
Theory Comput Syst (2014) 54:337–372
DOI 10.1007/s00224-013-9522-8

Validating the Knuth-Morris-Pratt Failure Function,
Fast and Online

Paweł Gawrychowski · Artur Jeż · Łukasz Jeż

Published online: 6 December 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Let π ′
w denote the failure function of the Knuth-Morris-Pratt algorithm

for a word w. In this paper we study the following problem: given an integer array
A′[1 . . n], is there a word w over an arbitrary alphabet Σ such that A′[i] = π ′

w[i] for
all i? Moreover, what is the minimum cardinality of Σ required? We give an elemen-
tary and self-contained O(n logn) time algorithm for this problem, thus improving
the previously known solution (Duval et al. in Conference in honor of Donald E.
Knuth, 2007), which had no polynomial time bound. Using both deeper combinato-
rial insight into the structure of π ′ and advanced algorithmic tools, we further improve
the running time to O(n).

1 Introduction

1.1 Pattern Recognition and Failure Functions

The pattern matching algorithms attracted much attention since the dawn of com-
puter science. It was particularly interesting, whether a linear-time algorithm for this

P. Gawrychowski · A. Jeż
Max Planck Institute for Computer Science, Saarbrücken, Germany

P. Gawrychowski · A. Jeż (B) · Ł. Jeż
Institute of Computer Science, University of Wrocław, Wrocław, Poland
e-mail: aje@cs.uni.wroc.pl

P. Gawrychowski
e-mail: gawry@cs.uni.wroc.pl

Ł. Jeż
e-mail: lje@cs.uni.wroc.pl

Ł. Jeż
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

mailto:aje@cs.uni.wroc.pl
mailto:gawry@cs.uni.wroc.pl
mailto:lje@cs.uni.wroc.pl

338 Theory Comput Syst (2014) 54:337–372

problem exists. First results were obtained by Matiyasevich for a fixed pattern in the
Turing Machine model [18]. However, the first fully linear time pattern matching al-
gorithm is the Morris-Pratt algorithm [21], which is designed for the RAM machine
model, and is well known for its beautiful concept. It simulates the minimal DFA
recognizing Σ∗p (p denotes the pattern) by using a failure function πp , known as
the border array. The automaton’s transitions are recovered, in amortized constant
time, from the values of πp for all prefixes of the pattern, to which the DFA’s states
correspond. The values of πp are precomputed in a similar fashion, also in linear
time.

The MP algorithm has many variants. For instance, the Knuth-Morris-Pratt algo-
rithm [17] improves it by using an optimised failure function, namely the strict border
array π ′ (or strong failure function). This was improved by Simon [23], and further
improvements are known [1, 13]. We focus on the KMP failure function for two rea-
sons. Unlike later algorithms, it is well-known and used in practice. Furthermore, the
strong border array itself is of interest as, for instance, it captures all the information
about periodicity of the word. Hence it is often used in word combinatorics and nu-
merous text algorithms, see [4, 5]. On the other hand, even Simon’s algorithm (i.e.,
the very first improvement) deals with periods of pattern prefixes augmented by a
single text symbol rather than pure periods of pattern prefixes.

1.2 Strict Border Array Validation

Problem Statement We investigate the following problem: given an integer array
A′[1 . . n], is there a word w over an arbitrary alphabet Σ such that A′[i] = π ′

w[i]
for all i, where π ′

w denotes the failure function of the Knuth-Morris-Pratt algorithm
for w. If so, what is the minimum cardinality of the alphabet Σ over which such a
word exists?

Pursuing these questions is motivated by the fact that in word combinatorics one is
often interested only in values of π ′

w rather than w itself. For instance, the logarithmic
upper bound on delay of KMP follows from properties of the strict border array [17].
Thus it makes sense to ask if there is a word w admitting π ′

w = A′ for a given array A′.
We are interested in an online algorithm, i.e., one that receives the input array

values one by one, and is required to output the answer after reading each single
value. For the Knuth-Morris-Pratt array validation problem it means that after reading
A′[i] the algorithm should answer, whether there exist a word w such that A′[1 . . i] =
π ′

w[1 . . i] and what is the minimum size of the alphabet over which such a word w

exists.

Previous Results To our best knowledge, this problem was investigated only for
a slightly different variant of π ′, namely a function g that can be expressed as g[n] =
π ′[n − 1] + 1, for which an offline validation algorithm due to Duval et al. [8] is
known. Validation of border arrays is used by algorithms generating all valid border
arrays [9, 11, 20].

Unfortunately, Duval et al. [8] provided no upper bound on the running time of
their algorithm, but they did observe that on certain input arrays it runs in Ω(n2)

time.

Theory Comput Syst (2014) 54:337–372 339

Table 1 Functions π and π ′ for a word aabaabaaabaabaac

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

w[i] a a b a a b a a a b a a b a a c

π [i] 0 1 0 1 2 3 4 5 2 3 4 5 6 7 8 0

π [i] −1 1 −1 −1 1 −1 −1 5 1 −1 −1 1 −1 −1 8 0

Algorithm 1 COMPUTE-π(w)

1: π[1] ← 0, k ← 0
2: for i ← 2 to n do
3: while k > 0 and w[k + 1] �= w[i] do
4: k ← π[k]
5: end while
6: if w[k + 1] = w[i] then
7: k ← k + 1
8: end if
9: π[i] ← k

10: end for

Our Results We give a simple O(n logn) online algorithm VALIDATE-π ′ for the
strong border array validation, which uses the linear offline bijective transformation
between π and π ′. VALIDATE-π ′ is also applicable to g validation with no changes,
thus giving the first provably polynomial algorithm for the problem considered by
Duval et al. [8]. Note that aforementioned bijection between π and π ′ cannot be
applied directly to g, as it essentially uses the unavailable value π[n] = π ′[n], see
Sect. 2.

Then we improve VALIDATE-π ′ to an optimal linear online algorithm LINEAR-
VALIDATE-π ′. The improved algorithm relies on both more sophisticated data struc-
tures, such as dynamic suffix trees supporting LCA queries, and deeper insight into
the combinatorial properties of π ′ function.

Related Results The study of validating arrays related to string algorithms and word
combinatorics was started by Franěk et al. [11], who gave an offline linear algorithm
for border array validation. This result was improved over time, in particular a simple
linear online algorithm for π validation is known [9].

The border array validation problem was also studied in the more general setting of
the parametrised border array validation [14, 15], where parametrised border array
is a border array for text in which a permutation of letters of alphabet is allowed.
A linear time algorithm for a restricted variant of this problem is known [14] and a
O(n1.5) for the general case [15].

Recently a linear online algorithm for a closely related prefix array validation was
given [2], as well as for cover array validation [6].

340 Theory Comput Syst (2014) 54:337–372

Algorithm 2 π ′-FROM-π(π)

1: π ′[0] ← −1
2: for i ← 1 to n − 1 do
3: if π[i + 1] = π[i] + 1 then
4: π ′[i] ← π ′[π[i]]
5: else
6: π ′[i] ← π[i]
7: end if
8: end for
9: π ′[n] ← π[n]

Algorithm 3 π -FROM-π ′(π ′)
1: π[n] ← π ′[n]
2: for i ← n − 1 downto 1 do
3: π[i] ← max{π ′[i],π[i + 1] − 1}
4: end for

2 Preliminaries

For w ∈ Σ∗, we denote its length by |w|. For v,w ∈ Σ∗, by vw we denote the con-
catenation of v and w. We say that u is a prefix of w if there is v ∈ Σ∗ such that
w = uv. Similarly, we call v a suffix of w if there is u ∈ Σ∗ such that w = uv. A word
v that is both a prefix and a suffix of w is called a border of w. By w[i] we denote
the i-th letter of w and by w[i . . j] we denote the subword w[i]w[i + 1] . . .w[j] of
w. We call a prefix (respectively: suffix, border) v of the word w proper if v �= w,
i.e., it is shorter than w itself.

For a word w its failure function πw is defined as follows: πw[i] is the length of
the longest proper border of w[1 . . i] for i = 1,2, . . . , n, see Table 1. It is known that
πw table can be computed in linear-time, see Algorithm 1.

By π
(k)
w we denote the k-fold composition of πw with itself, i.e., π

(0)
w [i] := i and

π
(k+1)
w [i] := πw[π(k)

w [i]]. This convention applies to other functions as well. We omit
the subscript w in πw , whenever it is unambiguous. Note that every border of w[1 . . i]
has length π

(k)
w [i] for some integer k ≥ 0.

The strong failure function π ′ is defined as follows: π ′
w[n] := πw[n], and for i < n,

π ′[i] is the largest k such that w[1 . . k] is a proper border of w[1 . . i] and w[k + 1] �=
w[i + 1]. If no such k exists, π ′[i] = −1.

It is well-known that πw and π ′
w can be obtained from one another in linear time,

using additional lookups in w to check whether w[i] = w[j] for some i, j . What is
perhaps less known, these lookups are not necessary, i.e., there is a constructive bi-
jection between πw and π ′

w . For completeness, we supply both procedures, see Al-
gorithm 2 and Algorithm 3. By standard argument it can be shown that they run in
linear time. The correctness as well as the procedures themselves are a consequence
of the following observation

Theory Comput Syst (2014) 54:337–372 341

Algorithm 4 VALIDATE-π(A)

1: if A[1] �= 0 then
2: error A is not valid at 1
3: end if
4: cand[1] ← {0}, w[1] ← 1, Σ[1] ← 1
5: for i = 2 to n do
6: if A[i] = 0 then
7: cand[i] ← {0}
8: Σ[i] ← Σ[A[i − 1] + 1] + 1
9: MinΣ ← max(MinΣ,Σ[i])

10: w[i] ← Σ[i]
11: else
12: cand[i] ← cand[A[i − 1] + 1]
13: remove A[A[i − 1] + 1] from cand[i]
14: add A[i − 1] + 1 to cand[i]
15: if A[i] /∈ cand[i] then
16: error A is not valid at i

17: end if
18: w[i] ← w[A[i]]
19: Σ[i] ← Σ[A[i − 1] + 1]
20: end if
21: end for

w[i + 1] = w
[
π[i] + 1

]

⇐⇒ π[i + 1] = π[i] + 1 ⇐⇒ π ′[i] < π[i] ⇐⇒ π ′[i] = π ′[π[i]]. (1)

Note that procedure π ′-FROM-π explicitly uses the following recursive formula
for π ′[j] for j < n, whose correctness follows from (1):

π ′[j] =
{

π[j] if π[j + 1] < π[j] + 1,

π ′[π[j]] if π[j + 1] = π[j] + 1.
(2)

For two arrays of numbers A and B , we write A[ia . . ia +k] ≥ B[ib . . ib +k] when
A[ia + j] ≥ B[ib + j] for j = 0, . . . , k.

2.1 Border Array Validation

Our algorithm uses an algorithm validating the input table as the border array.
For completeness, we supply the code of one of the simplest such algorithms VALI-
DATE-π , see Algorithm 4, due to Duval et al. [9]. This algorithm is online and also
calculates the minimal size of the required alphabet.

Roughly speaking, given a valid border array A[1 . . n] VALIDATE-π computes
all valid π -candidates for A[n + 1]: given a valid border array A[1 . . n] the next
element A[n + 1] is a valid π -candidate if A[1 . . n + 1] is a valid border array as
well. The exact formula for the set of valid candidates is not useful for us, though it

342 Theory Comput Syst (2014) 54:337–372

Algorithm 5 VALIDATE-π ′(A′)
1: A[1] ← 0, i ← 0, n ← 1, A′[0] ← −1
2: while TRUE do
3: n ← n + 1
4: if A′[n] �= A′[A[n]] then
 This includes A′[n] = A[n]
5: ADJUST-LAST-SLOPE

6: end if
7: end while

should be noted that it depends only on A[1 . . n] and that 0 and A[n] + 1 are always
valid π -candidates.

The key idea needed to understand the algorithm is that w[i] depends only on the
letters of w at positions Ak[i−1]+1 for k = 1,2, Thus the algorithm stores Σ[i],
the alphabet size required for such sequence of indices starting at i, for all i. The min-
imum size of the alphabet required for the whole array A is the maximum over all
those values.

For future reference we list some properties that follow from VALIDATE-π :

(Val1) the valid candidates for π[i] depend only on π[1 . . i − 1],
(Val2) π[i − 1] + 1 is always a valid candidate for π[i],
(Val3) if the alphabet needed for A[1 . . n] is strictly larger than the one needed for
A[1 . . n − 1] then A[n] = 0.

3 Overview of the Algorithm

Since there is a bijection between valid border arrays and valid strict border arrays,
it is natural to proceed as follows: Assume the input forms a valid strict border array,
compute the corresponding border array using π -FROM-π ′(A′), and validate the re-
sult using VALIDATE-π(A). Unfortunately, π -FROM-π ′ starts the calculations from
the last entry of A′, so it is not suitable for an online algorithm. Moreover, it assumes
that A′[n] = A[n], which may be not true for some intermediate values of i. Remov-
ing this condition invalidates the bijection and, as a consequence, for intermediate
values of i there can be many border arrays consistent with A′[1 . . i], each of them
corresponding to a different value of A[i + 1]. We show that all these border arrays
coincide on a certain prefix. VALIDATE-π ′, demonstrated in Algorithm 5, identifies
this prefix and runs VALIDATE-π on it. Concerning the remaining suffix, VALIDATE-
π ′ identifies the border array which is maximal on it, in a sense explained below.

Definition 1 (Consistent functions) We say that A[1 . . n + 1] is consistent with
A′[1 . . n] if and only if there is a word w[1 . . n + 1] such that.

(CF1) A[1 . . n + 1] = πw[1 . . n + 1],
(CF2) A′[1 . . n] = π ′

w[1 . . n].
A function A[1 . . n + 1] consistent with A′[1 . . n] is maximal if

Theory Comput Syst (2014) 54:337–372 343

Fig. 1 Graphical illustration of
slopes and maximal consistent
function

(CF3) every B[1 . . n + 1] consistent with A′[1 . . n] satisfies B[1 . . n + 1] ≤ A[1 . .

n + 1].

Note that it is crucial that A is defined also on n + 1.
Our algorithm VALIDATE-π ′ (and its improved variant LINEAR-VALIDATE-π ′)

maintains such a maximal A.

Slopes and Their Properties Imagine the array A′ as the set of points (i,A′[i]) on
the plane; we think of A in the similar way. Such a picture helps in understanding the
idea behind the algorithm. In this setting we think of A as a collection of maximal
slopes: a set of indices i, i + 1, . . . , i + j is a slope if A[i + k] = A[i] + k for k =
1, . . . , j . From here on whenever we refer to slope, we implicitly mean a maximal
one, i.e., extending as far as possible in both directions. Note that n + 1 is part of
the last slope, which may consist only of n + 1. It is even better to imagine a slope a
collection of points (i,A[i]) which together span one interval on the plain, see Fig. 1.
Observe also that A[i+j +1] �= A[i+j]+1 implies A[i+j] = A′[i+j], by (1), i.e.,
the last index of a (maximal) slope is the unique one on which A[i + j] = A′[i + j].
Let the pin be the first position on the last slope of A (in some extreme cases it might
be that n + 1 is the pin). VALIDATE-π ′ calculates and stores the pin. It turns out that
all functions consistent with A′ differ from A only on the last slope, as shown later
in Lemma 1.

When a new input value A′[n] is read, the values of A and A′ on the last slope
[i . . n + 1] should satisfy the following conditions:

A′[j] < A[j], for each j ∈ [i . . n], (3a)

A′[j] = A′[A[j]], for each j ∈ [i . . n]. (3b)

The last slope is defined correctly if and only if (3a) holds (otherwise the slope
should end earlier), while the values of A and A′ on the last slope are consistent
if and only if (3b) holds. These conditions are checked by appropriate queries: (3a)
by the pin value check (denoted PIN-VALUE-CHECK), which returns any j ∈ [i . . n]
such that A′[j] > A[j] or, if there is no such j , the smallest j ∈ [i . . n] such that
A′[j] = A[j]; and (3b) by the consistency check (denoted CONSISTENCY-CHECK),
which checks whether A′[i . . n] = A′[A[i] . .A[i] + (n − i)].

344 Theory Comput Syst (2014) 54:337–372

Fig. 2 Splitting the last slope:
we move the whole last slope
down until a point (j,A′[j]) is
found on it. This point divides
the slope into two. The left new
slope stays in place and the right
new one is moved further down

Algorithm 6 ADJUST-LAST-SLOPE

1: while j ← PIN-VALUE-CHECK is defined do
2: if A′[j] > A[i] + (j − i) then
3: error A′ is not valid at n

4: end if
5: for m ← i to j − 1 do
6: store A[m] ← A[m − 1] + 1
 Needed to calculate the set of candidates
7: VALIDATE-π(A)[m]
8: if A′[m] �= A′[A[m]] then
9: error A′ is not valid at n

10: end if
11: end for
12: store A[j] ← A[j − 1] + 1
 Maximal possible candidate
13: i ← j + 1
14: A[i] ← next candidate
 Known due to VALIDATE-pi(A)

15: end while
16: if not CONSISTENCY-CHECK then
17: if A[i] = 0 then
18: A′ is not valid at n

19: end if
20: A[i] ← next candidate
21: goto 1:
22: end if

If one of the conditions (3a), (3b) does not hold, VALIDATE-π ′ adjusts the last
slope of A, until both conditions hold or the input is reported as invalid. These actions
are given in detail in Algorithm 6.

If the pin value check returns an index j such that A′[j] > A[j], then we reject
the input and report an error: since A is the maximal consistent function, for each
consistent function A1 it also holds that A1[j] < A′[j] and so none such A1 exists
and so A′ is invalid.

If A′[j] = A[j] we break the last slope in two: [i . . j] and [j +1 . . n], the new last
slope, see Fig. 2: for every A1 consistent with A′ it holds that A1[j] ≥ A′[j] ≥ A[j],
but as A is maximal consistent with A′, it also holds that A1[j] ≤ A[j] = A′[j], and

Theory Comput Syst (2014) 54:337–372 345

Fig. 3 Decreasing the A[i].
The values on the whole last
slope are decreased by the same
value

hence A1[j] = A[j]. We also check whether

A′[i . . j − 1] = A′[A[i] . .A[i] + (j − i − 1)
]

holds. If not, we reject: every table A1 consistent with A′ satisfies A1[j] = A[j] =
A′[j], and therefore A and A1 have to be equal on all preceding values as well, see
Lemma 1. Next we set i to j +1 and A[i] to the largest valid candidate value for π[i].

If CONSISTENCY-CHECK fails, then we set the value of A[i] to the next valid
candidate value for π[i], see Fig. 3 and propagate the change along the whole slope.
If this happens for A[i] = 0, then there is no further candidate value, and A′ is re-
jected. The idea is that some adjustment is needed and since pin value check does not
return an index, we cannot break the slope into two and so the only possibility is to
decrement A on the whole last slope.

Unfortunately, this simple combinatorial idea alone fails to produce a linear-time
algorithm. The problem is caused by the second condition: large segments of A′
should be compared in amortised constant time. While LCA queries on suffix trees
seem ideal for this task, available solutions are imperfect: the online suffix tree con-
struction algorithms [19, 24] are linear only for alphabets of constant size, while the
only linear-time algorithm for larger alphabets [10] is inherently offline. To overcome
this obstacle we specialise the data structures used, building the suffix tree for com-
pressed encoding of A′ and multiple suffix trees for short texts over polylogarithmic
alphabet. The details are presented in Sect. 8.

4 Details and Correctness

In this section we present technical details of the algorithm, provide a proof of its cor-
rectness and proofs of used combinatorial properties. We do not address the running
time and the way the data structures are organised. We start with showing that all the
consistent tables coincide on indices smaller than pin.

Lemma 1 Let A[1 . . n + 1] ≥ B[1 . . n + 1] be both consistent with A′[1 . . n]. Let i

be the pin (for A). Then A[1 . . i − 1] = B[1 . . i − 1].

346 Theory Comput Syst (2014) 54:337–372

Proof The claim holds vacuously when there is only one slope, i.e., i = 1. If there
are more, let i be the pin and consider i − 1. Since it is the end of a slope, by (1)
A′[i − 1] = A[i − 1]. On the other hand, consider B[1 . . n + 1] as in the statement of
the lemma. By assumption of the lemma, A[i − 1] ≥ B[i − 1]. Thus

A′[i − 1] ≤ B[i − 1] ≤ A[i − 1] = A′[i − 1],
hence B[i − 1] = A[i − 1]. Let B[1 . . n + 1] = πw′ [1 . . n + 1] and A[1 . . n + 1] =
πw[1 . . n + 1]. Using π -FROM-π ′ we can uniquely recover πw′ [1 . . i − 1] from
π ′

w′ [1 . . i − 1] and πw′ [i − 1], as well as πw[1 . . i − 1] from π ′
w[1 . . i − 1] and

πw[i − 1]. But since those pairs of values are the same,

A[1 . . i − 1] = πw[1 . . i − 1] = πw′ [1 . . i − 1] = B[1 . . i − 1],
which shows the claim of the lemma. �

Data Maintained VALIDATE-π ′ stores:

– n, the number of values read so far,
– A′[1 . . n], the input read so far,
– i, the current pin
– A[1 . . n + 1], the maximal function consistent with A′[1 . . n]:

– A[1 . . i − 1], the fixed prefix,
– A[i], the candidate value that may change.

Note that A[j] for j > i are not stored. These values are implicit, given by A[j] =
A[i]+(j − i). In particular this means that decrementing A[i] results in decrementing
the whole last slope.

Sets of Valid π Candidates and Validating A VALIDATE-π ′ creates a border ar-
ray A, which is always valid by the construction. Nevertheless, it runs VALIDATE-
π(A[1 . . i − 1]). This way the set of valid candidates for π[i] is computed, as well as
a word w over a minimal-size alphabet Σ such that πw[1 . . i − 1] = A[1 . . i − 1].

In the remainder of this section it is shown that invariants CF1–CF3 are preserved
by VALIDATE-π ′.

Lemma 2 If A′[n] = A′[A[n]], then no changes are done by VALIDATE-π ′ and the
CF1–CF3 are preserved.

Proof Whenever a new symbol is read, VALIDATE-π ′ checks (3b) for j = n, i.e.,
whether A′[n] = A′[A[n]]. If it holds, then no changes are needed because:

CF1 holds trivially: the implicit A[n + 1] = A[n] + 1 is always a valid value for
π[n + 1], see Val2.
CF2 holds: as A′[n] < A[n] by (1) it is enough to check that A′[n] = A′[A[n]],
which holds by (3b).
CF3 holds: consider any B[1 . . n + 1] consistent with A′[1 . . n]. By induction as-
sumption CF3 holds for A[1 . . n], hence B[n] ≤ A[n]. Therefore

B[n + 1] ≤ B[n] + 1 ≤ A[n] + 1 = A[n + 1],
which shows the last claim and thus completes the proof. �

Theory Comput Syst (2014) 54:337–372 347

Thus it is left to show that CF1–CF3 are preserved by ADJUST-LAST-SLOPE.
We show that during the adjusting inside ADJUST-LAST-SLOPE CF1 and CF3 hold.
To be more specific, CF1 alone means that A is always a valid border array, while
CF3 means that it is greater than any border table consistent with A′ (this is assumed
to hold vacuously if no consistent table exists). Finally, we show that CF3 holds
when ADJUST-LAST-SLOPE ends adjusting the last slope, i.e., that then A is in fact
consistent with A′.

For the completeness of the proof, we need also to show that if at any point A′ was
reported to be invalid, it is in fact invalid.

Lemma 3 After each iteration of the loop in line 1 of ADJUST-LAST-SLOPE the CF1
and CF3 are preserved. Furthermore, if ADJUST-LAST-SLOPE rejects A′ in line 3
or 9, then A′ is invalid.

Proof We show both claims by induction. In the following, let A1[1 . . n + 1] be any
table consistent with A′[1 . . n].

For the induction base note that A[1 . . n] and A′[1 . . n − 1] satisfy CF1–CF3.
To see that CF1 is satisfied by A[1 . . n + 1] note that the assigned value A[n + 1] =
A[n]+ 1 is always a valid π -value, so CF1 holds for A[1 . . n+ 1]. Similarly, for CF3
note that A[1 . . n] ≥ A1[1 . . n] and A[n + 1] = A[n] + 1 ≥ A1[n] + 1 ≥ A1[n + 1],
which shows that CF3 holds for A[1 . . n + 1]. Additionally, the second claim of the
Lemma holds vacuously for A[1 . . n + 1], as so far it was not rejected.

Suppose that PIN-VALUE-CHECK returns no index j . Then by the induction as-
sumption CF1 and CF3 hold, which ends the proof in this case.

Suppose that PIN-VALUE-CHECK returns j such that A[j] < A′[j]. Then, since
CF3 is satisfied, A1[j] ≤ A[j] < A′[j], i.e., A1 is not a valid π table. So no A1 is
consistent with A′, which means that A′ is invalid, as reported by VALIDATE-π ′. This
ends the proof in this case.

It is left to consider the case in which PIN-VALUE-CHECK returns j such that
A[j] = A′[j]. Then CF1 is satisfied: A[j] is explicitly set to a valid π candidate while
for p > j the A[p] is set to A[p] = A[p−1]+1, which is always a valid π candidate,
by Val2. Furthermore, j is an end of slope for A1: By CF3, A1[j] ≤ A[j] = A′[j]
but as A1 is a valid π table, A1[j] ≥ A′[j]. So A′[j] = A1[j] and therefore, by (2),
it is an end of a slope for A1. As a consequence, by Lemma 1, A[i . . j] = A1[i . . j].
Note that for p ∈ [i . . j − 1] it holds that A[p] > A′[p]: otherwise PIN-VALUE-
CHECK would have returned such p instead of j . Thus, by (1), A[p] and A′[p]
should satisfy A′[p] = A′[A[p]], and this condition is verified by ADJUST-LAST-
SLOPE in line 8. If this equation is not satisfied by some p then clearly A′[i . . j − 1]
is not consistent with A[i . . j]. Since A1[i . . j] = A[i . . j] this shows that no such A1

exists and consequently A′ is invalid. This shows the second subclaim.
Suppose that A′ was not rejected. It is left to show that CF3 is satisfied when

PIN-VALUE-CHECK returns j such that A[j] = A′[j]. Since A1[i] is a valid π value
and A[i] is the maximal valid π value, A1[i] ≤ A[i]. The implicit values A[p] for
p ∈ [i + 1 . . n] satisfy A[p] = A[i] + (p − i). Since A1 is a valid π table A1[p] ≤
A1[i] + (p − i) for p = i + 1, . . . , n and thus:

348 Theory Comput Syst (2014) 54:337–372

A1[p] ≤ A1[i] + (p − i) ≤ A[i] + (p − i) = A[p],
and as A1 was chosen arbitrarily, CF3 holds. �

Lemma 4 Suppose that PIN-VALUE-CHECK returns no j and that A satisfies CF1
and CF3. If CONSISTENCY-CHECK returns FALSE and A[i] = 0 then A′ is invalid.
Otherwise after adjusting in line 20 of ADJUST-LAST-SLOPE, CF1 and CF3 hold.

Proof Let as in the previous lemma A1 denote any valid border array consistent
with A′. Since A satisfies CF3, we know that A[i] ≥ A1[i]. When A[i] is updated
to the next largest valid π candidate, its new value is at least A1[i] (as A1[i] is itself
a valid π value) and for each p > i we have

A[p] = A[i] + (p − i) ≥ A1[i] + (p − i) ≥ A1[p],
which shows that CF3 is preserved after the adjusting.

We now prove that in fact A[i] > A1[i]. Suppose for the sake of contradiction that
A[i] = A1[i]. It is not possible that A[i . . n + 1] = A1[i . . n + 1]: since PIN-VALUE-
CHECK returned no j , for each p ≥ i we have A1[p] = A[p] > A′[p]. In such case
by (2) it holds that A′[p] = A′[A1[p]] but from the answer of the PIN-VALUE-
CHECK we know that this is not the case.

Consider the smallest position, say p, such that A[p+1] > A1[p+1]; such a posi-
tion exists as A[i . . n+1] ≥ A1[i . . n+1] and A[i . . n+1] �= A1[i . . n+1]. Now con-
sider A1[p]: since A1[p+1] < A1[p]+1 then by (2) this means that A1[p] = A′[p].
This is a contradiction, as PIN-VALUE-CHECK should have returned this p.

Therefore, when CONSISTENCY-CHECK returns NO then A1[i] < A[i] for an ar-
bitrary A1 that is consistent with A′. In particular, if A[i] = 0, there is no such A1,
and hence A′ is invalid.

It is left to show that CF1 holds, i.e., that A[i . . n+1] were all assigned valid candi-
dates for π at their respective positions. This was addressed explicitly for A[i], while
for p > i the assigned values are A[p − 1] + 1, which are always valid by Val2. �

The last lemma shows that when ADJUST-LAST-SLOPE finishes, CF2 is satisfied
as well.

Lemma 5 When ADJUST-LAST-SLOPE finishes, CF2 is satisfied.

Proof Recall the recursive formula (2) for π ′. Its first case corresponds to j being
the last element on the slope and the second to other j ’s.

If A[j] is an explicit value and j is not an end of a slope, this formula is verified,
when A[j] is stored. If A[j] is explicit and j is an end of the slope then the formula
trivially holds.

If A[j] is an implicit value, i.e., such that j is on the last slope of A, PIN-VALUE-
CHECK guarantees that A[j] > A′[j] and so the second case of this formula should
hold. This is verified by CONSISTENCY-CHECK. Hence CF2 holds when all adjust-
ments are finished. �

Theory Comput Syst (2014) 54:337–372 349

The above four lemmata: Lemma 2–Lemma 5 together show the correctness of
VALIDATE-π ′.

Theorem 1 VALIDATE-π ′ verifies whether A′ is a valid strict border array. If so, it
supplies the maximal function A consistent with A′.

Proof We proceed by induction on n. If n = 0, then clearly A[1] = 0, CF1–CF3 hold
trivially, and A′ is a valid (empty) π ′ array. If n > 0 and no adjustments were done,
CF1–CF3 hold by Lemma 2. So we consider the case when ADJUST-LAST-SLOPE

was invoked.
By Lemma 3 and Lemma 4 if the A′[1 . . n] is rejected, it is invalid. So assume

that A′[1 . . n] was not rejected. We show that it is valid. As it was not rejected, by
Lemma 3 and Lemma 4 the constructed table A[1 . . n + 1] together with A′[1 . . n]
satisfy CF1 and CF3. Moreover, by Lemma 5 they satisfy also CF2. Thus A[1 . . n+1]
is a valid border array for some word w[1 . . n + 1] and A′[1 . . n] is a valid strong
border array for the same word w[1 . . n]. �

In the following section we explain how to perform the pin value checks and con-
sistency checks efficiently and bound the whole running time of the algorithm.

5 Performing Pin Value Checks

Consider the PIN-VALUE-CHECK and two indices j , j ′ such that

j < j ′ and A′[j ′] − j ′ > A′[j] − j. (4)

We call the relation defined in (4) a domination: we say that j ′ dominates j and write
it as j ≺ j ′. We will show that if j ′ j and j is an answer to PIN-VALUE-CHECK,
so is j ′, consult Fig. 4. This observation allows to keep a collection j1 < j2 < · · · <

j� of indices such that to perform the pin value check, it is enough to see whether
A[j1] < A′[j1]. In particular, the answer can be given in constant time. Updates of
this collection are done by removal of j1 when i becomes j1 + 1, or by consecutive
removals from the end of the list when a new A′[n] is read.

Domination Properties As ≺ is an intersection of two transitive relations (order on
indices and order on T , defined as T [j] = A[j] − j), it is transitive.

Observe that if j ≺ j ′, then A[j] ≤ A′[j] implies A[j ′] < A′[j ′]:
A

[
j ′] ≤ A[j] + (

j ′ − j
)

≤ A′[j] + (
j ′ − j

)

< A′[j] + (
A′[j ′] − A′[j])

= A′[j ′]. (5)

Therefore if j is an answer to pin value check, so is j ′. As a consequence, we do not
need to keep track of j as a potential answer to the PIN-VALUE-CHECK.

350 Theory Comput Syst (2014) 54:337–372

Fig. 4 Answering pin value
check. The last slope is lowered
until some point (j ′,A′[j ′]) is
on it. On the picture j ′
dominates j and j cannot be
returned by pin value check: the
‘slope’ going through j is below
the one going through j ′

Data Stored VALIDATE-π ′ stores a list of positions j1 < j2 < · · · < jk such that
(for the sake of simplicity, let j0 = i, where i is the current pin):

j�′ ⊀ j� for all 0 < �′ < �, (6a)

j� j for all 0 < � ≤ k and j ∈ [j�−1 + 1 . . j� − 1]. (6b)

Answering PIN-VALUE-CHECK When PIN-VALUE-CHECK is asked, we check
whether A[j1] ≤ A′[j1] and return the answer. This way the PIN-VALUE-CHECK is
answered in constant time. We show that evaluating this expression for other values
of j is not needed, as if A′[j] ≥ A[j] for some j , then A′[j1] ≥ A[j1], and moreover
if A′[j] > A[j], then also A′[j1] > A[j1].

Suppose that A′[j] ≥ A[j] for some j ∈ [j�−1 + 1 . . j� − 1]. Since j� domi-
nates j it holds that A′[j�] > A[j�], by (5). Suppose now that A′[j�] ≥ A[j�] for
some j� > j1. Since j1 < j� and j� does not dominate j1:

A′[j�] − A′[j1] ≤ j� − j1.

As j1 and j� are on the last slope,

A[j�] = A[j1] + (j� − j1),

and hence

A[j1] = A[j�] − (j� − j1)

≤ A[j�] − (
A′[j�] − A′[j1]

)

= A′[j1] + (
A[j�] − A′[j�]

)

≤ A′[j1],
so j1 is a proper answer to the PIN-VALUE-CHECK. Similarly, A′[j�] > A[j�] im-
plies A′[j1] > A[j1].

Theory Comput Syst (2014) 54:337–372 351

Update We demonstrate that all updates of the list j1, . . . , jk can be done in O(n)

time. When new position n is read, we update the list by successively removing j�’s
dominated by n from the end of the queue. By routine calculations, if n j�, then
n j�+1 as well:

A[n] − n > A[j�] − j� as n ≺ j�,

A[j�] − j� ≥ A[j�+1] − j�+1 as j� ⊀ j�+1 by (6a).

Therefore

A[n] − A[j�+1] > n − j�+1.

So we simply have to remove some tail from the list of j ’s. Suppose that j�, . . . , jk

were removed. It is left to show that (6a), (6b) are preserved after the removal.
Consider first (6a). Take any j ∈ [j�−1 . . n − 1]. Then there is some j�′ such that
j ∈ [j�′−1 . . j�′ − 1]. By (6b), j�′ j . Since by assumption n j�′ , by transitivity of
, also n j . As for (6b), it holds since j�−1 ⊀ n by the construction.

There is another possible update: when PIN-VALUE-CHECK return j1 then i ←
j1 + 1 and so j1 + 1 becomes the new pin. In such case we remove j1 from the list.

As each position enters and leaves the list at most once, the time of update is linear.

Lemma 6 All PIN-VALUE-CHECK calls can be made in amortised constant time.

6 Performing Consistency Checks: Slow but Easy

In order to perform consistency check we need to efficiently perform two operations:
appending a letter to the current text A′[1 . . n] and checking if two fragments of
the prefix read so far are the same. First we show how to implement both of them
using randomisation so that the expected running time is O(logn) per one consistency
check. In the next section we improve the running time to (deterministic) O(1).

We use the standard labeling technique [16], assigning unique small names to
all fragments of lengths that are powers of two. More formally, let name[i][j]
be an integer from {1, . . . , n} such that name[i][j] = name[i′][j] if and only if
A′[i..i + 2j − 1] = A′[i′ . . i′ + 2j − 1]. Then checking if any two fragments of A′ are
the same is easy: we only need to cover both of them with fragments of length 2j ,
where 2j is the largest power of two not exceeding their length. Then we check if
the corresponding fragments of length 2j are the same in constant time using the
previously assigned names.

Appending a new letter A′[n + 1] is more difficult, as we need to compute
name[n − 2j + 2][j] for all j = 1, . . . , logn. We set name[n + 1][0] to A′[n + 1].
For names with j > 0 we need to check if a given fragment of text A′[n − 2j +
2 . . n + 1] occurs at some earlier position, and if so, choose the same name. To lo-
cate the previous occurrences, for each j > 0 we keep a dictionary M(j) map-
ping pair (name[i][j − 1],name[i + 2j−1][j − 1]) to name[i][j]. To check if a
given fragment A′[n − 2j + 2 . . n + 1] occurs previously in the text, we look up
the pair (name[n − 2j + 2][j − 1],name[n − 2j−1 + 2][j − 1]) in M(j). If there

352 Theory Comput Syst (2014) 54:337–372

is such an element in M(j), we set name[n − 2j + 2][j] equal to the correspond-
ing name. Otherwise we set name[n − 2j + 2][j] equal to the size of M(j) plus 1,
which is the smallest integer which we have not assigned as a name of fragment of
length 2j yet. Then we update the dictionary accordingly: we insert mapping from
(name[n − 2j + 2][j − 1],name[n − 2j−1 + 2][j − 1]) to the newly added element.

To implement the dictionaries M(j), we use dynamic hashing with a worst-case
constant time lookup and amortized expected constant time for updates (see [7] or a
simpler variant with the same performance bounds [22]). Then the expected running
time of the whole algorithm becomes O(n logn), as there are logn dictionaries, each
running in expected linear time (the expectation is taken over the random choices of
the algorithm).

7 Size of the Alphabet

VALIDATE-π not only answers whether the input table is a valid border array, but
also returns the minimum size of the needed alphabet. We show that this is also true
of VALIDATE-π ′. Roughly speaking, VALIDATE-π ′ runs VALIDATE-π and simply
returns its answers. To this end we show that the minimum alphabet size required by
the fixed prefix of A matches the minimum alphabet size required by A′.

Lemma 7 Let A′[1 . . n] be a valid π ′ function, A[1 . . n + 1] the maximal function
consistent with A′[1 . . n], and i the pin. The minimum alphabet size required by
A′[1 . . n] equals the minimum alphabet size required by A[1 . . i − 1] if A[i] > 0,
and by A[1 . . i] if A[i] = 0.

Proof Suppose first that A[i] > 0. Thus VALIDATE-π run on A[1 . . n] returns the
same size of required alphabet as run on A[1 . . i − 1] since new letters are needed
only when A[j] = 0 at some position, see Val3, and A[j] > 0 for j on the last slope.
Consider any B[1 . . n+1] consistent with A′[1 . . n]. Then B[1 . . i−1] = A[1 . . i−1]
by Lemma 1. Thus A requires an alphabet larger than that required by B[1 . . i − 1],
which is clearly no larger than the one required by the whole B[1 . . n].

Suppose now that A[i] = 0. Then, for any B[1 . . n + 1] consistent with A′[1 . . n],
0 ≤ B[i] ≤ A[i] = 0

holds by CF3, i.e., A[1 . . i] = B[1 . . i]. Since A[j] > 0 for j > i, the same argument
as previously works. �

Note that VALIDATE-π ′ runs VALIDATE-π either on A[1 . . i − 1], or on
A[1 . . i − 1] when A[i] = 0. In either case, all these values are fixed, and thus no
position of A is inspected twice by VALIDATE-π .

We further note that Lemma 7 implies that the minimum size of the alphabet re-
quired for a valid strict border array is at most as large as the one required for border
array. The latter is known to be O(logn) [20, Th. 3.3a]. This observation implies the
following.

Theory Comput Syst (2014) 54:337–372 353

Corollary 1 The minimum size of the alphabet required for a valid strict border
array is O(logn).

8 Improving the Running Time to Linear

This section describes our linear time online algorithm LINEAR-VALIDATE-π ′ by
specifying necessary changes to VALIDATE-π ′. It suffices to show how to perform
consistency checks more efficiently, as each other operations works in amortised con-
stant time. A natural approach is as follows: construct a suffix tree [10, 19, 24] for the
input table A′[1 . . n], together with a data structure for answering LCA queries [3].
The best known algorithm for constructing the suffix tree runs in linear time, regard-
less of the size of the alphabet [10]. Unfortunately, this algorithm, and all other linear
time solutions we are aware of, are inherently off-line, and as such invalid for our
purposes. The online suffix tree constructions of [19, 24] have a slightly bigger run-
ning time of O(n log |Σ |), where Σ is the alphabet. As A′ is a text over an alphabet
{−1,0, . . . , n − 1}, i.e., of size n + 1, these constructions would only guarantee an
O(n logn) time.

To get a linear time algorithm we exploit both the structure of the π ′ array and
the relationship between subsequent consistency checks. In more detail, firstly we
demonstrate how to improve Ukkonen’s algorithm [24] so that it runs in time O(n) for
alphabets of polylogarithmic size, which may be of independent interest. This alone is
still not enough, since A′ is over an alphabet of linear size. To overcome this obstacle
we use the combinatorial properties of A′ to compress it. The compressed table uses
alphabet of polylogarithmic size, which makes the improved version of the Ukko-
nen’s algorithm applicable. New problems arise, as the compressed table is a little
harder to read and further conditions need to be verified to answer the consistency
checks.

8.1 Suffix Trees for Polylogarithmic Alphabet

In this section we present a construction of an online dictionary with constant time
access and insertion, for t = logn elements. When used in Ukkonen’s algorithm [24],
it guarantees the following construction of suffix trees.

Lemma 8 For any constant c, the suffix tree for a text of length n over an alphabet
of size logc n can be constructed on-line in O(n) time. Given a vertex in the resulting
tree, its child labeled by a specified letter can be retrieved in constant time.

The only reason Ukkonen’s algorithm [24] does not work in linear time is that
given a vertex it needs to efficiently retrieve its child labeled with a specified letter.
If we are able to perform such a retrieval in constant time, the Ukkonen’s algorithm
runs in linear time.

For that we can use the atomic heaps of Fredman and Willard [12], which allow
constant time search and insert operations on a collection of O(

√
logn)-elements

sets. This results in a fairly complicated structure, which can be greatly simplified
since in our case not only are the sets small, but the size of the universe is bounded
as well.

354 Theory Comput Syst (2014) 54:337–372

Fig. 5 Basic structure for
succinct suffix tree

Simplifying Assumptions We assume that the value of �logn� is known. Since n

is not known in advance, when we read elements of A′ one-by-one, as soon as the
value of n doubles, we repeat the whole computation with a new value of �logn�.
This changes the running time only by a constant factor.

It is enough to give the construction for the alphabet of size logn as for alphabets
of size logc n we can encode each letter in c characters chosen from an alphabet of a
logarithmic size.

First Step: Dictionary for Small Number of Elements We implement an online dic-
tionary for an universe of size logn. Both access and insert time are constant and
the memory usage is at most linear in the number of elements stored. The first step
of the construction is a simpler case of t keys, for t ≤ √

logn. Then this construc-
tion is folded twice to obtain the general case of t = Θ(logn). One step of such a
construction is depicted on Fig. 5.

The indices of items currently present in the dictionary are encoded in one machine
word, called the characteristic vector V , in which the bit V [i] = 1 if and only if
dictionary contains key i.

We store pointer to the keys in the dictionary in a dynamically resized pointer
table, in order of their arrival times: whenever we insert a new item, its pointer is put
right after the previously added one. Additionally, we keep a permutation table P

that encodes the order in which currently stored elements have been inserted. In other
words, P [i] stores the position in the pointer table of the pointer to i. Since t ≤√

logn, all successive values of such permutation can be stored in one machine word.

Accessing the Information for Small Number of Elements If we want to find the
pointer to the element number k, we first check if V [k] = 1. Then we find the index
of k, i.e., j = #{k′ ≤ k : V [k′] = 1}. To do this, we mask out all the bits on positions
larger than k, obtaining vector V ′. Then j = #{k′ : V ′[k′] = 1}. Computing j can be
done comparing V ′ with the precomputed table. Then we look at position j in the
permutation table—P [j] gives address in the pointer table under which the pointer
to k is stored. This gives us the desired key.

The precomputed tables can be obtained using standard techniques as well as
deamortised in a standard way.

Updating the Information for Small Number of Elements When a new key k arrives,
it is stored in the memory at the next available position and a pointer to it is put in
the dictionary: firstly we set V [k] = 1 and insert the pointer on the last position at the
pointer table. We also need to update the permutation table. To do this, we calculate
j = #{k′ < k : V [k′] = 1} and m = #{k′ : V [k′] = 1}, this is done in the same way as
when accessing the stored pointer. Then we change the permutation table: we move

Theory Comput Syst (2014) 54:337–372 355

all the numbers on positions greater than j one position higher and write m + 1 on
position j . Since the whole permutation table fits in one code-word, this can be done
in constant time: let P ′ be the table P with all positions larger than j − 1 masked out
and P ′′ the table with all position smaller than j masked out. Then we shift P ′′ by
one position higher and set P ← P ′|P ′′. Then we set P [j] = m + 1.

Larger Number of Elements When the number of items becomes bigger, we fold
the above construction twice (somehow resembling the B-tree of order t = √

logn):
choose a subset of keys k1 < k2 < · · · < k� such that between kj and kj+1 there are
at least t and at most 2t other keys. Observe that k1 < k2 < · · · < k� can be kept in
the above structure, with constant update and access time, we refer to it as the top
structure. Moreover, for each i the keys between ki and ki+1 also can be kept in such
a structure. We refer to those structures as the bottom structures.

Access for Large Number of Elements To access information associated with a
given key k, we first look up the largest chosen key smaller than k in the top structure
and then look up k in the corresponding bottom structure. The second operation is
already known to have constant amortised time. The first operation can be done in
O(1) time by first masking out the bits on positions larger than k in top characteristic
vector and then extracting the position of the largest bit. Again this can be done using
standard techniques.

Update for Large Number of Elements When we insert new item k, firstly we find
i such that ki−1 ≤ k < ki , where ki−1 and ki are elements of the top structure. This is
done in the same way as when information on k is accessed. Then k is inserted into
proper bottom structure.

If after an insertion the bottom structure has 2t +1 elements, we choose its middle
element, insert it into the top structure, and split the keys into two parts consisting of
t elements, creating two new bottom structures out of them. This requires O(t) time
but the amortised insertion time is only O(1): the size of the bottom structure is t

after the split and 2t before the next split, so we can charge the cost to the new t keys
inserted into the tree before the splits.

8.2 Compressing A′

Lemma 8 does not apply to A′ directly, as it may hold too many different values.
To overcome this, we compress A′ into Compress(A′), so that the resulting text is
over a polylogarithmic alphabet and checking equality of two fragments of A′ can
be performed by looking at the corresponding fragments of Compress(A′). To com-
press A′, we scan it from left to right. If A′[i] = A′[i − j] for some 1 ≤ j ≤ log2 n we
output #0j . If A′[i] ≤ log2 n we output #1A

′[i]. Otherwise we output the binary en-
coding of A′[i] enclosed by #2 and #3. For each i we store the position of its encoding
in Compress(A′) in Start[i].

Note that we need to know, whether a value A′[n] appeared within the last log2 n

positions. To do this, we keep a table Prev, such that Prev[i] gives the position of the
last i in A′ (or −1, if no i appeared so far). It is easily updated in constant time: when
we read A′[n] we set Prev[A′[n]] to n and Prev[n] to −1.

356 Theory Comput Syst (2014) 54:337–372

In this encoding only the last case of A′[i] > log2 n and A′[i] not occurring in
A′[i − log2 n . . i − 1] may result in more than one symbol of an alphabet of size
O(log2 n). We show that the number of different large values of π ′ is small, which
allows bounding the total size of these encodings and hence the whole Compress(A′)
table by O(n).

Lemma 9 Let k ≥ 0 and consider a segment of 2k consecutive entries in the π ′ array.
At most 48 different values from the interval [2k,2k+1) occur in such a segment.

Proof First note that each i such that π ′[i] > 0 corresponds to a non-extensible oc-
currence of the border w[1 . . π ′[i]], i.e., π ′[i] is the maximum j such that w[1 . . j]
is a suffix of w[1 . . i] and w[j + 1] �= w[i + 1].

If k < 2 then the claim is trivial. So let k′ = k − 2 ≥ 0 and assume that there are
more than 48 different values from [2k,2k+1) = [4 · 2k′

,8 · 2k′
) occurring in some

segment of length 2k . Then more than 12 different values from [4 · 2k′
,8 · 2k′

) oc-
cur in a segment of length 2k′

. Split the range [4 · 2k′
,8 · 2k′

) into three subranges
[4 · 2k′

,5 · 2k′
), [5 · 2k′

,6 · 2k′
) and [6 · 2k′

,8 · 2k′
). Then at least 5 different values

from one of these subranges occur in the segment; let [�, r) be that subrange. Note
that (no matter which one it is),

r − � ≤ 1

2
� − 2k′

.

Let these 5 different values occur at positions p1 < · · · < p5. Consider the sequence
pi − π ′[pi] + 1 for i = 1, . . . ,5: these are the beginnings of the corresponding non-
extensible borders. In particular pi ’s are pairwise different (since they are ends of
non-extendable borders). Each sequence of length 5 contains a monotone subse-
quence of length 3. We consider the cases of decreasing and increasing sequence
separately:

1. There exist pi1 < pi2 < pi3 in this segment such that

pi1 − π ′[pi1] + 1 > pi2 − π ′[pi2] + 1 > pi3 − π ′[pi3] + 1.

Define x = w[pi1 + 1] and y = w[π ′[pi1] + 1], see Fig. 6. Then by the definition
of π ′[pi1], x �= y. We derive a contradiction by showing that x = y. To this end
we use the periodicity of the word w. Define

a = (
pi2 − π ′[pi2] + 1

) − (
pi3 − π ′[pi3] + 1

)
,

b = (
pi1 − π ′[pi1] + 1

) − (
pi3 − π ′[pi3] + 1

)
,

s = π ′[pi1] + b,

see Fig. 6. Define s = π ′[pi1]+b, see Fig. 6; then both a, b are periods of w[1 . . s],
see Fig. 6. We show that a, b ≤ s

2 and so periodicity lemma can be applied to them
and word w[1 . . s].

Theory Comput Syst (2014) 54:337–372 357

Fig. 6 Proof of Lemma 9, decreasing sequence

a < b = (
pi1 − π ′[pi1]

) − (
pi3 − π ′[pi3]

)
< π ′[pi3] − π ′[pi1]

≤ r − � <
�

2
.

Since s = π ′[pi1] + b and π ′[pi1] ∈ [�, r) we obtain s > �. Thus

a < b <
s

2
.

By periodicity lemma b−a is also a period of w[1 . . s]. As position pi1 +1 is cov-
ered by the non-extensible border ending at pi2 (note that b < �

2 and π ′[pi1] ≥ �):

x = w[pi1 + 1] = w
[
π ′[pi1] + 1 + (b − a)

]
,

see Fig. 7. Note that

π ′[pi1] + 1 + (b − a) ≤ π ′[pi1] + b = s

and so w[π ′[pi1]+ 1 + (b − a)] is a letter from word w[1 . . s], which has a period
b − a. Hence

x = w
[
π ′[pi1] + 1 + (b − a)

] = w
[
π ′[pi1] + 1

] = y,

contradiction.
2. There exist pi1 < pi2 < pi3 in this segment such that

pi1 − π ′[pi1] + 1 < pi2 − π ′[pi2] + 1 < pi3 − π ′[pi3] + 1,

see Fig. 8.
By assumption π ′[pi1],π ′[pi2] ≥ �. We identify the periods of the correspond-

ing subwords w[1 . . π ′[pi1]] and w[1 . . π ′[pi2]], respectively:

a = (
pi2 − π ′[pi2] + 1

) − (
pi1 − π ′[pi1] + 1

)
,

b = (
pi3 − π ′[pi3] + 1

) − (
pi2 − π ′[pi2] + 1

)
,

as depicted on Fig. 8. We estimate their sum:

358 Theory Comput Syst (2014) 54:337–372

Fig. 7 An illustration of equality w[pi1 + 1] = w[π ′[pi1] + (b − a) + 1]

Fig. 8 Proof of Lemma 9, increasing sequence

a + b = (
pi2 − π ′[pi2]

) − (
pi1 − π ′[pi1]

) + (
pi3 − π ′[pi3]

) − (
pi2 − π ′[pi2]

)

= (
pi3 − π ′[pi3]

) − (
pi1 − π ′[pi1]

)

= (
π ′[pi1] − π ′[pi3]

) + (pi3 − pi1)

≤ (r − �) + 2k′ ≤
(

1

2
� − 2k′

)
+ 2k′ = �

2
.

Since � ≤ π ′[pi1],π ′[pi2], we obtain that

a + b ≤ π ′[pi1]
2

,
π ′[pi2]

2
. (7)

There are two subcases, depending on whether π ′[pi1] < π ′[pi2] or π ′[pi1] >

π ′[pi2]:
(a) π ′[pi1] < π ′[pi2]: Define x = w[pi1 + 1] and y = w[π ′[pi1] + 1], see Fig. 9.

Then by definition of π ′[pi1], x �= y. We obtain a contradiction by showing
that x = y.

Since the non-extensible border ending at pi3 spans over position pi1 + 1
and a + b < π ′[pi1] (see (7)) it holds that

x = w
[(

π ′[pi1] + 1
) − (a + b)

]
. (8)

Theory Comput Syst (2014) 54:337–372 359

Fig. 9 Illustration for case 2a, when w[(π ′[pi1] + 1) − (a + b)] = w[pi1 + 1]

Comparing the non-extensible borders ending at pi2 and pi3 we deduce that b

is a period of w[1 . . π ′[pi2]] and as π ′[pi1] + 1 ≤ π ′[pi2],
y = w

[
π ′[pi1] + 1

] = w
[
π ′[pi1] + 1 − b

]
.

Similarly by comparing the non-extensible prefixes ending at pi1 and pi2 we
deduce that a is a period of w[1 . . π ′[pi1]]. Thus

y = w
[
π ′[pi1] + 1 − b

] = w
[
π ′[pi1] + 1 − b − a

]
(9)

and therefore by (8) and (9) x = y. Contradiction.
(b) π ′[pi1] > π ′[pi2]: Let x′ = w[pi2 + 1] and y′ = w[π ′[pi2] + 1]. Then x′ �= y′

by the definition of π ′[pi2], see Fig. 10. We show that x′ = y′ and hence obtain
a contradiction. Since non-extensible border ending at pi3 spans over position
pi2 + 1, we obtain that

x′ = w
[
π ′[pi2] − b + 1

]
, (10)

see Fig. 10. By comparing non-extensible prefixes ending at pi1 and pi2 we
deduce that a is a period of w[1 . . π ′[pi1]]. As π ′[pi2] + 1 ≤ π ′[pi1],

y′ = w
[
π ′[pi2] + 1

] = w
[
π ′[pi2] + 1 − a

]
.

By comparing the non-extensible prefixes ending at pi2 and pi3 we deduce

that b is a period of w[1 . . π ′[pi2]]. Since a + b ≤ π ′[pi2]
2 by (7), it holds that

y′ = w
[
π ′[pi2] + 1 − a

] = w
[
π ′[pi2] + 1 − a − b

]
.

As a is a period of w[1 . . π ′[pi1]] and π ′[pi1] > π ′[pi2] it is also a period of
w[1 . . π ′[pi2] + 1], hence

y′ = w
[
π ′[pi2] + 1 − a − b

] = w
[
π ′[pi2] + 1 − b

]
. (11)

So by (10) and (11) x′ = y′, contradiction. �

Lemma 9 can be used to bound the size of the compressed representation
Compress(A′) of A′.

360 Theory Comput Syst (2014) 54:337–372

Fig. 10 Illustration for case 2b, when w[(π ′[pi2] + 1) − b] = w[pi3 + 1]

Corollary 2 Compress(A′) consists of O(n) symbols over an alphabet of O(log2 n)

size.

Proof To calculate the total length of the resulting text, observe that the only case
resulting in a non-constant number of characters being output for a single index i is
when A′[i] > log2 n and the value of A′[i] does not occur at any of log2 n previous
indices. By Lemma 9, where 2k ≥ log2 n, any segment of consecutive log2 n indices
contains at most 48 different values from [2k,2k+1). For a single k there are n

log2 n

such segments of length log2 n end encoding one value of A′ takes logn characters
in Compress(A′). As k takes values from log(log2(n)) to logn the total number of
characters used to describe all those values of A′[i] is at most

logn∑

k=2 log logn

(
48

n

log2 n
logn

)
= (logn − 2 log logn + 1) · 48

n

logn
≤ 48n ∈O(n),

so |Compress(A′)| = O(n). �

As the alphabet of Compress(A′) is of polylogarithmic size, the suffix tree for
Compress(A′) can be constructed in linear time by Lemma 8.

8.3 Performing Consistency Checks on the Compress(A′)

Subchecks Consider consistency check: is A′[j . . j + k − 1] = A′[i . . i + k − 1],
where j = A[i]? We first establish equivalence of this equality with equality of proper
fragments of Compress(A′). Note, that A′[�] = A′[�′] does not imply the equality of
two corresponding fragments of Compress(A′), as they may refer to previous values
of A′. Still, such references can be only log2 n elements backwards. This observation
is formalised as follows:

Theory Comput Syst (2014) 54:337–372 361

Lemma 10 Let j = A[i]. Then

A′[j . . j + k − 1] = A′[i . . i + k − 1] (12)

if and only if

Compress
(
A′)[Start

[
j + log2 n

]
. .Start[j + k] − 1

]

= Compress
(
A′)[Start

[
i + log2 n

]
. .Start[i + k] − 1

]
(13)

and A′[j . . j + min
(
k, log2 n

) − 1
] = A′[i . . i + min

(
k, log2 n

) − 1
]
. (14)

Proof If k ≤ log2 n, the claim holds trivially, as (12) and (14) are exactly the same
and (13) holds vacuously.

So suppose that k > log2 n.
⇒© Suppose first that A′[j . . j + k − 1] = A′[i . . i + k − 1]. Then of course

A′[j . . j + log2 n − 1] = A′[i . . i + log2 n − 1], as k > log2 n by case assumption.
Thus (14) holds.

Note that Compress(A′)[Start[j + log2 n] . .Start[j + k]− 1] is created using only
A′[j . . j + k − 1]: when creating an entry corresponding to A′[�] we can refer to
A′[�] and to at most log2 n elements before it. Similarly, Compress(A′)[Start[i +
log2 n] . .Start[i + k] − 1] is created using A′[i . . i + k − 1] exclusively. Since
A′[j . . j + k − 1] = A′[i . . i + k − 1], both fragments of Compress(A′) are created
using the same input, and so they are equal. Thus (13) holds, which ends the proof in
this direction.

⇐© Assume that (13) and (14) hold. We show by a simple induction on �, that
A′[i + �] = A′[j + �]. For � < log2 n the claim is trivial, as it is explicitly stated
in (14). So let � ≥ log2 n. Consider Compress(A′)[Start[i + �] . .Start[i + �+ 1]− 1]
and Compress(A′)[Start[j + �] . .Start[j + �+1]−1], they are equal by the assump-
tion.

– If they are both equal to #0m (i.e., both are equal to some value of A′ that is
m ≤ log2 n positions earlier) then A′[i + �] = A′[i + � − m] and A′[j + �] =
A′[j + � − m]; by the inductive assumption A′[i + � − m] = A′[j + � − m] (as
m ≤ log2 n), which ends the case.

– If they are both equal to #1m (i.e., both are equal to m ≤ log2 n) then A′[i + �] =
A′[j + �] = m.

– If they are equal to #2m1 . . .mz#3 (i.e., both are larger than log2 n and are both
encoded in binary as m1 . . .mz) then m1 . . .mz encode some m in binary and A′[i+
�] = A′[j + �] = m, which ends the last case. �

Similarly as in the Sect. 8.1, we assume that �logn� is known. In the same way we
repeat the whole computation from the scratch as soon as it value changes. This in-
creases the running time by a constant factor.

We call the checks of the form (13) the compressed consistency checks, checks of
the form (14)—short consistency checks and the near short consistency checks when
moreover |i − j | < log2 n.

362 Theory Comput Syst (2014) 54:337–372

Fig. 11 Scheme of ranges for
suffix trees

The compressed consistency checks can be answered in amortised constant time
using LCA query [3] on the suffix tree built for Compress(A′). It remains to show
how to perform short consistency checks in amortised constant time.

8.4 Performing Short Consistency Checks

Performing Near Short Consistency Checks To answer near short consistency
checks efficiently, we split A′ into blocks of log2 n consecutive letters: A′ =
B1B2 . . .B�, see Fig. 11. Then we build suffix trees for each pair of consecutive
blocks, i.e., B1B2,B2B3, . . . ,B�−1B�. Each block contains at most log2 n values
smaller than log2 n, and at most 48 logn larger values by Lemma 9, so all suffix trees
can be built in linear time by Lemma 8. For each tree we also build a data structure
supporting constant-time LCA queries [3]. Then, any near short consistency check
reduces to an LCA query in one of these suffix trees. Such a query also gives the
actual length of the longest common prefix of the two compared strings; this is used
in performing short consistency checks.

Performing Short Consistency Checks Consider again a short consistency check,
which is of the form ‘does A′[i . . i + k − 1] = A′[j . . j + k − 1]’, where j = A[i]
and k ≤ log2 n. To improve the running time, the results of previous short consistency
checks are reused: we store jbest (which is one of indices for which previously we
run short consistency check) such that

– j ≤ jbest ≤ j + log2 n

– the length (say L) of the common prefix of A′[i . . i + k − 1] and A′[jbest . . jbest +
k − 1] is known.

To answer short consistency check we first compute the common prefix of A′[j . . j +
k − 1] and A′[jbest . . jbest + k − 1] (which can be done using near short consistency
check) and compare it with L. If it is smaller than min(L, k), then clearly the common
prefix of A′[j . . j +k−1] and A′[i . . i+k−1] is smaller than k; if it equals L then we
naively compute the common prefix of A′[j +L. . j +k−1] and A′[i +L. . i +k−1]
by letter-to-letter comparisons. Also, in such a case we switch jbest to j , as it has a
longer common prefix with A[i . . i + k − 1].
Simplifying Assumption To simplify the presentation and analysis, we assume that
the adjusting of the last slope is done in a slightly different way than written in the
code of ADJUST-LAST-SLOPE (see Algorithm 6): if the pin is assigned value i′ > i

(in line 13 of Algorithm 6), firstly A[i′] is set to A[i] + (i′ − i), i.e., its current
implicit value, then it is verified if A′[i′ . . n] = A′[A[i′] . .A[i′] + (n − i′)] (and the
result ignored, even if it is an equality, we still treat it as a fail) and only after that
A[i′] is assigned valid value for π[i′]. Such a change can only increases the running
time of the algorithm.

Theory Comput Syst (2014) 54:337–372 363

Invariants During short consistency check we make sure that the following invari-
ants for jbest and L are preserved:

L ≤ k (15a)

A′[jbest . . jbest + L − 1] = A′[i . . i + L − 1] (15b)

j ≤ jbest ≤ j + log2 n (15c)

if j �= jbest then A′[j . . j + L − 1] �= A′[jbest . . jbest + L − 1] (15d)

L = k or A′[jbest + L] �= A′[i + L]. (15e)

We refer to them as (15a)–(15e).
The intuition behind the invariants is as follows: (15a) simply states that we are in-

terested in common prefix of length at most k. The (15b) justifies the choice of jbest ,
i.e. we know the common prefix of A′ starting at jbest and at i. The (15c) ensures
that comparing A′ starting at j and jbest can be done using near short consistency
check. The (15d) says that if j �= jbest then there is a reason for that: A′[i . . i + k − 1]
and A′[j . . j + k − 1] have a shorter common prefix then A′[i . . i + k − 1] and
A′[jbest . . jbest + k − 1]. Finally, (15e) shows maximality of L: either it is k (so it
cannot be larger) or there is a mismatch at the ‘next position’.

Potential The analysis of the running time is amortised. We define a potential of the
configuration of LINEAR-VALIDATE-π ′ as

p = k − L + (jbest − j). (16)

Let �x denote the change of the value of x in some fragment of an algorithm (which
will be always clear from the context); let s be the cost of comparisons and near short
consistency checks (i.e. their number). Then the amortised cost is �p + s. There are
some additional costs, like comparing indices, checking conditions etc. All such costs
are assigned either to letter-to-letter comparisons or to near short consistency checks.

Note that when the change of the potential is negative then it actually helps in
paying for near short consistency checks and letter-by-letter comparisons. Since 0 ≤
L ≤ k and j ≤ jbest ≤ j + log2 n, at any point the potential is non-negative and at
most log2 n, so the total cost at any point is the sum of amortised costs in each step
and the potential, which is sublinear.

We pay for the amortised cost using credit that we get for the changes of n and j :
For every increase �n, we get 8�n units of credit; for every change of j we get
8|�j | units of credit. Clearly the sum of all �n is n, so in this way we are scored at
most 2n credit. We show that the sum of all |�j | is also O(n).

Lemma 11 The sum of all |�j | over the whole run VALIDATE-π ′ is 2n.

Proof For the purpose of the proof, whenever we change the value of i or j let i′, j ′
refer to the new values and i, j to the old ones.

It is enough to show that the sum of all increments of j is at most n then clearly
the sum of all decrements of j are at most n as well.

364 Theory Comput Syst (2014) 54:337–372

Algorithm 7 LETTER-BY-LETTER

1: While A′[jbest + L] = A′[i + L] and L < k do
 we can increment L

2: L ← L + 1
3: End while
 L is the length of the common prefix

The j increases only when the pin i is updated in line 13 of ADJUST-LAST-
SLOPE, otherwise it can only decrease. Moreover, when j is incremented, it increases
by at most �i:

�j = j ′ − j = A
[
i′
] − A[i] = (

A[i] + (
i′ − i

)) − A[i] = �i.

Note that in the third equality we essentially used the simplifying assumption: as i′
and i are on the same (last) slope, we have A[i′] = A[i] + (i′ − i).

Since i ≤ n and i only increases, its sum of increments is at most n. So the total
sum of increments of j is at most n, as claimed. �

Letter-by-Letter Comparisons The letter by letter comparisons, see Algorithm 7,
are used to ensure that (15e) holds: when we already know that L letters starting
at A′[i] and A′[jbest] are the same but we are not sure whether this is the maximal
possible value of L, we verify this naively. The amortised cost is only 1, as each
successful comparison decreases the potential by 1.

Lemma 12 If (15a)–(15c) are satisfied before LETTER-BY-LETTER, then (15a)–
(15c) and (15e) are satisfied afterwards. The amortised cost of LETTER-BY-LETTER

is 1.

Proof For the purpose of the proof, let L0 be the initial value of L and L1 the final
value of L; by ‘L’ we denote the value inside LETTER-BY-LETTER.

Note that i, j and k are not altered. For (15a), by assumption L0 ≤ k before
COMMON-SHORT-CONSISTENCY-CHECK, we increment L by 1 and stop as soon
as it reaches k, so L1 ≤ k. For (15b) note that A′[jbest . . jbest + L0 − 1] = A′[i . . i +
L0 − 1] holds by the assumption and we verified A′[jbest + L0 . . jbest + L1 − 1] =
A′[i +L0 . . i +L1 −1] letter by letter. Invariant (15c) holds as neither j nor jbest was
changed. As for (15e), it is the termination condition of the while loop, so it holds
upon its termination.

Concerning the amortised cost: i, j , jbest do not change, so �p = −�L, i.e. it is
negative. On the other hand we make �L successful letter-to-letter comparisons and
perhaps one unsuccessful one (we ignore the cost of checking whether L = k, as they
are at most as high as the cost of letter-to-letter comparisons). So the cost of compar-
isons is at most �L+ 1. Hence the amortised cost is at most −�L + �L + 1 = 1, as
claimed. �

Answering Short Consistency Checks Using jbest When we get new values of i, j

and k we need to update jbest and L. It turns out that as soon as we update jbest

and L so that they satisfy (15a)–(15c), answering short consistency check is easy:
we first make letter-by-letter comparisons using LETTER-BY-LETTER to ensure that
also (15e) holds, i.e. that L is maximal. Then we check the length of the common

Theory Comput Syst (2014) 54:337–372 365

Algorithm 8 COMMON-SHORT-CONSISTENCY-CHECK

1: LETTER-BY-LETTER

2: � ← NEAR-SHORT-CONSISTENCY-CHECK(A′[jbest . . jbest +k−1],A′[j . . j +
k − 1])

3: if � < L then
4: return NO

5: else
6: jbest ← j

7: LETTER-BY-LETTER

8: if L = k then
9: return YES

10: else
11: return NO

12: end if
13: end if

prefix of A′[j . . j + k − 1] and A′[jbest . . jbest + k − 1] by a near short consistency
check. If it is less than L, then the answer to short consistency check is no. If it is at
least L, then we set jbest to j (as it is as good as jbest), run letter-by-letter comparison
again to check whether L is k, and answer accordingly. It is easy to verify that the
amortised cost of this procedure is constant and that all (15a)–(15e) hold afterward.
Details are given in Algorithm 8 and lemmata below.

Lemma 13 Assume that (15a)–(15c) are satisfied. Then COMMON-SHORT-CON-
SISTENCY-CHECK correctly answers the short consistency check, its amortised cost
is 6 and all (15a)–(15e) hold after COMMON-SHORT-CONSISTENCY-CHECK.

Proof Regarding the cost, the amortised cost of LETTER-BY-LETTERis 1 by
Lemma 12, setting jbest to j can only lower potential, and NEAR-SHORT-CONSIST-
ENCY-CHECK are answered in constant time using suffix trees.

We now show that after COMMON-SHORT-CONSISTENCY-CHECK all (15a)–
(15e) hold. By assumption initially (15a)–(15c) hold. By Lemma 12 after the first
LETTER-BY-LETTER they still hold and additionally (15e) holds. Suppose that
� < L, in particular j �= jbest . Then (15d) simply states that � < L, which is the case.
So suppose that � ≥ L. Resetting jbest to j may make (15e) invalid, but (15a)–(15c)
are preserved: the (15a) holds as we do not change L, the (15b) holds as we know that
A′[jbest . . jbest + k − 1] has a common prefix of length L with both A′[j . . j + k − 1]
and A′[i . . i + k − 1] and so also A′[j . . j + k − 1] and A′[i . . i + k − 1] have a
common prefix of length L. The (15c) holds trivially. By Lemma 12 the (15a)–(15c)
and (15e) hold after LETTER-BY-LETTER. Note that LETTER-BY-LETTER does not
modify j and so (15d) trivially holds, as j = jbest .

Concerning the correctness: if � < L then j �= jbest and from (15b) and (15d) we
get that A′[j . . j + L − 1] and A′[i . . i + L − 1] are different. Since by (15a) we
know that L ≤ k, hence also A′[j . . j + k − 1] and A′[i . . i + k − 1] are different.
This justifies the no answer. If � ≥ L then in the end j = jbest and so by (15a)–(15b)

366 Theory Comput Syst (2014) 54:337–372

and (15e) we know that A′[j . . j + k − 1] = A′[i . . i + k − 1] if and only if L = k,
which is exactly the answer returned by the algorithm. �

It remains to show how to update jbest and L.

Types of Short Consistency Checks The way we update jbest and L depends on
why the short consistency check is made; we distinguish three situations in which
ADJUST-LAST-SLOPE invokes short consistency check:

(Type 1) This is a first iteration of ADJUST-LAST-SLOPE and PIN-VALUE-CHECK

did not return any index in this iteration.
(Type 2) This is not a first iteration of ADJUST-LAST-SLOPE and PIN-VALUE-

CHECK did not return any index in this iteration.
(Type 3) The PIN-VALUE-CHECK did return an index in this iteration.

We begin with showing what are the changes of i, j , k and n in each of those types
of short consistency check.

Lemma 14 In Type 1 short consistency check it holds that �i = �j = 0, �k ≥ 0
and �n ≥ max(1,�k); exactly 8�n units of credit are issued.

In Type 2 short consistency check it holds that �i = 0, �j < 0 and �k = �n = 0;
exactly 8|�j | units of credit are issued.

In Type 3 short consistency check it holds that �i > 0, �j = �i and −�i ≤
�k ≤ 0, �n ≥ 0; exactly 8�j + 8�n units of credit are issued.

Note in particular that when �i, �j are known, we can figure out which type of
query this is: Type 3 short consistency check is unique with �i > 0, Type 2 with
�j < 0 while Type 1 with �i = �j = 0.

Proof Recall that we issue 8�n + 8|�j | units of credit, which yields the claim on
the number of credit issued in each of the cases.

Type 1 short consistency check: Since this is the first iteration of ADJUST-LAST-
SLOPE it means that we read A′[n] and it is not equal to A′[A[n]]. In particular,
since the last invocation of ADJUST-LAST-SLOPE we read at least one additional
value of A′. Hence �n ≥ 1. As PIN-VALUE-CHECK did not return any index, we
do not modify i and j since the last invocation of the short consistency check, so
�i = �j = 0. Concerning k, recall that the short consistency check is asked only
on A′[i . .min(n, i + log2 n − 1)], i.e. k = min(n − i + 1, log2 n). Hence, when k0
and n0 are the values of k and n when previous short consistency check was asked,
we have k0 = min(n0 − i + 1, log2 n) (note that we can assume that logn and logn0
are the same, as we repeat the calculation as soon as �logn� increases). Then k ≥ k0
and �k ≤ �n, but there is no guarantee that �k > 0, i.e., k0 = k can happen when
n0 − i + 1 > log2 n.

Type 2 short consistency check: in this case short consistency check is asked
in iteration of ADJUST-LAST-SLOPE that is not the first one, and the PIN-VALUE-
CHECK did not return any index in this iteration. Which means that A[i] is assigned
the next candidate in line 14. Thus i, k are unchanged as compared to the previous

Theory Comput Syst (2014) 54:337–372 367

Algorithm 9 TYPE-1-UPDATE-jbest

1: continue

short consistency check, while j is decreased, hence �i = 0, �j < 0 and �k = 0.
Furthermore, we do not read any new value of A′, so �n = 0.

Type 3 short consistency check: In this case the short consistency check is run for
the same slope, but pin is moved, thus the new value i′ is larger than the old i. By our
simplifying assumption we do not decrease the last slope, just place new i′ on it, i.e.
we set A[i′] = A[i] + (i′ − i), i.e., we take new j such that �j = �i. As n only
increases, �n ≥ 0. Concerning k, recall again that k = min(n − i + 1, log2 n), hence
0 ≥ �k ≥ −�i. �

In the following, we describe how to update jbest and L in those three different
cases so that (15a)–(15c) are preserved.

Type 1 Updates In this case we do not need any update, as described in Algorithm 9.

Lemma 15 Suppose that we are to make Type 1 short consistency check and
all (15a)–(15e) hold. Then (15a)–(15c) are preserved and the amortised cost is at
most �n.

Proof Let us inspect the change of potential:

�p = �k − �L + �jbest − �j.

By Lemma 14 we know that �j = 0 and �k ≤ �n, we do not change jbest nor L so
�L = �jbest = 0. Hence

�p ≤ �n − 0 + 0 − 0

= �n.

Concerning the invariants: as L is unchanged and �k ≥ 0 by Lemma 14 we get
that (15a) is preserved. Similarly, since we do not change j , jbest , L, the (15b)–(15c)
are preserved. �

This allows calculating the whole cost of answering Type 1 short consistency
check.

Corollary 3 In Type 1 of short consistency check the amortised cost of TYPE-1-
UPDATE-jbest and COMMON-SHORT-CONSISTENCY-CHECK is covered by the re-
leased credit. The TYPE-1-UPDATE-jbest followed by COMMON-SHORT-CONSIST-
ENCY-CHECK preserves (15a)–(15e) and returns the correct answer to short consis-
tency check.

Proof By Lemma 15 the update of jbest and L has amortised cost at most �n.
By Lemma 13 the amortised cost of COMMON-SHORT-CONSISTENCY-CHECK is

368 Theory Comput Syst (2014) 54:337–372

Algorithm 10 TYPE-2-UPDATE-jbest

1: if j + log2 n < jbest then
2: jbest ← j , L ← 0
3: end if

at most 6. On the other hand, by Lemma 14 we know that 8�n ≥ 6 + �n credit is
issued, which suffice to pay for the amortised cost.

Concerning the correctness, by Lemma 15 the (15a)–(15c) are satisfied after
TYPE-1-UPDATE-jbest which by Lemma 13 means that after COMMON-SHORT-
CONSISTENCY-CHECK all (15a)–(15e) hold and the answer to short consistency
check is correct. �

Type 2 Updates Since j is decreased, it might be that j and jbest no longer sat-
isfy (15b), (as j + log2 n < jbest). In such a case we set j ← jbest and L ← 0, see
Algorithm 10.

Lemma 16 Assume that all (15a)–(15e) hold and we are to make Type 2 short con-
sistency check. Then after TYPE-2-UPDATE-jbest the (15a) and (15c) are preserved.
The amortised cost is at most |�j | + 1.

Proof Suppose that j + log2 n ≥ jbest . The invariants (15b)–(15c) hold by assump-
tion, as none of i, jbest , L and k was modified. For (15c) note that jbest ≤ j + log2 n

holds by case assumption and j ≤ jbest held by assumption even before the decre-
ment of j , so it holds now as well.

The change of the potential: by Lemma 14, we know that �i = �k = �n = 0 and
�j < 0. Since L and jbest were not changed, we have

�p = �k − �L + �jbest − �j

= 0 − 0 + 0 − �j

= |�j |.
The cost is 1 for the comparison and so the amortised cost is |�j | + 1.

If j + log2 n < jbest then after setting jbest ← j and L ← 0 the (15a)–(15c) triv-
ially hold. The change of potential is

�p = �k − �L + �jbest − �j.

By Lemma 14 we know that �k = 0. As j + log2 n < jbest we obtain that �jbest <

− log2 n. Since L was reset to 0 we have −�L = −(−L0) = L0, where L0 was the
previous value of L. We know that L0 ≤ k ≤ log2 n and so

�p < 0 + log2 n − log2 n − �j

= |�j |.
There is additional cost 1 for the comparison of j and jbest (we hide the cost of
changing jbest and L in it). Hence the amortised cost is at most 1 + |�j |. �

Theory Comput Syst (2014) 54:337–372 369

Algorithm 11 TYPE-3-UPDATE-jbest

1: jbest ← jbest + �j , L ← L − �j

2: if L < 0 then
3: jbest ← j , L ← 0
4: end if

Corollary 4 In Type 2 of short consistency check the amortised cost of TYPE-2-
UPDATE-jbest and COMMON-SHORT-CONSISTENCY-CHECK is covered by the is-
sued credit. The TYPE-2-UPDATE-jbest followed by COMMON-SHORT-CONSISTEN-
CY-CHECK preserve (15a)–(15e) and correctly answers short consistency check.

Proof By Lemma 16, the update of jbest and L has amortised cost at most |�j | + 1.
By Lemma 13, the amortised cost of COMMON-SHORT-CONSISTENCY-CHECK is 6.
On the other hand, by Lemma 14, 8|�j | ≥ 7 + �j credit is issued, which suffice to
pay for the amortised cost.

Concerning the correctness, by Lemma 16 after TYPE-2-UPDATE-jbest the (15a)–
(15c) hold and so by Lemma 13 adter COMMON-SHORT-CONSISTENCY-CHECK

all (15a)–(15e) hold and the answer to short consistency check is correct. �

Type 3 Updates It is left to show how to update jbest and L in the Type 3 short
consistency check, see Algorithm 11. In this case both j and i were increased by
the same value �j , see Lemma 14. This means that the new A′[j . . j + k − 1] and
A′[i . . i +k−1] are the suffixes of the old ones. In particular, A′[jbest . . jbest +L−1]
has nothing to do with A′[i . . i +L− 1]; still, if we also increase jbest by �j then the
new A′[jbest . . jbest + L − 1] is also a suffix of the old one. Unfortunately, as every
table we consider is a suffix of the old one, we have to decrease L by �j as well. If
this turns L non-positive then A′[jbest . . jbest + L − 1] is empty and we reset jbest to
j and L to 0.

Lemma 17 Suppose that (15a)–(15e) hold and we are to make Type 3 short consis-
tency check. Then TYPE-3-UPDATE-jbest preserves (15a)–(15c). The amortised cost
is at most 1 + �j .

Proof Consider the case in which jbest and L are not reset. By Lemma 14 we get that
k is decreased by at most �j , while we decrease L by �j , hence (15a) is preserved.
Concerning (15b) let L′, i′ and j ′

best be the previous values of L, i and jbest . Then
A′[jbest . . jbest +L−1] is an ending block of A′[j ′

best . . j
′
best +L′ −1] and A′[i . . i +

L − 1] is an ending block of A′[i′ . . i′ + L′ − 1]. Hence A′[jbest . . jbest + L − 1] =
A′[i . . i + L − 1] follows from A′[j ′

best . . j
′
best + L′ − 1] = A′[i′ . . i′ + L′ − 1].

So (15b) is preserved. For (15c) note that we decremented j and jbest by the same
value �j , so (15c) is preserved.

Concerning the change of potential in this case,

�p = �k − �L + �jbest − �j

370 Theory Comput Syst (2014) 54:337–372

By Lemma 14 �k ≤ 0. We decrease L by �j , so �L = −�j and increase jbest by
�j , so �jbest = �j . Hence

�p ≤ 0 + �j + +�j − �j

= �j.

The additional cost is 1 for the test, so the amortised cost is at most �j + 1.
Now consider the case in which after the decrement by �j the L is non-positive,

i.e., we reset jbest to j and L to 0. Then (15a)–(15b) hold trivially, as L = 0, and (15c)
holds because j = jbest . Concerning the cost, we pay 1 for comparisons and the
change of potential is:

�p = �k − �L + �jbest − �j.

By Lemma 14 �k ≤ 0. Since decreasing L by �j made it non-positive and then we
set it to 0, i.e., increase L, so �L ≥ −�j . Lastly, jbest − j is now equal 0 and used
to be non-negative by (15c), so �jbest − �j ≤ 0. Hence

�p ≤ 0 + �j + 0

= �j.

So the amortised cost is at most 1 + �j . �

Corollary 5 In Type 3 of short consistency check the amortised cost of TYPE-3-
UPDATE-jbest and COMMON-SHORT-CONSISTENCY-CHECK is covered by the is-
sued credit. The TYPE-3-UPDATE-jbest followed by COMMON-SHORT-CONSISTEN-
CY-CHECK preserve (15a)–(15e) and returns a proper answer to short consistency
check.

Proof By Lemma 17 the update of jbest and L has amortised cost at most 1 + �j .
By Lemma 13 the amortised cost of COMMON-SHORT-CONSISTENCY-CHECK is at
most 6. On the other hand, by Lemma 14 we obtain that at least 8�j ≥ 7 +�j credit
is issued, which suffice to pay for the amortised cost.

Concerning the correctness, by Lemma 16 after TYPE-3-UPDATE-jbest the (15a)–
(15c) hold and so by Lemma 13 after COMMON-SHORT-CONSISTENCY-CHECK

all (15a)–(15e) hold and furthermore the answer to the short consistency check is
correct. �

In the end, the short consistency check is performed as follows: depending on
which type it is, we run one of TYPE-1-UPDATE-jbest , TYPE-2-UPDATE-jbest , TYPE-
3-UPDATE-jbest . Afterwards we apply COMMON-SHORT-CONSISTENCY-CHECK.
By Corollary 3–5 the answer returned to short consistency check is correct and the
issued credit covers the whole cost. Since the issued credit is linear, we are done.

Running Time VALIDATE-π ′ runs in O(n) time: construction of the suffix trees and
doing consistency checks, as well as doing pin value checks all take O(n) time.

Theory Comput Syst (2014) 54:337–372 371

9 Remarks and Open Problems

While VALIDATE-π produces the word w over the minimum alphabet such that
πw = A on-line, this is not the case with VALIDATE-π ′ and LINEAR-VALIDATE-π ′.
At each time-step both these algorithms can output a word over minimum alphabet
such that π ′

w = A′, but the letters assigned to positions on the last slope may yet
change as further entries of A′ are read.

Since VALIDATE-π ′ and LINEAR-VALIDATE-π ′ keep the function π[1 . . n + 1]
after reading A′[1 . . n], virtually no changes are required to adapt them to g valida-
tion, where g[i] = π ′[i −1]+1 is the function considered by Duval et al. [8], because
A′[1 . . n − 1] can be obtained from g[1 . . n]. Running VALIDATE-π ′ or LINEAR-
VALIDATE-π ′ on such A′ gives A[1 . . n] that is consistent with A′[1 . . n − 1] and
g[1 . . n]. Similar proof shows that A[1 . . n] and g[1 . . n] require the same minimum
size of the alphabet.

Two interesting questions remain: is it possible to remove the suffix trees and LCA
queries from our algorithm without hindering its time complexity? We believe that
deeper combinatorial insight might result in a positive answer.

Acknowledgements This work was partially supported by Polish Ministry of Science and Higher Ed-
ucation under grants N N206 1723 33, 2007–2010; Łukasz Jeż was also partially supported by the Israeli
Centers of Research Excellence (I-CORE) program, Center No. 4/11.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

References

1. Breslauer, D., Colussi, L., Toniolo, L.: On the comparison complexity of the string prefix-matching
problem. J. Algorithms 29(1), 18–67 (1998)

2. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In: Proceedings of 26th
STACS, pp. 289–300 (2009). http://drops.dagstuhl.de/opus/volltexte/2009/1825

3. Cole, R., Hariharan, R.: Dynamic lca queries on trees. In: Proceedings of SODA ’99, pp. 235–244.
Society for Industrial and Applied Mathematics, Philadelphia (1999)

4. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing Company, Singapore
(2002)

5. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, Cam-
bridge (2007)

6. Crochemore, M., Iliopoulos, C., Pissis, S., Tischler, G.: Cover array string reconstruction. In: CPM
2010. Lecture Notes in Computer Science, vol. 6129, pp. 251–259. Springer, Berlin (2010)

7. Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., auf der Heide, F.M., Rohnert, H., Tarjan, R.E.: Dy-
namic perfect hashing: upper and lower bounds. SIAM J. Comput. 23(4), 738–761 (1994)

8. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of Knuth–Morris–Pratt
arrays. In: Conference in Honor of Donald E. Knuth (2007)

9. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border arrays and
validation of string matching automata. RAIRO Theor. Inform. Appl. 43(2), 281–297 (2009).
doi:10.1051/ita:2008030

10. Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings of FOCS ’97, pp.
137–143. IEEE Computer Society, Washington (1997)

11. Franěk, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border array in
linear time. J. Comb. Math. Comb. Comput. 42, 223–236 (2002)

http://drops.dagstuhl.de/opus/volltexte/2009/1825
http://dx.doi.org/10.1051/ita:2008030

372 Theory Comput Syst (2014) 54:337–372

12. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and short-
est paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994). doi:10.1016/S0022-0000(05)80064-9

13. Hancart, C.: On Simon’s string searching algorithm. Inf. Process. Lett. 47(2), 95–99 (1993)
14. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border arrays for a binary alphabet.

In: Proc. of the 3rd LATA, pp. 422–433 (2009). doi:10.1007/978-3-642-00982-2_36
15. I, T., Inenaga, S., Bannai, H., Takeda, M.: Verifying and enumerating parameterized border arrays.

Theor. Comput. Sci. 412(50), 6959–6981 (2011). doi:10.1016/j.tcs.2011.09.008
16. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patterns in strings, trees

and arrays. In: STOC ’72: Proceedings of the Fourth Annual ACM Symposium on Theory of Com-
puting, pp. 125–136. ACM, New York (1972). doi:10.1145/800152.804905

17. Knuth, D.E., Morris, J.H. Jr., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6(2),
323–350 (1977)

18. Matiyasevich, Y.: Real-time recognition of the inclusion relation. J. Sov. Math. 1, 64–70 (1973). Pub-
lished (in Russian) in Zap. Nauc̆. Semin. POMI, 20, 104–114 (1971)

19. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272
(1976). doi:10.1145/321941.321946

20. Moore, D., Smyth, W.F., Miller, D.: Counting distinct strings. Algorithmica 23(1), 1–13 (1999). http://
link.springer.de/link/service/journals/00453/bibs/23n1p1.html

21. Morris, J.H. Jr., Pratt, V.R.: A linear pattern-matching algorithm. Tech. Rep. 40, University of Cali-
fornia, Berkeley (1970)

22. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004). doi:10.1016/j.jalgor.
2003.12.002

23. Simon, I.: String matching algorithms and automata. In: Results and Trends in Theoretical Computer
Science. LNCS, vol. 812, pp. 386–395. Springer, Berlin (1994)

24. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995). doi:10.1007/
BF01206331

http://dx.doi.org/10.1016/S0022-0000(05)80064-9
http://dx.doi.org/10.1007/978-3-642-00982-2_36
http://dx.doi.org/10.1016/j.tcs.2011.09.008
http://dx.doi.org/10.1145/800152.804905
http://dx.doi.org/10.1145/321941.321946
http://link.springer.de/link/service/journals/00453/bibs/23n1p1.html
http://link.springer.de/link/service/journals/00453/bibs/23n1p1.html
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331

	Validating the Knuth-Morris-Pratt Failure Function, Fast and Online
	Abstract
	Introduction
	Pattern Recognition and Failure Functions
	Strict Border Array Validation
	Problem Statement
	Previous Results
	Our Results
	Related Results

	Preliminaries
	Border Array Validation

	Overview of the Algorithm
	Slopes and Their Properties

	Details and Correctness
	Data Maintained
	Sets of Valid pi Candidates and Validating A

	Performing Pin Value Checks
	Domination Properties
	Data Stored
	Answering Pin-Value-Check
	Update

	Performing Consistency Checks: Slow but Easy
	Size of the Alphabet
	Improving the Running Time to Linear
	Sufﬁx Trees for Polylogarithmic Alphabet
	Simplifying Assumptions
	First Step: Dictionary for Small Number of Elements
	Accessing the Information for Small Number of Elements
	Updating the Information for Small Number of Elements
	Larger Number of Elements
	Access for Large Number of Elements
	Update for Large Number of Elements

	Compressing A'
	Performing Consistency Checks on the Compress(A')
	Subchecks

	Performing Short Consistency Checks
	Performing Near Short Consistency Checks
	Performing Short Consistency Checks
	Simplifying Assumption
	Invariants
	Potential
	Letter-by-Letter Comparisons
	Answering Short Consistency Checks Using jbest
	Types of Short Consistency Checks
	Type 1 Updates
	Type 2 Updates
	Type 3 Updates
	Running Time

	Remarks and Open Problems
	Acknowledgements
	References

