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Abstract We show that the separation property fails for the classes Σn of the Rabin-
Mostowski index hierarchy of alternating automata on infinite trees. This extends our
previous result (obtained with Szczepan Hummel) on the failure of the separation
property for the class Σ2 (i.e., for co-Büchi sets). The non-separation result is also
adapted to the analogous classes induced by weak alternating automata.

To prove our main result, we first consider the Rabin-Mostowski index hierarchy
of deterministic automata on infinite words, for which we give a complete answer
(generalizing previous results of Selivanov): the separation property holds for Πn

and fails for Σn-classes. The construction invented for words turns out to be useful
for trees via a suitable game.

It remains open if the separation property holds for all classes Πn of the index
hierarchy for tree automata. To give a positive answer it would be enough to show
the reduction property of the dual classes—a method well-known in descriptive set
theory. We show that it cannot work here, because the reduction property fails for all
classes in the index hierarchy.
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1 Introduction

The separation question is whether two disjoint sets A and B can be separated by
a set C (i.e., A ⊆ C and B ∩ C = ∅) which is in some sense simpler. Separation is
one of the main issues in descriptive set theory. A fundamental result due to Lusin
is that two analytic sets can always be separated by a Borel set, but two co-analytic
sets in general cannot. The former implies that if a set is simultaneously analytic and
co-analytic then it is necessarily Borel, which is the celebrated Suslin Theorem (see,
e.g., [11] or [9]).

A well-known fact in automata theory exhibits a similar pattern: if a set of infinite
trees as well as its complement are both recognizable by Büchi automata then they
are also recognizable by weak alternating automata (weakly recognizable, for short).
This result was first proved by Rabin [13] in terms of monadic second-order logic; the
automata-theoretic statement was given by Muller, Saoudi, and Schupp [12] in terms
of weak alternating automata. It is not difficult to adapt Rabin’s proof to obtain a—
slightly stronger—separation property: any two disjoint Büchi recognizable sets of
trees can be separated by a weakly recognizable set (see, e.g., [7]). Quite analogical
to the co-analytic case, the separation property fails in general for the dual class of
co-Büchi tree languages (i.e., the complements of Büchi recognizable sets). In [7],
a pair of such sets is presented that cannot be separated by any Borel set, hence a
fortiori by any weakly recognizable set.

A systematic study of the separation property for tree automata has been under-
taken by Santocanale and Arnold [14]. They asked if the above-mentioned result of
Rabin can be shifted to the higher levels of the index hierarchy of alternating automata
with an appropriate generalization of weak recognizability. The question stems natu-
rally from the μ-calculus version of Rabin’s result which states that if a tree language
is definable both by a Π2-term (i.e., with a pattern νμ) and a Σ2-term (μν), then it is
also definable by an alternation free term, i.e., one in Comp(Π1∪Σ1) [3]. Somewhat
surprisingly, Santocanale and Arnold [14] discovered that the equation

Πn ∩Σn = Comp(Πn−1 ∪Σn−1),

which amounts to Rabin’s result for n = 2, fails for all n ≥ 3. Consequently, it is
in general not possible to separate two disjoint sets in the class Σn by a set in
Comp(Πn−1 ∪Σn−1); similarly for Πn.

There is however another plausible generalisation of Rabin’s result suggested by
the analogy with descriptive set theory. Letting

�n =Πn ∩Σn,

we may ask if two disjoint sets in a class Σn can be separated by a set in �n; a similar
question can be stated for Πn. By remarks above, we know that the separation prop-
erty in this sense holds for Π2 (Büchi) and fails for Σ2 (co-Büchi) class, in a perfect
analogy with the properties of analytic vs. co-analytic classes in the descriptive set
theory.1

1However, the classical notation plays a trick here, as the analogy matches the classes Σ1
1 ∼ Π2 and

Π1
1 ∼Σ2.
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In the present paper we answer the question negatively for all classes Σn of the
Rabin–Mostowski index hierarchy for alternating automata on infinite trees. (The
classes Σn correspond to the indices (i, k) with k odd; see the definition in Sect. 2
below.) By an analogy with the Borel hierarchy [9, 11], one is tempted to conjecture
that the separation property actually does hold for all classes Πn, but this question
seems to be difficult already for n= 3.

To prove our main result, we first study a conceptually simpler case of infinite
words and the Rabin–Mostowski index hierarchy of deterministic automata. In this
case we give a complete answer: the separation property holds for classes Πn and fails
for classes Σn. The argument is based on a uniform construction of an inseparable
pair in each class Σn. It should be noted that the separation property of the class (1,2)

was proved earlier by Selivanov [15], who also gave a hint [16] how this result can
be generalized for all classes Πn in the index hierarchy of deterministic automata on
infinite words.

The construction made for words is further used in the case of trees. More specifi-
cally, we consider labeled trees whose vertices are divided between two players: Eve
and Adam, who wish to form a path in a tree. Given a set on infinite words L, we con-
sider the set Win∃(L) of those trees where Eve has a strategy to force a path into L.
The operation Win∃ allows us to shift the witness family from words to trees.

The main result is completed by two further observations. We show that the non-
separation result holds for the analogous classes in the index hierarchy of the weak
alternating automata. Next, in quest to solve the aforementioned conjecture about
the classes Πn, we investigate reduction property for tree automata. Roughly, this
property means that any union A∪B can be refined to a disjoint union A′ ∪B ′ of sets
of the same complexity. In descriptive set theory, the reduction property of a class
of sets is often used to show the separation property of the dual class (see [9]). We
show that this method cannot be used here, because the reduction property fails for
all non-trivial classes in the index hierarchy of alternating automata on trees.

The preliminary version of this paper was presented to the conference STACS
2012 [2]. The results about weak automata and about reduction property are new and
presented for the first time in this paper.

2 Index Hierarchy

Throughout the paper, ω stands for the set of natural numbers, and notations n ∈ ω

and n < ω are interchangeable. We identify a natural number n < ω with the set
{0,1, . . . , n− 1}; in particular 2= {0,1}. An alphabet is any set, which is finite but
non-empty.

We will consider deterministic automata on infinite words and alternating au-
tomata on infinite trees. The latter will be introduced via games. For more background
on automata, we refer the reader to a survey by W. Thomas [17].

2.1 Automata on Infinite Words

A deterministic parity automaton on infinite words over an input alphabet A can be
presented by A = 〈A,Q,qI , δ, rank〉, where Q is a finite set of states ranked by the
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Fig. 1 The Mostowski–Rabin index hierarchy

function rank :Q→ ω, and δ :Q×A→Q is a transition function. A run of A on
a word u ∈ Aω is a word r ∈Qω whose first element r0 is the initial state qI , and
rn+1 = δ(rn, un), for n < ω. It is accepting if the highest rank occurring infinitely of-
ten (i.e., lim supn→∞ rank(rn)) is even. The language L(A) recognized by A consists
of those words u ∈Aω which admit an accepting run.

The Rabin-Mostowski index of A is the pair (min rank(Q),max rank(Q)). It
should be clear that moving all ranks up by an even number would not change
the recognized language; therefore we may assume without loss of generality that
min rank(Q) is 0 or 1. It is useful to partially order the indices as represented on
Fig. 1. That is, we let (ι, κ)� (ι′, κ ′) if either {ι, . . . , κ} ⊆ {ι′, . . . , κ ′}, or ι= 0, ι′ = 1,
and {ι+ 2, . . . , κ + 2} ⊆ {ι′, . . . , κ ′}. We consider the indices (1, κ) and (0, κ − 1) as
dual, and let (ι, κ) denote the index dual to (ι, κ).

To better understand the structure of indices, we can think of a structure
〈{ι, . . . , κ},≤,Even〉 associated with an index (ι, κ), where Even stands for the
evenness predicate. We identify indices whose structures are isomorphic. The or-
dering of indices corresponds to inclusion of isomorphism types, and the types of
dual indices differ only by the monadic predicates, which are complement to each
other.

The ordering of indices induces a hierarchy of languages, that is, if a language
L is recognized by an automaton of index (ι, κ) and (ι, κ) � (ι′, κ ′) then L is also
recognized by an automaton of index (ι′, κ ′). The hierarchy is known to be strict in
the sense that, for any index (ι, κ), there is a language recognized by an automaton of
index (ι, κ), but not by any (deterministic) automaton of the dual index (ι, κ) [8, 18].
Indeed, the witness can be the parity condition itself:

Lι,κ =
{
u ∈ {ι, . . . , κ}ω : lim sup

n→∞
un is even

}
. (1)

2.2 Games

A graph game is a perfect information game of two players, say Eve and Adam,
where plays may have infinite duration. It can be presented by a tuple

〈V∃,V∀,Move,pI , 
,A,L∃,L∀〉.
Here V∃ and V∀ are (disjoint) sets of positions of Eve and Adam, respectively,
Move ⊆ V × V is the relation of possible moves, with V = V∃ ∪ V∀, pI ∈ V is a
designated initial position, and 
 : V → A is a labelling function, with some alpha-
bet A. These items constitute an arena of the game. Additionally, L∃,L∀ ⊆ Aω are
two disjoint sets representing the winning criteria for Eve and Adam, respectively.
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In a special case of A = {ι, . . . , κ}, L∃ = Lι,κ (see Eq. (1)), and L∀ = L∃ = {u ∈
{ι, . . . , κ}ω : lim supn→∞ un is odd}, we refer to the game as to a parity game of in-
dex (ι, κ).

The players in a graph game start a play in the position pI and then move the token
according to the relation Move (always to a successor of the current position), thus
forming a path in the arena. The move is selected by Eve or Adam, depending on who
the owner of the current position is. If a player cannot move, she/he looses. Otherwise,
the result of the play is an infinite path v0, v1, v2, . . . , inducing the sequence of labels

(v0), 
(v1), 
(v2), . . . . If this sequence belongs to L∃ then Eve wins the play, if it
belongs to L∀ then Adam is the winner; otherwise there is a draw.

In the games considered in this paper, we always have L∀ = Aω − L∃, hence a
draw cannot occur.

Intuitively, a strategy is an oracle that tells the player her/his next move in the
play, depending on the current history of the game. A history is any finite path in the
arena starting from the initial position, i.e., a sequence π = (v0, v1, v2, . . . , vk), with
v0 = pI , and (vi, vi+1) ∈Move, for i < k. We let last(π)= vk .

We represent a strategy for Eve as a set S of histories, such that

1. pI is the unique history of length 1 belonging to S,
2. each history π ∈ S with last(π) ∈ V∃ has a unique prolongation πwπ in S (where

(last(π),wπ) ∈Move),
3. each history π ∈ S with last(π) ∈ V∀ has a prolongation πw in S, for each w,

such that (last(π),w) ∈Move,
4. S is closed under initial segments.2

Note that the condition 2 induces a (partial) mapping π �→wπ , which can be used as
an alternative representation of the strategy.

A play (finite or infinite) is consistent with a strategy S if all its finite prefixes are
in S. A strategy S is winning for Eve, if every play consistent with S is won by Eve.
That is, either the play is finite and ends in a position from which Adam has no move,
or it is infinite, and the sequence of labels belongs to L∃.

Analogically we define a strategy and a winning strategy for Adam. We say that
Eve wins the game G if she has a winning strategy in this game, the similar for Adam.

In this paper we will often consider games whose arenas are infinite binary trees.
A (full) binary tree over a finite alphabet Alph is a mapping t : 2∗ → Alph. For
a finite alphabet A, we denote by GTr(A) the set of binary trees over the alpha-
bet Alph = {∃,∀} × A. Any tree in GTr(A) constitutes an arena, where the labels
{∃,∀} induce a partition of the nodes of the tree into positions of Eve and Adam,
the moves go to the successors of a current node, and the initial position is the
root.

A language L⊆Aω can serve as a winning criterion for either of the players. We
will therefore consider two classes of games: L-∃ games, and L-∀ games.

2Thus S contains no other histories than those mentioned in conditions 1–3.
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An L-∃ game over a tree t ∈GTr(A) is given by the following items:

V∃ =
{
v ∈ 2∗ : t (v) ↓1 = ∃

}

(v)= t (v) ↓2, for v ∈ 2∗

V∀ =
{
v ∈ 2∗ : t (v) ↓1 = ∀

}
L∃ = L

Move= {
(w,wi) :w ∈ 2∗, i ∈ 2

}
L∀ = L

p0 = ε (the root of the tree).

(2)

An L-∀ game over t is defined similarly with the winning criteria L∀ = L, and
L∃ = L.

We let

Win∃(L) = {
t ∈GTr(A) : Eve wins the L-∃ game on t

}
(3)

Win∀(L) = {
t ∈GTr(A) :Adam wins the L-∀ game on t

}
. (4)

2.3 Automata on Trees

For a finite alphabet A, let Tr(A) denote the set of all binary trees over A (please note
the difference with the notation GTr(A) introduced in the previous section).

An alternating parity automaton of index (ι, κ) on infinite binary trees over an
input alphabet A can be presented by

A = 〈A,Q∃,Q∀, qI , δ, rank〉 (5)

where Q is a finite set of states with an initial state qI , partitioned into existential
states Q∃ and universal states Q∀, δ ⊆Q×A× {0,1, ε} ×Q is a transition relation,
and rank :Q→ ω with ι = min rank(Q), and κ = max rank(Q). An input tree t is
accepted by A iff Eve has a winning strategy in the parity game

G(A, t) = 〈
Q∃ × 2∗,Q∀ × 2∗,Move, (q0, ε), 
,A,Lι,κ ,Lι,κ

〉
, (6)

where Move = {((p, v), (q, vd)) : v ∈ dom(t), (p, t (v), d, q) ∈ δ} and 
(q, v) =
rank(q). The language L(A) recognized by A consists of those trees t ∈ Tr(A), for
which Eve has a winning strategy in the game G(A, t).

Intuitively, players in this game follow a path in the tree t , additionally annotated
by the states. A transition is always selected by the owner of the state. The automaton
accepts the tree if Eve can make sure that the sequence of ranks encountered during
an infinite play satisfies the parity condition (and she wins all finite plays if any).

Similarly as for deterministic automata on infinite words discussed in Sect. 2.1,
the hierarchy of tree languages induced by the Rabin-Mostowski indices of alter-
nating parity automata is strict, as showed by Bradfield [5]. An alternative proof of
this difficult result was later given [1] based on the Banach Fixed-Point Theorem.
Both proofs [1, 5] use the same witness family of sets of binary trees, which can be
expressed in terms of the winning sets defined in Eq. (3)

Wι,κ =Win∃(Lι,κ ). (7)

In the present paper, we will consider sets Win∃(L) (and occasionally Win∀(L)),
for other sets L recognized by word automata. It is useful to note the following.
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Lemma 1 If a language L of infinite words is recognized by a deterministic automa-
ton of index (ι, κ) then both languages Win∃(L) and Win∀(L) can be recognized by
an alternating3 tree automaton of index (ι, κ).

Proof Let B be a deterministic automaton on infinite words of index (ι, κ), such
that L(B)= L. The alternating tree automaton A accepting Win∃(L) will have three
copies of the states of the automaton B, say Q∃, Q∀, and Qε . The states in Q∃ are
existential and the states in Q∀ are universal. We let the states in Qε be also universal
(for concreteness), but they will not leave Adam any choice; these states will be used
only in ε-moves. Let q∇ denote a respective copy of a state q . We let rank(q∇) =
rank(q).

The initial state is qε
I . For any state q and letter a, there are transitions

(qε, (∃, a), ε, q∃) and (qε, (∀, a), ε, q∀). Whenever (p, a, q) is a transition in B, there

are moreover transitions (p∃, (∃, a),0, qε), (p∃, (∃, a),1, qε), and (p∀, (∀, a),0, qε),
(p∀, (∀, a),1, qε). Now it can easily be verified that a winning strategy for Eve in the
L-∃-game on t can be transferred to a winning strategy of Eve in the automaton game
G(A, t), and vice-versa.

An analogous construction works for Win∀(L) (by interchanging the players). �

We now explain the Σ/Π terminology for the index hierarchy, which we have
used informally in Introduction. It originates from the μ-calculus (see, e.g., [4]),
and will be convenient to handle dualities. For each m ≥ 1, we consider two in-
dices: (1,m) and (0,m − 1), and associate the symbol Σm with this index whose
maximum is odd, and Πm with the one whose maximum is even. For example,
(0,1) ≈ Σ2, (1,2) ≈ Π2, (1,3) ≈ Σ3, (0,2) ≈ Π3, (1,4) ≈ Π4, (0,3) ≈ Σ4, etc.
We will then refer to an automaton (of any kind) of index (ι, κ) as to Σm-automaton
or Πm-automaton with an appropriate m.

This terminology extends to classes of languages of infinite words and trees. A lan-
guage of infinite words is in the class Σm if it is recognized by a deterministic
Σm-automaton; similarly for Πm. A language is in the class �m if it is simultane-
ously in the classes Σm and Πm.

For trees, we use the analogical terminology for alternating automata.

3 Tinkering with Infinite Words

The following property of languages will be useful. Informally, a language is stutter-
ing if it does not distinguish between a single letter a and an nonempty block a
.

Definition 2 A language L⊆Aω is stuttering if, for any a ∈A, the following holds.

• For any infinite sequence of finite words (wn)n<ω ,

w0aw1aw2a · · · ∈ L ⇐⇒ w0aaw1aaw2aa · · · ∈ L.

3In fact, even non-deterministic, but we don’t explore it in this paper.
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• For any finite sequence of finite words wn (n= 0, . . . , k) and any infinite word v,

w0aw1aw2a · · ·awkv ∈ L ⇐⇒ w0aaw1aaw2aa · · ·aawkv ∈ L.

Directly from the definition we get the following.

Fact 3 If L is stuttering, then L is stuttering too.

Fact 4 Each language Lι,κ is stuttering.

In the sequel we consider words over a product alphabet E2. We identify a
pair of words 〈(un), (vn)〉 ∈ (Eω)2 with a single word over (E2)ω via a mapping
〈(un), (vn)〉 �→ 〈(un, vn)〉.

A deterministic automaton A of index (ι, κ) over an alphabet A induces a mapping
gA : Aω → {ι, . . . , κ}ω defined as follows. For a word u ∈ Aω, let r ∈ Qω be the
unique run of A on u (c.f. Sect. 2.1), and let

gA(u)= rank ◦ r.

That is, gA(u) is the sequence of ranks encountered in the run of A on u. Note that
u ∈ L(A) iff gA(u) ∈ Li,k , i.e., L(A)= g−1

A (Li,k).
If B is another deterministic automaton of index (ι, κ) over A, we define gA×B :

Aω → ({ι, . . . , κ}2)ω by gA×B(u)= (gA(u), gB(u)).

Lemma 5 Let A and B be automata of index (ι, κ) over some alphabet A, such that
L(A)∩L(B)= ∅, and let L= Lι,κ .

Then, for each word u ∈Aω,

1. if u ∈ L(A) then gA×B(u) ∈ L×L,
2. if u ∈ L(B) then gA×B(u) ∈ L×L,

3. gA×B(u) ∈ L×L.

Proof As mentioned above u ∈ L(A)⇒ gA(u) ∈ L, and u /∈ L(B)⇒ gB(u) ∈ L. As
L(A) and L(B) are disjoint, u ∈ L(A) implies u /∈ L(B) hence gA×B(u) ∈ L×L.

The argument for 2 is similar. Finally, again by disjointness of L(A) and L(B),
we have gA×B(u) ∈ L×L, for any u, which completes the proof. �

4 Separation Property of ω-Languages

We recall the main concept of the paper.

Definition 6 A set Z separates a pair of sets X,Y if X ⊆ Z and Y ∩ Z = ∅ or,
symmetrically, Y ⊆ Z and X ∩Z = ∅.
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We say that the separation property holds for a class Γm ∈ {Σm,Πm} if any two
disjoint languages4 from this class are separable by a language in class �m; otherwise
the separation property fails for Γm.

In this section we show that the separation property holds for classes Πm and
fails for classes Σm, for m ≥ 1. In fact, both properties will follow from a single
construction (parametrized by m≥ 2).

The level 1 is somewhat exceptional. The class Σ1 consists of a single language ∅,
and the class Π1 consists of languages of all words (for each finite alphabet). There-
fore the class �1 is empty. For any alphabet A, there are no disjoint languages in the
class Π1, hence the separation property holds trivially. On the other hand, there is a
pair of disjoint sets in the class Σ1 (namely ∅ and ∅), which is inseparable because
the class �1 is empty. From now on, we will only consider classes with m≥ 2.

The following is the first non-separability result.

Lemma 7 Let L= Li,k ⊆ {i, . . . , k}ω (with5 i ∈ {0,1}) and let m= k + 1− i. Then
L×L and L×L (which are obviously disjoint) are not separable by a set in �m.

Proof Suppose to the contrary that there is a set C recognizable by an automaton of
index (i, k), such that L×L⊆ C and L×L⊆ C.

By Lemma 5,

• if u ∈ C then gA×B(u) ∈ L×L⊆ C,
• if u ∈ C then gA×B(u) ∈ L×L⊆ C.

Note that in this case the function gA×B maps ({i, . . . , k}2)ω into itself. We will
show that it has a fixed point. Indeed, a fixed point f can be defined6 by an inductive
formula

f0 =
(
rank

(
qA
I

)
, rank

(
qB
I

))

fn+1 =
(
rank

(
δ̂A(

qA
I , f0 · · ·fn

))
, rank

(
δ̂B(

qB
I , f0 · · ·fn

)))
,

where δ̂ is the standard extension of δ from letters to finite words.
For this fixed point f , we have f ∈ C⇒ f ∈ C and f ∈ C⇒ f ∈ C, a contradic-

tion which completes the proof. �

The subsequent lemma is the heart of our proof.

Lemma 8 Let E = {i, . . . , k}, where k is even, and let m = k + 1 − i. Let L =
Li,k ⊆ Eω (hence L is in Πm), and let I ⊆ Li,k consist of the words that contain

4Strictly speaking, we assume here that the languages X,Y ∈ Γm are over the same alphabet; which
matters in the case of Π1 discussed below.
5We will later omit this assumption as the results hold also without it. Clearly the languages Lι,κ and
Lι+2
,κ+2
, for 
≥ 0, have the same properties.
6The existence and uniqueness of this fixed point can be also inferred from the Banach Fixed-Point Theo-
rem, c.f. Sect. 5.1.
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Fig. 2 The table for the
automata for U1 and U2

infinitely many occurrences of k. Then there exist disjoint sets U1,U2 ⊆ (E2)
ω

in the
class Σm, satisfying the following.

L×L ⊆ U1

L×L ⊆ U2

L×L ⊆ U1 ∪U2 = I × I .

Proof The automata for U1 and U2 will only differ by their ranks. Their set of states
is {up} × {i, . . . , k} × {i, . . . , k+ 1} ∪ {down} × {i, . . . , k+ 1} × {i, . . . , k}, the initial
state is 〈up, i, i〉, and the transitions are

〈up,p, q〉 (r,s)−→
{ 〈up, r, s〉 if r < k

〈down, k + 1, s〉 if r = k
(8)

〈down,p, q〉 (r,s)−→
{ 〈down, r, s〉 if s < k

〈up, r, k + 1〉 if s = k.
(9)

Figure 2 represents the table of the automata.
With each state s we assign two ranks: rank1(s) and rank2(s), for U1 and U2,

respectively, by

rank1
(〈up,p, q〉)=

{
p+ 2 if p ≤ k

k+ 1 if p = k+ 1

rank1
(〈down,p, q〉)=

{
q + 1 if q ≤ k

k+ 1 if q = k+ 1

rank2
(〈up,p, q〉)=

{
p+ 1 if p ≤ k

k+ 1 if p = k+ 1

rank2
(〈down,p, q〉)=

{
q + 2 if q ≤ k

k+ 1 if q = k+ 1

Each word u ∈ (E2)ω induces the same run in both automata up to the rankings.
Clearly, a word u causes infinitely many changes of the level if and only if it contains
infinitely many occurrences of k on both left and right track if and only if it visits
infinitely often a state 〈up, r, k + 1〉 and a state 〈down, k + 1, s〉. By the definition
of the rank functions such a word is accepted by neither of the automata. On the
other hand, if the run on u stabilizes on some level then only one of the automata
necessarily accepts as the ranks they assume in their runs (after stabilization) differ
precisely by 1.
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This shows that U1 and U2 are disjoint and U1 ∪ U2 = I × I . The inclusion
L×L⊆ I × I is obvious.

If u ∈ L × L then the run on u stabilizes in the upper or lower component (as
clearly u /∈ I × I ). Then the automaton for U1, from some moment on, either reads a
word in L in the upper component or a word in L in the lower component; in either
case it accepts. An argument for the inclusion involving U2 is similar. �

We are now ready to state the main result of this section. Recall that the separation
property for the class Π2 was proved earlier by Selivanov [15], who also gave7 a
hint [16] on how this result can be generalized for all classes Πn.

Theorem 9 The separation property holds for classes Πm and fails for classes Σm

of the index hierarchy of deterministic word automata.

Proof We will show that any pair of disjoint languages of class Πm over some finite
alphabet A is separable by a language of class �m, whereas this property fails for the
pair of sets U1,U2 constructed in Lemma 8, for any class Σm, m≥ 2.

Let A and B be as in Lemma 5. It follows from 1 and 2 that the inverse image of
U1 under the mapping gA×B , i.e.,

g−1
A×B(U1) =

{
u ∈Aω : gA×B(u) ∈U1

}

separates L(A) and L(B). Let us see that this set is recognizable by an Σm-autom-
aton. For an input u, we just use the automaton for U1 reading the subsequent values
of the function gA×B ; the construction is straightforward. In a similar vein we can
show that (gA×B)−1(U2) is in the class Σm as well. Clearly these sets are disjoint as
U1 and U2 are disjoint. But it follows from condition 3 of Lemma 5 that they sum up
to Aω, hence they both are of class �m.

Now, by Lemma 8, L×L⊆ U1 and L×L⊆ U2, where L is the parity language
in Πm. If the sets U1 and U2 in Σm were separable by a set in �m, then L× L and
L×L would be separable, a contradiction with Lemma 7. �

5 Tinkering with Trees

5.1 Contractions

Definition 10 Let 2<n = {v ∈ 2∗ : |v|< n} and 2≤n = {v ∈ 2∗ : |v| ≤ n}. We say that
a mapping g : Tr(A)→ Tr(B) (for some alphabets A and B) is contracting if, for all
n < ω, and t , t ′ ∈ Tr(A),

t � 2<n = t ′ � 2<n =⇒ g(t) � 2≤n = g
(
t ′
)
� 2≤n,

where F � X denotes the restriction of a function F to a set X.

7More precisely, that author considered the reduction property for the dual classes Σm . See a comment
after Proposition 3.5 in [16].
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In the sequel, we will often use8 the celebrated Banach Fixed-Point Theorem: If g

is a contracting mapping over the same domain Tr(A), it has a (unique) fixed point.
For ι≤ κ < ω, we will use an abbreviation GTr({ι, . . . , κ})=GTrι,κ . The follow-

ing fact, first noted in [1], is very useful in analysis of tree automata.

Theorem 11 [1] Let A be an alternating tree automaton of index (ι, κ) over the
alphabet A. There exists a contracting mapping g : Tr(A)→ GTrι,κ such that t ∈
L(A) iff g(t) ∈Wι,κ .

Proof (sketch) In the first step we replace A with another automaton A′ of the same
index (ι, κ) such that L(A)= L(A′) and in every state of A′ the player has exactly
two possible moves. We fix a map h which assigns to a given tree t a tree h(t) of all
possible gameplays between Adam and Eve on t on A′. That is, for every label of
h(t) the first coordinate indicates who the owner of the state is (this is ∃ or ∀) and the
second coordinate is the rank of the state q . The sons of a given vertex are induced
by transitions from the state q .

This is almost what we need, that is t ∈ L(A) if and only if h(t) ∈Wι,κ . In order to
make h contracting, we add a dummy initial level to h(t), that is g(t)(ε)= g(t)(∃, ι)
and g(t)(iv)= h(t)(v) for i = 0,1. �

The above theorem also implies its dual variant.

Corollary 12 Let A be a tree automaton of index (ι, κ) over the alphabet A.
There exists a contracting mapping g : Tr(A) → GTrι,κ such that t ∈ L(A) iff
g(t) ∈W∀(Lι,κ ).

Proof Since Wι,κ = W ∃(Lι,κ ), it is enough to compose a contraction from Theo-
rem 11 with a mapping which switches roles between Eve and Adam. �

5.2 Product of Trees

In this section we define the product of two trees in the sets GTr—a crucial technical
concept needed later in Sect. 6. In a sense, it is a notion similar to the direct product
of infinite words.

Consider two alphabets, A and B . Recall that the label of a vertex of a tree t0 ∈
GTr(A) has two coordinates, the first one tells us who the owner of the state is, and the
second coordinate is a letter from A; similarly, for a tree in t1 ∈GTr(B). The product
operation on trees assigns to a pair t0, t1 a tree t0 ⊗ t1 ∈GTr(A×B). A vertex of the
tree t0 ⊗ t1 is also labeled by two coordinates, but the second coordinate is a pair of
two letters, one from A and one from B . The following inductive definition of the
tree t0 ⊗ t1 ∈ GTr(A× B) defines precisely the labeling of the vertices (see Fig. 3).

8This makes the proofs simpler, although it would be possible to explicitly construct the fixed points like
in the proof of Lemma 7.
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Fig. 3 Product of trees

We use the notation α(t, s) for a tree with the root labeled by α and the left and right
subtrees t, s, respectively.

〈X,a〉(t0, t0)⊗ 〈Y,b〉(t1, t ′1
)

= 〈X,a,b〉(〈Y,a, b〉(t0 ⊗ t1, t0 ⊗ t ′1
)
, 〈Y,a, b〉(t ′0 ⊗ t1, t

′
0 ⊗ t ′1

))
.

As usual we can extend this operation to sets of trees; U ⊗ V = {t ⊗ s : t ∈ U,

s ∈ V }.

Lemma 13 If L0 ⊆ Aω and L1 = Bω are stuttering, then Win∃(L0)⊗Win∃(L1)⊆
Win∃(L0 ×L1) and Win∀(L0)⊗Win∀(L1)⊆Win∀(L0 ×L1).

Proof First let us observe that the sequence of labels in A×B along any infinite path
d1d

′
1d2d

′
2 · · ·dnd

′
n · · · in the product tree t = t0 ⊗ t1 is 〈a0, b0〉〈a0, b0〉〈a1, b1〉 · · · ,

where path d1d2 · · ·dn · · · has labels a0a1 · · · in t0, and path d ′1d ′2 · · ·d ′n · · · has labels
b0b1 · · · in t1.

Now let σi be a strategy for Eve in ti . In the case of games on trees, we can
simplify the presentation of a strategy (c.f. Sect. 2.2) and view it just as a mapping
from positions of Eve (i.e., nodes marked ∃) to {0,1}, indicating a move to the left or
right successor of the current node. We construct the strategy σ for Eve on t below.
For any v such that t (v)= 〈∃, a, b〉, let

σ(v)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ0(ε) if v = ε

σ1(ε) if v = d1

σ0(d1d2 · · ·dn) if v = d1d
′
1 · · ·dnd

′
n

σ1(d
′
1d
′
2 · · ·d ′n) if v = d1d

′
1 · · ·dnd

′
ndn+1.

If d1d
′
1d2d

′
2 · · · is any path played along the strategy σ on t then d1d2 · · · is played

along σ0 in t0 and d ′1d ′2 · · · is played along σ1 in t1.
To prove that Win∃(L0) ⊗ Win∃(L1) ⊆ Win∃(L0 × L2), we have to show that

if σ0 and σ1 are winning then so is σ . Let τ be any strategy for Adam and let
w = 〈a0, b0〉〈a1, b1〉〈a2, b2〉 · · · be the label of the path d1d

′
1d2d

′
2 · · · played along

σ and τ . Then a0a1a2 · · · is the label of the path d1d2 · · · played along the winning
strategy σ0, thus it belongs to L0, and since L0 is stuttering, w0 = a0a0a1a1 · · · ∈ L0



846 Theory Comput Syst (2014) 55:833–855

as well. Similarly w1 = b0b0b1b1 · · · ∈ L1. Thus w = w0 × w1 ∈ L0 × L1, which
proves that σ is winning.

The proof for Win∀ is very similar. �

6 Inseparable Pairs in Σm

Recall that, for trees, we use the notation Σm,Πm for classes of tree languages rec-
ognized by alternating automata of appropriate indices; a tree language is in the class
�m if it is simultaneously in the classes Σm and Πm.

We let m≥ 2; the case of m= 1 will be considered in Sect. 6.1. Let Um
1 and Um

2 be
the sets constructed in Lemma 8. By Lemma 1, the sets Win∃(Um

1 ) and Win∀(Um
2 ) are

in the class Σm of the tree automata hierarchy. We will show that they are inseparable
by a set in �m. Let us first verify that these two sets are disjoint: if t ∈Win∃(Um

1 ) ∩
Win∀(Um

2 ) then t has a branch labelled by a word in Um
1 ∩Um

2 , a contradiction.

Lemma 14 Let (ι, κ) be the index corresponding to the class Πm and let L= Lι,κ . If
T and T ′ are two disjoint subsets of GTrι,κ in class Πm then there exists a contracting
mapping h such that

t ∈ T ⇒ h(t) ∈Win∃(L×L)

and

t ∈ T ′ ⇒ h(t) ∈Win∀(L×L).

Proof Since T is in the class Πm, there exists (by Theorem 11) a contracting map-
ping g such that t ∈ T iff g(t) ∈Win∃(L). From Corollary 12 we get a contracting
mapping g′ such that t ∈ T ′ iff g′(t) ∈Win∀(L).

Since T and T ′ are disjoint, t ∈ T implies t /∈ T ′ and thus g(t) ∈ Win∃(L) and
g′(t) ∈Win∃(L). Hence by Lemma 13 we have g(t)⊗ g′(t) ∈Win∃(L×L).

Similarly, if t ∈ T ′ then g(t) ∈ Win∀(L), g′(t) ∈ Win∀(L), and g(t) ⊗ g′(t) ∈
Win∀(L×L). Now let us define h by h(t)= g(t)⊗ g′(t). It is easy to check that h is
contracting. �

Lemma 15 Let (ι, κ) be the index corresponding to the class Πm and let L= Lι,κ .
Then Win∃(L×L) and Win∀(L×L) cannot be separated by a set C ∈�m.

Proof Suppose there is such a set C ∈ �m. Note that both sets C,C are in Πm.
Then, by the previous lemma with T = C, T ′ = C, there exists a contracting h such

that t ∈ C ⇒ h(t) ∈ Win∃(L × L) ⊆ C, t ∈ C ⇒ h(t) ∈ Win∀(L × L) ⊆ C. Since
h is contracting, it has a fixed point t = h(t), and for this t , t ∈ C ⇒ t ∈ C, and
t ∈ C⇒ t ∈ C, a contradiction. �

Theorem 16 The sets Win∃(Um
1 ) and Win∀(Um

2 ) are not separable by a set in �m,
for m≥ 2.
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Proof Let (ι, κ) be the index corresponding to the class Πm. Since, by Lemma 8,

Win∃(Lι,κ ×Lι,κ )⊆Win∃(Um
1 ) and Win∀(Lι,κ ×Lι,κ )⊆Win∀(Um

2 ), a separator of
Win∃(Um

1 ) and Win∀(Um
2 ) would also separate Win∃(Lι,κ ×Lι,κ ) and Win∀(Lι,κ ×

Lι,κ ), a contradiction with Lemma 15. �

6.1 Level 1

In contrast to deterministic automata for words, the classes Σ1 and Π1 for alternating
automata on trees are not completely trivial. For example, an automaton A of index
(1,1) may accept a tree t if Eve wins the game G(A, t) in finite time. Similarly, an
automaton of index (0,0) may fail to accept a tree if Adam wins the game in finite
time. Not surprisingly, the separation question for classes Σ1 and Π1 is not difficult
to solve. We use, however, different methods than for higher levels, including some
basic topology.

For a finite alphabet Alph, we equip the set Tr(Alph) with a topology à la Cantor,
which can be defined by pointwise convergence: a set of trees tn converges to a tree
t if, for any vertex v, the sequence tn(v) stabilizes on some letter in Alph. It is well
known that this space is compact and the family of closed-open sets of the form

Uf =
{
s ∈ Tr(Alph) : s(v)= f (v) for v ∈ I

}
(10)

where I ⊆ 2∗ is finite and f : I → Alph is an arbitrary function, forms its basis.
It is a folklore knowledge9 that tree languages accepted by alternating automata of
index (0,0) (i.e., with trivial acceptance condition) are closed in this topology. Con-
sequently, the languages accepted by automata of index (1,1) are open, and the lan-
guages in the class �1 clopen (closed-open).

Proposition 17 The separation property fails for the class Σ1 and holds for the
class Π1.

Proof For the negative result, we construct automata A1 and A2 as follows. Both
automata read the leftmost branch of a given tree over the alphabet {a, b}. A1 accepts
a tree t if and only if the first appearance of the letter a is at an even level, and A2
accepts t iff the first appearance of the letter a is at an odd level. Formally speaking,
the automaton A1 has two existential states q0, q1 of rank 1 and one “dead” universal
state (with no move) also of rank 1. The initial state is q0. In the game G(A, t), Eve
alternates between her two states q0, q1 moving to the left when she reads letters b

unless she is in the state q0 and reads letter a. In this case she moves to the “dead”
state of Adam, and thus wins the game. The same description works for A2 except
that the roles of q0 and q1 are switched.

Clearly the languages L(A1) and L(A2) are disjoint and of index (1,1). Suppose
L(Ai) is contained in a certain language Ki of index (0,0) for i = 1,2. We claim that
a tree t with every vertex labeled b belongs to K1∩K2. For, let tn be a tree with every

9We may refer the reader to [6], where an analogous fact is shown for all levels of the weak hierarchy,
c.f. Sect. 7.
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vertex labelled b except of the vertex 0n (i.e., the n-th vertex on the leftmost branch),
which is labeled a. Clearly, t is a pointwise limit of trees t2n ∈ L(A1) (n < ω) and it
is also a pointwise limit of trees t2n+1 ∈ L(A2) (n < ω). But, as we have noted above,
the sets Ki are closed, and hence t ∈ K1 ∩ K2. This shows that it is impossible to
separate L(A1) and L(A2) by a set in �1.

Now let L1,L2 ⊆ Tr(Alph) be two disjoint languages recognizable by automata
of index (0,0). We will show that they can be separated by a language C in class �1.

For each tree t ∈ L1 we fix a finite set of vertices It ⊂ 2∗ and a set

Ut =
{
s ∈ Tr(Alph) : s(v)= t (v) for v ∈ It

}
,

such that Ut ∩ L2 = ∅. One can find such set It , since the set L2 is closed and for a
fixed t /∈ L2 the family{{

s ∈ Tr : s(v)= t (v) for v ∈ I
} : I ⊆ 2∗, I finite

}

is a basis of open sets in the point t (c.f. Eq. (10)).
Since the space is compact and sets Ut are open, one can find t0, . . . , tk , such that

L1 ⊆ C =Ut0 ∪ · · · ∪Utk ; by definition C separates L1 and L2. We claim that C is in
the class �1; clearly it is enough to show that this holds for each set of the form (10)
(each Ut,i is of such form).

The (0,0) and (1,1) automata recognizing Uf are identical except ranks. We
describe them in terms of the respective games. Adam first makes an ε-move: he
chooses a vertex in the finite set I , say v. Once the decision is made, the automaton
moves from the root to v in a deterministic manner and then verifies whether the label
t (v) agrees with f (v). If it is the case, the automaton enters a “dead” state of Adam,
and Adam looses. Otherwise, it enters a “dead” state of Eve, and Eve looses. Note
that any play in this game is finite (bounded by max{|v| : v ∈ I }+ 2), hence the ranks
of the states do not matter.

This remark completes the proof. �

Remark From the above considerations, it is not hard to infer a simple characteriza-
tions of languages in the class �1. Namely, the following conditions are equivalent
for a tree language L⊆ Tr(Alph).

• L is simultaneously recognized by an automaton of index (0,0) and by an automa-
ton of index (1,1),

• L is closed and open in the above topology,
• L is accepted by an alternating automaton B (of any index), such that every game-

play between Adam and Eve in B is finite,
• L is accepted by an alternating automaton B , and there is a constant N such that

every gameplay between Adam and Eve in B ends in less than N moves.

We now summarize the results of this section, Theorem 16 above, and the results
on level 2 mentioned in Introduction [7, 13].

Corollary 18 Consider the Rabin-Mostowski index hierarchy for alternating au-
tomata on trees. Separation property fails for all classes Σm, m ≥ 1, and holds for
the classes Π1 and Π2.

The status of the classes Πm, m≥ 3, remains open.
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7 Weakly Recognizable Tree Languages

A weak alternating parity tree automaton of index (ι, κ) can be presented as an ordi-
nary automaton introduced in Sect. 2.3, subject to an extra monotonicity condition:
if (p, a, d, q) is a transition in δ then rank(q) ≥ rank(p). The Rabin-Mostowski in-
dices of weak automata induce a hierarchy of tree languages similarly as for the
ordinary automata; however we will not associate letters Σ/Π with this hierarchy.
The strictness of the weak hierarchy has been established prior to the “strong” one
by A.W.Mostowski [10]; an alternative proof can be given via the weak versions of
languages Wι,κ (see, e.g., [4]).

Note that the weak automata with indices (0,0) and (1,1) coincide with the ordi-
nary ones, and we have already considered the respective classes in Sect. 6.1.

From now on we fix a pair (ι, κ) (ι < κ < ω) and define M =Mι,κ to be the set
of all non–decreasing sequences in {ι, . . . , κ}ω . We let AM be the set of all trees in
Tι,κ , such that the labeling of any path projected at the second component is in M .
Let L= Lι,κ . The mapping g constructed in Theorem 11 has the following property
in the weak case (see, e.g., [4] Theorem 8.3.1).

Fact 19 Let T ⊆ GTrι,κ be a weak language of index (ι, κ). Then there exists a
contracting mapping g such that t ∈ T ⇔ g(t) ∈Win∃(L) and moreover, for all t ,
g(t) ∈AM . The analogous claim holds for Win∀(L).

Now, as in the general case (c.f. Lemma 14), if T ,T ′ ⊆ GTrι,κ are two weak
languages of index (ι, κ) then there exist g and g′ such that

• if t ∈ T then g(t) ∈ Win∃(L) ∩ AM and g′(t) ∈ Win∃(L) ∩ AM ; it follows that
g(t)⊗ g′(t) ∈Win∃(L×L)∩AM2 ⊆Win∃((L×L)∩M2);

• analogously, if t ′ ∈ T ′ then g(t ′)⊗ g′(t ′) ∈Win∀((L×L)∩M2).

Since g ⊗ g′ is contracting, we get the following, for the same reasons as in
Lemma 15.

Fact 20 Win∃((L× L) ∩M2) and Win∀((L× L) ∩M2) cannot be separated by a
set C such that C and C are weak languages of index (ι, κ).

From now on we assume that ι = 1, hence L = L1,κ and M =M1,κ , with 1 <

κ < ω. We will prove an analogue of Lemma 8. We call a deterministic automaton on
infinite words weak if its transitions do not decrease ranks.

Lemma 21 There exist two disjoint sets V1,V2 ⊆ ({1, . . . , κ}2)ω , satisfying the fol-
lowing.

(L×L)∩M2 ⊆ V1

(L×L)∩M2 ⊆ V2.

The languages V1,V2 are accepted by weak deterministic automata of index (1, κ).
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Proof Let �= {1, . . . , κ}ω. For any language Z ⊆� and i ∈ {1, . . . , κ}, we abbrevi-
ate Zi = Z ∩ {i, . . . , κ}ω.

Let us first consider the case of κ odd.
Let X = L∩M and Y = L∩M .
We let

V1 = (1,1)∗
(⋃

1<q

(1, q)(�× Yq)∪
⋃
1<p
1≤q

(p, q)(Xp ×�)

)
(11)

V2 = (1,1)∗
(⋃

1<q

(1, q)(�×Xq)∪
⋃
1<p
1≤q

(p, q)(Yp ×�)

)
(12)

Note that Xp ∩Yp = ∅, for any p, which follows that V1 and V2 are disjoint. It is also
straightforward to verify the inclusions claimed in the lemma.

We now describe a weak deterministic automaton of index (1, κ) recognizing V1.
We use notation p

s→ q to mean δ(p, s) = q . The automaton has states 1,2, . . . , κ ,
2, . . . , κ , and ♠. The rank of state i is i, the rank of state i is i − 1, and the rank of ♠
is κ . The initial state 1 has transitions

1
1,1→ 1 1

1,q→ q for 1 < q 1
p,q→ p for 1 < p,1≤ q.

The states 2≤ i “read” the first component as long as monotonicity is preserved, i.e.,

the transitions are i
j,k→ j , for j ≥ i. However, violating monotonicity is “punished”

by entering ♠, i.e., i
j,k→♠, whenever j < i. Similarly, the states i read the second

component, i.e., i
j,k→ j , for j ≥ i; but violating monotonicity is again punished by ♠.

The state ♠ loops in itself independently of the input letter.
By definition, the automaton is weak of index (1, κ); We leave it to the reader to

check that it recognizes V1. The construction of the automaton for V2 is analogous.
For κ even, we again consider two cases. Let us first consider κ ≥ 4. The sets V1

and V2 are defined by the formulas (11) and (12) above, but we change the definition
of X, which is now

X = (L∩M)∪M.

Note that Xp ∩ Yp = ∅ continues to hold, and hence the sets V1 and V2 are disjoint.
They clearly satisfy the inclusions claimed in the lemma.

An automaton recognizing V1 is similar as in the previous case, except for the rank
of ♠ which is now κ − 1 (which is odd and greater than 1). Moreover, the automaton
has a new self-looping state ♥ with the rank κ . The transitions are similar as before
whenever monotonicity is preserved. The violation of monotonicity in state i is again
punished by entering the state ♠. In contrast, the violation of monotonicity in a state
i is not punished at all, but instead it is granted by entering a “winning” state ♥.
Again, it is straightforward to verify that the automaton satisfies all requirements. An
automaton for V2 is analogous.
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Finally for the index (1,2), we let

V1 = (1,1)∗(2,1)(�,�)

V2 = (1,1)∗(1,2)(�,�).

It is immediate to see that the sets V1 and V2 are disjoint and the inclusions of the
lemma are satisfied. An automaton recognizing V1 has an initial state 1 and two self-
looping states ♠ and ♥ ranked as before. The transitions for 1 are

1
1,1→ 1 1

2,1→♥ 1
i,2→♠ for i = 1,2.

An automaton for V2 is analogous. �

Now, by reading the proof of Lemma 1, we can easily see if a deterministic au-
tomaton recognizing a set of infinite words is weak of index (ι, κ) then the alternating
automata recognizing sets Win∃(L) and Win∀(L) are also weak of index (ι, κ). Hence
we can note the following.

Fact 22 For languages V1,V2 constructed in Lemma 21, the sets of trees Win∃(V1)

and Win∀(V2) can be recognized by weak alternating automata of index (1, κ).

Thus we obtain the following analogue of

Theorem 23 For every κ ≥ 1, the separation property fails for the class of weak
regular languages of index (1, κ).

Proof For index (1,1), the weak automata coincide with the ordinary ones, and this
case has been already settled in Proposition 17.

For κ > 1, we claim that the sets Win∃(V1) and Win∀(V2) are inseparable. Indeed,
as Win∃((L × L) ∩ M2) ⊆ Win∃(V1) and Win∀((L × L) ∩ M2) ⊆ Win∀(V2) (by
Lemma 21), a separator of Win∃(V1) and Win∀(V2) would also separate Win∃((L×
L)∩M2) and Win∀((L×L)∩M2), contradicting Fact 20. �

8 Reduction Property

Sets C,D reduce a given pair of sets A,B if C ⊆ A, D ⊆ B , C ∪D = A ∪ B and
C ∩D = ∅. The reduction property holds for a class C of sets, if for every A,B ∈ C ,
there exist C,D ∈ C which reduce A,B . The reduction property for a class C implies
readily the separation property for the dual class {C : C ∈ C}. In set-theoretic hier-
archies, usually the converse also holds, that is the separation property for a class C
implies the reduction property for the dual class (see [9]). We will see that it is not
the case for the index hierarchy of the alternating automata on trees.

Theorem 24 The reduction property fails for all classes Σm and Πm, for m≥ 1.
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The rest of this section is devoted to the proof of this theorem. We consider a class
Σm with m≥ 2; the proof for Πm is analogous.

Let us start with a simple combinatorial lemma.

Lemma 25 Let � be any set and W ⊆�. Assume that

(�×W)∪ (W ×�)=X ∪ Y,

where X ⊆�×W , Y ⊆W ×�, and the sets X and Y are disjoint. Suppose further
that

X =
m⋃

i=1

ai × bi, Y =
n⋃

i=1

ci × di

for some sets ai, bi, ci, di ⊆�. Then the set W =�−W can be generated from the
sets a1, . . . , am, d1, . . . , dn, by (finite) union and intersection.10

Proof Let, for t ∈�,

At =
⋂
t∈ai

ai,

where At =� if the set {ai : t ∈ ai} is empty. If

Wc=
⋃

t∈W

At (13)

then we are done, as there are only finitely many distinct sets At . Note that the inclu-
sion ⊆ in (13) always holds as t ∈At , for any t . Thus (13) may fail only if there are
some t ∈W , t ′ ∈W , such that t ′ ∈At . We will show that, in this case,

W = {
s : (t ′, s) ∈ Y

}
. (14)

(⊇) If s ∈W then (t ′, s) ∈X ∪ Y (because t ′ ∈W ) but (t ′, s) /∈X (because s /∈W ),
hence (t ′, s) ∈ Y .

(⊆) Let (t ′, s) ∈ Y . Suppose s ∈W ; then (t, s) ∈ X. (For, it is in X ∪ Y because
of s, but not in Y because of t .) Now the assumption that t ′ ∈At implies that (t ′, s) ∈
X as well. (For, if (t, s) ∈ ai × bi then (t ′, s) ∈ ai × bi as well.) But this is impossible
as X and Y are disjoint; the contradiction proves that s ∈W .

To complete the proof, note that the right-hand side of (14) amounts to

{
s : (t ′, s) ∈ Y

} =
⋃
t ′∈ci

di .
�

The next lemma will introduce a decomposition of a recognizable tree language
into “rectangles” in the same class. We fix an alphabet A and a letter d ∈ A. Recall

10We allow empty unions/intersections, i.e., ∅ and �.
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that d(t0, t1) denotes a tree with the root labeled by d , and the left and right subtrees t0
and t1, respectively. For sets of trees K,L, let d(K,L)= {d(t0, t1) : t0 ∈K, t1 ∈ L}.
Clearly, if K and L are in the class Σm, so is d(K,L).

Let �= Tr(A) stand for all trees over alphabet A.

Lemma 26 Let T ⊆ d(�,�) be in the class Σm. Then

T =
⋃
i∈I

d(Ai,Bi),

for some finite set of pairs (Ai,Bi)i∈I of sets in Σm.

Proof Let A be an alternating tree automaton of index (ι, κ) recognizing T (like in
(5)). For a state q ∈Q, let Aq be an automaton which differs from A only in that its
initial state is q .

Let t = d(t0, t1) ∈ T , and let S be a winning strategy of Eve in the game G(A, t)

(c.f. Sect. 2.3). Recall that nodes in the arena of this game have form (q, v), where q is
a state of the automaton and v is a node of the tree; in particular the initial position of
the game is (qI , ε). Let L(t) be the set of those histories in S, where the left successor
of the root of the tree t (i.e., the node 0) is reached for the first time (possibly after a
sequence of ε-moves). That is, π is in L(t) if it is in the form (v0, v1, . . . , vk), where
v0 = (qI , ε), vk = (q,0), for some q , and vi = (pi, ε), for i < k, for some states pi .
Let R(t) be defined similarly for the right subtree.

Let Lstate(t) = {q : last(π) = (q,0), for some π ∈ L(t)}, and let Rstate(t) be de-
fined similarly. Note that t0 ∈ L(Aq), whenever q ∈ Lstate(t), as Eve can use a sub-
strategy of S (starting from an appropriate history) to win the game G(Aq, t0). The
similar holds for t1 and Rstate(t). We claim that a kind of converse also holds: if
t ′0 ∈

⋂
q∈Lstate(t)

L(Aq) and t ′1 ∈
⋂

q∈Lstate(t)
R(Aq) then d(t ′0, t ′1) ∈ T . Indeed, for

each q ∈ Lstate(t), Eve has a winning strategy Sq,0 in the game G(Aq, t ′0), and the
similar holds for t ′1. Hence, Eve can combine these strategies with the strategy S.
That is, she plays S until the play reaches a history π ∈ L(t) with last(π) = (q,0),
for some q (or π ∈ R(t) with last(π) = (q,1)), in which case she switches to the
strategy Sq,0 (or Sq,1). Symbolic presentation of this new strategy in terms of con-
catenation of sets of histories is easy but cumbersome, and we omit it here.

Hence

T =
⋃
t∈T

d

( ⋂
q∈Lstate(t)

L(Aq),
⋂

p∈Rstate(t)

L(Ap)

)
.

Obviously, the number of pairs of sets which may occur as arguments of d in the
formula above is finite. It is well-known (and easy to verify) that the class Σm is
closed under finite meets. Hence the formula gives us a decomposition required in
the lemma. �

We now fix an alphabet A and a tree language W over A belonging to the class Σm,
but not in Πm. For concreteness, for ι < κ , we can take the set Wι,κ for appropriate
ι, κ , c.f. Sect. 2.3. For the classes Σ1 and Π1 (c.f. Sect. 6.1), we leave the construction
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of the respective examples to the reader. We claim that the pair d(�,W), d(W,�) is
not reducible.

For, suppose that

d(�,W)∪ d(W,�) = X ∪ Y,

for some sets X,Y in class Σm, such that X ⊆ d(�,W), Y ⊆ d(W,�), and the sets
X and Y are disjoint. Let

X =
m⋃

i=1

d(ai, bi) Y =
n⋃

i=1

d(ci, di)

be decompositions given by Lemma 26; in particular all sets ai, bi, cj , dj are in
class Σm. We apply Lemma 25 via an obvious correspondence between a tree d(t0, t1)

and a pair (t0, t1); hence W can be presented as a ∪∩–combination of sets in Σm. By
the closure properties of Σm, this would imply that W is in this class itself, contra-
dicting the choice of W . This remark completes the proof of Theorem 24.
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