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Abstract

We consider finitary relations (also known as crosses) that are definable via finite
disjunctions of unary relations, i.e. subsets, taken from a fixed finite parameter set I".
We prove that whenever I" contains at least one non-empty relation distinct from the
full carrier set, there is a countably infinite number of polymorphism clones deter-
mined by relations that are disjunctively definable from I'. Finally, we extend our
result to finitely related polymorphism clones and countably infinite sets I". These
results address an open problem raised in Creignou, N., et al. Theory Comput. Syst.
42(2), 239-255 (2008), which is connected to the complexity analysis of the satis-
fiability problem of certain multiple-valued logics studied in Hihnle, R. Proc. 31st
ISMVL 2001, 137-146 (2001).

Keywords Clone - Disjunctive definition - Unary relation - Cross - Clausal
constraint - Signed logic

1 Introduction

Constraint Satisfaction Problems (CSPs) offer a uniform framework to study algo-
rithmic problems. In one of the simplest forms one is given a conjunctive formula

The research of the first author was partly support by the Austrian Science Fund (FWF) under grant
1836-N23, and by the OeAD KONTAKT project CZ 04/2017 “Ordered structures for non-classical
logics”. The second author acknowledges partial support by the Asociacion Mexicana de Cultura A.C

A restricted version of this result was presented at the 89. Arbeitstagung Allgemeine Algebra (89th
Workshop on General Algebra), AAA89, that took place in Dresden, Germany, 27 February to 1
March 2015.

P< Mike Behrisch
behrisch@logic.at

Edith Vargas-Garcia
edith.vargas @itam.mx

Extended author information available on the last page of the article.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-018-9905-y&domain=pdf
http://orcid.org/0000-0003-0050-8085
mailto: behrisch@logic.at
mailto: edith.vargas@itam.mx

Theory of Computing Systems (2019) 63:1298-1313 1299

over some chosen parameter set of finitary relations Q and is asked to decide whether
the formula is satisfiable. Even in this basic manifestation many important problems
can be encoded as CSPs, for instance, graph k-colourability, unrestricted Boolean
satisfiability (SAT), Boolean 3-satisfiability (3-SAT) and further variants of this prob-
lem, solvability of sudokus, the n-queens problem, more generally the exact cover
problem, and many others.

There is an active stream of research producing results regarding the decision com-
plexity of CSPs and its variants, using various approaches [2-9, 12, 13, 15-17, 19, 25,
28, 30, 34]. Moreover, recently there have been credible claims regarding the solu-
tion [14, 40, 41] of Feder and Vardi’s famous CSP dichotomy conjecture [22] stating
that any CSP on a finite set can either be decided in polynomial time (is tractable) or
is NP-complete, otherwise.

A more algebraic formulation of a CSP is given by fixing a relational structure A of
finite signature on a finite set A with set of basic relations Q. The question to decide
is, for any finite relational structure B of the same signature as A, whether there is
a homomorphism from B to A. A basic reduction result attributed to Jeavons [26]
implies that any two CSPs on the same carrier set A parametrized by finite sets of
relations Q1 and Q> sharing the same polymorphism clone (see Section 2) have
the same complexity behaviour (up to polynomial time many-one reductions). This
means, as far as their complexity is concerned, it is not necessary to examine more
CSPs than there are finitely related clones on a given set.

Creignou et al. [18] studied CSPs involving so-called clausal constraints over
totally ordered finite domains. Their problem can be understood within the previously
introduced CSP paradigm as a CSP given by a finite set of relations of the form

{(xl,...,xp,yl,...,yq)|x1za1V~-~przapVy1§b1V~-~qu§bq}.

These are called clausal relations (over chains) and have been studied more
extensively in [10, 11, 37-39].

One of the main motivations for the CSPs studied in [18] comes from many-valued
logic, more precisely, from regular signed logic over totally ordered finite sets of
truth values, as described in [23, 24]. In fact, the satisfiability problem associated
with regular signed conjunctive normal form formulae over chains can be expressed
as a CSP over clausal relations (or with respect to clausal constraints). In [18] a
complete classification of complexity was achieved in terms of the involved clausal
patterns, establishing a dichotomy between tractability and NP-completeness. The
authors left open the problem to algebraically describe all CSPs on the same domain
whose complexity is equivalent to one of their problems via Jeavons’s reduction, with
particular focus on the tractable cases. This problem is in fact asking for a description
of all clones (with tractable CSP) associated with clausal relations, called clausal
clones in [37]. Since there is a continuum of clones on finite, at least three-element
sets, a first necessary step to ensure the feasibility of answering such a question is
to determine the cardinality of the lattice of all clausal clones, which is another open
problem from [38], see also [11, Section 1].
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We address the open problem from [18] by answering this feasibility question in
the affirmative way. It turns out that solving this problem is less convoluted when
generalizing from clausal relations to relations defined as disjunctions over arbi-
trary subsets, not just upsets or downsets of finite total orders. In this way, for finite
carrier sets, we include in particular all signed logics discussed in [24]: general reg-
ular signed logic with respect to any order, monosigned logic and full signed logic.
Moreover, relations defined via disjunctions of unary relations have seen applica-
tions in general algebra for more than three decades, see, e.g., [36]. If n is the arity
of such a relation, it is also known under the term n-dimensional cross [27, 32].
When the unary relations of a cross are subuniverses of a given algebra, crosses
have recently become prominent as a means to characterize the non-existence of
n-dimensional cube terms in idempotent varieties [27]. Symmetric crosses, i.e., dis-
junctions of only one non-trivial subuniverse, have appeared earlier as so-called cube
term blockers [29].

Our main result is that for any finite non-trivial set of unary relations I" on any
carrier set, there are exactly 8p-many polymorphism clones determined by relations
that are disjunctively definable over I" (i.e., by crosses over I').

We achieve this theorem by relating the number of such clones to the number of
downsets of a certain order on finite powers of the natural numbers. The latter can be
bounded above by R using Dickson’s Lemma. Finally, we prove that our bound is
tight by exhibiting an infinite chain of clones whenever the parameter set I" contains a
non-empty relation y distinct from the full domain. As a by-product we even obtain a
better understanding of the ordered set of all polymorphism clones of crosses over I'.

On a concluding note, we observe that our result extends to non-trivial countably
infinite sets of unary relations I', when one is only interested in polymorphism clones
of finite subsets of disjunctively definable relations over I'.

The sections of this paper should be read in consecutive order. The following one
introduces some notation and prepares basic definitions and facts concerning clone
and order theory. Section 3 links polymorphism clones of relations being disjunc-
tively definable over unary relations with downsets of a poset on N/, and the final
section concludes the task by counting these and deriving our results.

2 Preliminaries
2.1 Sets, Functions and Relations

We write N = {0, 1, 2, ...} for the set of natural numbers and use N, for N \ {0}.
Inclusion between sets A and B is denoted by AC B, as opposed to proper inclusion
A C Bor A C B. The powerset *3(A) is the set of all subsets of A; Prin(A) the set
of all finite subsets of A. The cardinality of A is written as |A| and we say that A is
countable if | A| < Rg. It is convenient for us to use John von Neumann’s model of N
where eachn € Nisthesetn = {0,...,.n—1}.If f: A— Bandg: B— C
are functions, their composition is the map go f: A —> C given by g o f(a) =
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g(f(a)) for all a € A. Moreover, if UCA and VCB, we write f[U] for the image
{f(u) | u € U} of U under f and f~![V] for the preimage {a € A | f(a) € V}
of V with respect to f. The image of f is denoted by im f := f[A]; the kernel
of f, denoted by ker f, is the equivalence relation {(ay, a2) € A% | f(a1) = f(a)).
Clearly, every member f(a) of the image of f is in one-to-one correspondence with
the kernel class [a]ker f, i.€., we have a bijection between im f and the factor set
A/ker f of all equivalence classes by the kernel of f. We shall denote this fact also
byim f = A/ker f.

If I and A are sets, the direct (Cartesian) power A’ is the set of all maps
f: I —> A.This is also true for finite powers, i.e. A" where n € N: we understand
n-tuples over A as maps from n to A; in particular all notions defined for maps, such
as composition, image, preimage, kernel also make sense for tuples. Formally, an n-
tuple x € A" is given as x = (x(0), ..., x(n — 1)), however, if no confusion is to
be expected, we shall also refer to the entries of a tuple by some other indexing, e.g.
x = (x1,...,xp) or x = (a, b, ¢) etc. Moreover, an n-ary relation on A is just any
subset pC A" of n-tuples; an n-ary operation on A is any function f: A" — A. We
collect all finitary (excluding nullary) operations on A in the set O4 = UneN+ AA"
Multi-ary functions f: B* — C and g1, ..., g,: A —> B can be composed in
the following way: putting f o (g1, ..., gn)(a) := f(g1(a), ..., gn(a)) for every
a € A™ defines a function f o (gy,...,gn): A —> C. This works for functions
and tuples, too. Namely, we say that an n-ary function f preserves an m-ary relation
p € A™ and write fr>p if for all (r,...,r,) € p" we have f o (r1,...,r,) € p.
Then for a set QC Um N, PB(A™) of finitary relations on A, we define the set F' =
Pol 4 Q of all polymorphisms of Qtobe {f € O4 | Vp € Q: fr>p}. This set of opera-
tions forms a clone on A, i.e., it is closed under composition (viz. f o (g1,...,8n) € F
whenever f € F is n-ary and gi1,...,8, € F are m-ary) and contains all pro-
jections ef"): A" — A,0 < i < n,n € Ny, given by el.(")(xo,...,xn_l) = x;
for each tuple (xq,...,x,—1) € A". A clone on A is finitely related if it can be
obtained as Pol4 Q for a finite set Q of finitary relations. More information on the
importance of finitely related clones in the context of CSP can be found in [8].

Note that the preservation relation > between finitary operations and relations,
and the Galois correspondence induced by it, is fundamental for the study of clones
on finite sets [33, 35]. In point of fact, this paper is concerned with counting the
number of Galois closed sets for a variant of this Galois correspondence where the
relational side is restricted to a certain subset DD(I") to be defined in Section 3.
For more background information and basic facts concerning Galois connections in
general, see [20, p. 155 et seqq.].

2.2 Ordered Sets

If P = (P, <) is a partially ordered set (poset), i.e. < is a binary reflexive, anti-
symmetric and transitive relation on P, then a subset XC P is said to be a downset
of P (occasionally called order ideal), if it is closed w.r.t. taking lower bounds. This
means that with every member x € X the principal downset |p{x}:= {y € P |
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y < x} generated by x is a subset of X. We denote the set of all downsets of P by
DS(P).

It is easy to see that DS (PP) forms a closure system on P, the associated closure opera-
tor maps any set Y C P to its closure under lower bounds |p Y := Uer Ip {y}, that
is, { € P | 3y € Y: z < y}, the least downset of [P containing Y. This set is also
referred to as downset generated by Y. Clearly, a set Y C P is a downset if and only if
rY =Y.

The dual notion of a downset is that of an upset (order filter), which is a subset
X C Pofaposet P = (P, <) that is closed under upper bounds. Again the collection
US(P) of all upsets of IP forms a closure system and the corresponding closure oper-
ator 1'p is given by adding all upper bounds. Obviously, complementation establishes
a one-to-one correspondence between DS (IP) and US(P).

A (homo)morphism from a poset P to Q is any monotone map h: P —> Q, i.e.
one being compatible with the respective order relations. A morphism i: P — Q
is a retraction if there exists a homomorphism /: Q —> [P that is a right-inverse to
h, i.e., satisfies /1 o h= idg. An isomorphism between posets P and Q is a retraction
h: P — Q that also has a left-inverse, i.e. any order preserving and order reflecting
bijection.

Without proof we present the following basic lemmas.

Lemmal Ifh: P — Q is a homomorphism between posets P and Q and a subset
Y € DS (Q) is a downset, then so is the preimage h~'[Y] € DS (P).

Lemma 2 Ifh: P — Q is an isomorphism between posets P and Q, then the map
H: DS (P) — DS (Q) given by H(X) := h[X] is a bijection. In particular we have
IDS (P)| = [DS (Q)!.

IfP=(P,<)isaposetand Y C P isasubset, then <[y :=< N (Y x Y) denotes
the restricted order relation, i.e. the order of the subposet Y = (Y, <[y) of P induced
byY.

Lemma3 If Pisaposetand X,Y € DS (P), then XNY € DS (Y) forY = (Y, <[y).

Next, we consider a special order on powers of N. For any set / we denote the
order of (N, <)/, which is given by ordering /-tuples by < pointwise, also by <. For
any element x € N, we refer by its support to the set supp(x) := {i € I | x(i) # 0},
i.e. the preimage x ~![N \ {0}]. Relating two elements x, y € N’ if supp(x) contains
supp(y) defines a quasiorder on N/, i.e. a reflexive and transitive binary relation.
Intersecting this quasiorder with the pointwise order <, we obtain the poset P =
(Nl, E), where x = y holds for x, y € N/ exactly if x < y and supp(y) < supp(x).
If x T y then for every i € supp(x) we have 0 < x(i) < y(i), i.e. i € supp(y).
Hence, the condition x E y is equivalent to x < y and supp(x) = supp(y).

In the following sections, we shall be interested in the downsets of the poset
(Nl , E), mostly for finite /. In order to count these we need information about the
number of downsets of finite powers of (N, <), which is a consequence of Dickson’s
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Lemma [21]. The original formulation [21, Lemma A, p. 414] is a statement about
polynomials in a finite number of indeterminates; the variant we need here states that
(N, <)! is a so-called well-partial order (see e.g. [1, Definition 5.4.3, p. 113]) and
can, for instance, be found in [31, p. 50].

Lemma 4 (Dickson’s Lemma) The poset (N, <)! is a well-partial order, that is, for
every sequence of tuples (x;)ieN € (NI)N there exist indices i < j such that x; < x;.

This statement implies that (N, 5)1 has a countably infinite number of downsets
whenever [ is a finite non-empty set.

Lemma 5 We have |DS (N, <)')| = R for all finite I # 0.

Proof Let P := (N, <)!. Complementation bijectively maps downsets of P to
upsets and vice versa. Hence, consider any F € US(P); its set of minimal ele-
ments M (F) certainly forms an anti-chain, so by the contrapositive of Lemma 4,
the subset M (F) < N/ must be finite. Moreover, since (N, <)/ does not have any
infinite (strictly) descending chains, every element x € F satisfies m < x for
some m € M(F). In other words, we have F =1p M (F), showing that the map
M: US(P) — Ban(N Iy is injective. Finally, the set ‘Bﬁn(Nl ) of all finite subsets of
N’ is countably infinite for N is. So we have [DS (P)| = |[US(P)| < Ro.

For the converse it suffices to exhibit an infinite subset of DS (IP), for instance,
infinitely many principal downsets {|p {(n, ..., n)}ln € N}. O

3 Clones Determined by Disjunctions of Unary Predicates

We are interested in clones that are determined by relations that are disjunc-
tively definable by unary predicates. Throughout our whole study we shall fix
a (mostly finite) parameter set I' of unary relations on a given carrier set A
that we call (unary) relational language. If n € Ny and (yy,...,yn) € I is
any n-tuple of basic relations from I', the n-ary relation p = R(y1,...,¥n) =
{(xl, ceyXy) € AT |\/l<i<n X €y } is said to be disjunctively definable from T.
Relations constructed in this way have been denoted as Cross(yy, ..., y,) in [27,
32]. The set DD(I") consists exactly of all relations definable in this manner. Note
that DD(¢J) = @ since we consider only non-empty disjunctions, i.e., disjunctively
definable relations of positive arity.

We quickly observe that R(y1, ..., y») = A" holds if and only if at least one of
the relations y1, ..., ¥, equals the full set A. Namely, if for every i € {1,...,n}
the basic unary relation y; C A is proper, and x; € A\ y;, then (xq,...,x,) ¢
R(Y1s---s¥n)s 80 R(y1, ..., ¥n) © A". Also, note that R(yy,...,y,) = @ if and
onlyify;=---=y, =0.
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It is useful to see that the basic unary relations defining some n-ary relation p €
DD(T") can be uniquely reconstructed from p in every interesting case, i.e. whenever

p# A"
Lemma 6 The parameter reconstruction map

p: DD(T) — UneN+ r.

- 0, ifp & A"
P=RWi,....¥n) —> {(A,_._,A) else,

is well-defined.

Proof By definition of DD(I") every disjunctively definable relation p has a param-
eter representation p = R(y1, ..., ¥»). We need to prove that the latter is unique,
whenever p # A”". For this consider parameters (y1,...,¥a), (¥{,-..,¥,) € I
such that R(y1,....vn) = R(y{,....v;) € A". We now show that y; = ¥/
holds for every i € {1, ..., n}. Since our assumption is symmetric, it suffices to fix
i € {l,...,n} and to prove that y; C y/. Because p = R(y{,...,¥,) # A", we
have y; C Aforall j € {1,...,n} and so we can pick x; € A\ y; for j # i.If now
X; € y;, our assumption entails (x1,...,x,) € R(y1,...,¥) = R(y{,...,¥y). By
the choice of the x; for all j # i, we must have x; € y/, proving y; C y/. O

It is an obvious consequence of the preceding lemma that the parameter recon-
struction map provides a one-sided inverse to the construction of relations from unary
predicates. That is to say, we have R(p(p)) = p for all p € DD(I"). This inverse
is uniquely determined for the non-trivial relations p, and it chooses a canonical
representative of all possible parametrizations when p is a full power of A.

Based on the parameter reconstruction p from Lemma 6, we can define the pattern
of a disjunctively definable relation. Intuitively it counts how often each y € I' occurs
in the parameter tuple p(p). More formally, for p € DD(I") with reconstructed
parameters p(p) = (V1,...,¥n), i.e. p = R(¥1,...,¥n), the tuple pt(p) € NI
maps every y € I" to pt(p)(y) = |p(,0)_1 [{y}]| where for both the parameter tuple
p(p) € I and the pattern pt(p) € NI’ we make use of the ambiguous interpretation
as a tuple and as a map. Note that the length of the parameter tuple p(p) depends
on the arity of p, while the length of the pattern only depends on |I"|, which is usu-
ally finite (at least pt(p) has finite support in I') and normally not varying for our
considerations. The pattern of a disjunctively definable relation roughly carries the
same information as clausal patterns [18, Section 2] do for clausal relations; how-
ever, since we are dealing with a more generic situation, the notion of clausal pattern
had to be adapted and generalized.

Next we study how the polymorphism clone of a disjunctively definable relation
p over I' changes when duplicating one of its unary parameter relations. Since poly-
morphism clones are not affected by variable permutations of their defining relations,
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we can restrict our attention to duplicating the first parameter of p € DD(I"). Let-
ting p(p) = (¥1,--., ¥n), such a duplication apparently increases the pattern of
p = R(y1, ..., yy) in precisely one place, while preserving all the other values:

PRyt ..., v () +1ify =y,

PURWI, Y1y - Y (¥) = { PR, -, ) () otherwise. ()

Lemma 7 For arbitrary unary relations y1, ..., ¥, € A we have

Pols{R(y1, V1, -, ¥u)} € Pola{R(y1, ..., ¥}

Proof Letk € Nand f € Pols{R(y1, y1, ..., ¥n)} be a k-ary polymorphism, and
consider r1,...,rx € R(y1,...,yn). Lets; € A"t arise from rj by duplicating
the first entry of the tuple (for each j € {1,...,k}). Then, clearly, s1,...,s; €
Ry, Y1, ---sVn), thus x := fo(s,...,8) € R(y1,v1,--.,¥n) as f preserves
R(y1, 1, .-+, ¥n). Since the first and second entry of x are identical and the last
n entries of x coincide with y := f o (ry,...,rt), we obtain y € R(y1,..., ¥u).
Therefore, we have demonstrated that f € Pol4{R(y1, ..., ¥n)}. L]

Since the preservation property remains unaffected by variable permutations of
relations, we have the following immediate corollary.

Corollary 8 If p, o’ € DD(I") are such that p’ arises from p by a finite number of
applications of the operations of duplicating some parameters and of rearranging
the order of parameters, then Pols{p’} C Pola{p}.

Observe that if p’ arises from p € DD(I") as described in the previous corol-
lary, then pt(p) < pt(p’) holds with respect to the pointwise order of tuples. The
increases occur exactly in the places where parameter relations have been duplicated.
The only exception to this is the case when p is a full power of A, where we may
duplicate some (non-canonical) parameter relation y; # A, but observe an increase
of pt(p)(A). This issue does not occur if we only duplicate canonical parameters as
computed by p(p).

Moreover, in this process, no new basic unary relations can be introduced for o’
that have not already been present as parameters of p. This means, if pt(p)(y) = 0
for some y € T, the same must be true for pt(p’)(y). In other words, we have that
supp(pt(p”)) < supp(pt(p)). Combining the previous observations we conclude that
pt(p) C pt(p’) must be satisfied when transmuting p ~ p’.

In fact the converse is also true, which is the reason for the following crucial
lemma, relating the order T on patterns of disjunctively definable relations and the
inclusion of their corresponding polymorphism clones. Note that, as Corollary 8, this
lemma does not really depend on the finiteness of I, it only depends on the fact that
the supports supp(pt(0)), supp(pt(p’)) C T are finite.

Lemma 9 For p, p' € DD(I) satisfying pt(p) T pt(p’) we have the dual inclusion
Pol{p'} S Pola{p}.
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Proof If p, p’ € DD(I') are such that pt(p) T pt(p’), then by verifying that the
assumptions of Corollary 8 are fulfilled, we see that Pol4{p’} € Pola{p}. In more
detail, from pt(p) C pt(p’) we get that supp(pt(p)) = supp(pt(p’)), so in the param-
eter tuples p(p) and p(p’) the same relations from I' occur. Since pt(p) < pt(p’),
those that are actually present, occur possibly a few more times in the pattern of p’
than in that of p and are perhaps associated with different coordinates in p and p’.
However this means exactly that o’ can be obtained from p by duplicating and per-
muting parameters in a finite number of steps (since supp(pt(p)) = supp(pt(p’)) is
finite). O]

Now, finally, in order to bound the number of polymorphism clones given by sets
Q of relations that are disjunctively definable from I', we associate with each such
set a downset of (Nr, E), namely the downset generated by the associated patterns.
More formally, we define the encoding

[ BODT)) — DS (Nr, C)
Q > J/(Nr,g) pt[Q] = UQ i(NF,g) pt(p).
pe

With the help of Lemma 9 we can now prove the following relationship:

Proposition 10 For Q1, O, € DD(T") satisfying 1(Q1) € I(Q3) we have the
inclusion Pol4 Q7 € Poly Q.

Proof For Q1, Q2 € DD(I") assume 1 (Q1) € 1(Q7).Let f € Pol4 Q7 and p € O
be chosen arbitrarily. Abbreviating PP := (N r E), we have

pt(p) €lp ptQ1] =1(Q1) € 1(Q2) =|p ptlQa2l = [ Jp pt(o).
p'€Qr
Hence, there is some p’ € Q; such that pt(p) €lp pt(p), i.e., pt(p) T pt(p’). Now
Lemma 9 implies f € Pols Q2 € Pola{p’} € Pola{p}. O]

More important for our target is actually the image {Pol4 Q|Q € DD(I")} of the
map Pol: PDDI")) — {Pols Q|0 < DD(I")}, whose cardinality is equal to that
of the factor set 3(DD(I"))/ ker Pol by the kernel. As a straightforward corollary of
Proposition 10 the latter is closely related to the kernel of 1.

Corollary 11 On B(DD(I")) we have the following inclusion between equivalence
relations: ker I = {(Q1, Q2) € ‘J3(DD(F))2 [1(Q1) = 1(Q2)} C kerPol.

This result allows us to establish an upper bound on the number of clones
determined by relations that are disjunctively definable over I'.

Corollary 12 We have |imPol| < |im/| < |DS (NI, ©)|.

Proof Since ker I C ker Pol, there is a canonical well-defined surjection from the
factor set 3(DD(I"))/ ker I onto B(DD(I"))/ ker Pol, so

imPol = 9B(DD(I"))/ ker Pol « B(DD(T"))/ ker I = im/ € DS(N", £),

@ Springer



Theory of Computing Systems (2019) 63:1298-1313 1307

telling us that the cardinality of |imPol| = |3(DD(I"))/ ker Pol| is bounded above by
that of |'B(DD(I"))/ ker I| = |imI| < |DS (N, ©)|. O

An alternative proof of the previous fact can be obtained by noting that the fol-
lowing map v, representing disjunctively definable clones as downsets of patterns,
is injective. Moreover, it even embeds the whole ordered structure of such clones.

Proposition 13 The map

¥ ({Pol4 Q|0 € DD(IN)}, 2) — (DS (NF, E) , 9)
F =PolsQ — pt[F’],

where F' = {p e DD(D)|Vf € F: f > p}, is a well-defined order embedding, and
it makes the following diagram commute:

1

PODX) ——— DS(N'. )
[Pol ="ty
imPol ) imPol
imPol

where ¢ is any factor map (cf. Corollary 11) satisfying ¢ (I1(Q)) = Polg Q on the
image of I and being defined as, e.g., $(U) = Pols¥} anywhere else.

Proof In this proof, let us abbreviate Q' := Pols Q for any set 9 € DD(T"). This
is to emphasize that the pair (*,”) forms an (antitone) Galois connection between
finitary operations on A and disjunctively definable relations with respect to I'. To
demonstrate that v is well-defined, we need to show that pt[F ! ] C NT is a downset
with respect to = given F = Q" for some Q € DD(I"). So let p; € F’ be m-ary
and x € NT with x C pt(po;). Thus pt(p;) has height m above the zero tuple, so
it is sufficient to consider the case where x is a lower cover of pt(py), i.e., there is
exactly one y; € I' such that x(y1) = pt(p1)(y1) — 1 > 0, and x coincides with
pt(p1) everywhere else. Since F’ is closed under forming relations with permuted
coordinates and this operation does not change the pattern of a disjunctively defin-
able relation, we can assume that p; = R(y1, ¥1, 2, - - ., Ym—1) for (not necessarily
distinct) y2, ..., Ym—1 € I'. Now the relation po = R(y1, ¥2, ..., Ym—1) € DD(I")
satisfies pt(pz) = x (cf. the observation made in (7)) and, by Lemma 7, {p1}* € {02}",
sopme{mVC{p}VCFY=Fandx e pt[F/].

It is obvious that v is order preserving. To prove that it is order reflecting, consider
Fi = Q) and F, = Q) for Q1, Q> € DD(T") such that ¥ (F;) € ¥ (F>) and any
p1 € F|. Then we have pt(p1) € ¥ (F) € ¥ (F2) = pt[F;], so there is some p; € F
such that pt(p;) = pt(p2). Applying Lemma 9 twice, we obtain {p;}' = {2}' and
hence p; € {p1}" = {02}V € F;¥ = F}. Thus F{ C F; and F| = F|' 2 F' = F».

Order reflection clearly implies that v is injective. It remains to be shown that
¢ (Y (F)) = F forevery F = Q" where Q € DD(I"). As ¥(F) € DS (N', ), we
have Y (F) = (wr oy ¥(F) =) (wr,oy DLLF'] = T(F), 50 ¢ (¥ (F)) = ¢ (I (F')) =
FM=F. O
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4 Results

By Corollary 12 from the previous section we have transferred the task of counting
the number of clones given by relations that are disjunctively definable over a fixed
(commonly finite) set of unary predicates I' to the investigation of the downsets of
the poset (N'', C). This is a special case of the poset (N/, C) from Section 2, where
we now have the additional assumption that 7 is finite. Concerning downsets of this
poset, we first verify the following general facts.

Lemma 14 Let P = (N, C) be the poset defined in Section 2.

(@) The set Yg := {x € N|supp(x) = I} is a downset of P, and the induced
subposet Yg = (YF, C [yF) satisfies Yg = ((N+)’, 5) = (N’, 5).

(b) ForeveryJ C I thesetYcy :={x € N/ |supp(x) C J} is a downset of P; the
induced subposet Ycj = (ng, c [yg) is isomorphic to (NJ, E).

(¢) Wehave N' = YpU ;o) Yo (-

Proof (a) Ifx € Ypand y € N/ satisfies y E x, then I = supp(x) = supp(y).
Hence, y € Yf, and so Yr € DS (P). Moreover, for x € N/, we have x € Yg
if and only if x(i) # O foralli € I, ie. if x € (N+)I. Thus the identi-
cal map induces an isomorphism id: Y —> ((N+)I , 5) since all elements
x,y € (N;)! automatically satisfy supp(x) = I = supp(y). Besides, the map
h: ((N+)1, 5) — (Nl, 5) given by h(x) = (x(i) — 1);c; obviously is an
isomorphism, too.

(b) Consider J € [ and x € Ycy. Any y C x fulfils supp(y) = supp(x) € J,
soy € Ycy. Thus, Yc; € DS (P). Define pr;: Yc; —> N’ by letting
pr;(x) := (x(j)) es; conversely, for every element y € N/ define emby (y)
by emby; (y)(i) := y(@i) if i € J and emb;(y)(i) := 0, otherwise. The map
emb;: N/ — Yc isinverse to pr  since every x € Yc satisfies supp(x) C J,
i.e.everyi € I\ J does not belong to supp(x) and thus x (i) = 0. For the same
reason, supp(x) = supp(pr;(x)) holds for all x € Yc;, whence pr; is a homo-
morphism. Furthermore, we have the equality supp(y) = supp(emby;(y)) for
ally € N7, so emb J is a homomorphism, too.

(¢) The inclusion N/ D Yg U |J;c; Yer\(i) holds by definition. Moreover, if x €
N7 \ Y, then supp(x) C 1, so there exists some i € I \ supp(x), i.e. supp(x)
I\ {i}. This proves that x € (J;c; Yer\(i}-

O

Theorem 15 We have |DS (N!, C)| = Ry for all finite I # .

Proof Since CC <, we clearly have DS (NI , 5) C DS (NI , E), which together with
Lemma 5 proves that ’DS (Nl, E)| > |DS ((N, §)I)| = Ry for all finite non-empty
1. We shall prove by induction on || that |DS (N, £)| < R holds for all finite sets
I. The basis is the case |I| = 0, i.e. I = @. Then [N/| = 1, so we are dealing with
a finite poset having only finitely many downsets. Now assume |/| > 0, i.e. I # ,
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and suppose we know the truth of the claim already for all finite J, |J| < |I|. In
particular, we have the induction hypothesis for all 7 \ {i} where i € I. We define

5: DS(N',2) — DS (¥p) x []._,DS (Yenm)
X — (X0Yr (XN Yeni)ig) -

By Lemma 14(a) and (b) in combination with Lemma 3, this map is well-defined.
Moreover, due to Lemma 14(c), we have

(XNYp)U U (X N Yg]\{,'}) =XnN (Y]: U U YCI\{i}) =XNN = X,
iel iel

so 8 is injective. Hence, |DS (N/, E)| < |DS (YF) x [1;¢;DS (Ycr\(iy)|- Since for
i € I, we have Ycp\(ip = (N/\) C) by Lemma 14(b), Lemma 2 together with
the induction hypothesis yields |DS (Yc )| = [DS (N/\M, £)| < Ro. Similarly,
we have Yg = (N, <)/ by Lemma 14(a), wherefore Lemmas 2 and 5 jointly imply
that [DS (Yg)| = |DS ((N, <)’)| = No. Consequently, as a finite product of count-
able sets, one of which is infinite, the co-domain of § has cardinality 8y, whence
|DS (Nl, E)| is countable. O

As a result the number of clones on a fixed set determined by disjunctions of
finitely many unary predicates is countable.

Theorem 16 For every finite unary relational language I" we have

[{Pol4 Q|0 < DD(I)}]| = Ro.

Proof From Corollary 12 we know |{Pol4Q|Q < DD(I)}| < |DS (N',C)|. By
Theorem 15 the latter is countably infinite if I" # ¢4, and it has two elements if ' =
(in this case we are dealing only with the clone of all operations). O

This already demonstrates that a classification of such clones (as requested in
[18, Section 6]) is not a hopeless task.

As a final step we wish to show that in all relevant cases, our cardinality bound
from Theorem 16 is tight. This generalizes an argument given in [37, Proposition 3.1]
regarding the number of clones determined by (mixed) clausal relations (an important
subcase of the relations considered in [18]).

Proposition 17 If T is any unary relational language with carrier set A containing
a non-trivial basic unary relation y € T such that § # y C A, then the lattice
({Pol4 Q|Q € DD(I')}, ©) contains a strictly descending w-chain of finitely related
clones over DD(I").

Proof The proof of this fact is constructive. Fix y € I with the properties claimed in
the proposition. For every m € Ny we let p,, :== R(y, ..., y), where the parameter
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y occurs exactly m times. By Lemma 7, we have Pols{p,,} C Pola{p,—1} for all
m € N, m > 2. We only have to prove that these inclusions are strict. This will be
done by exhibiting an m-ary function f € Pols{p,,—1} that does not preserve p,.

Since y C A, there is an element 0 € A such that 0 ¢ y. Moreover, as y is not
empty, there is some element 1 € A\ {0} such that 1 € y. We define f(x1,...,x,) =0
if at least m — 1 entries in (x1, ..., Xx;;) are equal to 0 and we put f(xq,...,x,) =1
everywhere else.

Let e; € A™ be the tuple whose j-th entry is 1 and which is O otherwise. Since
1 ey,wehaveey,...,e, € p,. However, applying f yields f o (e, ..., ey) =0,
the tuple containing only zeros. As 0 ¢ y, we have 0 ¢ p,, and hence f ¢ Pols{p;}.

On the other hand, if r1, ..., r, € pn—1 and we consider these tuples as columns
of an ((m — 1) x m)-matrix, then each column contains a non-zero entry (because
0 ¢ pm—1). Asm > m — 1, by the pigeonhole principle there must be one row x
of the matrix that contains at least two entries distinct from zero. In other words,
there cannot be more than m — 2 zero entries in x. Now applying f to x yields
f(x) =1 € y. Therefore, f o (ri,...,"m) € Pm—1- O]

Combining Theorem 16 and Proposition 17 we can pinpoint the exact number of
clones determined by disjunctions of non-trivial unary relations from a finite param-
eter set I'. This answers, in particular, the question regarding the number of clausal
clones on finite sets that was stated to be open in [11, 38].

Corollary 18 If T is a finite unary relational language with carrier set A containing
a non-trivial basic unary relation y € I' such that % # y C A, then we have
[{Pol4 Q|0 < DD(I') finite}| = |{Poly Q|Q < DD(I)}| = Ro.

Remark 19 When focussing only on finitely related polymorphism clones, we can
extend the scope of our arguments a little bit. That is to say, if we restrict the encod-
ing map [ (cf. Proposition 10) to P, (DD(I')) and only consider clones Poly Q
given by a finite subset Q € DD(I"), we can still obtain the upper bound X on

their cardinality when I" is countably infinite. Namely, if O = {p1, ..., pn} for
some N € N, then /(Q) = U,N=1 l,(NrE) pt(p;) is a finitely generated downset,
where for each i € {1,..., N} the tuples in the principal downset i(Nr’E) pt(pi)

have a fixed finite support J; C I'. Hence, all tuples in I(Q) have their support
within the finite set J(Q) = UlNzl Ji € TI'. By projecting the patterns to these

indices (as in the proof of Lemma 14 this does not change the support of the tuples),
we obtain a different encoding K(Q) = U,N=1 ¢(N1(Q)E) pry(o)pt(pi), which

is a downset of (N’(@), ). Therefore, K(Q) € Usegpn @ DS (N’,E). Since T
is countable, Ry (I") is countable and the codomain of K is a countable union
of countably infinite sets (see Theorem 15), hence countably infinite. With analo-
gous arguments as in Proposition 10 through Corollary 12 we can thus show that
[{Pols Q|0 < DD(T') finite}| < |imK| < Rg. Concerning the analogue of Propo-
sition 10 we note that # # K(Q1) € K(Q») implies J(Q1) = J(Q2) and so
Pryo,)Pt(p) E pryg,pt(p) yields pt(p) C pt(p) for p € Q1 and any p’ € Q.
As supp(pt(p)) = supp(pt(p’)) € J(Q») is finite, Corollary 8 and Lemma 9 are
applicable to derive the conclusion of Proposition 10.
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Tightness of the cardinality bound is again provided by Proposition 17, which does
not require finiteness of I'".

Combining these explanations with Corollary 18 we can strengthen our result as
follows:

Corollary 20 If T is a countable unary relational language on the carrier set A
containing a non-trivial basic unary relation y € T such that § # y C A, then we
have |{Pol4 Q|Q C DD(I') finite}| = Ny.
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