
Theory Comput Syst (2012) 50:420–432
DOI 10.1007/s00224-011-9312-0

A Note on Exact Algorithms for Vertex Ordering
Problems on Graphs

Hans L. Bodlaender · Fedor V. Fomin ·
Arie M.C.A. Koster · Dieter Kratsch ·
Dimitrios M. Thilikos

Published online: 21 January 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract In this note, we give a proof that several vertex ordering problems can be
solved in O∗(2n) time and O∗(2n) space, or in O∗(4n) time and polynomial space.
The algorithms generalize algorithms for the TRAVELLING SALESMAN PROBLEM

by Held and Karp (J. Soc. Ind. Appl. Math. 10:196–210, 1962) and Gurevich and

This research was partially supported by the project Treewidth and Combinatorial Optimization with
a grant from the Netherlands Organization for Scientific Research NWO and by the Research
Council of Norway and by the DFG research group “Algorithms, Structure, Randomness” (Grant
number GR 883/9-3, GR 883/9-4). The research of the last author was supported by the Spanish
CICYT project TIN-2004-07925 (GRAMMARS). Parts of this paper appeared earlier in the
conclusions section of [2].
D.M. Thilikos was supported by the project “Kapodistrias” (A� 02839/28.07.2008) of the National
and Kapodistrian University of Athens (project code: 70/4/8757).

H.L. Bodlaender (�)
Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, The Netherlands
e-mail: hansb@cs.uu.nl

F.V. Fomin
Department of Informatics, University of Bergen, 5020 Bergen, Norway
e-mail: fomin@ii.uib.no

A.M.C.A. Koster
Lehrstuhl II für Mathematik, RWTH Aachen University, Wüllnerstr. 5b, 52062 Aachen, Germany
e-mail: koster@math2.rwth-aachen.de

D. Kratsch
LITA, Université de Metz, 507045 Metz Cedex 01, France
e-mail: kratsch@sciences.univ-metz.fr

D.M. Thilikos
Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis,
15784 Athens, Greece
e-mail: sedthilk@math.uoa.gr

mailto:hansb@cs.uu.nl
mailto:fomin@ii.uib.no
mailto:koster@math2.rwth-aachen.de
mailto:kratsch@sciences.univ-metz.fr
mailto:sedthilk@math.uoa.gr

Theory Comput Syst (2012) 50:420–432 421

Shelah (SIAM J. Comput. 16:486–502, 1987). We survey a number of vertex ordering
problems to which the results apply.

Keywords Graphs · Algorithms · Exponential time algorithms · Exact algorithms ·
Vertex ordering problems

1 Introduction

In this note, we look at exact algorithms with “moderately exponential time” for
graph problems. We show that with relatively simple adaptations of the existing al-
gorithms for the TRAVELLING SALESMAN PROBLEM, a large collection of vertex
ordering problems can be solved in O∗(2n) time and O∗(2n) space or in O∗(4n) time
and polynomial space. (Here, the O∗-notation suppresses factors that are polynomial
in n.) The algorithms that use O∗(2n) time and O∗(2n) space employ dynamic pro-
gramming and have the same structure as the classical algorithm for TSP by Held and
Karp [13]. The algorithms with O∗(4n) time and polynomial space are of a recursive
nature and follow a technique first used for TSP by Gurevich and Shelah [12].

This paper is organized as follows. In Sect. 2, we give some preliminary definitions
and discuss the form of problems we can handle. A general theorem that gives for all
problems of this specific form an algorithm of the Held-Karp type is given and proved
in Sect. 3. A similar theorem with proof for Gurevich-Shelah type algorithms (i.e.,
with polynomial space) is given in Sect. 4. Then, in Sect. 5, we discuss a number
of well known vertex ordering problems on graphs to which these theorems can be
applied. A few final remarks are made in Sect. 6.

2 Preliminaries

Definitions We assume the reader to be familiar with standard notions from graph
theory. Throughout this paper, n = |V | denotes the number of vertices of graph G =
(V ,E). For a graph G = (V ,E) and a set of vertices W ⊆ V , the subgraph of G

induced by W is the graph G[W] = (W, {{v,w} ∈ E | v,w ∈ W }).
A vertex ordering of a graph G = (V ,E) is a bijection π : V → {1,2, . . . , |V |}.

For a vertex ordering π and v ∈ V , we denote by π<,v the set of vertices that appear
before v in the ordering: π<,v = {w ∈ V | π(w) < π(v)}. Likewise, we define π≤,v ,
π>,v , and π≥,v .

Let �(S) be the set of all permutations of a set S. So, �(V) is the set of all
vertex orderings of G, and let for disjoint sets S and R, �(S,R) be the set of all
permutations of S ∪R which start with a permutation of S and end with a permutation
of R.

A graph G = (V ,E) is chordal, if every cycle in G of length at least four has
a chord, i.e., there is an edge connecting two non-consecutive vertices in the cycle.
A triangulation of a graph G = (V ,E) is a graph H = (V ,F) that contains G as a
subgraph (F ⊆ E) and is chordal.

422 Theory Comput Syst (2012) 50:420–432

Form of Problems In this paper, we consider problems of the following form. We
have a polynomial time computable function f , mapping each 3-tuple, consisting of
a graph G = (V ,E), a vertex set S ⊆ V , and a vertex v ∈ V to an integer. Then, we
consider the problems to compute

min
π∈�(V)

max
v∈V

f (G,π<,v, v) (1)

or

min
π∈�(V)

∑

v∈V

f (G,π<,v, v). (2)

Note that values f (G,S, v) do not depend on the ordering of S. Several examples
of problems that can be formulated in the form of (1) or (2) are given in Sect. 5. For
a better intuition of what follows, we give one such example here. The CUTWIDTH

problem asks for a given graph G = (V ,E) to find a vertex ordering π with

max
v∈V

|{{w,x} ∈ E ∧ π(w) ≤ π(v) < π(x)}|

as small as possible. In other words, we look for a vertex ordering that minimizes the
maximum over all vertices v of the number of edges with one endpoint before v or v

itself, and one endpoint after v in the ordering. Thus CUTWIDTH is equivalent to (1),
when setting

f (G,S, v) = |{{w,x} ∈ E | w ∈ S ∪ {v} ∧ x ∈ V − S − {v}}|.

3 Exact Algorithms with Exponential Space

In this section, we show that a large collection of vertex ordering problems on graphs
can be solved in O∗(2n) time and O∗(2n) space. The technique exploited here is
dynamic programming in the style of the Held-Karp algorithms for the TRAVELLING

SALESMAN PROBLEM [13].

Theorem 1 Let f be a polynomial time computable function, mapping each 3-tuple,
consisting of a graph G = (V ,E), a vertex set S ⊆ V , and a vertex v ∈ V to an
integer. Then we can compute in O∗(2n) time and O∗(2n) space the following values
for a given graph G = (V ,E):

min
π∈�(V)

max
v∈V

f (G,π<,v, v)

or

min
π∈�(V)

∑

v∈V

f (G,π<,v, v).

The proof of the theorem follows the arguments of Held and Karp in [13] and an
algorithm of this type for TREEWIDTH from [3].

Theory Comput Syst (2012) 50:420–432 423

Let f be as in the statement of Theorem 1. We first give the algorithm that uses
O∗(2n) time and space to compute minπ∈�(V) maxv∈V f (G,π<,v, v). Define

AG(S) = min
π∈�(S)

max
v∈S

f (G,π<,v, v).

We set AG(∅) = −∞. Note that AG(V) is the value to compute.

Lemma 2 Let G = (V ,E) be a graph, and S ⊆ V . If S �= ∅, then

AG(S) = min
w∈S

max{f (G,S − {w},w),AG(S − {w})}

Proof Suppose AG(S) = maxv∈S f (G,π<,v, v) for π ∈ �(S), then let w be the ver-
tex on the last position of π . Now π<,w = S − {w}. Thus, we have

AG(S) = max
v∈S

f (G,π<,v, v)

= max{f (G,π<,w,w), max
v∈S−{w}f (G,π<,v, v)}

≥ max{f (G,S − {w},w),AG(S − {w})}
This shows that

AG(S) ≥ min
w∈S

max{f (G,S − {w},w),AG(S − {w})}

Suppose max{f (G,S − {w},w),AG(S − {w})} is minimal for w ∈ S, and

AG(S − {w}) = max
v∈S−{w}f (G,π ′

<,v, v)

for a permutation π ′ ∈ �(S − {w}). Let π be the permutation in �(S), that starts
with π ′ and ends with w. Now,

AG(S) ≤ max
v∈S

f (G,π<,v, v)

= max{f (G,π<,w,w), max
v∈S−{w}f (G,π<,v, v)}

= max{f (G,S − {w},w), max
v∈S−{w}f (G,π ′

<,v, v)}

= max{f (G,S − {w},w),AG(S − {w})}
This shows that

AG(S) ≤ min
w∈S

max{f (G,S − {w},w),AG(S − {w})}

and thus completes the proof of this lemma. �

Lemma 2 directly gives us a method to compute AG(V) by dynamic program-
ming: we compute all values AG(S) in order of increasing number of elements in S,

424 Theory Comput Syst (2012) 50:420–432

Algorithm 1 Dynamic-Programming-Algorithm(Graph G = (V ,E))
Set A(∅) = −∞.
for i = 1 to n do

for all vertex sets S ⊂ V with |S| = i do
Set A(S) = minw∈S max{f (G,S − {w},w),A(S − {w})}

end for
end for
return A(V)

using the formulas given by Lemma 2. We then output AG(V). Each single value can
be computed in polynomial time; we need to store and compute 2n values, thus the
running time and the space are O∗(2n). See Algorithm 1.

The computation of minπ∈�(V)

∑
v∈V f (G,π<,v, v) is similar. We define

BG(S) = min
π∈�(S)

∑

v∈S

f (G,π<,v, v)

Now, BG(∅) = 0, and, similar to Lemma 2, we have

BG(S) = min
w∈S

f (G,S − {w},w) + BG(S − {w})

The remaining details are similar to the maximization case and left to the reader.
In a practical implementation, several improvements to the scheme of Algorithm 1

can be made; an algorithmic engineering study for TREEWIDTH has been carried out,
see [3].

4 Exact Algorithms with Polynomial Space

In this section, we give a variant of Theorem 1. This variant applies to the same
collection of problems. In contrast with Theorem 1, Theorem 3 uses polynomial space
but more (i.e. O∗(4n)) time. It employs recursion instead of dynamic programming,
and has the same structure as the algorithm for TSP by Gurevich and Shelah [12].
An algorithm of this type for TREEWIDTH appears in [3].

Theorem 3 Let f be a polynomial time computable function, mapping each 3-tuple,
consisting of a graph G = (V ,E), a vertex set S ⊆ V , and a vertex v ∈ V to an
integer. Then we can compute in O∗(4n) time and polynomial space the following
values for a given graph G = (V ,E):

min
π∈�(V)

max
v∈V

f (G,π<,v, v)

or

min
π∈�(V)

∑

v∈V

f (G,π<,v, v)

Theory Comput Syst (2012) 50:420–432 425

Again, we concentrate on the computation of minπ∈�(V) maxv∈V f (G,π<,v, v),
and leave the variant where we take instead the sum to the reader.

Define, for a graph G = (V ,E), sets of vertices L,S ⊆ V , L ∩ S = ∅, S �= ∅:

CG(L,S) = min
π∈�(L,S)

max
v∈S

f (G,π<,v, v)

Note that we want to compute the value CG(∅,V).

Lemma 4 Let G = (V ,E) be a graph, and S ⊆ V , L ⊆ V , L ∩ S = ∅.

1. If S = {x}, then CG(L,S) = f (G,L,x).
2. Suppose |S| ≥ 2 and 1 ≤ k < |S|. Then

CG(L,S) = min
S′⊆S,|S′|=k

max{CG(L,S′),CG(L ∪ S′, S − S′)}

Proof If S = {x}, then each π ∈ �(L,S) first has the vertices in L in some ordering
and then x. So π<,x = L, and hence maxv∈S f (G,π<,v, v) = f (G,L,x). Part (1)
now directly follows.

Suppose now that |S| ≥ 2. Consider S′ ⊆ S with S′ �= ∅. Let π ′ ∈ �(L,S′) fulfill

CG(L,S′) = max
v∈S′ f (G,π ′

<,v, v)

and let π ′′ ∈ �(L ∪ S′, S − S′) fulfill

CG(L ∪ S′, S − S′) = max
v∈S−S′ f (G,π ′′

<,v, v)

By definition, π ′ and π ′′ exist. Define now a vertex ordering π ∈ �(L,S) as follows:
first we start with the vertices in L ∪ S′ in the same order as they appear in π ′, and
then take the vertices in S − S′ in the same order as they appear in π ′′. I.e., we first
have the vertices in L, then the vertices in S′, and then the vertices in S − S′. For
v ∈ S′, L ⊆ π<,v = π ′

<,v , and for v ∈ S − S′, L ∪ S′ ⊆ π<,v = π ′′
<,v .

Now

CG(L,S) ≤ max
v∈S

f (G,π<,v, v)

= max{max
v∈S′ f (G,π ′

<,v, v), max
v∈S−S′ f (G,π ′′

<,v, v)}

= max{CG(L,S′),CG(L ∪ S′, S − S′)}
As this holds for each S′ ⊆ S with S′ �= ∅, we have

CG(L,S) ≤ min
S′⊆S,|S′|=k

max{CG(L,S′),CG(L ∪ S′, S − S′)}

For the other direction, let π ∈ �(L,S) fulfill

CG(L,S) = max
v∈S

f (G,π<,v, v)

426 Theory Comput Syst (2012) 50:420–432

Let S′ ⊆ S be the set obtained by taking the first k elements in S appearing in π , i.e.,
|S′| = k and all elements in S′ appear before all elements in S − S′ in π . We have
that π ∈ �(L∪S′, S −S′). Let π ′ ∈ �(L,S′) be obtained from π by restricting π to
L ∪ S′. Now

CG(L,S) = max
v∈S

f (G,π<,v, v)

= max{max
v∈S′ f (G,π<,v, v), max

v∈S−S′ f (G,π<,v, v)}

= max{max
v∈S′ f (G,π ′

<,v, v), max
v∈S−S′ f (G,π<,v, v)}

≤ max{CG(L,S′),CG(L ∪ S′, S − S′)}
This shows the result. �

Our algorithm uses recursion, each time employing Lemma 4 with k = �|S|/2�.
The algorithm is given in pseudo-code in Algorithm 2.

Correctness of Algorithm 2 follows directly from Lemma 4. The running time
can be estimated as follows. Let T (k) be the number of recursive calls made when
Recursive is called with the third argument S with |S| = k. Clearly, T (1) = 1. If
k > 1, then for each of the

(
k

�k/2�
)

subsets of S of size �k/2�, we have a recursive call
with third parameter of size �|S|/2� and a recursive call with third parameter of size
�|S|/2�; and thus we use per subset S′ two calls at this level of the recursion, and
T (�k/2�) + T (�k/2�) calls deeper in the recursion tree. So

T (k) ≤
(

k

�k/2�
)

(T (�k/2�) + T (�k/2�) + 2)

It follows that T (k) < 4k . As the time per recursive call is bounded by a poly-
nomial in n, the total time is bounded by O∗(4n). In most cases, the dynamic pro-
gramming algorithm from Sect. 3 is more practical than the recursive algorithm, as
already the enumeration over all subsets of size n/2 is very time consuming, except
for very small values of n, but for such values, the space requirements for the O∗(2n)

algorithm can be expected to be small enough for modern computers.

Algorithm 2 Recursive(Graph G, vertex set L, vertex set S)
if |S|=1 then

Suppose S = {v}.
return f (G,L,v)

end if
Set opt = ∞.
for all vertex sets S′ ⊆ S, |S′| = �|S|/2� do

Compute v1 = Recursive(G,L,S′);
Compute v2 = Recursive(G,L ∪ S′, S − S′);
Set opt = min{opt,max{v1, v2}};

end for
return opt

Theory Comput Syst (2012) 50:420–432 427

5 Linear Ordering Problems

There are several problems to which Theorems 1 and 3 can be applied. Several of
these will be discussed below. Diaz et al. [6] wrote an excellent survey on vertex
ordering and related problems, and their algorithmic aspects. For a survey on the
relations between treewidth, pathwidth, and other parameters, we refer the reader
to [1].

5.1 Treewidth

Treewidth is a well studied graph parameter. While treewidth is usually defined in
terms of tree decompositions, it also has a characterization as a vertex ordering prob-
lem (see e.g., [1, 4, 5]). Using this characterization, in [3] explicit proofs of algorithms
as in Theorems 1 and 3 are given for TREEWIDTH. For a formulation of treewidth in
the form of (1), we refer the reader to [3].

Several improvements on these algorithms were made: using balanced separators
and potential maximal cliques, a polynomial space algorithm using O(2.9512n) time
was given in [3]. This was improved further with a clever method to list and count the
number of potential maximal cliques to O(2.6151n) time by Fomin and Villanger [7].
Several papers give improved algorithms for TREEWIDTH, if we allow exponential
space. An algorithm with O(1.9601n) time was given in 2004 by Fomin et al. [9].
This was improved further in [7, 8, 10, 17]; the current best running time is given by
a recent paper by Fomin and Villanger [8], who solve TREEWIDTH in O(1.7347n)

time.

5.2 Minimum Fill-In

A problem, related to treewidth, is the MINIMUM FILL-IN problem. Exact algorithms
with exponential space for MINIMUM FILL-IN were obtained by Fomin et al. [9], and
later improved [7, 8, 10, 17]; the currently fastest algorithm uses O(1.7347n) time
and space [8]. These algorithms use the same techniques as for TREEWIDTH. The
MINIMUM FILL-IN problem has important applications in Gaussian elimination.

The minimum fill-in of a graph G = (V ,E) is the minimum over all triangulations
H = (V ,EH) of G of |EH −E|, i.e., the minimum number of edges that, when added
to G, make G chordal.

For a graph G = (V ,E), a vertex ordering of its vertices π ∈ �(V), and a vertex
v ∈ V , let

Rπ(v) = |{w ∈ V | π(w) > π(v) ∧ there is a path from v to w in G[π≤,v ∪ {w}]}|
The following proposition can be shown in the same way as a similar result for

TREEWIDTH in [3].

Proposition 5 Let G = (V ,E) be a graph, and k a non-negative integer. The mini-
mum fill-in of G is at most k if and only if there is a vertex ordering π of G, such
that

∑

v∈V

Rπ(v) ≤ k + |E|

428 Theory Comput Syst (2012) 50:420–432

It follows that MINIMUM FILL-IN is equivalent to

min
π∈�(G)

∑

v∈V

|{w ∈ V − S − {v} | there is a path from v to w in G[S ∪ {v,w}}|.

While for TREEWIDTH there are polynomial space algorithms that are faster than
the O∗(4n) bound implied by Theorem 3, this remains open for MINIMUM FILL-IN.

5.3 Pathwidth

The pathwidth of a graph is usually defined in terms of path decompositions, but
it has several equivalent characterizations, see e.g., [1] for an overview. Kinnersley
[14] showed that pathwidth can be defined as a vertex ordering problem. We use this
characterization to obtain the exact algorithms.

Definition 6 The vertex separation number of a vertex ordering π of G = (V ,E) is

max
v∈V

|{w ∈ V | ∃x ∈ V : {w,x} ∈ E ∧ π(w) < π(v) ≤ π(x)}| .

The vertex separation number of a graph G is the minimum vertex separation number
over all vertex orderings of G.

Theorem 7 (Kinnersley [14]) The vertex separation number of a graph equals its
pathwidth.

We thus see that the VERTEX SEPARATION NUMBER is of the form for which we
can apply Theorems 1 and 3: set in (1),

f (G,S, v) = |{w ∈ S | ∃x ∈ V − S : {w,x} ∈ E}|.
Very recently, Suchan and Villanger [16] obtained a faster exact algorithm for PATH-
WIDTH, i.e., using O(1.9657n) time and exponential space. It is open if this can be
used for a faster algorithm with polynomial space.

5.4 Minimum Interval Graph Completion

Another problem, related to PATHWIDTH, which can be solved with Theorems 1 and
3 is the MINIMUM INTERVAL GRAPH COMPLETION problem. The MINIMUM IN-
TERVAL GRAPH COMPLETION problem is the following: given a graph G = (V ,E),
what is the minimum size of a set of edges, that, when added to G, yields an interval
graph. The problem is known to be equivalent to the SUM CUT problem and the PRO-
FILE problem, see for example [6]. In the SUM CUT problem, we look for a vertex
ordering π which minimizes

∑

v∈V

|{w ∈ V | ∃x ∈ V : {w,x} ∈ E ∧ π(w) < π(v) ≤ π(x)}|

A similar reformulation as for PATHWIDTH is possible, using the same f but the
summation variant (2).

Theory Comput Syst (2012) 50:420–432 429

5.5 Cutwidth and Variants

The cutwidth of a vertex ordering π of a graph G = (V ,E) is

max
v∈V

|{{w,x} ∈ E |π(w) ≤ π(v) < π(x)}|

We discussed in Sect. 2 that this problem fits the form of (1). Variants can be handled
in similar ways.

The modified cutwidth of a vertex ordering π of a graph G = (V ,E) is

max
v∈V

|{{w,x} ∈ E |π(w) < π(v) < π(x)}|

The cutwidth (modified cutwidth) of a graph is the minimum cutwidth (modified
cutwidth) of a vertex ordering of it. The parameters have variants for directed acyclic
graphs. The cutwidth (modified cutwidth) of a directed acyclic graph G = (V ,A) is
the minimum cutwidth (modified cutwidth) of a topological ordering of G; the latter
are defined similar to the undirected counterparts.

Fitting MINIMUM CUTWIDTH for directed acyclic graphs into the form of Theo-
rems 1 and 3 can be done as follows: when there is an arc (v,w) ∈ A with w ∈ S, we
set f (G,S, v) to a very high value (e.g., |E| + 1), and otherwise we set f (G,S, v)

to the number of arcs with head in S ∪ {v} and tail in V − S − {v}. MODIFIED

CUTWIDTH can be dealt with in a similar way.

5.6 Optimal Linear Arrangement

The OPTIMAL LINEAR ARRANGEMENT problem, of which the decision variant was
proved NP-complete in [11], asks, given a graph G = (V ,E), for the minimum over
all vertex orderings π of

∑
{v,w}∈E |π(v) − π(w)|. The following simple lemma

shows that we can write the problem again in the form where we can apply Theo-
rems 1 and 3.

Lemma 8 For each graph G = (V ,E), and for each vertex ordering π of G,

∑

{x,y}∈E

|π(x) − π(y)| =
∑

v∈V

|{{x, y} ∈ E | π(x) ≤ π(v) < π(y)}|

The directed variant, where we look for topological orderings π of a directed
acyclic graph G = (V ,A) with

∑
(v,w)∈A(f (w) − f (v)) can be handled in a similar

way; see also the discussion in Sect. 5.5.

5.7 Directed Feedback Arc Set

The DIRECTED FEEDBACK ARC SET is the following: given a directed graph
G = (V ,A), find a set of arcs F ⊆ A with |F | as small as possible, such that
(V ,A − F) is acyclic, i.e., each cycle in G contains at least one arc in F . It is
a variant of the well known FEEDBACK VERTEX SET and DIRECTED FEEDBACK

430 Theory Comput Syst (2012) 50:420–432

VERTEX SET problems (which look for a set of vertices that break all cycles). (The
problem to find in an undirected graph a minimum size set of edges that breaks all cy-
cles is trivial; its weighted variant is a reformulation of the polynomial time solvable
MINIMUM SPANNING TREE problem. The (DIRECTED) FEEDBACK VERTEX SET

problems are trivially solvable in O∗(2n) time with linear space, and thus we have
to focus only to DIRECTED FEEDBACK ARC SET.) One can also look at a weighted
variant: each arc has a weight, and we look for a set of arcs that break all cycles of
minimum total weight.

The following lemma shows that we can formulate (WEIGHTED) DIRECTED

FEEDBACK ARC SET in a form such that Theorems 1 and 3 can be applied. Recall
that a graph is acyclic, if and only if it has a topological ordering.

Lemma 9 Let G = (V ,A) be a directed graph, and let w : A → N be a function that
assigns each arc a non-negative integer weight. Let K ∈ N be an integer. There exists
a set of arcs F ⊆ A with (V ,A−F) acyclic and

∑
a∈F w(a) ≤ K , if and only if there

is a vertex ordering π of G, such that
∑

(x,y)∈A, π(x)>π(y) w((x, y)) ≤ K .

Thus, (WEIGHTED) DIRECTED FEEDBACK ARC SET is equivalent to determin-
ing the following value, which is of the form of (2):

min
π∈�(V)

∑

v∈V

∑

(v,x)∈A,x∈π<,v

w((x, y)).

5.8 Summary

The following theorem summarizes the discussion in the paragraphs above.

Theorem 10 Each of the following problems: TREEWIDTH, MINIMUM FILL-IN,
PATHWIDTH, SUM CUT, MINIMUM INTERVAL GRAPH COMPLETION, CUTWIDTH,
DIRECTED CUTWIDTH, MODIFIED CUTWIDTH, DIRECTED MODIFIED CUT-
WIDTH, OPTIMAL LINEAR ARRANGEMENT, DIRECTED OPTIMAL LINEAR

ARRANGEMENT and DIRECTED FEEDBACK ARC SET

1. can be solved in O∗(2n) time and O∗(2n) space.
2. can be solved in O∗(4n) time and polynomial space.

In each case, the O∗(2n) algorithm resembles the classic Held-Karp algorithm
for TSP [13], and the O∗(4n) its variant by Gurevich and Shelah [12]. Note that for
TREEWIDTH, MINIMUM FILL-IN and PATHWIDTH faster algorithms with exponen-
tial space are known [8, 16], and for TREEWIDTH a faster algorithm with polynomial
space is known [9, 10].

6 Concluding Remarks

This note discusses simple exponential time algorithms for a collection of vertex
ordering problems. Recently, Koivisto and Parviainen [15] have exploited the ideas

Theory Comput Syst (2012) 50:420–432 431

further, and showed that a tradeoff between time and space can be made, i.e., they give
a range of algorithms, running in O(cn) time and O(sn) space, for various values of
c and s.

Computational experiments in [3] showed that the O∗(2n) time algorithm for
TREEWIDTH is practical for small graphs, especially when one applies a few opti-
mizations to the algorithm. For practical instances, the observed use of space appears
to be significantly better than the predicted 2n, but still exponential. It would be very
interesting to carry out a similar algorithm engineering study for other problems than
TREEWIDTH, e.g., for some of those that were listed in Sect. 5. The versions of the
algorithms that use polynomial space, at the cost of more time, are likely to be very
time consuming and hence in their current form not practical: note that these already
start by making a recursive call for each partition of the vertices in two sets of equal (if
|V | is even) size. It seems more promising to perform algorithm engineering studies
using the techniques of Koivisto and Parviainen [15] for space that still is exponen-
tial, but better than O∗(2n); such an approach may give practical algorithms for larger
values of n compared to the O∗(2n) time and space algorithms.

Acknowledgements We thank the anonymous referees for their comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209,
1–45 (1998)

2. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms
for treewidth. Technical Report UU-CS-2006-032, Department of Information and Computing Sci-
ences, Utrecht University, Utrecht, the Netherlands (2006)

3. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms
for treewidth. In: Azar, Y., Erlebach, T. (eds.) Proceedings of the 14th Annual European Symposium
on Algorithms, ESA 2006. Lecture Notes in Computer Science, vol. 4168, pp. 672–683. Springer,
Berlin (2006)

4. Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing
graph treewidth. RAIRO Oper. Res. 38, 13–26 (2004)

5. Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parame-
ters. Theor. Comput. Sci. 172, 233–254 (1997)

6. Díaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34, 313–356
(2002)

7. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukuewics, I. (eds.) Proceed-
ings of the 35th International Colloquium on Automata, Languages and Programming, ICALP 2008,
Part I. Lecture Notes in Computer Science, vol. 5125, pp. 210–221. Springer, Berlin (2008)

8. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Marion, J.-Y.,
Schwentick, T. (eds.) Proceedings 27th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2010. Dagstuhl Seminar Proceedings, vol. 5, pp. 383–394. Schloss Dagstuhl,
Germany (2010). Leibniz-Zentrum für Informatik

9. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-
in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sanella, D. (eds.) Proceedings of the 31st International
Colloquium on Automata, Languages and Programming, ICALP 2004. Lecture Notes in Computer
Science, vol. 3142, pp. 568–580. Springer, Berlin (2004)

432 Theory Comput Syst (2012) 50:420–432

10. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum
fill-in. SIAM J. Comput. 38, 1058–1079 (2008)

11. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor.
Comput. Sci. 1, 237–267 (1976)

12. Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path problem. SIAM J. Comput.
16, 486–502 (1987)

13. Held, M., Karp, R.: A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl.
Math. 10, 196–210 (1962)

14. Kinnersley, N.G.: The vertex separation number of a graph equals its path width. Inf. Process. Lett.
42, 345–350 (1992)

15. Koivisto, M., Parviainen, P.: A space-time tradeoff for permutation problems. In: Proceedings of the
20th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 484–492 (2010)

16. Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n. In: Chen, J., Fomin, F.V. (eds.) Pro-
ceedings of the 4th International Workshop on Parameterized and Exact Computation, IWPEC 2009.
Lecture Notes in Computer Science, vol. 5917, pp. 324–335. Springer, Berlin (2009)

17. Villanger, Y.: Improved exponential-time algorithms for treewidth and minimum fill-in. In: Cor-
rea, J.R., Hevia, A., Kiwi, M.A. (eds.) Proceedings of the 7th Latin American Symposium on Theoret-
ical Informatics, LATIN 2006. Lecture Notes in Computer Science, vol. 3887, pp. 800–811. Springer,
Berlin (2006)

	A Note on Exact Algorithms for Vertex Ordering Problems on Graphs
	Abstract
	Introduction
	Preliminaries
	Form of Problems

	Exact Algorithms with Exponential Space
	Exact Algorithms with Polynomial Space
	Linear Ordering Problems
	Treewidth
	Minimum Fill-In
	Pathwidth
	Minimum Interval Graph Completion
	Cutwidth and Variants
	Optimal Linear Arrangement
	Directed Feedback Arc Set
	Summary

	Concluding Remarks
	Acknowledgements
	Open Access
	References

