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Abstract A graph H is a square root of a graph G, or equivalently, G is the square
of H , if G can be obtained from H by adding an edge between any two vertices in
H that are of distance 2. The SQUARE ROOT problem is that of deciding whether a
given graph admits a square root. The problem of testing whether a graph admits a
square root which belongs to some specified graph class H is called the H-SQUARE

ROOT problem. By showing boundedness of treewidth we prove that SQUARE ROOT

is polynomial-time solvable on some classes of graphs with small clique number and
that H-SQUARE ROOT is polynomial-time solvable when H is the class of cactuses.
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1 Introduction

Squares and square roots are well-known concepts in graph theory that have been
studied first from a structural perspective [27, 30] and later also from an algorithmic
perspective (as we will discuss). The square G = H2 of a graph H = (VH , EH ) is
the graph with vertex set VG = VH , such that any two distinct vertices u, v ∈ VH are
adjacent in G if and only if u and v are of distance at most 2 in H . A graph H is a
square root of G if G = H2. It is a straightforward exercise to check that there exist
graphs with no square root, graphs with a unique square root as well as graphs with
many square roots.

In this paper we consider square roots from an algorithmic point of view. The cor-
responding recognition problem, which asks whether a given graph admits a square
root, is called the SQUARE ROOT problem. Our research is motivated by the result of
Motwani and Sudan [26] who proved in 1994 that SQUARE ROOT is NP-complete.
Afterwards, SQUARE ROOT was shown to be polynomial-time solvable for vari-
ous graph classes, such as planar graphs [23], or more generally, any non-trivial
minor-closed graph class [28]; block graphs [21]; line graphs [24]; trivially perfect
graphs [25]; threshold graphs [25]; graphs of maximum degree 6 [4] and graphs
of maximum average degree smaller than 46

11 [14]. It was also shown that SQUARE

ROOT is NP-complete for chordal graphs [18]. We refer to [4, 5, 14] for a number of
parameterized complexity results on SQUARE ROOT.

The computational hardness of SQUARE ROOT also led to a variant, which asks
whether a given graph has a square root that belongs to some specified graph class
H. We denote this problem by H-SQUARE ROOT. The H-SQUARE ROOT prob-
lem is known to be polynomial-time solvable if H is the class of trees [23], proper
interval graphs [18], bipartite graphs [17], block graphs [21], strongly chordal split
graphs [22], graphs with girth at least g for any fixed g ≥ 6 [11], ptolemaic
graphs [19], 3-sun-free split graphs [19] (see [20] for an extension of the latter result
to other subclasses of split graphs). In contrast, NP-completeness of this problem has
been shown if H is the class of split graphs [18], chordal graphs [18], graphs of girth
at least 4 [11] or graphs of girth at least 5 [10].

It follows from a result of Harary, Karp and Tutte [16] that every square root H of
a planar square has maximum degree at most 3 and only contains blocks that are of
size 4 or isomorphic to an even cycle. It follows from this that such graphs H have
bounded treewidth. By “blowing up” each bag of a tree decomposition by adding
all neighbours of every vertex u to every bag that contains u, we get a tree decom-
position of H2. Hence, planar squares have bounded treewidth. As such we may
use Courcelle’s Theorem [6] to obtain an alternative (but comparable) proof for the
polynomial-time result of Lin and Skiena [23] for SQUARE ROOT restricted to planar
graphs. We note that the polynomial-time algorithms for solving SQUARE ROOT for
graphs of maximum degree at most 6 [4] and graphs of maximum average degree less
than 46

11 [14] are also based on showing that the graphs which permit square roots also
have bounded treewidth. Nestoridis and Thilikos [28] proved their result for minor-
closed graph classes by showing boundedness of carving width. It is also possible,
by using the graph minor decomposition of Robertson and Seymour [29], to show
that squares of graphs from minor-closed classes have in fact bounded treewidth.
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Hence, it is a natural question to ask whether the technique of showing boundedness
of treewidth can be used for recognizing some other squares as well. This is the main
focus of our paper.

1.1 Our Results

Our results are twofold. First, in Section 3 we focus on the H-SQUARE ROOT prob-
lem for a specific class H of graphs, namely we let H be the class of cactuses. A
connected graph is a cactus if every edge of it is contained in at most one cycle.
We give an O(n4)-time algorithm for solving H-SQUARE ROOT on n-vertex graphs
where H is the class of cactuses. Our research is motivated by the nontrivial question
as to whether H-SQUARE ROOT is polynomial-time solvable if H is the class of pla-
nar graphs, that is, whether squares of planar graphs can be recognized in polynomial
time. The known result that squares of trees, which form a subclass of the class of
cactuses, can be recognized in polynomial time [23] can be seen as a first step towards
solving this problem. As every cactus is planar, our result can be seen as a second
step towards solving it. As a side note, cactuses are not a subclass of any of the other
aforementioned classes of which the squares can be recognized in polynomial time.

If a graph has a square root that is a cactus, we say that G has a cactus root.
We observe that a general technique applied in several papers [1, 10, 11, 23] is not
applicable for finding cactus roots. In these papers the aim is to find some type of
sparse square root and it can be shown that such a square root (if it exists) is unique
or unique up to isomorphism. This uniqueness can be exploited and as such is very
helpful for finding the square root. However, this is not the case for cactus roots;
Fig. 1 shows a graph that has two non-isomorphic cactus roots. Instead, we prove our
result by showing boundedness of treewidth.

We first analyze, in Section 3.1, the structure of squares of cactuses. This helps
us to recognize vertices of the input graph G that are cut-vertices in any cactus
root (if such a square root exists) and sets of compulsory and forbidden edges of
any cactus root of G. In this way we can reduce, in Section 3.2, the graph G to a
number of smaller instances such that G has a cactus root if and only if each of
these smaller instances has a cactus root. Showing that each of the smaller instances
has bounded treewidth, the aforementioned observation that we can solve the prob-
lem in polynomial time on any graph class of bounded treewidth completes the
proof.

In Section 4 we focus on the SQUARE ROOT problem restricted to some classes
of graphs that have a small clique number. Our motivation for doing so comes from
the observation that SQUARE ROOT is readily seen to be polynomial-time solvable
for graphs with clique number at most 3 (the only square roots a connected graph
on n vertices with clique number 3 may have are the cycle or path on n vertices).
Moreover, by identifying such classes of graphs, our results complement existing
polynomial-time results for other classes of graphs with a small clique number,
such as planar graphs [23] and graphs of maximum degree 6 [4]. We prove that
SQUARE ROOT is polynomial-time solvable for the classes of 3-degenerate graphs
and (Kr , Pt )-free graphs by showing that squares in these two graph classes have
bounded treewidth.
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Fig. 1 A graph with non-isomorphic square cactus roots. The edges of the cactus roots are shown by solid
lines, whereas the other edges are shown by dashed lines

In Section 5 we present two tables that incorporate both new and old results and
there we also discuss some directions for future work.

2 Preliminaries

We consider only finite undirected graphs without loops and multiple edges. We refer
to the textbook of Diestel [8] for any undefined graph terminology.

We denote the vertex set of a graph G by VG and the edge set by EG . The subgraph
of G induced by a subset U ⊆ VG is denoted by G[U ]. The graph G−U is the graph
obtained from G after removing the vertices of U . If U = {u}, we also write G − u.
Similarly, we denote the graph obtained from G after deleting a set of edges S (an
edge e) by G − S (G − e respectively).

Let G be a graph. A connected component of G is a maximal connected subgraph.
The distance distG(u, v) between a pair of vertices u and v of G is the number of
edges of a shortest path between them. The diameter diam(G) of G is the maximum
distance between two vertices of G.

The open neighbourhood of a vertex u ∈ VG is defined as NG(u) = {v | uv ∈
EG}, and its closed neighbourhood is defined as NG[u] = NG(u) ∪ {u}. Two (adja-
cent) vertices u, v are said to be true twins if NG [u] = NG [v]. A vertex v is simplicial
if NG[v] is a clique, that is, if there is an edge between any two vertices of NG[v].
The clique number of G is the size of a largest clique of G.
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Let G be a graph. The degree of a vertex u ∈ VG is defined as dG(u) = |NG(u)|.
The maximum degree of G is �(G) = max{dG(v) | v ∈ VG}. A vertex of degree 1 is
said to be a pendant vertex. If v is a pendant vertex, then we say that the unique edge
incident to u is a pendant edge. For a non-negative integer d, the graph G is said to
be d-degenerate if every subgraph H of G has a vertex of degree at most d.

Let {H1, . . . , Hp} be a family of graphs. Then a graph G is called (H1, . . . , Hp)-
free if G contains no induced subgraph isomorphic to a graph in {H1, . . . , Hp}. We
denote the complete graph and path on r vertices by Kr and Pr , respectively.

A vertex u is a cut vertex of a connected graph G with at least two vertices if G−u
is disconnected. An inclusion-maximal induced subgraph of G that has no cut vertex
is called a block. Recall that a connected graph G is a cactus if each edge of G is
contained in at most one cycle. This implies the following well-known property.

Observation 1 Each block of a cactus with at least two vertices is either a K2 (an
edge) or a cycle.

A tree decomposition of a graph G is a pair (T, X) where T is a tree and X =
{Xi | i ∈ VT } is a collection of subsets (called bags) of VG such that the following
three conditions hold:

i)
⋃

i∈VT Xi = VG ,
ii) for each edge xy ∈ EG , x, y ∈ Xi for some i ∈ VT , and

iii) for each x ∈ VG the set {i | x ∈ Xi } induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ VT }, T ) is maxi∈VT {|Xi | − 1}. The
treewidth tw(G) of a graph G is the minimum width over all tree decompositions of
G. We will make use of the following result of Bodlaender.

Lemma 1 ([3]) For any fixed constant k, it is possible to decide in linear time
whether the treewidth of a graph is at most k.

3 Cactus Roots

Recall that a graph H is called a cactus root of a graph G if H is a cactus and a square
root of G. If H is the class of cactuses, we may denote the H-SQUARE ROOT as the
following problem:

CACTUS ROOT

Input: a graph G.
Question: is there a cactus H with H2 = G?

We also need to define the following more general variant introduced in [4] for
general square roots:

CACTUS ROOT WITH LABELS

Input: a graph G and sets of edges R, B ⊆ EG .
Question: is there a cactus H with H2 = G, R ⊆ EH and B ∩ EH = ∅?
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By choosing R = B = ∅ we see that CACTUS ROOT is indeed a special case of
CACTUS ROOT WITH LABELS.

In Section 3.1 we analyze the structure of squares of cactuses. We use the infor-
mation obtained in this way for the design of our algorithm, which we describe in
Section 3.2.

3.1 A Number of Structural Observations and Lemmas

In this section we state three observations and prove seven lemmas. We will use
these results, which are all structural, for the design of our O(n4) time algorithm for
CACTUS ROOT presented in Section 3.2.

The first observation is known and easily follows from the definition of the
treewidth.

Observation 2 For a cactus G, tw(G) ≤ 2.

The second observation gives an upper bound for the treewidth of the square of a
graph; it follows from the well-known fact that we can transform every tree decom-
position (T, X) of a graph G into a tree decomposition of G2 by adding, to each bag
Xi of T , all the neighbours of every vertex from Xi .

Observation 3 For a graph G, tw(G2) ≤ (tw(G) + 1)(�(G) + 1) − 1.

Let H be a square root of a graph G. We say that H is a minimal square root of G
if H2 = G but any proper subgraph of H is not a square root of G. Note that the two
cactus roots displayed in Fig. 1 are both minimal. Since any connected subgraph of a
cactus is a cactus, we can make the following observation.

Observation 4 If a graph G has a cactus root, then G has a minimal cactus root.

A block of a graph G is called a leaf block if it contains at most one cut vertex of
G. This leads to our first lemma.

Lemma 2 If a cactus H is a minimal square root of a graph G, then H has no leaf
block that is a triangle.

Proof Suppose that a cactus H is a minimal square root of G such that a triangle
with vertices x, y, z is a leaf block of H . As a leaf block contains at most one cut
vertex of H by definition, we may assume that y and z are not cut vertices of H .
Let H ′ = H − yz. It is straightforward to verify that H ′2 = G, contradicting the
minimality of H .

Suppose that u and v are pendant vertices of a square root H of G and that u and
v are adjacent to the same vertex of H − {u, v}. Then, in G, u and v are simplicial
vertices and true twins. We use this observation in the proof of the following lemma.
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Lemma 3 Let H be a minimal cactus root of a graph G. If G contains at least six
simplicial vertices that are pairwise true twins, then at least one of these vertices is
a pendant vertex of H.

Proof Let H be a minimal cactus root of a graph G that contains a set X of six
simplicial vertices that are pairwise true twins. The vertices of X cannot all belong to
the same block of H , because such a block would be a cycle with at least six vertices
(by Observation 1) and any two vertices of this block could not be true twins of G.
Hence, there is a cut vertex u of H such that there exist two vertices x, y ∈ X that
are in distinct connected components of H − u. Let H ′ be a connected component
of H − u that contains x . If x is not a pendant vertex of H then, by the minimality
of H and Lemma 2, there exists a vertex z ∈ VH ′ that is adjacent to x and that is at
distance 2 from u in H . Then, as every path from y to z in H contains u, we find that
yz /∈ EG . This is a contradiction since x and y are true twins of G and xz ∈ EG . We
conclude that x is a pendant vertex of H .

The following definition plays a crucial role in our paper.

Definition 1 Let u be a cut vertex of a connected graph H . We say that

(i) u is important if H −u has three vertices that belong to three distinct connected
components of H − u and that are each at distance at least 2 from u in H ;

(ii) u is essential if H − u has two vertices that belong to two distinct connected
components of H − u and that are both at distance at least 2 from u in H .

Definition 1(i) immediately implies the following lemma.

Lemma 4 If u is an important cut vertex of a cactus root H of a graph G, then there
are three vertices x, y, z ∈ NG(u) such that x, y and z are at distance at least 3 from
each other in G − u.

Although we have no implication in the opposite direction, we can show the
following (which explains why we need the second and weaker part of Definition 1).

Lemma 5 Let G be a graph with a cactus root H. If u ∈ VG has three neighbours
x, y and z in G that are at distance at least 3 from each other in G − u, then u is
an essential cut vertex of H. Moreover, at least two vertices of {x, y, z} belong to
distinct connected components of H − u.

Proof Assume that G has a cactus root H . Let u ∈ VG be such that u has three
neighbours x , y and z in G that are at distance at least 3 from each other in G − u.
Notice that because x , y and z are at distance at least 3 from each other in G − u,
these vertices are all at distance 2 from u in H .

For contradiction, assume that u is not a cut vertex of H . Then u has at most two
adjacent vertices in H , since H is a cactus (see Observation 1). Then at least two
vertices of {x, y, z} are adjacent to the same vertex of H (which is one of the two
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neighbours of u) implying that these two vertices of {x, y, z} are adjacent in G and
thus in G − u; a contradiction. Hence u is a cut vertex of H .

Now suppose that x , y and z are all in the same connected component H ′ of H−u.
Since H is a cactus, we find, by Observation 1, that H ′ contains at most two vertices
that are adjacent to u in H . Again, we obtain that at least two vertices of {x, y, z}
are adjacent to the same vertex of H ; a contradiction. Hence, at least two vertices of
{x, y, z} belong to distinct connected components of H − u. Since x , y and z are at
distance 2 from u in H , this implies that u is an essential cut vertex of H .

We now show that we can recognize edges of a cactus root that are incident to an
essential cut vertex.

Lemma 6 Let u be an essential cut vertex of a cactus root H of a graph G. Then for
every x ∈ NG(u), it holds that ux /∈ EH if and only if there exists a vertex y ∈ NG(u)

such that x and y are at distance at least 3 in G − u.

Proof Let u be an essential cut vertex of a cactus root H of a graph G. Let x ∈
NG(u). First suppose that ux ∈ EH . Let y ∈ NG(u). If uy ∈ EH , then xy ∈ EG . If
uy /∈ EH , then there exist a vertex z ∈ VH and edges uz, zy ∈ EH , as y ∈ NG(u).
As zy ∈ EH , we find that zy ∈ EG . As ux, uz ∈ EH , we also deduce that xz ∈ EG .
In both cases x and y are at distance at most 2 in G − u.

Now suppose that ux /∈ EH . Then, as x ∈ NG(u), we find that x is at distance 2
from u in H . Let H ′ be the connected component of H − u containing x . Since u is
an essential cut vertex of H , H −u has another connected component H ′′ containing
a vertex y at distance 2 from u in H . It remains to observe that y ∈ NG(u) and x and
y are at distance 3 in G − u.

The next lemma is used to recognize vertices adjacent to an essential cut vertex
that belong to the same block of a minimal cactus root.

Lemma 7 Let H be a minimal cactus root of a graph G. For any u ∈ VH , two
distinct vertices x, y ∈ NH (u) are in the same block of H if and only if x and y are
in the same connected component of G ′ = G − EG[NH (u)] − u.

Proof Let x, y ∈ NH (u). First suppose that x and y are in distinct blocks of H .
Then x and y are readily seen to be in distinct connected components of G ′. Now
suppose that x and y are in the same block C of H . If xy ∈ EG then x and y are
in the same connected component of G ′. Suppose xy /∈ EG . Then C is a cycle by
Observation 1. If C is not a triangle, then C has a unique (x, y)-path in H (avoiding
u) of length at least 2. This path is an (x, y)-path in G ′ as well. Hence x and y are in
the same connected component of G ′. Suppose that C is a triangle.Then xy ∈ EH .
As H is a minimal cactus root, x or y has at least one neighbour z 
= u in H due
to Lemma 2. Assume without loss of generality that z is a neighbour of x . Then the
edges xy, xz ∈ EH imply that zy ∈ EG . We establish that xzy is an (x, y)-path in
G ′, that is, also in this case x and y are in the same connected component of G ′.
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Finally we show how to determine which neighbours in G of an essential cut
vertex u of a cactus root H are in the same connected component of H − u.

Lemma 8 Let H be a minimal cactus root of a graph G. For any u ∈ VH and
x ∈ NH (u), a vertex y ∈ NG(u) is in the same connected component of H − u as x
if and only if either uy ∈ EH and y in the same block of H as x, or uy /∈ EH and
there is a vertex z ∈ NH (u), such that z is in the same block of H as x and yz ∈ EG.

Proof Let y ∈ NG(u). First suppose y is in the same connected component of H −u
as x . If uy ∈ EH , then y is in the same block of H as x . Suppose uy /∈ EH . As
uy ∈ EG , there is a vertex z ∈ NH (u) such that zy ∈ EH . Then z is in the same
block of H as x , as x and y are in the same connected component of H − u.

To prove the reverse implication, if uy ∈ EH and x, y are in the same block of H ,
then x and y are in the same connected component of H − u. Suppose that uy /∈ EH

and there is a vertex z ∈ NH (u) such that z is in the same block of H as x and
yz ∈ EG . If yz ∈ EH , then y and z are in the same connected component of H−u. If
yz /∈ EH , then there is a v ∈ VG such that yv, vz ∈ EH . Since uy /∈ EH , we obtain
v 
= u. Therefore, y and z are in the same connected component of H −u. Because y
and z are in the same connected component of H − u and x, y are in the same block
of H , we obtain that x, y are in the same connected component of H − u.

3.2 The Algorithm

In this section we use the structural results from the previous section to obtain a
polynomial-time algorithm for CACTUS ROOT. The main idea is to reduce a given
instance of CACTUS ROOT to a set of smaller instances of CACTUS ROOT WITH

LABELS, each having bounded treewidth. We therefore need the following lemma
which show, together with Lemma 1 and Observations 2 and 3, that we are done if
we manage to achieve this goal.

Lemma 9 CACTUS ROOT WITH LABELS can be solved in time f (t) · n for n-vertex
graphs of treewidth at most t .

Proof It is not difficult to construct a dynamic programming algorithm for the prob-
lem (for details see [4] in which such an algorithm is sketched for the general
SQUARE ROOT problem). For simplicity we give a non-constructive proof based on
Courcelle’s theorem [6]. By this theorem, it suffices to show that the existence of a
cactus root can be expressed in monadic second-order logic.

Let (G, R, B) be an instance of CACTUS ROOT WITH LABELS. We observe that
the existence of a cactus H such that G = H2, R ⊆ EH and B∩EH = ∅ is equivalent
to the existence of a subset X ⊆ EG such that the following four properties hold:

(i) R ⊆ X and B ∩ X = ∅;
(ii) for every uv ∈ EG , uv ∈ X or there exists a vertex w such that uw, wv ∈ X ;

(iii) for every two distinct edges uw, vw ∈ X , uv ∈ EG ;
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(iv) for every uv ∈ X and for every two (u, v)-paths P1 and P2 in G such that
EP1 , EP2 ⊆ X \ {uv}, it holds that P1 = P2.

Each of these properties can be expressed in monadic second-order logic. In particu-
lar, with respect to property (iv), expressing that a subgraph P of G is a (u, v)-path
in G can be done in monadic second-order logic in a standard way (see, for example,
[7]). Hence the lemma follows.

Now we are ready to prove the main result.

Theorem 1 CACTUS ROOT can be solved in time O(n4) for n-vertex graphs.

Proof We first give an overview of our algorithm. As we can consider each connected
component separately, we may assume without loss of generality that the input graph
G is connected. First, we use Lemma 3 to recognize sets of pendant vertices in a
(potential) cactus root adjacent to the same vertex that have size at least 7. For each
of these sets, we show that it is safe to delete some vertices without changing the
answer for the considered instance. After performing this step, we obtain a graph G ′
such that in any cactus root of G ′ each vertex is adjacent to at most six pendants.
Further, we use Lemmas 4 and 5 to construct a set U of essential cut vertices in a
(potential) cactus root such that U contains all important cut vertices. Next, we apply
Lemma 6 to recognize which edges incident to the vertices of U are in any cactus
root and which edges are not included in any cactus root. We label them red and
blue respectively and obtain an instance of CACTUS ROOT WITH LABELS. Now we
can use Lemmas 7 and 8 to determine for each u ∈ U , the partition of the set of
vertices of G − u into the sets of vertices of the connected components of H − u,
where H is a cactus root of G ′. This allows us to split G ′ via the vertices of U as
shown in Fig. 2. Due to the presence of labelled edges incident to the vertices of
U , we obtain an equivalent instance. Finally, we observe that the obtained graph has
bounded treewidth using Observations 2 and 3, so we can use Lemmas 1 and 9 to
solve the problem, as we pointed out already.

Now we formally explain the details of our algorithm. Let G be a connected graph.
First, we preprocess G using Lemma 3 to reduce the number of pendant vertices
adjacent to the same vertex in a (potential) cactus root of G. To do so, we exhaustively
apply the following rule.

Fig. 2 Splitting of a graph; the vertices of U are black, the edges of a square root are shown by solid lines
and the other edges are shown by dashed lines
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Pendants Reduction If G has a set X of simplicial true twins of size at least 7, then
delete an arbitrary u ∈ X from G.

The following claim shows that this rule is safe.

Claim A If G ′ = G − u is obtained from G by the application of Pendant reduction,
then G has a cactus root if and only if G ′ has a cactus root.

We prove Claim A as follows. Suppose that H is a minimal cactus root of G. By
Lemma 3, H has a pendant vertex u ∈ X . It is easy to verify that H ′ = H − u is a
cactus root of G ′. Assume now that H ′ is a minimal cactus root of G ′. By Lemma 3,
H has a pendant vertex w ∈ X \ {u}, since the vertices of X \ {u} are simplicial
true twins of G ′ and |X \ {u}| ≥ 6. Let v be the unique neighbour of w in H ′. We
construct H from H ′ by adding u and making it adjacent to v. It is readily seen that
H is a cactus root of G. This completes the proof of Claim A.

For simplicity, we call the graph obtained by exhaustive application of the
pendants rule G again. The following property is important for us.

Claim B Every cactus root of G has at most six pendant vertices adjacent to the
same vertex.

Now we construct an instance of CACTUS ROOT WITH LABELS together with a
set U of cut vertices of a (potential) cactus root.

Labelling Set U = ∅, R = ∅ and B = ∅. For each u ∈ VG such that there are three
distinct vertices x, y, z ∈ NG(u) that are at distance at least 3 from each other in
G − u do the following:

(i) set U = U ∪ {u},
(ii) set B ′ = {uv ∈ EG | ∃w ∈ NG(u) s.t. distG−u(v, w) ≥ 3},

(iii) set R′ = {uv | v ∈ NG(u)} \ B ′,
(iv) set R = R ∪ R′ and B = B ∪ B ′,
(v) if R ∩ B 
= ∅, then return a no-answer and stop.

Lemmas 4–6 immediately imply the following claim.

Claim C If G has a cactus root, then Labelling does not stop in Step (v), and if H is
a minimal cactus root of G, then R ⊆ EH and B ∩ EH = ∅. Moreover, every vertex
u ∈ U is an essential cut vertex of any cactus root of G, and any important cut vertex
u of any cactus root of G is contained in U.

For each u ∈ U , let R(u) = {v ∈ NG(u) | uv ∈ R} and B(u) = NG(u) \ R(u)

and construct a partition P(u) = {S1, S2, . . . , Sk(u)} of NG(u) as follows.

Partition For each u ∈ U ,

(i) put x, y ∈ R(u) in the same set of P(u) if and only if x and y are in the same
connected component of G ′ = G − EG[R(u)] − u,
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(ii) for each x ∈ R(u), put y ∈ B(y) in the same set with x if xy ∈ EG ,
(iii) if at least one of the following holds, then return a no-answer and stop:

• P(u) is not a partition of NG(u),
• there is a set of P(u) with at least three vertices of R(u),
• there is a vertex of B(u) that is not in a set of P(u) with a vertex of R(u),
• there are distinct S, S′ ∈ P(u) such that for some x ∈ S and y ∈ S′,

xy ∈ R,
• there are distinct S, S′ ∈ P(u) such that for some x ∈ S and y ∈ S′,

xy ∈ EG but ux /∈ R or uy /∈ R,
• there are distinct S, S′ ∈ P(u) such that for some x ∈ S and y ∈ S′,

xy /∈ EG but ux ∈ R and uy ∈ R,
• the graph G − EG[R(u)] − u has a path connecting vertices of distinct sets

of P(u).

By Lemmas 7, 8 and Claim C, we have the following.

Claim D If G has a cactus root, then Partition does not stop in Step (iii), and if H is
a minimal cactus root of G, then

(i) R ⊆ EH and B ∩ EH = ∅,
(ii) every important cut vertex u of H is in U,

(iii) for any u ∈ U, x, y ∈ NG(u) are in the same connected component of H − u
if and only if x and y are in the same set of P(u).

Now we split the instance (G, R, B) of CACTUS ROOT WITH LABELS into several
instances of the problem.

Splitting For each u ∈ U , let P(u) = {S1, . . . , Sk} and do the following:

(i) delete u and introduce k new vertices u1, . . . , uk ,
(ii) for each i ∈ {1, . . . , k}, make ui adjacent to all vertices of Si ,

(iii) for each i ∈ {1, . . . , k} and v ∈ Si , if uv ∈ R, then replace uv by uiv in R,
and if uv ∈ B, then replace uv by uiv in B,

(iv) for each i, j ∈ {1, . . . , k}, i 
= j , delete the edges xy with x ∈ Si and y ∈ S j ,
(v) for each i ∈ {1, . . . , k} and v ∈ Si , update P(v) by replacing v by vi in the

sets and deleting the vertices of NG(u) \ Si from the sets.

Let G1, . . . ,Gr be the connected components of the obtained graph. For i ∈
{1, . . . , r}, let Ri = R ∩ EGi and Bi = B ∩ EGi . By Claims B and D, we establish
the following crucial claim.

Claim E The input graph G has a cactus root if and only if (Gi , Ri , Bi ) is a yes-
instance of CACTUS ROOT WITH LABELS for each i ∈ {1, . . . , r}. Moreover, if
(Gi , Ri , Bi ) is a yes-instance, then Gi has a cactus root H with Ri ⊆ EH and
Bi ∩ EH = ∅ such that every cut vertex of H belongs to at most eight blocks and to
at most two blocks not being a K2.
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By Claim E, if G has a cactus root, then �(Gi ) ≤ 10 for i ∈ {1, . . . , k}. By Obser-
vations 2 and 3, we obtain that tw(Gi ) ≤ 32 in this case. We use Lemma 1 to check
whether this holds for each i ∈ {1, . . . , r}. If the algorithm reports that tw(Gi ) ≥ 33
for some i ∈ {1, . . . , r}, then we return a no-answer and stop. Otherwise, we solve
CACTUS ROOT WITH LABELS for each instance (Gi , Ri , Bi ) using Lemma 9 for
i ∈ {1, . . . , r}.

It remains to evaluate the running time of our algorithm. We can find all simplicial
vertices and sort them into the equivalence classes with the true twin relation in time
O(n3). This implies that the exhaustive application of the Pendant reduction rule
can be done in time O(n3). For each vertex u ∈ VG , we can compute the distances
between the vertices of G − u in time O(n3). Hence, the Labelling step can be done
in time O(n4). For each u ∈ U the sets R(u) and B(u) can be constructed in time
O(n2). For each u ∈ U , we can construct G ′ = G − EG[R(u)] and find the connected
components of G ′ in time O(n2). It follows, that the Partition step can be done in
time O(n3). The Splitting step takes O(n3) time. The algorithm in Lemma 1 runs in
O(n) time. We conclude that the total running time is O(n4).

4 Squares of Low Clique Number

We first consider the class of 3-degenerate graphs. We will show that 3-degenerate
squares have bounded treewidth. In order to do this we need the following two known
lemmas.

Lemma 10 ([4]) The SQUARE ROOT problem can be solved in time O( f (t)n) for
n-vertex graphs of treewidth at most t .

Lemma 11 ([14]) Let H be a square root of a graph G. Let T be the bipartite graph
with VT = C ∪ B, where partition classes C and B are the set of cut vertices and
blocks of H, respectively, such that u ∈ C and Q ∈ B are adjacent if and only if Q
contains u. For u ∈ C, let Xu consist of u and all neighbours of u in H. For Q ∈ B,
let XQ = VQ. Then (T, X) is a tree decomposition of G.

We call the tree decomposition (T, X) of Lemma 11 the H-tree decomposition
of G and are now ready to prove the following lemma.

Lemma 12 If G is a 3-degenerate graph with a square root, then tw(G) ≤ 3.

Proof Without loss of generality we assume that G is connected and has at least one
edge. Let H be a square root of G. Let C be the set of cut vertices of H , and let B
be the set of blocks of H . We construct the H -tree decomposition (T, X) of G (cf.
Lemma 11). We will show that (T, X) has width at most 3.

We start with two useful observations. If v ∈ VH , then NH [v] is a clique in G.
Because G is 3-degenerate, this means that �(H) ≤ 3. For the same reason H
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contains no cycles of length at least 5 as a subgraph, because a square of a cycle of
length at least 5 has minimum degree 4.

We claim that XQ has size at most 4 for every Q ∈ B. In order to see this, let
Q be a block of H , and let u ∈ VQ . Suppose that Q has a vertex v at distance at
least 3 from u. Because Q is 2-connected, Q has two internally vertex disjoint paths
that join u and v and, therefore, Q (and thus H ) contains a cycle of length at least 6
which, as we saw, is not possible. We find that each vertex v ∈ VQ is at distance
at most 2 from u. Hence, u is adjacent to all other vertices of Q in G. By the same
reasoning any two vertices in Q are of distance at most 2 of each other. Hence, Q
is a clique in G. As G is 3-degenerate, this means that Q is a clique in G of size at
most 4. Consequently, XQ , has size at most 4. As �(H) ≤ 3, we find that Xu has
size at most 4 for every cut vertex u of H .

Lemma 12, combined with Lemmas 1 and 10, leads to the following result.

Theorem 2 SQUARE ROOT can be solved in O(n) time for 3-degenerate graphs on
n vertices.

Proof Let G be an 3-degenerate graph on n vertices. By Lemma 1 we can check
in O(n) time whether tw(G) ≤ 3. If tw(G) > 3, then G has no square root by
Lemma 12. If not we solve SQUARE ROOT in O(n) time by using Lemma 10.

Remark We cannot claim any upper bound for the treewidth of 4-degenerate graphs
with a square root. In order to see this, take a wall (see Fig. 3) and subdivide each
edge three times, that is, replace each edge uv by a path uabcv where a, b, c are
three new vertices. This gives us a graph H , such that H2 is 4-degenerate. In order
to see the latter, note that every “b-type” vertex has degree 4 in H2 and that after
removing all degree-4 vertices, we obtain a disjoint number of copies of K4, each of
which is 4-degenerate. A wall of height h has treewidth �(h) (see, for example, [8]).
As subdividing an edge and adding edges does not decrease the treewidth of a graph,
this means that the graph H2 can have arbitrarily large treewidth.

We now consider (Kr , Pt )-free graphs (that is, graphs with no induced path Pt
and no complete subgraph Kr ). We let Ks,s denote the complete bipartite graph in
which both partition classes have s vertices. We need a result of Atminas, Lozin and
Razgon.

Fig. 3 Walls of height 2, 3, and 4, respectively
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Lemma 13 ([2]) For any two integers s and t, there exists an integer b(s, t) such that
any graph of treewidth at least b(s, t) contains the path Pt as an induced subgraph
or the complete bipartite graph Ks,s as a (not necessarily induced) subgraph.

Lemma 13, together with Ramsey’s Theorem, enables us to prove the following
lemma.

Lemma 14 For every two integers r, t ≥ 1, the class of (Kr , Pt )-free graphs with a
square root has bounded treewidth.

Proof Let r, t ≥ 1. For contradiction, assume that the class of (Kr , Pt )-free graphs
with a square root has unbounded treewidth. Then there exists a (Kr , Pt )-free graph
G with a square root such that G has treewidth at least b(s, t), where b(s, t) is the
constant in Lemma 13 for a sufficiently large integer s. Then, by Lemma 13, we find
that G contains a subgraph F isomorphic to Ks,s . As we have chosen the fixed integer
s to be large enough, Ramsey’s Theorem implies, together with the Kr -freeness of
G, that F is in fact an induced subgraph of G. This means that no two vertices in the
same bipartition class of F may have a common neighbour in H . In particular, this
implies that for each u ∈ VF , H contains at most one edge of F incident to u (as
otherwise u would be a common neighbour of two vertices of F in H ).

Let A and B be the bipartition classes of F . Let u ∈ A. As s is sufficiently large,
there exist at least r vertices v1, . . . , vr in B that are not adjacent to u in H . Then there
must exist r distinct vertices w1, . . . , wr with edges uwi and wivi for i = 1, . . . , r
(to enforce the edges uvi in G for i = 1, . . . , r ). As the vertices w1, . . . , wq all have
common neighbour u in H , they form a clique of size r in G, a contradiction with
the Kr -freeness of G.

Using a similar reasoning as before, we find that Lemma 14, combined with
Lemmas 1 and 10, leads to the following result.

Theorem 3 For every two integers r, t ≥ 1, SQUARE ROOT can be solved in time
O(n) for (Kr , Pt )-free graphs on n vertices.

5 Conclusions

We proved that the problem of testing whether a graph has a cactus root is O(n4)-time
solvable. In fact, our algorithm can be modified to find a cactus root in the same time
(if it exists). Every cactus is outerplanar, and recently Golovach et al. [12] proved that
squares of outerplanar graphs can be recognized in polynomial time. Determining the
complexity of H-SQUARE ROOT when H is the class of planar graphs is still a wide
open problem. Golovach et al. [12] also proved that squares of graphs of pathwidth
at most 2 can be recognized in polynomial time. We recall that every cactus has
treewidth at most 2. This leads to the open problem of determining the complexity
of H-SQUARE ROOT when H is the class of graphs of treewidth at most 2. We also
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Table 1 A survey of the known results for H-SQUARE ROOT (the result marked with a ∗ is proven in this
paper)

Graph class H complexity

Trees [23] polynomial

Proper interval graphs [18] polynomial

Bipartite graphs [17] polynomial

Block graphs [21] polynomial

Strongly chordal split graphs [22] polynomial

Ptolemaic graphs [19] polynomial

3-sun-free split graphs [19] polynomial

Cactus graphs∗ polynomial

Cactus block graphs [9] polynomial

Graphs of pathwidth at most 2 [12] polynomial

Outerplanar graphs [12] polynomial

Graphs with girth at least g for any fixed g ≥ 6 [11] polynomial

Graphs of girth at least 5 [10] NP-complete

Graphs of girth at least 4 [11] NP-complete

Split graphs [18] NP-complete

Chordal graphs [18] NP-complete

The result for 3-sun-free split graphs has been extended to a number of other subclasses of split graphs
in [20]

recall that a cactus is a connected graph, in which each block is either a cycle or
an edge. This leads to the following (known) generalization: a cactus block graph
is a connected graph, in which each block is a cycle or a complete graph. Recently,

Table 2 A survey of the known results for SQUARE ROOT restricted to some special graph class G

Graph class G complexity

Planar graphs [23] linear

Non-trivial and minor-closed [28] linear

K4-free graphs∗ linear

(Kr , Pt )-free graphs∗ linear

3-degenerate graphs∗ linear

Graphs of maximum degree ≤ 5 [4] linear

Graphs of maximum degree ≤ 6 [4] polynomial

Graphs of maximum average degree < 46
11 [14] polynomial

Line graphs [24] polynomial

Trivially perfect graphs [25] polynomial

Threshold graphs [25] polynomial

Chordal graphs [18] NP-complete

Note that the row for planar graphs is absorbed by the row directly below it. Results marked with a ∗ are
results shown in this paper
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Ducoffe [9] gave a polynomial-time algorithm for the problem of recognizing squares
of cactus block graphs. In Table 1 we summarize all known results on H-SQUARE

ROOT.
We observed that SQUARE ROOT is polynomial-time solvable for graphs with

clique number 3 (or equivalently, K4-free graphs) and proved the same result for 3-
degenerate graphs and (Kr , Pt )-free graphs for every r, t ≥ 1. We summarize the
known results for SQUARE ROOT in Table 2. As can be seen from this table, the com-
putational complexity of SQUARE ROOT is unknown for several well-known graph
classes. In particular, we recall the open problems of Milanič and Schaudt [25], who
asked about the complexity of SQUARE ROOT restricted to split graphs and cographs.
We also do not know the computational complexity of SQUARE ROOT for Kr -free
graphs for r ≥ 5 and for graphs of maximum degree at most s for s ≥ 7.
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