Ell’ Al)v T (pm, &m’ Am)’ a, (p07 5_10, AO)) =

/Ls(pl,...,pm,a,po) ifc_lo=I(p0,c_11,...,dm,A1,...,Am)andAo:
{(q0. bo) € Qs x I 1 3((q1, b1). - ... (qm. b)) €
Al X ... X Ay with us(qq, ..., Qm, a, qo) # —00
and by = Z(qo, b1, ..., bm, A1, ..., An)}

—00 otherwise

V' (po, ao, Ag) = vs(po).

For the rest of this section, we show that the automaton B “does what we want”:
We show that 3 is unambiguous, that it has the same behavior as .4, and that we can
indeed separate its rivals by distributing runs with a different marker across different
automata which then satisfy the twins property.

Letm: QsxIxP(QsxI) — Qs,(p,a,A) — p,m: Qs xIxP(QsxI) —
I,(p,a,A)— a,and13: Qs x I x P(Qs x 1) = P(Qs x I), (p,a, A) — A be
the projections. We prove the following basic observations about B.

Lemma 10 Lett € Tr be a tree. Then the following statements hold.

(i) Forevery runr € Rung(t) we have (71 o r(w), 12 o r(w)) € 73 or(w). In

particular, in the construction above the operator T is only applied to sets Ay,
and tuples ay with (Qs X {ax}) N Ar # 0.

(ii) For every two runs r1,ry € Rung(t) and every position w € pos(t) we have
w3 ori(w) = 73 o ra(w).

(iii) For every run r € Rung(t) and position w € pos(t) we have 73 o r(w) =
{(q.b) € Qs x 1| 3r' € Rung(t],) withr'(e) = (q, b, T3 o r(w))}.

(iv) The projection 71 induces a bijection 71 : Rung(t) — Rung(t) byr — mjor.

(v) B is trim, unambiguous, and satisfies [A;|B = [A].

(vi) Foreveryrunr € Rung(t) and position w € pos(t) we have |t3or(w)| < |Q|.
In particular, in the construction above the operator T is only applied to sets
Ay with |Ak| < Q.

(vii) Forevery I'-word s and two states p, § € Q with p LY g, we have w1 (p) LY
71(q).

Proof (i) Lett € Tr and r € Rung(¢) and for contradiction, let w € pos(t) be
a prefix-maximal position for which (i) does not hold. We let m = rkp (¢t (w))
and write r(w) = (p,a, A) and r(wj) = (p;,a;, A;) for j € {1,...,m}.
Since r is a run of B on t, we have us(pi,...,Ppm,a,p) # —oo and a =

@ Springer

768

Theory of Computing Systems (2021) 65:736-776

(ii)

(iii)

(iv)

()

(vi)

(vii)

I(p,ai,...,am, A1, ..., Ay). By assumption, we have (p;, a;) € A; for all
j ef{l,...,m}, so (p,a) € A follows from the definition of 7 . This is a
contradiction, thus w does not exist.

Lett € Tr and rq, r» € Rung(¢) and let w € pos(?) be a prefix-maximal posi-
tion for which (ii) does not hold. From the definition of 7 u, it is immediately
clear that 73 o r{(w) = 73 o r2(w), so w does not exist.

Lett € Tr and r € Rung(¢) and let w € pos(t) be a prefix-maximal position
for which (iii) does not hold. We will deduce that (iii) holds for w. We let
m = tkp(t(w)) and write (w) = (p,a, A) and r(wj) = (pj,a;, A;) for
jef{l,....,m}. _ ~ _

First, let (q,b) € A, then there are states ((qi,b1), ..., (Qm,bn)) €
Al X ... X Ay with u(qi,...,qm,a,q) # —oo and b = I(q,El,
...,l;m,Al,...,Am). By assumption on w, for every j we find r; €
Rung(t fwj) with r;(e) = (q;, 15]-, A;). Then by definition of 77, we see
that the quasi-run r’: pos(t[,) — O defined by r'(¢) = (q,b, A) and
r'(jv) =rj(v)isarunof Bont[, withr'(e) = (q, b, A). ~

On the other hand, let ' € Rung(z[,,), with r'(¢) = (q, b, A) for some
(q, b) € Qs x I. Then from (i) we obtain (q, b) € A. Thus, (iii) holds for w.
Lett € Tr. By definition of fi, it is clear that for r € Rung(t) we have 7jor €
Rung(¢). For the injectivity of 71 : Rung(t) — Rung(¢), let r1, r» € Rung(¢)
with 71 o ry = 71 o rp. Let w € pos(¢) be a prefix-maximal position from
the set {v € pos(t) | ri(v) # r2(v)}. Then 7 o ri(w) = 71 o r2(w) and for
all j € {1,...,rkp(t(w))} we have ri(wj) = ra(wj). From the definition of
7T |, it is immediately clear that r{ (w) = ra(w) follows, i.e., w as chosen does
not exist.

For surjectivity, we let r’ € Rung(¢) and define a run r € Rung(¢) induc-
tively as follows. For a leaf w € pos(z), we let p = r'(w), a = Z(p),
A = {(qo0, Z(qo) | ns(t(w), qo) # —oo}, and r(w) = (p, a, A).

Now let w € pos(¢) with rk;(t (w)) = m such that r is defined on w1, ...,
wm. We write p = r’(w) and r(wj) = (pj.aj,Aj) for j € {1,...,m}.
We let ap = Z(po, ai, - .., am, A1, ..., Ap) and A = {(qo, bo) € Qs x I |
3(qi, b1), -+, (@ b)) € Ap X ... X Ay With ns(q1, .., Qm, a, qo) #
—oo and by = Z(qq, b1, ..., bm, A1, ..., Ap)}, and r(w) = (p, a, A). Thus,
we obtain a run r € Rung(¢) with 71 o r(w) = r’.

B is trim by definition. Let t € Tr. By definition of 7 u, for every run r €
Rung(¢) we have wtg(f,r) = wts(t, 11 o r). By definition of 7 v, we also
have Tv(r(¢)) = v(m1 o r(e)). By (iv), we have |Accg(?)| = |Accs(?)| < 1,
which means B is unambiguous, and we have [A;|B(t) = [S] () = [A]¢).
The automaton A is assumed to be trim and unambiguous, so we have
[Runy(¢)| < |Q| for every t € Tr. Furthermore, the projections 7y and 77
are bijections by Lemma 5(iii) and (iv) above. Let t € Tr, r € Rung(¢),
and w € pos(t). From (iii), we see that |73 o r(w)| < |Rung(t],)| =
IRung(7],,)| = [Rung(r,)| < |QI.

Let s be a I'-word and p,§ € Q be two states with ﬁgc}, then there is
arun r € Rungi(p,s,q) with wti(s,r) = x. By definition of ji, we have

@ Springer

Theory of Computing Systems (2021) 65:736-776 769

7l or € Rung(s) and wtyp(s, r) = wtg(s, 71(r)), so we have 1 (p) Sk
71(q). O

Next, we prove two basic statements about how 3 sets markers. Assume we have
some run in which a state (p, a, A) occurs. First, we show that if a[i] # O for some
i, then in the past, we must have visited one of the rivals in R;. Second, we show that
if A contains a state (q, b) with b[i] # 0 for some i, then we must have visited some
state with second entry P; in the past.

Lemma 11 Lett € Tr be a tree, r € Rung(t) be a run of B on t, let w € pos(t)
be a position in t, assume that r(w) = (p,a, A), and leti € {1,...,n}. Then the
following statements hold.

(i) Ifali] # O, then t@ere is a position v € pos(t) withw <, vand i or(v) € R;.
(ii) If there exists (q, b) € A with b[i] # 0, then there is a position v € pos(t) with
w <, v such that my o 71 o r(v) = P;.

Proof (i) Assume a[i] # 0. We choose v prefix-maximal from the set {w’ €
pos(t) | w <, w’ and r(w’) = (q, b, B) with b[i] # 0}. This set is not empty
since it contains w. We write r(v) = (q, b, B). If ¢ ¢ R; would hold, we see
from the definition of /i, the definition of the operator Z, and the fact that we
chose v prefix-maximal from above set, that either case 1 or case 3 of the def-
inition of Z would apply in the definition of b[i]. Thus, b[i] = 0 would hold,
which is not the case. Therefore, q € R; holds.

(i) Assume there is (q, b) € A with b[i] # 0. By Lemma 10(ii), there is a run
r’ € Rung(t],) with r'(¢) = (q, b, A). Then by (i), there exists v € pos(z[,,)
with 7| o ¥'(v) € R;. Furthermore, we have r[,, € Rung(¢[,). Combining
Lemma 10(iv) and Lemma 5(ii), we have P; = mpoffjor’(v) = myoRjor|,, (v).
Thus, we see that 5 o 77 o r(wv) = P;. 0

Next, we essentially prove that markers for R; are properly set in runs where states
with P; as a second entry occur only linearly. That is, we show that in these runs, a
marker for R; is only set when a rival from R; is actually visited, and that it cannot
be altered afterwards.

Lemma 12 Lert € Tr,i € {1,...,n}, and r € Rung(t) such that for all positions
V1, V2 € pos(t) with wy o 7Ty o r(v1) = m o 1 o r(v2) = P; we have vi <, v or
vy <, vi. If w € pos(t) is the prefix-largest position of t with 7ty o r(w) € R; then
the following properties are satisfied

(i) The marker 715 o r(w) is defined using case 2 or case 4 of the definition of the
operator L.
(ii) For all positions v € pos(t) withv <, w we have Ty or (v)[i] = mor(w)[i] €
{1,..., 101} x {m1 o r(w)}.
(iii) For all positions v € pos(t) \ {w} such that either v and w are prefix-
independent or w <, v, we have 75 o r (v)[i] = 0.

@ Springer

770 Theory of Computing Systems (2021) 65:736-776

Proof Letm =tk (t(w)). If m = 0, 75 o r(w)[i] is obviously defined using case 2.
Otherwise, since w is the prefix-largest among all positions w’ with 7} or(w’) € R;,
we have by Lemma 11(i) that 7201 (v)[i] = O forall v € pos(#) \{w} withw <, v.In
particular, we have 75 o r(wj)[i] =0 forall j € {1, ..., m}. Thus, by Lemma 11(ii)
and our assumptions on » and w, we see that case 4 of the definition of the operator
T applies in the definition of 775 o r(w)[i]. Thus, 1 or(w)[i] € {1, ..., |0} x {7 0
r(w)}.

We show (ii). For contradiction, let v € pos(¢) be the prefix-largest position with
v <p wand 72 o r(v)[i] # 72 or(w)[i]. Let m = rtkr(¢(v)) and j € {1,...,m}
such that w = wvjv’ for some v'. Then 75 o r(vj)[i] = 72 o r(w)[i] # 0, and
by Lemma 11(i) and our assumption on r, we have 715 o r(vk)[i] = O for all k #
j. Thus, case 3 of the definition of Z applies in the definition of 772 o r(v)[i], so
2 o r(V)[i] = 7 o r(vj)[i] = 73 o r(w)[i]. This means v as chosen does not
exist.

Finally let v € pos(¢) \ {w} be such that either v and w are prefix-independent or
w =<, v. Then from Lemma 11(i) and our assumption on r we immediately obtain
wyor(v)[i] =0. L]

In the next lemma, we show that if two states are rivals in B, then their records
of markers differ. The reasoning for this is exactly the same as in our intuitive
description at the beginning of this section.

Lemma 13 If (p, a, A) and (q, b, B) are rivals in B, then p and q are rivals in S
and fori € {1,...,n} with R; = {p,q}, we have a[i] # b[i] and a[il, b[i] €
{1,....101} x {p, q}-

Proof Let p = (p,a, A) and § = (q, b, B) be rivals in B. Let u and s be as in the
definition of rivals and let r? € Runj; (u, p) and = RunB(u q). Then by Lemma

10(iv), we have 7 (r?) € Rung (u, p) and #1(r?) € Rung(u, q). By Lemma 10(vii),

we also have p ﬂ p and qﬂq with x # y, thus p and q are rivals in S. Let
i €{l,...,n} with R; = {p, q}. We may assume that p = (p;, F;) and q = (g, P;).

We show that a[i], b[i] ¢ {0, Q| + 1}. We let rP = 7| o r? and r9 = 7| o r4.
We have rP(g) = (p;, P;) and we assumed p; < ¢;, so by Theorem 6 we obtain that
for every two positions vy, vy € pos(u) with 7 o rP(v)) = m o rP(v2) = P;, we
have v <, v or v3 <) v;. This also holds for r% since by by Lemma 5(ii) we have
morP =mpord.

Let w, € pos(u) be the prefix-largest position of u with rP(w,) € R; and w, €
pos(u) be the prefix-largest position with r9(wy) € R;. That w, and w, exist is
clear from the fact that rP(¢) € R; and r9(¢) € R;. By Lemma 12(ii), we have
alil = orP(wp)lil € {1,..., 101} x {71 o rP(wp)} and bli] = 72 o rd(wy)[i] €
(1., 101} x {71 0 ¥ (wg)}.

We show that a[i] # b[i] and consider two cases. First, if w, = w,; we assume
for contradiction that a[i] = b[i]. Then we see that rP(wp) = r(wy) € R;, and
we also have rP(¢) = p and rl(e) = q. It follows that with s = u(o — w,), we

have 7 o rp(u)p)—>p, and mp o rp(wp) g for weights z1, zo € R. Thus, A

@ Springer

Theory of Computing Systems (2021) 65:736-776 771

satisfies condition (i) of the tree fork property, which is a contradiction. Therefore,
ali] = b[i] cannot hold when w, = wy.

Now assume without loss of generality that w, <, w, with w, # w, and write
wy = wpjv and rﬁq(w,,j) = (¢, b, Aj). By Lemma 10(i) and Lemma 10(ii),
we then have (q, ') € Aj = w30 rﬁ(ij). By Lemma 12(i), we know that
7Ty o rﬁ(wp)[i] is defined using case 4 of the definition of Z, so ali] # bli]
must hold. O

We turn to our final construction where we distribute the runs of B across multiple
automata. For every record of markers ¢ € I, we construct one automaton 3z which
for each pair of rivals R; admits only runs using the markers 0 and c[i]. All runs in
which rivals occur nonlinearly are covered by admitting the marker | Q|+ 1. All other
runs are covered by admitting an appropriate marker from {1, ..., |Q[} x R;.

Construction 2 For every tuple ¢ € [, we define a max-plus-WTA Bz =
(Q¢, I', i1, V) by removing states from B through

Q:; ={(p.a,A) € Q| foralli € {1,...,n}itholds:
if c[i] = |Q| + 1 then p # (p;, P;), and
if ¢[i] # | Q| + 1 then a[i] € {0, c[i1}}.

Finally, we formally prove that the automata 3z are unambiguous, that their point-
wise maximum is equivalent to the behavior of A, and that they all satisfy the twins
property, which means that they can be determinized. We note that the construction
of the automata B3; is optimized for provability, so we omit analyzing their size and
the complexity of their construction.

Theorem 7 We have [A]] = maxzes [Bz] and for every ¢ € I, the automaton B is
unambiguous and satisfies the twins property.

Proof The unambiguity of B; follows from the unambiguity of B. To see that B; sat-
isfies the twins property, let (p, a, A), (q, b, B) € Qg be rivals in Bz. Then (p, a, A)
and (q, b, B) are also rivals in 53, so by Lemma 13 for some i € {1,...,n} we
have ali] # b[i] and a[i], b[i] ¢ {0,|Q| + 1}. By definition of Bz, this means
(p,a, A), (q, b, B) € Qg is impossible, so there are no rivals in 5z and B; satisfies
the twins property.

To show that [A] = maxzes [Bz], we show that for every tree t+ € Tr we have
Rung(r) = (J;c; Rung, (7). From this, it follows that maxze; [Bz] = [B] = [A].
The inclusion “D” is clear.

Lett € Tr,r € Rung(?), and let O = {i € {1,...,n} | there is a position
w € pos(t) with 71 or(w) = (p;, P;)}. Leti € O and assume we have two positions
vy, vp € pos(t) such that mp o 71 o r(vy) = @ oy o r(va2) = P;. Then, since
m1(r) € Rung(¢) by Lemma 10(iv), we obtain by Theorem 6 that v; <, v or
v2 <, vi. We can therefore let w; € pos(z) be the prefix-largest position in ¢ with

@ Springer

772 Theory of Computing Systems (2021) 65:736-776

71 o r(w;) € R;. Then from Lemma 12(ii) and Lemma 12(iii), we obtain that for
all positions v € pos(f) with v <, w; we have 72 o r(v)[i] = 72 o r(w;)[i] €
{1,...,101} x {71 o r(w;)}, and for all other positions v € pos(t) we have 7 o
r(w)[i] =0.

We define a tuple ¢ € I as follows. If i € O, we let ¢[i] = 72 o r(w;)[i], where
w; is defined as above. If i ¢ O, we let c[i] = |Q| + 1. Then we have r € Runp_ (7).
Thus, Rung (1) = | Jzc; Rung, (1). O

We now obtain a finitely sequential representation of A by applying Theorem 1
to the automata B;. In particular, we see that the behavior of a trim unambiguous
max-plus-WTA is finitely sequential if it does not satisfy the tree fork property. This
concludes the proof of Theorem 3.

4 Further Insights

In this section, we show some additional properties of the rivals of the Schiitzenberger
covering S. These properties are not necessary for the proof of Theorem 3, but they
do give a better idea of the limits of interaction there may exist between the rivals of
S. Also, they reveal a different approach we could have taken to the constructions in
Section 3.2.

If tworivals (p, P) and (g, P) of S cannot occur together in the same run, they can
be trivially separated like in Lemma 6. Therefore, in the following we only consider
the case that (p, P) < (g, P). Under this assumption, the first property we show is
that Theorem 6 is true even if we replace (p, P) by (¢, P) in (i), i.e., we have the
following theorem.

Theorem 8 Ler (p, P), (q, P) € Qs be rivals in S with p < q. Then for every
treet € Tr and every runr € Rung(t) of S on t, at least one of the following two
conditions holds.

(i) The state (q, P) does not occurinr, i.e., r(w) # (q, P) for all w € pos(t).
(ii) All states with second entry P occur linearly in r, i.e., for all wi, wy € pos(t)
with wy o r(wy) = mp or(wz) = P we have wy <, wy or wy <p wy.

Theorem 8 follows from Theorem 6 by applying Lemma 14 below. In short,
Lemma 14 tells us that from (p, P) < (g, P), it follows that there is a rival (¢’, P)
of (¢, P) with (¢, P) < (¢’, P). Thus, Theorem 8 follows by applying Theorem 6
to the rivals (g, P) and (g’, P). Together, Theorems 6 and § tell us that whenever
we have two rivals (p, P) and (¢, P) with (p, P) < (g, P) in S, then whenever
one of (p, P),(q, P) occurs in a run on a tree ¢, then for every run on that tree
all states with second entry P occur along a distinguished branch of . We prove
Lemma 14.

Lemma 14 Let (p, P), (g, P) € Qg be rivals in S with witnesses u and s such that

(p, P) < (q, P). Then there exists a state q¢' € P with (g, P) < (¢, P) such that
(q', P) and (q, P) are rivals in S with witnesses u and s" for some n > 1.

@ Springer

Theory of Computing Systems (2021) 65:736-776 773

Proof Let (p, P), (g, P), u, and s be as in the statement of the lemma. Further-
more, let s’ be a I'-word such that Run%((q, P),s’, (p, P)) # ¥, which exists due
to (p, P) < (g, P)

By construction of S and our assumption on s’, there exists for every p’ € P at
least one ¢’ € P with Rung((q’, P),s’, (p’, P)) # ¥. On the other hand, we obtain
from the unambiguity of S that for every p’ € P, there can be at most one g’ € P
with Rung((¢’, P), s, (p', P)) # @. It follows that s” induces a mapping g: P — P
which maps p’ to ¢" if Rung((¢', P), s', (p', P)) # ¢ and g satisfies p > ¢. With
an identical argumentation, we obtain that s induces a mapping #: P — P which
maps p' to ¢" if Rung((¢’, P), s, (p', P)) # ¥ and h satisfies p > p and g > q.

Let R’ be the smallest set satisfying ¢ € R/, g(R’) € R/, and h(R)) C
R’, i.e., such that R’ contains g and is closed under g and h. Then let R =
{p} U R’ and let p1,..., p, be an enumeration of R. By pigeon hole principle,
there exist integers 0 < n; < ny such that (K" (g(p1)),.... " (g(pw))) =
(h"2(g(p1)), ..., "2 (g(pm))). By definition of R and the fact that g(p) = ¢, we
have h"'(g(p1)), ..., " (g(pm)) € R. Thus, f = h""! o g is amapping f: R — R
and we can apply Lemma 7 to f with a = p. We obtain ¢’ € R and n > 1 with
f"(p) = q' = f"(q’). From the definitions of & and g, it follows that (s'(s"1))" is a
(¢q’, P)-(p, P)-fork, and therefore also a ¢’-p-fork. Since A does not satisfy the tree
fork property, ¢’ is therefore not a rival of p. Moreover, we have f"~! o il (q) =
f"(p) = ¢, so we see that Rung((q’, P), s"((s'(s")" 1), (¢, P)) # ¥ and
therefore (¢, P) < (¢/, P).

Due to the fact that /271 (q") = ¢q’, we see from the definition of A that

’127’11
(q', P) S—‘Z> (q¢', P) for some z € R. Let k = ny — n;. We know that

(p. P)L5 (p, Py and (q, P) 25 (4. P) for some x, y € R with x # y. It follows

that (p, P)M(p, P) and (q, P)ﬂ(q, P), so (¢q’, P) is either a rival of (p, P)
or of (g, P) with witnesses u and s*. As (¢, P) and (p, P) being rivals implies by
Lemma 5(vii) that ¢” and p are rivals in A and we found that the latter is not the case,
it must hold that (¢’, P) and (g, P) are rivals. O]

Now assume that (p, P) and (g, P) € Qs with (p, P) < (g, P) are rivals in
S with witnesses u and s. Furthermore, assume (py, P) and (p;, P) may occur at
prefix-independent positions, i.e., there is a tree ¢ € T, prefix-independent positions
wi, wy € pos(t), and arunr € Rung(¢) withr(w1) = (p1, P) and r(wz) = (p2, P).
In the following, we want to analyze how (p1, P) may occur together with (p, P) or
(g, P) in arun.

First, Theorems 6 and 8§ tell us that (p;, P) may not occur prefix-independent-
ly from (p, P) and (g, P). Second, if (p1, P) < (p, P) or (p1, P) < (g, P), then
by our assumption the state (p2, P) may occur prefix-independently from (p, P) or
(g, P). This is impossible again by Theorems 6 and 8, so (p1, P) < (p, P) and
(p1, P) < (g, P) both cannot hold. Third, we know that Rung(s'’!(x), (p1, P)) #
@, from which follows that there is some p € P and an integer k > 1 with (p;, P) <
(p, P) and Rung((ﬁ, P), s*, (p, P)) # @. Thus, (p, P) is arival of either (p, P) or
(g, P) and by our assumption, it may occur prefix-independently from (p2, P). Then
if (¢, P) =< (p1, P) held, we would have (p, P) < (¢, P) < (p1,P) = (p, P).

@ Springer

774 Theory of Computing Systems (2021) 65:736-776

By applying Theorem 8 either to (p, P) and (p, P) or to (¢, P) and (p, P), we see
that (py, P) may not occur prefix-independently from (p, P), which does not match
our assumption. It follows that (¢, P) < (pi1, P) is also impossible. Finally, the
only remaining possibility is (p, P) < (p1, P). This is in fact possible, as shown in
Example 1, where we have (p”, P) < (g, P), (p”, P) < (p/, P), and (p/, P) may
occur at prefix-independent positions.

In conclusion, we obtain that if (p, P) and (g, P) are rivals in S with (p, P) <
(g, P), then all states with second entry P which can occur at prefix-independent
positions can be trivially separated from (g, P) as they may never occur in the same
run. We decided not to employ this fact in Section 3.2 as doing so does not lead to a
shorter proof or a significantly simpler construction.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

1. Alexandrakis, A., Bozapalidis, S.: Weighted grammars and Kleene’s theorem. Inf. Process. Lett. 24(1),
1-4 (1987)

2. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J. Autom. Lang. Combin.
8(2), 117-144 (2003)

3. Bala, S.: Which finitely ambiguous automata recognize finitely sequential functions? In: Chatterjee,
K., Sgall, J. (eds.) 38th International Symposium on Mathematical Foundations of Computer Science
(MFCS). Springer, Lecture Notes in Computer Science, vol. 8087, pp. 8697 (2013)

4. Bala, S., Koninski, A., Martin-Vide, C., Truthe, B.: Unambiguous automata denoting finitely sequen-
tial functions. In: Dediu, A. (ed.) 7th International Conference on Language and Automata Theory
and Applications (LATA), Springer, Lecture Notes in Computer Science, vol. 7810, pp. 104-115
(2013)

5. Béal, M., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an efficient procedure for
deciding functionality and sequentiality. Theor. Comput. Sci. 292(1), 45-63 (2003)

6. Berstel, J., Reutenauer, C.: Recognizable formal power series on trees. Theor. Comput. Sci. 18, 115-
148 (1982)

7. Berstel, J., Reutenauer, C.: Rational Series and their Languages. EATCS Monographs in Theoretical
Computer Science, vol. 12. Springer, Berlin (1988)

8. Bjorklund, J., Drewes, F., Zechner, N., Martin-Vide, C., Truthe, B.: An efficient best-trees algorithm
for weighted tree automata over the tropical semiring. In: Dediu, A., Formenti, E. (eds.) 9th Interna-
tional Conference on Language and Automata Theory and Applications (LATA), Springer, Lecture
Notes in Computer Science, vol. 8977, pp. 97-108 (2015)

9. Blattner, M., Head, T.: Automata that recognize intersections of free submonoids. Inf. Control 35(3),
173-176 (1977)

10. Biichse, M., Fischer, A.: Deciding the twins property for weighted tree automata over extremal
semifields. In: Drewes, F., Kuhlmann, M. (eds.) 2nd Workshop on Applications of Tree Automata

@ Springer

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

Theory of Computing Systems (2021) 65:736-776 775

12.

13.

14.
15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

Techniques in Natural Language Processing (ATANLP), The Association for Computer Linguistics,
pp. 11-20 (2012)

. Biichse, M., May, J., Vogler, H.: Determinization of weighted tree automata using factorizations.

Journal of Automata. Lang. Comb. 15(3/4), 229-254 (2010)

Daviaud, L., Guillon, P., Merlet, G.: Comparison of max-plus automata and joint spectral radius of
tropical matrices. In: [27], vol. 19, pp. 1-19:14 (2017)

Droste, M., Kuich, W., Vogler H. (eds.): Handbook of Weighted Automata. EATCS Monographs in
Theoretical Computer Science. Springer, Berlin (2009)

Esik, Z., Kuich, W.: Formal tree series. J. Autom. Lang. Combin. 8(2), 219-285 (2003)

Filiot, E., Jecker, 1., Lhote, N., Pérez, G.A., Raskin, J.: On delay and regret determinization of max-
plus automata. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 1-12. IEEE Computer Society (2017)

. Fiilop, Z., Vogler, H.: Weighted tree automata and tree transducers. In: [13], chap 9, pp. 313-403

(2009)

. Hashiguchi, K.: Algorithms for determining relative star height and star height. Inf. Comput. 78(2),

124-169 (1988)

Hashiguchi, K., Ishiguro, K., Jimbo, S.: Decidability of the equivalence problem for finitely
ambiguous finance automata. Int. J. Algebra Comput. 12(3), 445-461 (2002)

Kirsten, D.: A Burnside approach to the termination of Mohri’s algorithm for polynomially ambiguous
min-plus-automata. Inf. Théor. Appl. 42(3), 553-581 (2008)

Kirsten, D.: Decidability, undecidability, and PSPACE-completeness of the twins property in the
tropical semiring. Theor. Comput. Sci. 420, 56-63 (2012)

Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomially ambiguous
min-plus automata. In: Albers, S., Marion, J. (eds.) 26th International Symposium on Theoretical
Aspects of Computer Science (STACS), Schloss Dagstuhl—Leibniz-Zentrum fiir Informatik, Leibniz
International Proceedings in Informatics (LIPIcs), vol. 3, pp. 589-600 (2009)

Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and sequentiality from a
finitely ambiguous max-plus automaton. Theor. Comput. Sci. 327(3), 349-373 (2004)

Komenda, J., Lahaye, S., Boimond, J., van den Boom, T.: Max-plus algebra in the history of discrete
event systems. Ann. Rev. Control 45, 240-249 (2018)

Koprowski, A., Waldmann, J.: Max/plus tree automata for termination of term rewriting. Acta Cybern.
19(2), 357-392 (2009)

Krob, D.: The equality problem for rational series with multiplicities in the tropical semiring is
undecidable. Int. J. Algebra Comput. 4(3), 405-426 (1994)

Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs in Theoretical
Computer Science, vol. 5. Springer, Berlin (1986)

Larsen, K.G., Bodlaender, H.L., Raskin, J. (eds.): 42nd International Symposium on Mathematical
Foundations of Computer Science (MFCS), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 83. Leibniz-Zentrum fiir Informatik, Schloss Dagstuhl (2017)

Mazowiecki, F., Riveros, C.: Pumping lemmas for weighted automata. In: Niedermeier R., Vallée
B. (eds.) 35th Symposium on Theoretical Aspects of Computer Science (STACS), Schloss Dagstuhl—
Leibniz-Zentrum fiir Informatik, Leibniz International Proceedings in Informatics (LIPIcs), vol. 96,
pp. 50:1-50:14 (2018)

Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269—
311 (1997)

Mohri, M.: Weighted automata algorithms. In: [13], chap 6, pp. 213-254 (2009)

Paul, E.: The equivalence, unambiguity and sequentiality problems of finitely ambiguous max-plus
tree automata are decidable. In: [27], vol. 53, pp. 1-53:13 (2017)

Paul, E.: Finite sequentiality of unambiguous max-plus tree automata. In: Niedermeier R., Paul
C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS),
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Leibniz International Proceedings in Informatics
(LIPIcs), vol. 126, pp. 55:1-55:17 (2019)

Petrov, S.: Latent variable grammars for natural language parsing. In: Coarse-to-Fine Natural Lan-
guage Processing, Theory and Applications of Natural Language Processing, Springer, chap, vol. 2,
pp. 746 (2012)

Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114—
125 (1959)

@ Springer

776 Theory of Computing Systems (2021) 65:736-776

35. Sakarovitch, J.: A construction on finite automata that has remained hidden. Theor. Comput. Sci.
204(1-2), 205-231 (1998)

36. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cambridge (2009)

37. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and Mono-
graphs in Computer Science. Springer, Berlin (1978)

38. Schiitzenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2-3), 245-270
(1961)

39. Schiitzenberger, M.P.: Sur les relations rationnelles entre monoides libres. Theor. Comput. Sci. 3(2),
243-259 (1976)

40. Seidl, H.: On the finite degree of ambiguity of finite tree automata. Acta Inform. 26(6), 527-542
(1989)

41. Simon, I.: Limited subsets of a free monoid. In: 19th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 143—150. IEEE Computer Society (1978)

42. Simon, I.: Recognizable sets with multiplicities in the tropical semiring. In: Chytil, M.P., Janiga, L.,
Koubek, V. (eds.) 13th International Symposium on Mathematical Foundations of Computer Science
(MFECS), Springer, Lecture Notes in Computer Science, vol. 324, pp. 107-120 (1988)

43. Waldmann, J.: Weighted automata for proving termination of string rewriting. Journal of Automata
Lang. Comb. 12(4), 545-570 (2007)

44. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Comput. Sci. 88(2), 325—
349 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

	Finite Sequentiality of Unambiguous Max-Plus Tree Automata
	Abstract
	Introduction
	Preliminaries
	Main Result
	Enumerating All Pairs of Siblings
	Test for Siblings
	Deciding Condition (i)
	Deciding Condition (ii)
	Test for Rivals

	Necessity
	Sufficiency

	Further Insights
	References

