
Theory Comput Syst (2016) 58:273–286
DOI 10.1007/s00224-015-9616-6

Exact Algorithms for Intervalizing Coloured Graphs

Hans L. Bodlaender ·Johan M. M. van Rooij

Received: 20 October 2014 / Accepted: 23 February 2015 / Published online: 15 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract In the INTERVALIZING COLOURED GRAPHS problem, one must decide
for a given graph G = (V , E) with a proper vertex colouring of G whether G is
the subgraph of a properly coloured interval graph. For the case that the number of
colors is fixed, we give an exact algorithm that uses 2O(n/ log n) time. We also give an
O∗(2n) algorithm for the case that the number of colors is not fixed.

Keywords Graph algorithms · Exact algorithms · Interval graphs · Subexponential
time · Intervalizing coloured graphs · Pathwidth

1 Introduction

The area of exact algorithms for NP-hard problems is an old area in the field
of design and analysis of algorithms, but also one with many important new

The research of this author was partially funded by the Networks programme, funded by the Dutch
Ministry of Education, Culture and Science through the Netherlands Organisation for Scientific
Research.

H. L. Bodlaender (�) · J. M. M. van Rooij
Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, Netherlands
e-mail: h.l.bodlaender@uu.nl

J. M. M. van Rooij
e-mail: jmmrooij@cs.uu.nl

H. L. Bodlaender
Department of Mathematics and Computer Science, University of Technology Eindhoven, P.O. Box
513, 5600 MB Eindhoven, Netherlands

J. M. M. van Rooij
Consultants in Qualitative Methods, P.O. Box 414, 5600 AK Eindhoven, Netherlands

mailto:h.l.bodlaender@uu.nl
mailto:jmmrooij@cs.uu.nl

274 Theory Comput Syst (2016) 58:273–286

developments. A recent overview of the area can be found in the book by Fomin
and Kratsch [14]. In this paper, we consider exact algorithms for the problem called
INTERVALIZING COLOURED GRAPHS. This problem is defined in the following
way. Given a graph G = (V , E) together with a proper vertex colouring c : V →
{1, . . . , k} of G (a colouring c is proper if for all edges {v,w} ∈ E: c(v) �= c(w)),
one must decide if G is subgraph of a properly coloured interval graph, i.e., can
we add edges, such that each edge is between vertices of different colors and the
result is an interval graph? The problem has its original motivation in DNA physical
mapping [13].

This problem is NP-complete [13] (see also [18]), even when the number of col-
ors equals four [5, 6], and in addition, inputs are restricted to caterpillar trees [1]. We
denote the version of the problem where the number k of colors is fixed by INTER-
VALIZING k-COLOURED GRAPHS, and the version with a potentially unbounded
number of colors by INTERVALIZING COLOURED GRAPHS.

If the number of colors equals two, the problem is trivially solvable in lin-
ear time. For three colors, the problem is solvable in quadratic time with a
complicated algorithm [7]; the case for three colors and biconnected graphs is
described in [6].

In this paper, we give two algorithms: one for the case that the number of colors is
bounded by a constant, and one for the case that the number of colors is unbounded.
The former result is relevant if the number of colors is a constant that is at least four,
and forms a somewhat curious exception to a general pattern that can be observed
in most exact algorithms for graph problems. Namely, the algorithm uses slightly
less than exponential time. Most NP-hard problems that have subexponential algo-
rithms deal with planar graphs and generalizations of planar graphs, see e.g., [12,
16, 23]. Typically, the running time of such algorithms is of the form 2O(

√
n). Our

result is unlike most results in two ways: first, our inputs are general graphs (but a
positive answer implies bounded pathwidth of the input; see Proposition 3 and its
discussion), and secondly, the running time is ‘just subexponential’: it is bounded
by 2O(n/ log n).

Our algorithm for INTERVALIZING k-COLOURED GRAPHS for fixed k can be
viewed as a dynamic programming algorithm in Held-Karp style [21], resembling
algorithms for some graph layout problems given e.g., in [8], but with one additional
improvement: an isomorphism test on certain parts of the graph during the dynamic
programming. Important concepts that facilitate the presentation of our results are
the notions of path decomposition and nice path decomposition.

Our second result is an algorithm for INTERVALIZING COLOURED GRAPHS (with
no bound on the number of colors); this algorithm runs in O∗(2n). It is a rather
simple dynamic programming algorithm, also in Held-Karp style, and is the first
exact algorithm for the problem.

This paper is organized as follows. In Section 2, preliminary definitions and results
are given. In Section 3, the notion of partial path decomposition and some related
notions are introduced, and a few structural results on these notions are derived. In
Section 4, we give the algorithm for INTERVALIZING k-COLOURED GRAPHS, and
analyse its running time. In Section 5, the algorithm for INTERVALIZING COLOURED

GRAPHS is given. Some final remarks are made in Section 6.

Theory Comput Syst (2016) 58:273–286 275

2 Preliminaries

In this section, we introduce some standard notations, and give a few preliminary
results on path decompositions.

The graphs in this paper are considered to be undirected and simple. We make a
distinction between labelled and unlabelled graphs. In a labelled graph, each vertex
has a unique label, and two isomorphic graphs with different labels are considered
to be different. In contrast, two isomorphic unlabelled graphs are considered to be
the same object. We also consider graphs given with a vertex colouring. A vertex
colouring of a graph G = (V , E) is a function c : V → C, for some finite set C. |C|
is the number of colours. A vertex colouring c is proper, if for all edges {v,w} ∈ E,
we have that c(v) �= c(w).

Throughout the paper, we assume that the input graph G is connected; if not, we
can run the algorithm separately on each connected component of G.

For a graph G = (V , E) and a set of vertices W ⊆ V , we denote G[W] as the
subgraph induced by W : G[W] = (W, {{v, w} ∈ E | v,w ∈ W }).

A graph G = (V , E) is an interval graph, if we can associate to each vertex
v ∈ V an interval on the real line Iv = [�v, rv], such that for all v,w ∈ V, v �= w:
{v,w} ∈ E, if and only if Iv ∩ Iw �= ∅.

A graph H = (V , F) is an interval completion of a graph G = (V , E), if G and
H have the same vertex set, E ⊆ F , and H is an interval graph. More background
can be found in [17]; see also [20].

A path decomposition of a graph G = (V , E) is a sequence of subsets of V called
bags, (X1, X2, . . . , Xr) such that:

• ⋃
1≤i≤r Xi = V ;

• for all {v,w} ∈ E, there is an i, v, w ∈ Xi ;
• for all i0, i1, i2: if 1 ≤ i0 ≤ i1 ≤ i2 ≤ r , then Xi0 ∩ Xi2 ⊆ Xi1 .

The width of a path decomposition (X1, X2, . . . , Xr) is max1≤i≤r |Xi | − 1. The
pathwidth of a graph G is the minimum width of a path decomposition of G.

A path decomposition (X1, X2, . . . , Xr) is nice, if for all i, 1 ≤ i < r , exactly
one of the following two cases holds:

• There is a vertex v ∈ V with Xi+1 = Xi ∪ {v}. We call Xi+1 an introduce node.
• There is a vertex v ∈ V with Xi+1 = Xi − {v}. We call Xi+1 a forget node.

If |X1| = 1, we also call X1 an introduce node. The following proposition is well
known. We give the proof for later reference.

Proposition 1 (Folklore) Each graph G = (V , E) with pathwidth k has a nice path
decomposition of width k with 2n bags, with |X1| = 1, and Xr = ∅.

Proof Suppose we have a path decomposition (X1, X2, . . . , Xr). We can turn it in a
nice path decomposition as follows. First, remove all bags that are empty. If for some
i, 1 ≤ i < r, i + 1 is not an introduce or forget bag, then we insert some new bags
between i and i +1: first forget nodes, one for each vertex in Xi −Xi+1, and then we
have one introduce node for each vertex in Xi+1 − Xi . Similarly, we add introduce

276 Theory Comput Syst (2016) 58:273–286

nodes before X1 when |X1| �= 1, and add forget nodes at the end of the procedure till
Xr = ∅. We have one introduce and one forget node per vertex, so we have 2n bags.

Proposition 2 There are at most (k + 2k + 1)2n−1 unlabelled graphs with pathwidth
at most k that are pairwise non isomorphic.

Proof Consider a nice path decomposition of a graph with n vertices, with |X1| = 1,
and with 2n bags. For each of the bags Xi, i > 1, there are at most k + 2k + 1
possibilities: we can have a forget node, where we have the choice which of the at
most k + 1 vertices in Xi we forget, or we can have an introduce node, where we
have the choice to which of the at most k vertices in Xi the introduced vertex has an
edge, i.e., at most 2k choices for an introduce node. If we have two graphs with two
path decompositions that we can construct while always making the same choices,
then these graphs are isomorphic.

Proposition 3 Let G = (V , E) be a graph with proper vertex colouring c : V →
{1, 2, . . . , k}. The following are equivalent.

1. G has a properly coloured interval completion, using colouring c.
2. G has a path decomposition (X1, X2, . . . , Xr), such that for all v,w ∈ V : if

v �= w and there is an i with v, w ∈ Xi , then c(v) �= c(w).
3. G has a nice path decomposition (X1, X2, . . . , X2|V |) of width at most k − 1,

such that for all v, w ∈ V : if v �= w and there is an i with v,w ∈ Xi , then
c(v) �= c(w).

This proposition is well known. We sketch some of the proofs, as they provide
some intuition for several of our later notions and results. Suppose H = (V , F) is a
properly coloured interval completion of G. Consider the interval model of H . We
can assume that all endpoints of intervals are different in this model. Use a scan-
line that moves in this model from left to right. While moving the scanline, we build
a nice path decomposition with the required property. We start with an empty bag.
Each time the scanline meets a left or right endpoint, we add a new node to the path
decomposition. If we meet a right endpoint of an interval representing a vertex v, we
have a forget node, where we forget v. If we meet a left endpoint of an interval rep-
resenting a vertex v, we have an introduce node, where we introduce the vertex v. In
this way, the vertices in a bag are exactly the vertices represented by the intervals that
intersect the scanline. One easily verifies that we have obtained a nice path decom-
position of H , and, as G is a subgraph of H , this is also a nice path decomposition
of G. As H is properly coloured, vertices in the same bag are differently coloured.

For the reverse direction, suppose that we have a (nice) path decomposition
(X1, X2, . . . , Xr) from Proposition 3 (ii) or (iii), one obtains the corresponding inter-
val graph by making each Xi a clique. The corresponding interval graph model is
obtained by taking for a vertex v the interval [minv∈Xi

i, maxv∈Xi
i]. As all colors in

a bag Xi are different, the width of the path decompositions is bounded by k − 1.

Theory Comput Syst (2016) 58:273–286 277

Note that it follows directly from Proposition 3, that a graph with a proper vertex
colouring with k colors has pathwidth at most k − 1.

Proposition 3 motivates the definition of a properly coloured path decomposition:
(X1, . . . , Xr) is a properly coloured path decomposition of G, if and only if it is a
path decomposition of G, and for all v, w ∈ V , if v �= w and there is an i with
v,w ∈ Xi , then c(v) �= c(w).

3 Partial Path Decompositions

In this section, we introduce a number of notions that will be used for our dynamic
programming algorithm in the next section.

A partial path decomposition of a graph G = (V , E) is a sequence of subsets of
V (X1, X2, . . . , Xs) such that:

• (X1, X2, . . . , Xs) is a path decomposition of G[⋃1≤i≤s , andXi]
• For each connected component of G[V − Xs] with vertex set W , either W ⊆⋃

1≤i≤s−1 Xi or W ∩ (⋃
1≤i≤s−1 Xi

) = ∅.

The following proposition follows from well known facts about path and tree
decompositions. For completeness we give the proof.

Proposition 4 Let (X1, X2, . . . , Xr) be a path decomposition of G. Then, for each
s, 1 ≤ s ≤ r, (X1, X2, . . . , Xs) is a partial path decomposition of G.

Proof Suppose (X1, . . . , Xs) is not a partial path decomposition. Write A =⋃
1≤i≤s−1 Xi and B = ⋃

s+1≤i≤r Xi . There is a connected component of G[V −Xs]
with vertex set W , such that there is a v ∈ W ∩ A and a w ∈ W ∩ B. There
is a path from v to w with all vertices in W , i.e., it avoids Xs . This path con-
tains two neighbouring vertices x ∈ A and y ∈ B. There is a bag Xi with
{x, y} ⊆ Xi . If i ≤ s, then y ∈ Xs by the definition of path decomposition; if
i > s, then x ∈ Xs by definition of path decomposition. In both cases we have a
contradiction.

Consider a partial path decomposition (X1, X2, . . . , Xr) and a vertex set X. Later,
X will typically be the set Xr for some partial path decomposition (X1, X2, . . . , Xr).
A component of X is a vertex set that forms a connected component of the graph
G[V −X]. We say that two components Y and Z of X are isomorphic components of
X, if there is a graph isomorphism f of G[Y ∪ X] to G[Z ∪ X] that preserves colors
and is the identity when restricted to X, i.e., f is a bijective function, such that the
following conditions hold:

1. For all v,w ∈ Y ∪ X: {v, w} ∈ E ⇔ {f (v), f (w)} ∈ E.
2. For all v ∈ Y ∪ X: c(v) = c(f (v)).
3. For all v ∈ X: f (v) = v.

278 Theory Comput Syst (2016) 58:273–286

A component W of Xr is said to be a left component of the partial path decompo-
sition (X1, . . . , Xr), if W ⊆ ⋃

1≤i≤r−1 Xi , and a right component of (X1, . . . , Xr),
if W ∩ (⋃

1≤i≤r−1 Xi

) = ∅.
The following proposition follows directly from the definition of partial path

decomposition, see also Proposition 4.

Proposition 5 Let (X1, X2, . . . , Xr) be a partial path decomposition of G. Each
component of Xr is either a left or a right component of (X1, X2, . . . , Xr).

We say that a partial path decomposition (X1, X2, . . . , Xs) of G = (V , E) is
properly coloured, if for all v, w ∈ V , if v �= w and there exists an i with v,w ∈ Xi ,
then c(v) �= c(w). We say that a (partial) path decomposition (Y1, Y2, . . . , Ys) is an
extension of a partial path decomposition (X1, X2, . . . , Xr) if r ≤ s and for all i,
1 ≤ i ≤ r , Yi = Xi , i.e., (X1, . . . , Xr, Yr+1, . . . , Ys) extends (X1, . . . Xr).

We define an equivalence relation on partial path decompositions as follows. We
say that the partial path decomposition (X1, X2, . . . , Xr) is equivalent to the partial
path decomposition (Y1, Y2, . . . , Ys), if the following two conditions hold:

1. Xr = Ys .
2. Suppose W1, W2, . . . , Wq are the components of Xr , i.e., the connected compo-

nents of G[V − Xr]. There is a bijective function g : {1, . . . , q} → {1, . . . , q},
such that for all i, 1 ≤ i ≤ q:

• Wi is a left component of (X1, X2, . . . , Xr), if and only if Wg(i) is a left
component of (Y1, Y2, . . . , Ys) and

• Wi and Wg(i) are isomorphic components of Xr .

The main insight behind our dynamic programming algorithm is the following
result.

Proposition 6 If (X1, X2, . . . , Xr) and (Y1, Y2, . . . , Ys) are equivalent coloured
partial path decompositions, then (X1, X2, . . . , Xr) has an extension that is a prop-
erly coloured path decomposition of G, if and only if (Y1, Y2, . . . , Ys) has an
extension that is a properly coloured path decomposition of G.

Proof Suppose (X1, X2, . . . , Xr, Z1, Z2, . . . , Zr ′) is a properly coloured path
decomposition of G that is an extension of (X1, X2, . . . , Xr). Suppose that
W1, . . . , Wq are the components of Xr . Let g be the bijective function as in the defini-
tion of equivalence. Let fi be a color preserving graph isomorphism from G[Xr ∪Wi]
to G[Xr∪Wg(i)] that is the identity on Xr , as implied by the definition of equivalence.

Let f : V → V be the function defined in the following way.

• for v ∈ Wi, 1 ≤ i ≤ r: f (v) = fi(v);
• for v ∈ Xr, f (v) = v.

Claim 7 f is a color preserving automorphism of G.

Theory Comput Syst (2016) 58:273–286 279

Proof f is a color preserving bijection: if v ∈ Xr , then v does not belong to a
component Wi , so f −1(v) = {v}. Otherwise, suppose v ∈ Xg(i). If f (w) = v, then
w ∈ Wi and fi(w) = v; as fi is an isomorphism, there is only one such w; and as fi

is color preserving, the color of w equals the color of v.
Consider an edge {v, w} ∈ E. There must be an i, with v,w ∈ Wi ∪ Xr . Now,

f (v) = fi(v), and f (w) = fi(w). As fi is an isomorphism, {f (v), f (w)} =
{fi(v), fi(w)} ∈ E. Similarly, a pair of non-adjacent vertices is mapped to a pair of
non-adjacent vertices.

Define for i, 1 ≤ i ≤ r ′, Z′
i = {f (v) | v ∈ Zi}.

Claim 8 (Y1, Y2, . . . , Ys, Z
′
1, Z

′
2, . . . , Z

′
r ′) is a properly coloured path decomposi-

tion.

Proof We first prove that (Y1, Y2, . . . , Ys, Z
′
1, Z

′
2, . . . , Z

′
r ′) is a path decomposition.

First, we show that every edge {v, w} ∈ E is contained in some bag of
(Y1, Y2, . . . , Ys, Z

′
1, Z

′
2, . . . , Z

′
r ′). If v, w ∈ Ys , then we can take the bag Ys ; so

w.l.o.g., let v �∈ Ys . If v belongs to a left component Wi of (Y1, . . . , Ys), then there
must be a bag Yj , 1 ≤ j ≤ s − 1 that contains v and w as (Y1, Y2, . . . , Ys) is a
partial path decomposition. Now suppose that v belongs to a right component Wi

of (Y1, . . . , Ys). We have that Wg−1(i) is a right component of (X1, . . . , Xr). As

{f −1(v), f −1(w)} ∈ E, there is a bag in (X1, X2, . . . , Xr, Z1, Z2, . . . , Zr ′) that
contains both f −1(v) and f −1(w). As Wg−1(i) is a right component, this bag must
be one of the Zj , 1 ≤ j ≤ r ′, and thus v, w ∈ Z′

j .

Second, it now directly follows that
(⋃

1≤i≤s Yi

) ∪ (⋃
1≤i≤r ′ Z′

i

) = V : as G is
connected, each vertex is endpoint of an edge.

Third, we show that every v ∈ V only occurs in a series of consecutive bags. For
a vertex v ∈ Ys = Xr , we note that there are 1 ≤ α ≤ s, 0 ≤ β ≤ r ′, such that
v belongs to bags Yα, Yα+1, . . . , Ys , and v belongs to bags Z1, Z2, . . . , Zβ , and no
other bags. As f (v) = v, v also belongs to bags Z′

1, Z
′
2, . . . , Z

′
β , and no later bags.

So, for a vertex v ∈ Ys = Xr , we are done.
If v ∈ Wg(i) where Wg(i) is a left component of (Y1, Y2, . . . , Ys). Then,

f −1(v) ∈ Wi with Wi a left component of (X1, X2, . . . , Xr). Thus, f −1(v) belongs
to one or more consecutive bags in (X1, X2, . . . , Xr−1), and, as f −1(v) does
not belong to Xr , f −1(v) does not belong to Z1, Z2, . . . , Zr ′ because otherwise
(X1, X2, . . . , Xr, Z1, Z2, . . . , Zr ′) is not a path decomposition. So, v belongs to one
or more consecutive bags in (Y1, Y2, . . . , Ys−1) and no others. And, if v ∈ Wg(i)

where Wg(i) is a right component of (Y1, Y2, . . . , Ys), then the required result follows
from a similar analysis.

Finally, by assumption all vertices in a bag Yi have a different color, and, as f is
color preserving, as all vertices in a bag Zi have a different color, also all vertices in
a bag Z′

i have a different color. We thus have shown Claim 8.

So, (Y1, Y2, . . . , Ys) has an extension that is a properly coloured path decompo-
sition of G. This shows one direction of implication of the proposition; the proof of
the other direction is identical. Thus, Proposition 6 holds. �

280 Theory Comput Syst (2016) 58:273–286

We assume some ordering on the vertices. The characteristic of a partial path
decomposition (X1, X2, . . . , Xr) is the following pair:

(Xr,
⋃

1≤i≤r−1

Xi − Xr),

where we assume that both vertex sets are given as an ordered list of vertices.
Two properly coloured partial path decompositions with the same characteristic

are trivially equivalent, using the identity for g. The algorithm in Section 5 basically
tabulates all different characteristics of properly coloured partial path decomposi-
tions, and thus gives an O(2n) algorithm for INTERVALING COLOURED GRAPHS;
this is somewhat similar to the Held-Karp algorithm for TSP [21]. In case the number
of colors is bounded, we can obtain a faster algorithm by applying an isomorphism
check for components; this is the main ingredient of the faster algorithm described in
the next section.

4 An Exact Algorithm for Intervalizing k-Coloured Graphs

In this section, we give the algorithm for INTERVALIZING k-COLOURED GRAPHS,
building upon the notions and preliminary results of the previous sections.

First, we note that a positive instance has a path decomposition in which each bag
has size at most k (all vertices in a bag have a different color and there are k colors).
Thus, as a first step we use the linear time algorithm (for fixed k), that tests if the
pathwidth of the input graph is at most k − 1 from [4, 10]. If not, we are done, and
can decide negatively. Thus, we can assume that G has pathwidth at most k in the
remainder. We consider k to be a constant.

We introduce some further notions.
We define the progress of a partial path decomposition (X1, X2, . . . , Xr) to be

2 · | ⋃1≤i≤r Xi | − |Xr |. Note that when we extend a nice partial path decomposition
with one additional introduce or one additional forget node, then the progress always
increases by exactly one. As the characteristic of (X1, . . . , Xr) is (Xr,

⋃
1≤i<r Xi −

Xr), it follows that if a partial path decomposition has characteristic (X, Z), its
progress equals 2|Z| − |X|.

The canonical characteristic of a properly coloured partial path decomposition
is the lexicographically minimal characteristic over all characteristics of equivalent
properly coloured partial path decompositions.

Proposition 9 Given a characteristic of a properly coloured partial path decompo-
sition, we can compute in polynomial time its canonical characteristic.

Proof The GRAPH ISOMORPHISM problem is polynomial time solvable on graphs
of bounded treewidth, and thus also on graphs of bounded pathwidth [3, 15]. It is
straightforward to modify the algorithms of [3] or [15] such that it also works on
coloured graphs while using the same running time. (More precisely, the very recent
result of Fomin et al. [15] shows that GRAPH ISOMORPHISM is fixed parameter

Theory Comput Syst (2016) 58:273–286 281

tractable, with the treewidth as parameter; this improvement is however suppressed
by other factors in the running time of our algorithm.)

Given a characteristic (Xr, Z), we first compute (with depth first search) the con-
nected components of G[V − Xr], say W1, W2, . . . , Wq . For each pair Wi, Wj , we
can check in polynomial time if they are isomorphic: use the isomorphism algorithm
on coloured graphs of bounded pathwidth discussed above, and take a new, different
color for each vertex in Xr . (Note the definition of isomorphism for components, as
given in Section 3).

Thus, we can partition the components in equivalence classes dictated by iso-
morphism. We can sort each component lexicographically, and then each class
lexicographically. Then, for each class, we determine how many components from
the class are a subset of Z (i.e., left components). In the canonical characteristic, we
take the same number of left components from the class, but now take this number
of lexicographically smallest elements. A simple last sorting step gives the desired
result.

We can now describe our algorithm.

• Check if the pathwidth of G is at most k − 1. If not, answer no and terminate.
• Otherwise, for α = 1 · · · 2n, compute a table Tα of all canonical characteristics

of partial path decompositions of progress α.
• If T2n is empty, then answer no; otherwise, answer yes.

The output of the algorithm clearly is correct as a partial path decomposition is a
path decomposition, if and only if, its progress equals 2n.

We now describe how the tables Ti are computed. Computing T1 is simple: for all
v ∈ V , we have an entry in T1 of the form ({v}, ∅). Given a table Tα, 1 ≤ α < 2n, we
compute table Tα+1 as follows. Initialize Tα+1 as empty set. For each entry (X, Z)

from Tα , do the following:

• Compute the new characteristics that result when the next node in the partial path
decomposition is an introduce node: for each v ∈ V − Z − X such that there is
no x ∈ X with c(v) = c(x), compute the canonical characteristic of (X∪{v}, Z)

and put it in Tα+1.
• Compute the new characteristics that result when the next node in the partial path

decomposition is a forget node: for each x ∈ X such that there is no v ∈ Z−V −
X with {v, x} ∈ E, compute the canonical characteristic of (X − {v}, Z ∪ {v}).

Proposition 10 The procedure correctly computes table Tα+1.

Proof Note that the characteristic of a partial path decomposition remains the same
when we apply the procedure of Proposition 1. So, we may assume that we compute
the canonical characteristics of the properly coloured nice partial path decomposi-
tions (X1, X2, . . . , Xr) with progress α +1. Of these, we consider two cases: the last
node Xr can be an introduce node or a forget node.

If Xr is an introduce node with Xr = Xr−1 ∪ {v}, then (X1, X2, . . . , Xr−1) is a
properly coloured partial path decomposition of progress α. If (X1, X2, . . . , Xr−1)

282 Theory Comput Syst (2016) 58:273–286

has characteristic (Xr−1, Z), then (X1, X2, . . . , Xr) has characteristic (Xr−1 ∪
{v}, Z). v must have a color different from the colors of vertices in Xr−1.

If Xr is a forget node with Xr = Xr−1 − {v}, then again (X1, X2, . . . , Xr−1)

is a properly coloured partial path decomposition of progress α. As v is forgot-
ten, it cannot belong to bags right of Xr , and thus all neighbours of v must
belong to

⋃
1≤i≤r Xi . If (X1, X2, . . . , Xr−1) has characteristic (Xr−1, Z), then the

characteristic of (X1, X2, . . . , Xr) is (Xr−1 − {v}, Z ∪ {v}).

This completes the description of the algorithm. From our discussion, we see
that the algorithm indeed correctly decides if G has a properly coloured interval
completion.

We now will analyse the running time of the algorithm. We remark that our algo-
rithm uses polynomial time per entry in a table Ti . Thus, the running time of the
algorithm equals the product of a polynomial in n and the number of canonical char-
acteristics of properly coloured partial path decompositions. So, we need to establish
an upper bound on this number of canonical characteristics. First, we obtain an upper
bound on the number of non-isomorphic components of a set X.

Proposition 11 Let (X1, X2, . . . , Xr) be a properly coloured partial path decom-
position of G. There are at most (k · 23k)� equivalence classes of the isomorphism
relation on components of G[V − Xr] that contain components with � vertices.

Proof Each equivalence class can be identified by an uncoloured unlabelled graph
on � vertices of pathwidth at most k − 1, a colouring with at most k colors of the
vertices of the graph, and the incidence relation between the vertices in the graph and
the vertices in Xr . This gives at most the following number of equivalence classes:

(k − 1 + 2k−1 + 1)2�−1 · k� · 2k� ≤ k� · 23k� = (k · 23k)�

because the first gives at most (k − 1 + 2k−1 + 1)2�−1 possibilities by Proposition 2,
the second at most k� possibilities, and the last at most 2k� possibilities.

To show that the size of a table Ti is bounded by 2O(n/ log n), we consider three
cases for the components of G[V −Xr]; for each we count the number of possibilities
they give in the table Ti .

Let ck = 1
2 log k·3k

.

• A component is large, if it has at least ck · log n vertices. For each, we have
the possibility to be a left or a right component. As there are O(n/ log n) large
components, this gives 2O(n/ log n) possibilities for the large components.

• A component is frequent-small, if it is not large and it has at least
√

n isomorphic
components of G[V − Xr]. Note that there are at most

√
n equivalence classes

of the isomorphism relation that contain frequent-small components. As there
are less than n components, this gives at most n

√
n = 2(log n)

√
n = 2O(n/ log n)

possibilities.

Theory Comput Syst (2016) 58:273–286 283

• A component is infrequent-small, if it is not large and it has less than
√

n

isomorphic components of G[V − Xr]. There are less than

(k · 23k)ck log n = 2log k·3k·ck ·log n = 2(log n)/2 = √
n

equivalence classes of the isomorphism relation that contain small components,
by Proposition 11. For each class with infrequent-small components, we have
less than

√
n components in the class, and thus at most

√
n possibilities regarding

the number of left components in the class. This gives a total of at most
√

n
√

n =
2O(n/ log n) possibilities for infrequent-small components.

For a fixed set X, the number of characteristics of the form (X, Z) is obtained
by multiplying the number of possibilities for large, frequent-small, and infrequent-
small components. As each case is bounded by 2O(n/ log n), we obtain a bound of
2O(n/ log n). To obtain an upper bound on the total size of a table, we note that X is a
subset of at most k vertices, and as (n + 1)k = 2O(n/ log n), we have that each table Ti

has a size bounded by 2O(n/ log n). As the running time of the algorithm is bounded
by a polynomial times the size of these tables, we obtain our main result.

Theorem 12 For every fixed k ≥ 4, there is an algorithm for INTERVALIZING k-
COLOURED GRAPHS that runs in time 2O(n/ log n).

We remark that there are inputs on which the algorithm uses �(2n/ log n) time:
suppose G has a vertex v that is a separator such that G[V − {v}] has �(n/ log n)

non-isomorphic components each of size �log n�.

5 An Algorithm for Intervalizing Coloured Graphs with an Arbitrary Number
of Coors

In this section, we consider the case that the number of colors is not fixed. We give a
simple Held-Karp style dynamic programming algorithm for this problem.

Suppose we are given a properly coloured graph G = (V , E). For a given set
of vertices W ⊆ V , the border of W is the set of vertices in W with at least one
neighbour in V − W , i.e., we denote

B(W) = {v ∈ W | ∃w ∈ V − W : {v,w} ∈ E}
A set of vertices W ⊆ V is said to be fine, if there exists a properly coloured path
decomposition (X1, X2, . . . , Xs) of G[W], such that B[W] ⊆ Xs , i.e., the last bag
contains all vertices in the border of W .

Lemma 13 For all W ⊆ V, W �= ∅, W is fine, if and only if, there exists a v ∈ W ,
such that W − {v} is fine and all vertices in B(W − {v}) ∪ {v} have a different color.

Proof Suppose W is fine. Suppose (X1, X2, . . . , Xs) is a properly coloured path
decomposition of G[W] with B(W) ⊆ Xs . If s = 1, the result follows directly
(any vertex in X1 can play the role of v). Suppose s > 1. If Xs ⊆ Xs−1,

284 Theory Comput Syst (2016) 58:273–286

then (X1, . . . , Xs−1) is also a properly coloured path decomposition of G[W] with
B(W) ⊆ Xs , and we look at this path decomposition instead. Repeat the step till
Xs �⊆ Xs−1 or s = 1. So, we may suppose that Xs �⊆ Xs−1.

Take a vertex v ∈ Xs −Xs−1. Xs must contain each vertex w ∈ B(W −{v}), as for
each such w, either w ∈ B(W) or {v, w} ∈ E. So all vertices in B(W − {v}) ∪ {v} ⊆
Xs have a different color. W − {v} is fine, as (X1, X2, . . . , Xs−1, Xs − {v}) fulfils
the stated condition.

For the other direction, suppose that W − {v} is fine, and all vertices in
B(W − {v}) ∪ {v} have a different color. Let (Y1, Y2, . . . , Yr) be a properly coloured
path decomposition with B(W − {v}) ⊆ Yr . A simple case analysis shows that
(Y1, Y2, . . . , Yr , B(W −{v}∪{v}) is a properly coloured path decomposition of G[W]
with B(W) ⊆ B(W − {v}) ∪ {v}. E.g., each neighbour in v that belongs to W − {v}
belongs to B(W − {v}), and thus to the last bag.

Lemma 13 directly implies the existence of a dynamic programming algorithm
that uses O∗(2n) time. For i = 0, 1, . . . , n, we compute the collection of fine sets W

with |W | = i; call this collection F(i). For i = 0, we note that the empty set is fine,
i.e., F(0) = {∅}. If i > 0, initialize F(i) as an empty collection. Then, perform the
following step for each fine set Y ∈ F(i − 1):

• Compute the border of Y , B[Y]. This can be done in linear time using depth first
search.

• If B[Y] contains two vertices of the same color, we do not further process Y ,
otherwise continue with the next step.

• For all vertices v ∈ V − Y ,

– Check if B[Y] contains a vertex with the same color as v.
– If not, then Y ∪ {v} is a fine set of size i. If F(i) does not yet contain

Y ∪ {v}, then add Y ∪ {v} as a new element to F(i).

It is easy to see that the amount of work per fine set of vertices is polynomial.
Finally, G has a properly coloured interval completion, if and only if F(n) �= ∅.
Thus, we have

Theorem 14 The INTERVALIZING COLOURED GRAPHS problem can be solved in
O∗(2n) time.

6 Conclusions

In this paper, we gave a dynamic programming algorithm for the INTERVALIZING

k-COLOURED GRAPHS problem for a fixed number of colors k. It uses subexpo-
nential time of a somewhat unusual form, and thus, the result forms a somewhat
curious exception to the types of results that are usually obtained in the field. The
result is merely of theoretical interest, as values of n for which the algorithm can
be run in practice can be expected to be rather small, say below 100. Experiments
with a somewhat similar Held-Karp style algorithm for TREEWIDTH [9] suggest that

Theory Comput Syst (2016) 58:273–286 285

our algorithm can also be practical for small values of n. In particular, it would be
interesting to test a variant of the algorithm where the isomorphism test is applied
heuristically, i.e., only on components that are very small, and with components, and
with a usual graph isomorphism heuristic instead of the (complicated and probably
only theoretically interesting) algorithms from [3, 15].

The result with an arbitrary number of colors from Section 5 follows more stan-
dard arguments; the algorithm is similar to Held-Karp style algorithms for several
layout problems, see [8].

A minor generalization of the result can be obtained when we consider a small
(o(log n)) number of colors; in such cases the algorithm also uses subexponential
time.

A generalization of the INTERVALIZING k-COLOURED GRAPHS problem is the
INTERVAL GRAPH SANDWICH problem, in which we are given two graphs with G

and H with the same vertex set, and ask whether there exists an interval graph G′
that is a subgraph of H and contains G as a subgraph. A well studied variant has the
additional condition that G′ has maximum clique size k. See e.g., [19, 22]. The ideas
of our paper seem not to give results better than an algorithm that uses �∗(2n) time
for this problem however, still assuming that k is fixed.

Other related problems are the version where we ask to find a properly coloured
proper interval graph, which is polynomial for a fixed number of colors k [2], and
the problem to find a properly coloured chordal graph, which is also polynomial for
a fixed number of colors [24].

Very recently, Bodlaender and Nederlof [11] obtained a lowerbound for the prob-
lem: assuming the Exponential Time Hypothesis, an algorithm for INTERVALIZING

k-COLOURED GRAPHS uses at least 2�(n/ log n) time, for each fixed number of
colours at least six.

Acknowledgments We thank Jesper Nederlof for useful discussions.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Àlvarex, C., Dı́az, J., Serna, M.: The hardness of intervalizing four colored caterpillars. Discret. Math.
235, 19–27 (2001)

2. Àlvarex, C., Serna, M.: On the proper intervalization of colored caterpillar trees. Informatique
Théorique et Applications 43, 667–686 (2010)

3. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic index on partial k-
trees. J. Algorithm. 11, 631–643 (1990)

4. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput. 25, 1305–1317 (1996)

5. Bodlaender, H.L., de Fluiter, B.: Intervalizing k-colored graphs. In: Fülöp, Z., Gécseg, F. (eds.)
Proceedings of the 22nd International Colloquium on Automata, Languages and Programming,
ICALP’95, Lecture Notes in Computer Science, vol. 944, pp. 87–98. Springer, Berlin Heidelberg New
York (1995)

286 Theory Comput Syst (2016) 58:273–286

6. Bodlaender, H.L., de Fluiter, B.: On intervalizing k-colored graphs for DNA physical mapping.
Discret. Appl. Math. 71, 55–77 (1996)

7. Bodlaender, H.L., de Fluiter, B.L.E.: Intervalizing k-colored graphs. Technical Report UU-CS-1995-
15. Department of Computer Science. Utrecht University, Utrecht (1995)

8. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: A note on exact
algorithms for vertex ordering problems on graphs. Theory Comput. Syst. 50, 420–432 (2012)

9. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms
for treewidth. ACM Trans. Algoritm. 9(1), 12 (2012)

10. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of
graphs. J. Algorithm. 21, 358–402 (1996)

11. Bodlaender, H.L., Nederlof, J.: Unpublished results (2015)
12. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications.

Comput. J. 51, 292–302 (2008)
13. Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA physical mapping: three ways difficult (extended

abstract). In: Lengauer, T. (ed.) Proceedings of the 1st Annual European Symposium on Algorithms,
ESA’93, Lecture Notes in Computer Science, vol. 726, pp. 157–168. Springer, Berlin Heidelberg New
York (1993)

14. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin Heidelberg New York
(2010)

15. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with appli-
cations in parameterized and exact algorithms. In: Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, pp. 142–151 (2014)

16. Fomin, F.V., Thilikos, D.M.: A simple and fast approach for solving problems on planar graphs.
In: Proceedings of the 21st International Symposium on Theoretical Aspects of Computer Science,
STACS 2004, Lecture Notes in Computer Science, vol. 2996, pp. 56–67. Springer, Berlin Heidelberg
New York (2004)

17. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
18. Golumbic, M.C., Kaplan, H., Shamir, R.: On the complexity of DNA physical mapping. Adv. Appl.

Math. 15, 251–261 (1994)
19. Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithm. 19, 449–472

(1995)
20. Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal interval completions. In: Proceedings

of the 13th Annual European Symposium on Algorithms, ESA 2005, Lecture Notes in Computer
Science, vol. 3669, pp. 403–414. Springer, Berlin Heidelberg New York (2005)

21. Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl.
Math. 10, 196–210 (1962)

22. Kaplan, H., Shamir, R.: Bounded degree interval sandwich problems. Algorithmica 24, 96–104 (1999)
23. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627

(1980)
24. McMorris, F.R., Warnow, T., Wimer, T.: Triangulating vertex-colored graphs. SIAM J. Discret. Math.

7(2), 296–306 (1994)

	Exact Algorithms for Intervalizing Coloured Graphs
	Abstract
	Introduction
	Preliminaries
	Partial Path Decompositions
	An Exact Algorithm for Intervalizing k-Coloured Graphs
	An Algorithm for Intervalizing Coloured Graphs with an Arbitrary Number of Coors
	Conclusions
	Acknowledgments
	Open Access
	References

