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1 Introduction

Algorithmic mechanism design is the art of designing and implementing the rules of
a game to achieve a desired outcome from a set of possible outcomes. Each player
(agent) has a valuation that assigns a value to each possible outcome. The desired
outcome is the one that maximizes the sum of the valuations; this sum is usually
called social welfare. The players are assumed to be selfish: they report valuations
to the mechanism, which may differ from the true valuations. Players may lie about
their valuations in order to direct the mechanism into an outcome favorable to them.
The mechanism computes an outcome and payments for the players. The utility of
a player is her/his value of the outcome computed by the mechanism minus her/his
payment charged by the mechanism. The agents are interested in optimizing their per-
sonal utility. Social welfare and personal utilities are determined with respect to the
true valuations of the players, although they are not public knowledge. The purpose
of the payments is to incentivize the players to report their true valuations. A mech-
anism is truthful if reporting the truth is a best strategy for each player irrespective
of the inputs provided by the other players. A mechanism is efficient if the outcome
and the payments can be computed in polynomial time. The underlying optimiza-
tion problem is the computation of an outcome maximizing social welfare given the
valutions of the players.

If the underlying optimization problem can be efficiently solved to optimality,
the celebrated VCG mechanism (see, e.g., [20]) achieves truthfulness, social welfare
optimization, and polynomial running time. The computation of the outcome and the
computation of the payments requires to solve the underlying optimization problem
to optimality.

Many optimization problems are NP-hard and hence are unlikely to have an exact
algorithm with polynomial running time. However, it might be possible to solve the
problem approximately in polynomial running time.

An example is the combinatorial auction problem. There is a set of m items to be
sold to a set of n players. The (reported) value of a set S of items to the i-th player
is vi(S) with vi(∅) = 0 and vi(S) ≤ vi(T ) whenever S ⊆ T . Let xi,S be a 0-1
variable indicating that set S is given to player i. Then

∑
S xi,S ≤ 1 for every player

i as at most one set can be given to i, and
∑

i

∑
S;j∈S xi,S ≤ 1 for every item j

as any item can be given away only once. The social welfare is
∑

i,S vi(S)xi,S . The
linear programming relaxation is obtained by replacing the integrality constraints
for xi,s by 0 ≤ xi,S ≤ 1. Note that the number d of variables is exponential in
the number of items, namely d = n2m. The linear program is of the packing type,
i.e., if x is feasible and y ≤ x, then y is feasible. For the combinatorial auction
problem, O(

√
n)-approximation algorithms exist and these algorithms also provide

the corresponding integrality-gap-verifier (the definition is given below) with α =
1/

√
n [3, 16, 22].

For many integer linear programming problems, approximation algorithms are
known that first solve the corresponding linear programming relaxation and then con-
struct an integral solution either by rounding or by primal-dual methods. Lavi and
Swamy [18, 19] showed that certain linear programming based approximation algo-
rithms for the social welfare problem can be turned into randomized mechanisms
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that are truthful-in-expectation, i.e., reporting the truth maximizes the expected util-
ity of a player. The LS-mechanism is powerful (see [4, 12, 18, 19] for applications),
but unlikely to be efficient in practice because of its use of the Ellipsoid method. We
show how to use the multiplicative weights update method instead. This results in
simpler algorithms at the cost of somewhat weaker approximation and truthfulness
guarantees.

We next review the LS-mechanism. It applies to integer linear programming prob-
lems of the packing type for which the linear programming relaxation can be solved
exactly and for which an α-integrality gap verifier is available. More precisely:

1. Let Q ⊆ R
d
≥0 be a packing polytope, i.e., Q is a bounded convex polytope con-

tained in the non-negative orthant of d-dimensional space with the property that
if y ∈ Q and x ≤ y then x ∈ Q. The linear programming problem for Q asks to
find for a given d-dimensional vector v a point x∗ = argmaxx∈QvT x.

2. We use QI := Q ∩ Z
d for the set of integral points in Q. The integer linear

programming problem for QI asks to find for a given d-dimensional vector v a
point x∗ = argmaxx∈QIvT x. We use x1, x2, . . . , xj , . . . to denote the elements
of QI and N for the index set of all elements in QI .

3. An α-integrality-gap-verifier forQI for some α ∈ (0, 1] is an efficient algorithm
that on input v ∈ R

d and x∗ ∈ Q, returns an x ∈ QI such that

vT x ≥ αvT x∗.

The mechanism consists of three main steps:

1. Let vi ∈ R
d
≥0, 1 ≤ i ≤ n, be the reported valuation of the i-th player and let

v = ∑
i vi be the accumulated reported valuation. Solve the LP-relaxation, i.e.,

find a maximizer x∗ = argmaxx∈QvT x for the social welfare of the fractional
problem, and determine the VCG prices1 p1, . . . , pn. The allocation x∗ and the
VCG-prices are a truthful mechanism for the fractional problem.

2. Write α · x∗ as a convex combination of integral solutions in Q, i.e., α · x∗ =∑
j∈N λjx

j , λj ≥ 0,
∑

j∈N λj = 1, and xj ∈ QI . This step requires the
α-integrality-gap-verifier.

3. Pick the integral solution xj with probability λj , and charge the i-th player the
price pi · (vT

i xj /vT
i x∗). If vT

i x∗ = 0, charge zero.

The LS-mechanism approximates social welfare with factor α (is α-socially effi-
cient) and guarantees truthfulness-in-expectation, i.e., it converts a truthful fractional
mechanism into an α-approximate truthful-in-expectation integral mechanism. With
respect to practical applicability, steps 1 and 2 are the two major bottlenecks. Step
1 requires solving n + 1 linear programs, one for the fractional solution and one for
each price; an exact solution requires the use of the Ellipsoid method (see e.g. [11]),
if the dimension is exponential. Furthermore, up to recently, the only method known
to perform the decomposition in Step 2 is through the Ellipsoid method. An alterna-
tive method avoiding the use of the Ellipsoid method was recently given by Kraft,
Fadaei, and Bichler [14]. We comment on their result in the next section.

1pi = ∑
j 
=i vT

j (x̂ − x∗), where x̂ = argmaxx∈Q

∑
j 
=i vT

j x.
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1.1 Our Results

Our result concerns the design and analysis of a practical algorithm for the LS-
scheme. We first consider the case where the LP-relaxation of SWM (social welfare
maximization) in Step 1 of the LS-scheme can be solved exactly and efficiently
and then our problem reduces to the design of a practical algorithm for Step 2.
Afterwards, we consider the more general problem where only an FPTAS for the
LP-relaxation is available.

ConvexDecomposition Over the past 15years, simple and fastmethods havebeendeve-
loped for solvingpacking and covering linear programs [2, 9, 10, 15, 17, 21, 24] within
an arbitrarily small error guarantee ε. These methods are based on the multiplicative
weights update (MWU) method [1], in which a very simple update rule is repeatedly
performed until a near-optimal solution is obtained. We show how to replace the use
of the Ellipsoid method in Step 2 by an approximation algorithm for covering linear
programs. This result is the topic of Section 2.

Theorem 1 Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q, and an α-
integrality-gap verifier for QI , we can find a convex decomposition

α

1 + 4ε
· x∗ =

∑

j∈N
λjx

j .

The convex decomposition has size (= number of nonzero λj ) at most s(1 +
�ε−2 ln s�), where s is the size of the support of x∗ (= number of nonzero compo-
nents). The algorithm makes at most s�ε−2 ln s� calls to the integrality-gap-verifier.

Kraft, Fadaei, and Bichler [14] obtained a related result independently. However,
their construction is less efficient in two aspects. First, it requires O(s2ε−2) calls of
the integrality-gap-verifyer. Second, the size of their convex decomposition might be
as large as O(s3ε−2). In the combinatorial auction problem, s = n + m. Theorem 1
together with Steps 1 and 3 of the LS scheme implies a mechanism that is truthful-
in-expectation and has (α/(1 + 4ε))-social efficiency.

We leave it as an open problem whether the quadratic dependency of the size of
the decomposition on ε can be improved.2

Approximately Truthful-in-ExpectationMechanism We drop the assumption that
the fractional SWM-problem can be solved optimally and assume instead that we
have an FPTAS for it. We assume further that the problem is separable, which means
that the variables can be partitioned into disjoint groups, one for each player, such
that the value of an allocation for a player depends only on the variables in his group,
i.e,

vi(x) = vi(xi),

2We remark that recent progress [23, 25] on solving LPs of the packing/covering type has resulted in an
almost linear dependence of the running time on 1

ε
. However, the current methods do not work in the

oracle model and hence cannot be directly applied in our setting.
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where xi is the set of variables associated3 with player i. Formally, any outcome x ∈
Q ⊆ R

d can be written as x = (x1, . . . , xn)where xi ∈ R
di and d = d1+. . .+dn. We

further assume that for each player i ∈ [n], there is a dominating allocation ui ∈ Q
that maximizes his value for every valuation vi , i.e.,

vi(u
i) = max

z∈Q
vi(z), (1)

for every vi ∈ Vi , where Vi denotes the possible valuations of player i. For the case
of a combinatorial auction, the allocation ui allocates all items to player i.

Theorem 2 Let ε0 ∈ (0, 1/2]. Define ε = �(
ε50
n4

). Assuming that the fractional
SWM-problem has an FPTAS, is separable, and has a dominant allocation for every
player i, and that there is an α-integrality gap verifier for QI , there is a polynomial
time randomized integral mechanism with the following properties:

(C1) No positive transfer, i.e., prices are nonnegative.
(C2) Individually rational with probability 1 − ε0, i.e., i.e., the utility of any truth-

telling player is non-negative with probability at least 1 − ε0.
(C3) (1 − ε0)-truthful-in-expectation, i.e., reporting the truth maximizes the

expected utility of a player up to a factor 1 − ε0.
(C4) γ -socially efficient, where γ = α(1 − ε)(1 − ε0)/(1 + 4ε).

Our mechanism is based on constructing a randomized fractional mechanism with
properties (C1) to (C3) and being (1−ε)(1−ε0)-socially efficient and then converting
the mechanism into an integral mechanism with the properties above. The conversion
is simple. Let us assume that x is a fractional allocation obtained from the fractional
mechanism. We apply our convex decomposition technique and Step 3 of the Lavi-
Swamy mechanism to obtain an integral randomized mechanism that satisfies (C1)
to (C4).We show this result in Section 3.

Our fractional mechanism refines the one given in [6], where the dependency of ε

on n and ε0 is as ε = �(ε0/n
9). A recent experimental study of our mechanism on

Display Ad Auctions [7] shows the applicability of our techniques in practice.
We leave it as an open problem whether the dependency of ε on ε0 and n can be

improved.

On the Existence of an FPTAS for the Fractional SWM-Problem We close the
survey of our results with a comment on the existence of an FPTAS for the fractional
SWM-problem. Consider a packing linear program

max cT x subject to Ax ≤ b, x ≥ 0,

where A ∈ R
m×n
≥0 is an m×n matrix with non-negative entries and c ∈ R

n
>0, b ∈ R

m
>0

are positive vectors. We may assume that each column of A contains a non-zero entry

3In the combinatorial auction problem, xi comprises all variables xi,S . The value of an allocation x for
player i is given by

∑
S vi (S)xi,S .
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as otherwise the problem is trivially unbounded. For every κ ≥ 1 and weight vector
z ∈ R

m
≥0, let Oκ(z) denote a κ-approximation oracle that returns a j such that

1

cj

m∑

i=1

ziaij

bi

≤ κ · min
j ′∈[n]

1

cj ′

m∑

i=1

ziaij ′

bi

.

Garg and Könemann [10] presented an algorithm that uses the oracleOκ to construct
an approximation with a factor arbitrarily close to 1/κ . For κ = 1, their algorithm is
an FPTAS.

What is the approximation oracle in case of the combinatorial auction problem?
In this problem, we have one constraint for each player and one constraint for each
item. Let yi ≥ 0 be the weight for agent i and zj ≥ 0 be the weight for item j . Then
oracle O1(y, z) requires to find the pair

(i, S) := argmin(k,T )

1

vk(T )

⎛

⎝yk +
∑

j∈T

zj

⎞

⎠ .

In other words, for each k, one needs to find the set T which minimizes (yk +∑
j∈T zj )/vk(T ). If yk is interpreted as a fixed cost incurred by agent k and zj as

the cost of item j , then T is the set that minimizes the ratio of cost relative to value.
For a simple-minded bidder who is interested in the items in a subset T0 and no other
item, i.e., vk(T ) = vk(T0) if T0 ⊆ T and vk(T ) = 0, otherwise, T0 is the min-
imizer. Another simple case is additive valuations, i.e., vk(T ) = ∑

j∈T ak
j , where

ak
j ≥ 0 is the value of item j for agent k. In this situation, 1

vk(T )

(
yk + ∑

j∈T zj

)
≤ β

for a set T and a positive real β if and only if
∑

j∈T (βak
j − zj ) ≥ yk and

hence the minimal β for which such a set T exists is readily determined by binary
search on β.

2 A Fast Algorithm for Convex Decompositions

Let x∗ ∈ Q be arbitrary. Carr and Vempala [5] showed how to construct a convex
combination of points in QI dominating αx∗ using a polynomial number of calls to
an α-integrality-gap-verifier forQI . Lavi and Swamy [19] modified the construction
to get an exact convex decomposition αx∗ = ∑

i∈N λix
i for the case of packing lin-

ear programs. The construction uses the Ellipsoid method. We show an approximate
version that replaces the use of the Ellipsoid method by the multiplicative weights
update (MWU) method. For any ε > 0, we show how to obtain a convex decom-
position of αx∗/(1 + ε). Let s be the number of non-zero components of x∗. The
size of the decomposition and the number of calls to the α-integrality gap verifier are
O(sε−2 ln s).

This section is structured as follows. We first review Khandekar’s FPTAS for cov-
ering linear programs (Section 2.1). We then use it and the α-integrality gap verifier
to construct, on input x∗ ∈ Q, a dominating convex combination for αx∗/(1 + 4ε)
(Section 2.2). In Section 2.3, we show how to convert a dominating convex combi-
nation into an exact convex decomposition. Finally, in Section 2.4, we put the pieces
together.
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2.1 Khandekar’s Algorithm for Covering Linear Programs

Consider a covering linear program:

min cT x subject to Ax ≥ b, x ≥ 0, (2)

where A ∈ R
m×n
≥0 is an m × n matrix with non-negative entries and c ∈ R

n
≥0 and

b ∈ R
m
≥0 are non-negative vectors. We assume the availability of a κ-approximation

oracle for some κ ∈ (0, 1].
Oκ(z): Given z ∈ R

m
≥0, the oracle finds a column j of A that maximizes

1
cj

∑m
i=1

ziaij

bi
within a factor of κ:

1

cj

m∑

i=1

ziaij

bi

≥ κ · max
j ′∈[n]

1

cj ′

m∑

i=1

ziaij ′

bi

For an exact oracle κ = 1, Khandekar [15] gave an algorithm which computes a
feasible solution x̂ to (2) such that cT x̂ ≤ (1 + 4ε)z∗ where z∗ is the value of an
optimal solution. The algorithm makes O(mε−2 logm) calls to the oracle, where m

is the number of rows in A. There are algorithms predating Khandekar’s work, see,
for example, [13, Chapter 4].

Theorem 3 (Generalization of Khandekar’s algorithm to arbitrary κ ≤ 1) Let ε ∈
(0, 1

2 ] and let z∗ be the value of an optimum solution to (2). Procedure Covering(Oκ)

(see Algorithm 3 in Appendix) terminates in at most m�ε−2 lnm� iterations with a
feasible solution x̂ of (2) of at mostm�ε−2 lnm� positive components. At termination,
it holds that

cT x̂ ≤ (1 + 4ε)

κ
z∗. (3)

For completeness, we give a proof of Khandekar’s result in Appendix. The proof
of Theorem 3 can be modified to give (see Appendix):

Corollary 1 Suppose b = 1, c = 1, and we use the following oracleO′ instead ofO
in Algorithm 3:

O′(z): Given z ∈ R
m
≥0, such that 1T z = 1, the oracle finds a column j of A such

that zT A1j ≥ 1.

Then the algorithm terminates in at most m�ε−2 lnm� iterations with a feasible
solution x̂ having at most m�ε−2 lnm� positive components, such that 1T x̂ ≤ 1+4ε.

2.2 Finding a Dominating Convex Combination

Recall that we use N to index the elements in QI . We assume the availability of an
α-integrality-gap-verifier F for QI . We will use the results of the preceding section
and show how to obtain for any x∗ ∈ Q and any positive ε a convex composition of
points in QI that covers αx∗/(1 + 4ε). Our algorithm requires O(sε−2 ln s) calls to
the oracle, where s is size of the support of x∗.
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Theorem 4 Let ε > 0 be arbitrary. Given a fractional point x∗ ∈ Q and an α-
integrality-gap verifier F for QI , we can find a convex combination x̄ of integral
points in QI such that

α

1 + 4ε
· x∗ ≤ x̄ =

∑

i∈N
λix

i .

The convex decomposition has size at most s�ε−2 ln s�, where s is the number of
positive entries of x∗. The algorithmmakes at most s�ε−2 ln s� calls to the integrality-
gap verifier.

Proof The task of finding the multipliers λi is naturally formulated as a covering LP
([5]), namely,

min
∑

i∈N
λi (4)

s.t.
∑

i∈N
λix

i
j ≥ α · x∗

j for all j,

∑

i∈N
λi ≥ 1, λi ≥ 0.

λi ≥ 0.

Clearly, we can restrict our attention to the j ∈ S+ := {j : x∗
j > 0} and rewrite the

constraint for j ∈ S+ as
∑

i∈N λix
i
j /(α · x∗

j ) ≥ 1. For simplicity of notation, we
assume S+ = [1..s]. We thus have a covering linear program as in (2) withm := s+1
constraints, n := |N | variables λi , right-hand side b := 1, cost vector c := 1, and
constraint matrix A = (aj,i) (note that we use j for the row index and i for the
column index), where

aj,i :=
{

xi
j /(αx∗

j ) 1 ≤ j ≤ s, i ∈ N
1 j = s + 1, i ∈ N

Thus we can apply Corollary 1 of Section 2.1, provided we can efficiently implement
the required oracle O′. We do so using F .

Oracle O′ has is given a z̃) such that 1T z̃ = 1. Let us conveniently write z̃ =
(w, z), where w ∈ R

s
≥0, z ∈ R≥0, and

∑j=1
j=s wj + z = 1. Oracle O′ needs to find

a column i such that z̃T A1i ≥ 1. In our case z̃T A1i = ∑s
j=1 wjx

i
j /αx∗

j + z, and
we need to find a column i for which this expression is at least one. Since z does not
depend on i, we concentrate on the first term. Define

Vj :=
{

wj

αx∗
j

for j ∈ S+

0 otherwise.

Call algorithm F with x∗ ∈ Q and V := (V1, . . .). F returns an integer solution
xi ∈ QI such that

∑

j∈S+

wj

αx∗
j

xi
j = V T xi ≥ α · V T x∗ =

∑

j∈S+
wj ,
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and hence,
∑

j∈S+

wj

αx∗
j

xi
j + z ≥

∑

j∈S+
wj + z = 1.

Thus i is the desired column of A.
It follows by Corollary 1 that Algorithm 3 finds a feasible solution λ′ ∈ R

|N |
≥0 to the

covering LP (4), and a setQ′
I ⊆ QI of vectors (returned byF), such that λ′

i > 0 only
for i ∈ N ′, where N ′ is the index set returned by oracle O′ and |N ′| ≤ s�ε−2 ln s�.
Also 	 := ∑

i∈N ′ λ′
i ≤ (1 + 4ε). Scaling λ′

i by 	, we obtain a set of multipliers
{λi = λ′

i/	 : i ∈ N ′}, such that
∑

i∈N ′ λi = 1 and

∑

i∈N ′
λix

i ≥ α

1 + 4ε
x∗.

We may assume xi
j = 0 for all j /∈ S+ whenever λi > 0; otherwise simply replace

xi by a vector in which all components not in S+ are set to zero. By the packing
property this is possible.

2.3 From Dominating Convex Combination to Exact Convex Decomposition

We will show how to turn a dominating convex combination into an exact decom-
position. The construction is general and uses only the packing property. Such a
construction seems to have been observed in [18], but was not made explicit. Kraft,
Fadaei, and Bichler [14] describe an alternative construction. Their construction may
increase the size of the convex decomposition (= number of non-zero λi) by a multi-
plicative factor s and an additive factor s2. In contrast, our construction increases the
size only by an additive factor s.

Algorithm 1Changing a dominating convex decomposition into an exact decomposition

Require: A packing convex set and point and a convex combination
of integral points in dominating .

Ensure: A convex decomposition with .
1: while 0 for some do

2: let be such that 0 and 0 for some .

3: if there is a such that 0 and then

4: replace by 1 .
5: else
6: Among the indices with 0 and 0, let minimize .

7: let be such that , if 0, and 0, if 0.

8: change the lefthand side of (5) as follows: replace by and
increase the coefficient of by .

9: end if
10: end while
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Theorem 5 Let x∗ ∈ Q be dominated by a convex combination
∑

i∈N λix
i of

integral points in QI , i.e., ∑

i∈N
λix

i ≥ x∗. (5)

Then Algorithm 1 achieves equality in (5). It increases the size of the convex
combination by at most s, where s is the number of positive components of x∗.

Proof Let S+ = {j : x∗
j > 0}. We may assume xi

j = 0 for all j 
∈ S+ and all i ∈ N
with λi > 0.

For j ∈ S+, let 
j = ∑
i∈N λix

i
j − x∗

j be the gap in the j -th component. If

j = 0 for all j ∈ S+, we are done. Otherwise, choose j and i ∈ N such that

j > 0 and λix

i
j > 0.

Let 1j be the j -th unit vector. If, for some j with xi
j > 0 and 
j > 0, replac-

ing xi by xi − 1j maintains feasibility, i.e., satisfies constraint (5), we perform this
replacement. Since xi is an integer vector in QI , the vector xi − 1j is nonnegative
and, by the packing property, in QI . The replacement decreases 
j by λi and does
not increase the number of nonzero λi .

Otherwise, 
j < λi for all j with 
j > 0 and xi
j > 0. Since xi is integral, we

also have 
j ≤ λix
i
j for all such j . Among the indices j with 
j > 0 and xi

j > 0,

let k minimize 
k/x
i
k . Let y be such that yj = xi

j if 
j = 0 and yj = 0 if 
j > 0.
Then y ∈ QI since Q is a packing polytope. In the convex combination, replace

λix
i by

(

λi − 
k

xi
k

)

· xi + 
k

xi
k

· y.

Notice that λi − 
k

xi
k

≥ 0. Let 
′
j be the new gaps. Then clearly 
′

j = 
j , if 
j = 0.

Consider any j with 
j > 0. Then


′
j = 
j − 
k

xi
k

· xi
j =

⎧
⎨

⎩

0 if j = k

≥
(


j − 
j

xi
j

)

· xi
j = 0 if j 
= k.

The inequality in the second case holds since 
k/x
i
k ≤ 
j/x

i
j . We have decreased

the number of nonzero 
j by one at the cost one additional nonzero λi . Thus the
total number of vectors added to the convex decomposition is at most s.

2.4 Fast Convex Decomposition

We are now ready to prove Theorem 1.

Proof of Theorem 1 Theorem 4 yields a convex combination of integer points of QI

dominating αx∗/(1 + 4ε). The convex decomposition has size at most s�ε−2 ln s�,
where s is the number of positive entries of x∗. The algorithm makes at most
s�ε−2 ln s� calls to the integrality-gap verifier. Theorem 5 turns this dominating con-
vex combination into an exact combination. It adds up to s additional vectors to the
convex combination.
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3 Approximatly Truthful-in-Expectation Mechanisms

The goal of this section is to derive an approximate VCG-mechanism. We do not
longer assume that the fractional SWM-problem can be solved exactly, but instead
assume that we have an FPTAS for it. We will first design a randomized fractional
algorithm (Theorem 6 in Section 3.1) and then convert the fractional mechanism into
an integral mechanism and prove Theorem 2 in Section 3.2.

3.1 Approximately Truthful-in-Expectation Fractional Mechanisms

Theorem 6 Let ε0 ∈ (0, 1/2]. Define ε = �(
ε50
n4

). Assuming that the fractional
SWM-problem has an FPTAS, is separable, and has a dominant allocation for every
player i, there is a polynomial time randomized fractional mechanism (Algorithm 2)
with the following properties:

(D1) No positive transfer, i.e., prices are nonnegative.
(D2) Individually rational with probability 1−ε0, i.e., the utility of any truth-telling

player is non-negative with probability at least 1 − ε0.
(D3) (1 − ε0)-truthful-in-expectation, i.e., reporting the truth maximizes the

expected utility of a player up to a factor 1 − ε0.
(D4) γ -socially efficient, where γ = (1 − ε)(1 − ε0).

In order to present Algorithm 2 and prove Theorem 6, we introduce some notation
and prove some preliminary Lemmas. Let

Li :=
∑

j 
=i

vj (u
j ) and βi := εLi. (6)

Note that Li does not depend on the valuation of player i. Let A be an ε-
approximation algorithm for the LP relaxation of SWM. Note that A is polynomial
time since the running time of an FPTAS is polynomial in 1

ε
. We use A(v) to denote

the outcome of A on input v; A(v) is a fractional allocation in Q. In the follow-
ing, we will apply A to different valuations which we denote by v = (vi, v−i ),
v̄ = (v̄i , v−i ), and v′ = (0, v−i ). Here vi is the reported valuation of player
i, v̄i is his true valuation and v′

i = 0. We denote the allocation returned by
A on input v (resp., v̄, v′) by x (resp., x̄, x′). Note that x, x̄, x′ are fractional
allocations.

We first bound the maximal change in social welfare induced by a change of the
valuation of the i-th player.

Lemma 1 Let ε ≥ 0 and let A be an ε-approximation algorithm which returns
allocation x on input vector v. Let x̂ ∈ Q be an arbitrary point, then

v(x) ≥ v(x̂) − βi − ε · vi(x̂) (7)

for every i.
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Proof We have

v(x) ≥ (1 − ε)max
x∈Q

v(x)

≥ (1 − ε)v(x̂)

= v(x̂) − ε ·
∑

j 
=i

vj (x̂) − ε · vi(x̂)

≥ v(x̂) − βi − ε · vi(x̂),

where the first inequality follows from the fact that A is an ε-approximation algo-
rithm, and the last inequality follows from ε

∑
j 
=i vj (x̂) ≤ ε

∑
j 
=i vj (u

j ) = βi .

We use the following payment rule:

pi(v) := max{pVCG
i (v) − βi, 0} (8)

where
pVCG

i (v) := v−i (x
′) − v−i (x).

v−i (x) = ∑
j 
=i vj (x), x = A(v) and x′ = A(0, v−i ). Observe the similarity in the

definition of pVCG
i (v) to the VCG payment rule. In both cases, the payment is defined

as the difference of the total value of two allocations to the players different from i.
The first allocation ignores the influence of player i (x′ = A(0, v−i )) and the second
allocation takes it into account (x = A(v)). The difference to the VCG rule is that x′
and x are not true maximizers but are computed by an ε-approximation algorithm.

Algorithm 2 The mechanism of Theorem 6. The vectors are defined as in (1)
and the quantities are defined in (6). The definitions of active and inactive
player are given in the proof of Theorem 6.

Require: A valuation vector , a packing convex set and an -approximation
algorithm, where is as Theorem 6.

Ensure: An allocation and a payment satisfying (D1) to (D4).
1: Choose an index 0 1 , where 0 is chosen with probability 0 and

is chosen with probability 0 .
2: if 0 then
3: Use -approximation algorithm to compute an allocation

and compute payments with payment rule (8). For all inactive , change and
to zero.

4: else
5: For every 1 , set

if and is active,
0 if and is inactive,

0 0 if .

6: end if
7: return
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Let Ui(v) = v̄i (x) − pi(v) be the utility of player i for bid vector v. Note that the
value of the allocation x = A(v) is evaluated with the true valuation v̄i of player i.
Let Ui(v̄) = v̄i (x̄)−pi(v̄) be the utility of player i for valuation vector v̄ = (v̄i , v−i ).

Lemma 2 Let ε ≥ 0 and let A be an ε-approximation algorithm. Let M0 be
the mechanism with allocation function A(v) and the payment rule (8). M0 is an
individually rational mechanism with no positive transfer, such that for all i,

Ui(v̄) ≥ Ui(v) − ε · v̄i (x) − 3βi. (9)

Proof By definition, pi(v) ≥ 0 for all v and all x; so the mechanism has no positive
transfer. We next address individual rationality. Assume pi(v̄) = pVCG

i (v̄) − βi > 0,
as otherwise Ui(v̄) ≥ 0. We have

Ui(v̄) = v̄i (x̄) − pi(v̄)

= v̄i (x̄) − pVCG
i (v̄) + βi

= v̄i (x̄) + v̄−i (x̄) − v̄−i (x
′) + βi

= v̄(x̄) − v̄(x′) + v̄i (x
′) + βi

≥ (1 − ε)v̄i(x
′) ≥ 0,

where the first inequality follows from Lemma 1 with v = v̄ and x̂ = x′.
Finally, we prove (9). We have v′(x′) = v−i (x

′), v′(x) = v−i (x), and v′
i (x) = 0.

Thus,

pVCG
i (v) = v−i (x

′) − v−i (x) = v′(x′) − v′(x) + ε · v′
i (x)

Applying Lemma 1 for v = v′ and x̂ = x, we obtain

v′(x′) − v′(x) + ε · v′
i (x) ≥ −βi

Therefore,

pVCG
i (v) + βi ≥ 0. (10)

To see (9), we consider two cases:

Case 1: pi(v) = 0. Then using (10)

Ui(v̄) = v̄i (x̄) − 0 ≥ v̄i (x̄) − pVCG
i (v̄) − βi.

Case 2: pi(v) = pVCG
i (v) − βi .

Ui(v̄) = v̄i (x̄) − pi(v̄) = v̄i (x̄) − pVCG
i (v̄) + βi ≥ v̄i (x̄) − pVCG

i (v̄) − βi,

where the last inequality follows from βi ≥ 0. Therefore, in both cases we have:

Ui(v̄) ≥ v̄i (x̄) − pVCG
i (v̄) − βi.
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Now by using the definition of pVCG
i and Lemma 1, we get

Ui(v̄) ≥ v̄i (x̄) − pVCG
i (v̄) − βi

= v̄i (x̄) + v̄−i (x̄) − v̄−i (x
′) − βi

= v̄(x̄) − v̄−i (x
′) − βi

≥ v̄(x) − βi − εv̄i(x) − v̄−i (x
′) − βi

= v̄i (x) − pVCG
i (v) − εv̄i(x) − 2βi

≥ v̄i (x) − pi(v) − βi − εv̄i(x) − 2βi

= Ui(v) − εv̄i(x) − 3βi.

In what follows we prove Theorem 6.

Proof of Theorem 6 Define q0 = (1 − ε0
n

)n, ε̄ = ε0/2, and qj = (1 − q0)/n for
1 ≤ j ≤ n. Let η = ε̄(1 − q0)

2/n3, η′ = η/qj , and ε = ηε̄(1 − q0)/(8n). Then
using4 q0 = (1 − ε0

n
)n ≥ 1 − ε0 and q0 = (1 − ε0

n
)n ≤ 1 − ε0/2, we get

ε50

128n4
= ε̄2(ε0/2)3

8n4
≤ ε = ηε̄(1 − q0)/(8n) = ε̄2(1 − q0)

3

8n4
≤ ε̄2ε30

8n4
= ε50

16n4
,

as stated in the Theorem. Let Ui(v) = v̄i (x)−pi(v) be the utility of player i obtained
by the mechanism M0 of Lemma 2. Let further Ûi(v) = vi(x) − pi(v). Following
[6], we call player i active if the following two conditions hold:

Ûi(v) + ε̄qi

q0
vi(u

i) ≥ qi

q0
η′Li, (11)

vi(u
i) ≥ ηLi. (12)

Note that these conditions do not depend on the true valuation v̄. We denote by
T = T (v) the set of active players when the valuation is v = (v1, . . . , vn). Note
that Li does not depend on vi . Thus when we refer to conditions (11) and (12) for
v̄, we replace v and x by v̄ and x̄ on the left side and keep the right side unchanged.
Non-negativity of payments is immediate from the definition of mechanism M and
Lemma 2. Moreover, the utility of a truth-telling bidder i can be negative only if
he/she is allocated in step 5, i.e., at most with probability qi . It follows that the mecha-
nism is individually rational with probability at least 1−∑n

i=1 qi = q0 = (1− ε0
n

)n ≥
1 − ε0.

Now we address truthfulness. Let us denote the expected utility of player i

obtained from the mechanism in Algorithm 2 on input v ∈ V by E[U ′
i (v)]. Assume

j = 0 in Algorithm 2. We run ε-approximation algorithm A on v to compute allo-
cation x = (x1, . . . , xn). Then we change xi and pi to zero for all inactive i. Let x̃

4Let f (x) = (1− x/n)n − 1+ x. Then f ′(x) = (1− x/n)n−1 + 1 ≥ 0. Hence, for 0 ≤ x ≤ 1 and n ≥ 1,
the function is increasing and f (x) ≥ f (0) = 0.
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be the allocation obtained in this way. The value for player i is vi (̃x). When the i-th
player is active, this value is equal to vi(x) because vi depends only on the valuation
in the i-th group (separability property). Therefore in this case his utility is Ui(v). So
we have that

E[U ′
i (v)] =

{
q0 · Ui(v) + qi(v̄i(u

i) − η′Li) if i ∈ T (v),

qi v̄i (u
i) if i 
∈ T (v).

(13)

We first observe

E[U ′
i (v̄)] ≥ (1 − ε̄)qi · v̄i (u

i). (14)

Indeed, the inequality is trivially satisfied if i 
∈ T (v̄). On the other hand, if i ∈ T (v̄),
then (11) implies Ui(v̄) = Ûi(v̄) ≥ qi

q0

(
η′Li − ε̄v̄i (u

i)
)
, therefore

E[U ′
i (v̄)] = q0 · Ui(v̄) + qi(v̄i(u

i) − η′Li)

≥ q0 · qi

q0

(
η′Li − ε̄v̄i (u

i)
)

+ qi(v̄i(u
i) − η′Li)

= (1 − ε̄)qi · v̄i (u
i).

We now consider four cases:

Case 1: i ∈ T (v̄) ∩ T (v). Note that (12) for v̄ implies βi = εLi ≤ εv̄i (u
i )

η
. Thus,

by Lemma 2, and using assumption (1) that v̄i (x) ≤ v̄i (u
i), we have

Ui(v̄) ≥ Ui(v) − ε(1 + 3

η
)v̄i(u

i) ≥ Ui(v) − 4ε

η
v̄i(u

i). (15)

Hence by using (13) and (15), we have

E[U ′
i (v)] = q0 · Ui(v) + qi(v̄i(u

i) − η′Li)

≤ q0(Ui(v̄) + 4ε

η
v̄i(u

i)) + qi(v̄i(u
i) − η′Li)

= q0Ui(v̄) + qi(v̄i(u
i) − η′Li)︸ ︷︷ ︸

E[U ′
i (v̄)]

+q0
4ε

η
v̄i(u

i)

= E[U ′
i (v̄)] + q0

4ε

η
v̄i(u

i).

Now applying (14) in the above inequality, we get

E[U ′
i (v)] ≤ E[U ′

i (v̄)] + q0
4ε

η
v̄i(u

i)

≤
(

1 + q0

(1 − ε̄)qi

4ε

η

)

E[U ′
i (v̄)]

≤ (1 + ε̄)E[U ′
i (v̄)],
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the last inequality follows from the definition of ε. Note that (since q0 ≤ 1 and
ε̄ ≤ 1/2)

ε
q0

(1 − ε̄)qi

4

η
≤ ε

1

(1 − ε̄)qi

4

η
≤ ηε̄(1 − q0)

8n

8

qiη
= ε̄.

Case 2: i 
∈ T (v). By (14), we have

E[U ′
i (v)] = qi v̄i(u

i) ≤ 1

1 − ε̄
E[U ′

i (v̄)] ≤ (1 + ε0)E[U ′
i (v̄)].

Since, 1
1−ε̄

= 1 + ε̄(1 + ε̄ + ε̄2 + . . .) ≤ 1 + 2ε̄ = 1 + ε0.
Case 3: i ∈ T (v) \ T (v̄) and (12) does not hold for v̄. Since Ui(v) ≤ v̄i (u

i), we
have

E[U ′
i (v)] = q0 · Ui(v) + qi(v̄i(u

i) − η′Li)

≤ (q0 + qi)v̄i(u
i) − qiη

′Li < (q0 + qi − 1)v̄i(u
i)

≤ 0 ≤ qi v̄i(u
i) = E[U ′

i (v̄)],
where the second inequality holds because (12) does not hold for v̄ and qiη

′/η =
1.

Case 4: i ∈ T (v) \ T (v̄) and (12) holds for v̄. Then (11) does not hold for v̄ and
hence

Ui(v̄) = Ûi(v̄) <
qi

q0

(
η′Li − ε̄v̄i (u

i)
)

. (16)

Since (12) holds for v̄, we have (15). Hence by (14), (15) and (16) we have

E[U ′
i (v)] = q0 · Ui(v) + qi(v̄i(u

i) − η′Li)

≤ q0

(

Ui(v̄) + 4ε

η
v̄i(u

i)

)

+ qi(v̄i(u
i) − η′Li)

≤ qiη
′Li − qi ε̄v̄i (u

i) + 4ε

η
v̄i(u

i) + qi(v̄i(u
i) − η′Li)

= (1 − ε̄)qi · v̄i (u
i) + 4ε

η
v̄i(u

i)

≤
(

1 + 1

(1 − ε̄)qi

4ε

η

)

E[U ′
i (v̄)]

≤ (1 + ε̄)E[U ′
i (v̄)],

where the last inequality follows from the definition of ε (see Case 1).

We finally argue about the approximation ratio. Note that for i 
∈ T (v), one of the
inequalities (11) or (12) does not hold. Also, Ui(v) ≥ 0 in this case since pi = 0,
and hence vi(u

i) < max{η, η′/ε̄}Li = η′Li/ε̄. Since A returns allocation x that is
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(1 − ε)-social efficiency and5 qi − q0n
η′
ε̄

≥ 0, it follows that for any v ∈ V , (recall
x = A(v))

E[v(̃x)] = q0
∑

i∈T (v)

vi(x) +
∑

i∈[n]
qivi(u

i)

= q0
∑

i∈[n]
vi(x) − q0

∑

i /∈T (v)

vi(x) +
∑

i∈[n]
qivi(u

i)

= q0v(x) − q0
∑

i /∈T (v)

vi(u
i) +

∑

i∈[n]
qivi(u

i)

> q0v(x) − q0
η′

ε̄

∑

i 
∈T (v)

Li +
∑

i∈[n]
qivi(u

i)

= q0v(x) − q0
η′

ε̄

∑

i 
∈T (v)

∑

j 
=i

vj (u
j ) +

∑

i∈[n]
qivi(u

i)

≥ q0v(x) − q0
η′

ε̄
n

∑

j∈[n]
vj (u

j ) +
∑

i∈[n]
qivi(u

i)

≥ q0v(x) +
∑

i∈[n]

(

qi − q0n
η′

ε̄

)

vi(u
i)

≥ q0(1 − ε) · max
z∈Q

v(z)

≥ (1 − ε0)(1 − ε) · max
z∈Q

v(z).

3.2 Approximately Truthful-in-Expectation Integral Mechanisms

In this subsection, we derive a randomized mechanism M ′ which returns an integral
allocation. Let ε > 0 be arbitrary. First run Algorithm 2 to obtain x and p(v). Then
compute a convex decomposition of α

1+4ε x, which is α
1+4ε x = ∑

j∈N λx
j x

j . Finally
with probability λx

j (we use the superscript x to distinguish the convex decompo-

sitions of different x) return the allocation xj and charge the i-th player the price

pi(v)
vi (x

j )
vi (x)

, if vi(x) > 0, and zero otherwise. We now prove Theorem 2.

Proof of Theorem 2 Let M be a fractional randomized mechanism obtained in The-
orem 6. Since M has no positive transfer, M ′ does neither. M is individually rational

5q0n
η′
ε̄

≤ nη
qi ε̄

= n2 ε̄(1−q0)
2

(1−q0)ε̄n
3 = 1−q0

n
= qi .
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with probability 1 − ε0, therefore for any allocation x̄, we have v̄i (x̄) − pi(v̄) ≥ 0
with probability 1 − ε0. So

v̄i (x
l) − pi(v̄)

v̄i(x
l)

v̄i(x̄)
= (v̄i(x̄) − pi(v̄))

v̄i(x
l)

v̄i(x̄)
≥ 0,

hence M ′ is individually rational with probability 1−ε0. Now we prove truthfulness.
Let E[U ′′

i (v̄)] be the expected utility of player i when she inputs her true valuation
and let E[U ′′

i (v)] be her expected utility when she inputs vi . Then by definition of
E[U ′′

i (v̄)], we have

E[U ′′
i (v̄)] = Ex̄∼M(v̄)

[
∑

l∈N
λx̄

l

(

v̄i (x
l) − pi(v̄)

v̄i (x
l)

v̄i (x̄)

)]

= Ex̄∼M(v̄)

[(

v̄i

(
∑

l∈N
λx̄

l x
l

)

− pi(v̄)
v̄i (

∑
l∈N λx̄

l x
l)

v̄i (x̄)

)]

= Ex̄∼M(v̄)

[
α

1 + 4ε
v̄i(x̄) − α

1 + 4ε
pi(v̄)

]

= α

1 + 4ε
Ex̄∼M(v̄)[v̄i (x̄) − pi(v̄)]

= α

1 + 4ε
E[U ′(v̄)]

≥ (1 − ε0)
α

1 + 4ε
E[U ′(v)]

= (1 − ε0)
α

1 + 4ε
Ex∼M(v)[v̄(x) − pi(v)]

= (1 − ε0)Ex∼M(v)

[
α

1 + 4ε
v̄(x) − pi(v)

α

1 + 4ε
· vi(x)

vi(x)

]

= (1 − ε0)E

[
∑

l∈N
λx

l

(

v̄i (x
l) − pi(v)

vi(x
l)

vi(x)

)]

= (1 − ε0)E[U ′
i (v)].

Taking expectation with respect to x shows that the mechanism is α(1−ε0)(1−ε)
1+4ε -

socially efficient.

E[v(x)] = Ex∼M(v)

[
∑

l∈N
λx

l v(xl)

]

= Ex∼M(v)

[

v

(
∑

l∈N
λx

l x
l

)]

= Ex∼M(v)

[

v

(
α

1 + 4ε
x

)]

= α

1 + 4ε
Ex∼M(v)[v(x)] ≥ α

1 + 4ε
(1 − ε0)(1 − ε)max

z∈Q
v(z).

This completes the proof of Theorem 2.
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Appendix: Khandekar’s Algorithm for Covering Linear Programs

Consider a covering linear program:

min cT x subject to Ax ≥ b, x ≥ 0, (17)

where A ∈ R
m×n
≥0 is an m × n matrix with non-negative entries and c ∈ R

n
≥0 and

b ∈ R
m
≥0 are non-negative vectors. We assume the availability of a κ-approximation

oracle for some κ ∈ (0, 1].
Oκ(z): Given z ∈ R

m
≥0, the oracle finds a column j of A that maximizes

1
cj

∑m
i=1

ziaij

bi
within a factor of κ:

1

cj

m∑

i=1

ziaij

bi

≥ κ · max
j ′∈[n]

1

cj ′

m∑

i=1

ziaij ′

bi

(18)

We use Ai to denote the i-th row of A. Algorithm 3 constructs vectors x(t) ∈ R
n
≥0,

for t = 0, 1, . . . , until M(t) := mini∈[m] Aix(t)/bi becomes at least T := lnm

ε2
.

Define the active list at time t by L(t) := {i ∈ [m] : Aix(t − 1)/bi < T }. For
i ∈ L(t), define

pi(t) := (1 − ε)Aix(t−1)/bi , (19)

and set pi(t) = 0 for i 
∈ L(t). At each time t , the algorithm calls the oracle with the
vector zt = p(t)/‖p(t)‖1, and increases the variable xj (t) by

δ(t) := min
i∈L(t) and ai,j (t) 
=0

bi

ai,j (t)

, (20)

where j (t) is the index returned by the oracle.

Algorithm 3 Covering

Require: a covering system given by a approximation oracle , where

0 0 0, and an accuracy parameter 0 1 2

Ensure: A feasible solution 0 to (2) s.t.
1 4

1: 0 0; 0; and 2

2: while do
3: 1
4: Let 1
5: 1 and 1 for
6: end while
7: return

http://creativecommons.org/licenses/by/4.0/
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Proof of Theorem 3 Note that the RHS of (18) is positive for our choice of zt since
every row ofA contains a non-zero entry and hence

∑
i∈L(t) pi(t)aij (t)/(bicj (t)) > 0.

This conclude that there exist at least one i ∈ L(t) which ai,j (t) is non zero and thus
δ(t) > 0 always. In each iteration, some entry of x is increased and hence the values
Aix(t)/bi are non-decreasing. Thus L(t + 1) ⊆ L(t) for all t . At the end, we scale
x(t) by M(t) to guarantee feasibility.

Let 1j denote the j -th unit vector of dimension n and B ∈ R
m×m be a diagonal

matrix with entries bii = bi . Feasibility is obvious since we scale byM(t). The bound
on the number of iterations is also obvious since in each iteration at least one of the
Aix/bi increases by one and we remove i from the active list once Aix/bi reaches
T . We conclude that the number of iterations is bounded by m�T �. Let t0 be the
number of iterations, i.e., vectors x(0), x(1), . . . , x(t0) are defined and M(t0 − 1) <

T ≤ M(t0). In the t-th iteration exactly one entry of x is increased by δ(t) and hence
1T x(t0) = ∑

1≤t≤t0
δ(t) and Aix(t)/bi ≤ Aix(t − 1)/bi + 1 for i ∈ L(t). To show

(3), we analyze the decrease of ‖p(t)‖1. Let t ≤ t0. Then

∑

i∈L(t)

(1 − ε)Aix(t)/bi =
∑

i∈L(t)

(1 − ε)Aix(t−1)/bi+δ(t)Ai1j (t)/bi

=
∑

i∈L(t)

pi(t)(1 − ε)δ(t)Ai1j (t)/bi

≤
∑

i∈L(t)

pi(t)(1 − εδ(t)Ai1j (t)/bi)

(using (20) conclude that δ(t)Ai1j (t)/bi ≤ 1 and

(1 − ε)x ≤ 1 − εx for all ε ∈ [0, 1), x ∈ [0, 1])

= ‖p(t)‖1
(

1 − εδ(t)p(t)T B−1A1j (t)

‖p(t)‖1

)

≤ ‖p(t)‖1e−εδ(t)
p(t)T

‖p(t)‖1 B−1A1j (t) since 1 − x ≤ e−x. (21)

By using L(t + 1) ⊆ L(t), we have

‖p(t + 1)‖1 =
∑

i∈L(t+1)

(1 − ε)Aix(t)/bi

≤
∑

i∈L(t)

(1 − ε)Aix(t)/bi (22)

and hence applying inequalities (21) and (22) we get,

‖p(t + 1)‖1 ≤
∑

i∈L(t)

(1 − ε)Aix(t)/bi ≤ ‖p(t)‖1e−εδ(t)
p(t)T

‖p(t)‖1 B−1A1j (t) . (23)
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Let i0 ∈ L(t0) be arbitrary. Then

(1 − ε)Ai0x(t0)/bi0 ≤
∑

i∈L(t0)

(1 − ε)Aix(t0)/bi0

≤ ‖p(t0)‖1e−εδ(t0)
p(t0)T

‖p(t0)‖1 B−1A1j (t0)

≤ ‖p(0)‖1e−ε
∑

1≤t≤t0
δ(t)

p(t)T

‖p(t)‖1 B−1A1j (t) ,

where the second inequality uses (21) for t = t0 and the third inequality uses (23) for
0 ≤ t < t0. Taking logs and using ‖p(0)‖1 = m, we conclude that

Ai0x(t0)/bi0 · ln(1 − ε) ≤ lnm − ε
∑

1≤t≤t0

δ(t)
p(t)T

‖p(t)‖1B−1A1j (t) (24)

We next relate the objective value cT x(t0) = ∑
1≤t≤t0

cj (t)δ(t) at time t0 to the
optimal value z∗ by the following claim.

Claim
∑

1≤t≤t0
δ(t)

p(t)T

‖p(t)‖1 B
−1A1j (t) ≥ κ·cT x(t0)

z∗ .

Proof Let x∗ ∈ R
n
≥0 be an optimal solution to (2). Since x∗ is feasible, B−1Ax∗ ≥ 1,

and thus for any t ,

p(t)T B−1Ax∗ ≥ p(t)T 1 = ‖p(t)‖1.
By the choice of the index j (t), we have that 1

cj (t)
p(t)T B−1A1j (t) ≥

1
cj

κp(t)T B−1A1j for all j ∈ [n]. Since z∗ = cT x∗, we conclude further

z∗p(t)T B−1A1j (t) =
∑

j∈[n]
cj x

∗
j p(t)T B−1A1j (t)

=
∑

j∈[n]
cj · cj (t)

cj (t)

x∗
j p(t)T B−1A1j (t)

≥
∑

j∈[n]
cj · cj (t)

cj

x∗
j κp(t)T B−1A1j

= κcj (t)p(t)T B−1Ax∗

≥ κcj (t)‖p(t)‖1.
Multiplying both sides of this inequality by δ(t)/‖p(t)‖1 and summing up over 1 ≤
t ≤ t0 finishes the proof of the claim.

Using the claim above, we deduce from (24)

Ai0x(t0)/bi0 · ln(1 − ε) ≤ lnm − ε · κ · cT x(t0)

z∗
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Dividing both sides by M(t0), arranging, and using M(t0) ≥ T = (lnm)/ε2,

Ai0x(t0)/bi0 ≤ Ai0x(t0 − 1)/bi0 + 1 ≤ T + 1, and
ln 1

1−ε

ε
≤ 1 + 2ε, valid for all

ε ∈ (0, 1
2 ], we obtain

κ · cT x̂

z∗ = κ · cT x(t0)

M(t0)z∗ ≤ ln 1
1−ε

ε
· Ai0x(t0)/bi0

M(t0)
+ lnm

ε · M(t0)

≤ (1 + 2ε)
T + 1

T
+ ε ≤ 1 + 4ε.

Proof of Corollary 1 Recall (24):

Ai0x(t0)/bi0 · ln(1 − ε) ≤ lnm − ε
∑

1≤t≤t0

δ(t)
p(t)T

‖p(t)‖1B−1A1j (t).

With assumption b = 1, we have,

Ai0x(t0) · ln(1 − ε) ≤ lnm − ε
∑

1≤t≤t0

δ(t)
p(t)T

‖p(t)‖1A1j (t).

The vector zt = p(t)/‖p(t)‖1 satisfies 1T zt = 1. Apply oracle O′ with input

vector zt , it returns index j (t) such that we have p(t)T

‖p(t)‖1 A1j (t) ≥ 1. Thus, we have

Ai0x(t0) · ln(1 − ε) ≤ lnm − ε · 1T x(t0).

Proceeding as in the proof of Theorem 3, we get the result.
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