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Abstract
Cholesteatoma can lead to progressive destruction of the auditory ossicles along with conductive hearing loss but precise 
data on the microstructural, cellular, and compositional aspects of affected ossicles are not available. Here, we obtained incus 
specimens from patients who had cholesteatoma with conductive hearing loss. Incudes were evaluated by micro-computed 
tomography, histomorphometry on undecalcified sections, quantitative backscattered electron imaging, and nanoindentation. 
Results were compared with two control groups taken from patients with chronic otitis media as well as from skeletally intact 
donors at autopsy. The porosity of incus specimens was higher in cholesteatoma than in chronic otitis media, along with 
a higher osteoclast surface per bone surface. Histomorphometric assessment revealed higher osteoid levels and osteocyte 
numbers in cholesteatoma incudes. Incudes affected by cholesteatoma also showed lower matrix mineralization compared 
with specimens from healthy controls and chronic otitis media. Furthermore, the modulus-to-hardness ratio was higher in 
cholesteatoma specimens compared with controls. Taken together, we demonstrated increased porosity along with increased 
osteoclast indices, impaired matrix mineralization, and altered biomechanical properties as distinct features of the incus 
in cholesteatoma. Based on our findings, a possible impact of impaired bone quality on conductive hearing loss should be 
further explored.

Keywords  Bone · Mineralization · Cholesteatoma · Auditory ossicles · Hearing

Introduction

Cholesteatoma is a benign, destructive, squamous kerati-
nizing epithelial lesion in the middle ear [1]. With peaks 
in prevalence among Caucasian populations, the incidence 

has been estimated at 9.2 per 100,000 adults with a slight 
predominance in males, making it a common encounter in 
clinical practice [2]. Likely originating from the lateral epi-
thelium of the tympanic membrane, cholesteatoma forms 
in the pneumatized aspects of the temporal bone, where it 
tends to grow into expansive and destructive masses leading 
to erosion of local bone and soft tissue structures [3]. Result-
ing complications include conductive hearing loss, osseous 
destruction of the ossicular chain, and perforation of the 
tympanic membrane. Other complications such as facial 
nerve palsy, intracranial abscess, cerebral sinus thrombosis, 
labyrinthitis, and destruction of inner ear structures may also 
occur [4, 5].

In acquired cholesteatoma, the ossicular chain is usually 
among the first damaged structures. If damage is found, the 
incus is involved in nearly all the cases, presumably due to 
its size and exposed setting inside the tympanic cavity [2]. 
Previous studies have reported increased osteoclastic resorp-
tion of auditory ossicles, which has been associated with low 
pH, bacterial colonization, and cytokine expression [6]. The 
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main objective of current research is to identify the factors 
that drive the rate of cholesteatoma growth and lead to the 
osseous destruction process. The growth rate displays a high 
interindividual variance, likely depending on the stage of 
inflammation, paracrine interaction, and microbial coinfec-
tion. Several cytokines have been detected in cholesteatoma 
tissue and proliferation markers have been linked to progres-
sion [7, 8]. Especially increased receptor activator of NFκB 
ligand (RANKL) expression has been linked to increased 
bone resorption in cholesteatoma [9]. Lipopolysaccharides, 
as they naturally occur in Gram-negative bacteria, have been 
proven to accelerate keratinocyte proliferation and inflam-
mation [6, 10, 11]. Recent findings from a single-cell RNA 
sequencing analysis of human cholesteatoma specimens sug-
gest that unique activin A-producing fibroblasts are respon-
sible for bone destruction by inducing local osteoclast for-
mation [12].

In deciphering the mechanisms that lead to erosion of 
the ossicles (malleus, incus, and stapes), it is important to 
recognize that they differ from other bones in several ways. 
The extracellular matrix is highly mineralized, with ossi-
cles generally displaying low porosity and a low number 
of osteocyte lacunae with a high proportion of empty and 
hypermineralized (micropetrotic) lacunae [13, 14]. This is 
closely related to the near absence of bone resorption by 
osteoclasts under normal conditions, accompanied by pre-
mature osteocyte apoptosis observed shortly after comple-
tion of ossicular ossification [13, 14]. This distinctive pattern 
may be the result of low mechanical stimuli, while a pre-
served morphology, hardness, density, and physical capacity 
for vibration seems beneficial for unaltered conduction of 
sound throughout life [13, 15–18].

Detailed histopathologic analyses can provide impor-
tant insights into both pathophysiology and surgical man-
agement of cholesteatoma [19]. However, detailed studies 
on the skeletal integrity of affected ossicles are scarce. In 
addition to the microstructure and cellular resorption pro-
cesses, the bone quality of affected ossicles seems to be 
of particular interest due to their unique function in sound 
conduction. Therefore, the aim of this study was to perform 
a high-resolution multiscale characterization of the micro-
structure and material quality of incus specimens affected 
by cholesteatoma.

Methods

Study Cohort and Specimens

Consecutive incus specimens were obtained during middle 
ear surgery (tympanoplasty) in patients with chronic otitis 
media with or without the presence of a cholesteatoma. If 

cholesteatoma was detected intraoperatively and the incus 
was found to be eroded, it was removed and subsequently 
replaced by a prosthesis (primarily or in a second-look oper-
ation). In all patients, clinical characteristics were obtained 
by retrospective chart review. The indication for surgery 
was made by a senior otolaryngologist. Next to the clinical 
specimens, a group of n = 8 incus specimens from skeletally 
healthy individuals collected in the context of a previous 
postmortem study were reanalyzed [13, 20]. This way, a total 
of 31 individuals were included (control n = 8; chronic otitis 
media n = 9, cholesteatoma n = 14). The mean age of the 
cholesteatoma cohort was 33.7 years (ranging from 7.1 years 
to 64.6 years), and the sex distribution was approximately 
even, with 8 men (57.1%) and 6 (42.9%) women. The mean 
age (p = 0.65) and sex distribution (p = 0.076) did not differ 
between the three cohorts. Apart from two patients without 
detectable hearing loss, all cholesteatoma patients presented 
with hearing loss in the preoperative examination. Namely, 
pure-tone audiometry revealed the presence of conductive 
hearing loss in nine (64.3%) and mixed hearing loss in three 
patients (21.4%).

Micro‑Computed Tomography (μ‑CT)

To visualize the incus three-dimensionally and to quantify 
the porosity, specimens were imaged using a Scanco μCT 42 
(Scanco Medical AG, Brüttisellen, Switzerland). The scans 
were performed at a resolution of 15 μm at 55 kV and 145 
μA. The porosity (%) was defined as the fraction of non-
osseous volume within the total bone volume as described 
previously [21].

Sample Preparation, Histology and Histomorphometry

Specimens were fixed in 3.7% formaldehyde, dehydrated in 
an ascending ethanol series, and embedded undecalcified in 
polymethyl methacrylate (PMMA). The embedded samples 
were cut into 4 µm sections using a rotary microtome (CVT 
4060E, microTec, Walldorf, Germany). Staining was per-
formed with von Kossa-van Gieson, trichrome Goldner, and 
toluidine blue according to previously described protocols 
[22]. In accordance with ASBMR guidelines [23], histomor-
phometric analysis was performed using a light microscope 
(Axioskop 40, Carl Zeiss Vision GmbH, Germany) equipped 
with Osteomeasure Software (OsteoMetrics Inc., Atlanta, 
USA).

Quantitative Backscattered Electron Imaging (qBEI)

The embedded incus specimens were polished to a coplanar  
surface, carbon-coated, and analyzed using a scanning 
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electron microscope (LEO 435 VP, LEO Electron Micros-
copy Ltd.; Cambridge, UK) with a backscattered electron 
detector (Type 202; K.E. Developments Ltd.; Cambridge, 
UK). Quantitative backscattered electron imaging (qBEI) 
was performed to determine the bone mineral density dis-
tribution (BMDD) and osteocyte lacunar characteristics 
according to standard procedures at 20 kV and 680 pA at 
a constant working distance [24, 25]. The generated gray 
values correlate with the mean calcium content (mean 
Ca-Wt%) of the cross-sectioned bone [26]. Brightness and 
contrast of the qBEI images were calibrated with carbon 
(gray value: 4.8) and aluminum standards (gray value: 
222). The qBEI images were acquired at 120 × magnifica-
tion, before being analyzed using ImageJ (ImageJ 1.42, 
National Institutes of Health, Bethesda, USA) [27] and 
a custom MATLAB-based script (TheMathWorks, Inc., 
Natick, USA).

Nanoindentation

Nanoindentation was performed using an iMicro nanoin-
denter (KLA instruments, CA, USA) equipped with a Berk-
ovich diamond tip. The dehydrated, PMMA-embedded 
specimens were polished and mounted on a platform. With 
a Poisson’s ratio of 0.3, the surface was approached at a 
speed of 100 nm/s, while the depth limit was set at 3000 nm 
and the strain target rate was set at 0.05 1/s. Thirty indents 
were placed in a peripheral bone region. All valid indents 
per ossicle were averaged to calculate the mean hardness 
and the Young’s modulus (GPa). Furthermore, the modulus/
hardness ratio, a surrogate measure for fracture toughness, 
was calculated [28].

Statistical Analysis

GraphPad Prism software (version 9.0, GraphPad Software, 
La Jolla, USA) was used for statistical analysis. Continuous 
variables are given as absolute values or as mean ± standard 
deviation (SD). To evaluate the normal distribution of the 
data, the Shapiro–Wilk test was used. One-way ANOVA 
with Tukey’s multiple comparison test was used to com-
pare normally distributed data between three groups, while 
the Kruskal–Wallis test with Dunn's multiple comparison 
test was performed for nonparametric data. To compare 
two groups, the Student's t test was used for normally dis-
tributed data and the Mann–Whitney U test was used for 
nonparametric data. The level of significance was defined 
as p < 0.05.

Results

Incus Porosity in Cholesteatoma is Accompanied 
by Increased Osteoclast Indices

Microstructural analysis of the incus by µ-CT revealed 
resorption zones (i.e., porosity) in a subset of cholesteatoma 
specimens (Fig. 1 A, B), which were not detected in any of 
the specimens from the other two groups. Accordingly, the 
mean porosity was higher in cholesteatoma (14.1 ± 6.9%) 
compared to chronic otitis media (9.6 ± 2.5%; p = 0.036) 
(Fig. 1 C). A subgroup analysis showed that the incus poros-
ity was higher in patients with intraoperative macroscopic 
affection of more than one ossicle (Fig. 1 D). Backscattered 
electron microscopy and undecalcified histologic sections 
confirmed the porosity and the eroded surfaces with visible 
osteoclasts, respectively (Fig. 2 A, B). Histomorphometry 
revealed a higher osteoid volume per bone volume (OV/BV) 
in the incus of cholesteatoma patients (1.6 ± 2.2%) compared 
to controls (0.2 ± 0.1%; p = 0.037; Fig. 2 C). However, there 
was no difference in OV/BV between cholesteatoma and 
chronic otitis media. While the osteoblast surface per bone 
surface (Ob.S/BS) was similar in all groups (Fig. 2 D), the 
osteoclast surface per bone surface (Oc.S/BS) was higher 
in cholesteatoma (1.56 ± 1.61%) compared to chronic otitis 
media (0.15 ± 0.49%, p = 0.012) and control (0.0 ± 0.0%, 
p = 0.019) incudes (Fig. 2 E).

Analysis of osteocyte properties (Fig. 3 A) revealed 
a higher number of total osteocyte lacunae (N.Ot.Lc/B.
Ar) in cholesteatoma (329.7 ± 78.8 1/mm2) compared to 
chronic otitis media (203.4 ± 118.4 1/mm2; p = 0.018) 
(Fig. 3 B) as well as a lower fraction of empty lacunae (Fr.
Emp.Lc, 43.6 ± 21.1% vs. 67.1 ± 16.3%; p = 0.016 (Fig. 3 
C). However, no differences between the groups could be 
detected in the number of mineralized lacunae per bone 
area (N.Mn.Lc/B.Ar) or the osteocyte lacunar area (Ot.
Lc.Ar) (Fig. 3 D, E).

Matrix Hypomineralization as a Distinct 
Phenomenon in Cholesteatoma

High-resolution imaging of the incus by qBEI indicated 
an impaired bone mineralization of cholesteatoma incu-
des (Fig. 4 A). BMDD histograms indicated a leftward 
shift with a wider calcium distribution curve in cholestea-
toma compared to both chronic otitis media and controls 
(Fig. 4 B). The mean calcium content (CaMean) was lower 
in cholesteatoma (26.3 ± 1.6Wt%) compared to chronic 
otitis media (27.9 ± 1.Wt%; p = 0.0376) and control incu-
des (29.1 ± 1.3Wt%; p = 0.0007) (Fig.  4 C). However, 
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no differences in the heterogeneity of the mineralization 
(CaWidth) could be detected between the groups (Fig. 4 D).

Differences in Mineralization are Paralleled 
by Increased Modulus/Hardness Ratio

Nanoindentation was used to study the biomechanical prop-
erties of the ossicles. Although tissue hardness showed a 
similar trend to the CaMean values from the qBEI analysis, 
both hardness (Fig. 5 A) and Young’s modulus (Fig. 5 B) 
showed no significant differences between the study groups. 
However, the modulus/hardness ratio was higher both in 
cholesteatoma (22.68 ± 0.64; p = 0.0048) and chronic oti-
tis media (22.08 ± 1.48; p = 0.0252) incudes compared to 
controls (19.53 ± 3.41) (Fig. 5 C). No differences could be 
detected regarding the comparison of the modulus/hardness 
ratio between the cholesteatoma and chronic otitis media 
specimens.

Discussion

In this study, we performed a comprehensive investigation 
of incus specimens obtained from cholesteatoma patients, 
focusing on microstructural, cellular, and compositional 
alterations. To gain insights into the osseous destruction 
processes, we took advantage of an ex situ, multiscale 
imaging approach, comparing the findings with incus 
specimens from a clinical cohort of patients with otitis 
media without cholesteatoma and a postmortem cohort of 
skeletally intact controls. Resorption zones and porosity 
were found in a subset of cholesteatoma incudes, along 
with increased osteoclast indices compared to controls 
and chronic otitis media. In addition, the incus of chole-
steatoma patients showed a lower degree of matrix min-
eralization, higher osteoid volume, and higher osteocyte 
numbers. Notably, the number of ossicles macroscopi-
cally affected by bone destruction, based on intraoperative 
assessments, appeared to be associated with the porosity 

Fig. 1   Eroded surfaces and increased porosity characterize the incus 
of cholesteatoma patients. A Representative three-dimensional 
μCT reconstructions of the incus in control (left panel), chronic oti-
tis media (middle panel) and cholesteatoma patients (right panel). 
B Higher magnification of the resorption zone (eroded surface) of a 

cholesteatoma incus, lateral view with corresponding magnification 
(red box). C Evaluation and comparison of the porosity between the 
groups. Kruskal–Wallis test with Dunn's multiple comparison test. D 
Comparison of the porosity according to the number of macroscopi-
cally affected ossicles. Mann–Whitney U test. *p < 0.05
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of the incus, presumably reflecting the progression of the 
disease.

Theoretically, the inflammatory environment in cho-
lesteatoma causes porosity by activating bone resorption. 
Increased porosity and osteoclastic bone resorption were 
detected to varying degrees in cholesteatoma incudes stud-
ied here. Previous studies confirmed that the resorptive pro-
cess in cholesteatoma is driven by activated osteoclasts. In 
a scanning electron microscopy study on the morphometry 
of erosions in auditory ossicles affected by cholesteatoma, 
osteoclastic resorptive lacunae appeared similar to those 
in osteoporotic femoral necks [29]. Furthermore, osteo-
clasts have been shown to be activated by paracrine secre-
tion of RANKL by fibroblasts and lymphocytes located in 
the peri-matrix and triggered by inflammation [9, 30, 31]. 
Whereas Imai and colleagues demonstrated a significantly 

higher number of osteoclasts in their study [30], Koizumi 
et al. failed to find osteoclasts on affected bone structures 
[32]. These divergent results could be due to possible stage-
specific effects and the fact that osteoclasts are characterized 
by a transient presence and short life span (1–25 days) [33]. 
Overall, our data reveal a heterogeneous pattern of resorp-
tion-associated porosity in cholesteatoma.

In addition to the increased porosity, which could be 
quantitatively measured and compared with adequate control 
groups for the first time, the detected matrix hypomineraliza-
tion by qBEI was the second important result of our study. In 
a previous study, inflammatory incudes also showed lower 
mineralization, although this quantification was limited to 
bone mineral density via µ-CT [34]. Since hypomineraliza-
tion of auditory ossicles has been associated with conductive 
hearing loss in the context of genetic bone diseases [18], it 

Fig. 2   Increased osteoid indices and abundance of osteoclasts in 
cholesteatoma. A Overview images of the incus obtained by back-
scattered electron microscopy. B Representative histological images 
of toluidine blue stained sections. Red arrowheads indicate a multi-
nucleated osteoclast. C Quantification of the osteoid volume per 

bone volume (OV/BV), D osteoblast surface per bone surface (Ob.S/
BS), and E osteoclast surface per bone surface (Oc.S/BS). Kruskal– 
Wallis test with Dunn's multiple comparison test was performed in 
panels C–E. *p < 0.05
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may also contribute to conductive hearing loss in cholestea-
toma. The mechanisms leading to ossicular hypominerali-
zation in cholesteatoma remain unclear, although our data 
suggest a possible link to higher bone remodeling, consistent 
with the higher osteocyte numbers observed. It is interest-
ing to note that the trend of higher numbers of osteocyte 
lacunae with decreased rates of empty lacunae was not fully 
recapitulated by decreased numbers of mineralized lacunae. 
As a high number of mineralized osteocyte lacunae has been 
previously reported as a sign of overall low bone remodeling 
and premature aging of the bone matrix in auditory ossicles 
[13], our results suggest that this condition can be partially 
reversed in the case of the cholesteatoma.

In almost all affected patients, we detected conductive 
hearing loss, which is generally caused by ossicular damage, 
loss of continuity of the ossicular chain, but also due to the 
mere presence of cholesteatoma matrix in the middle ear 
[35]. In this context, an association between cholesteatoma-
related ossicular erosions and conductive hearing loss has 
been demonstrated in 158 patients with chronic otitis media 
[35]. While we were not able to investigate such associations 
in detail in our study due to the high frequency of affected 
patients with conductive hearing loss, we found an associa-
tion between the number of affected ossicles according to 
intraoperative findings and incus porosity. This suggests that 

the spread of the chronic inflammatory process may influ-
ence the extent of resorption. Interestingly, we also found 
an increased modulus-to-hardness ratio in cholesteatoma 
incudes using nanoindentation. This ratio was reported 
as a surrogate marker for fracture toughness, suggesting 
improved mechanical competence. However, as the func-
tion of ossicles in the context of sound conduction in the 
middle ear is fundamentally different from other bones, an 
increased modulus-to-hardness ratio, indicating higher elas-
ticity, could also portend impaired sound conduction due to 
altered ossicular vibrational capacity.

As there is no pharmacological treatment for chole-
steatoma available today, the standard procedure mainly 
relies on the surgical removal of the affected tissue with 
subsequent reconstruction of potentially damaged struc-
tures such as the tympanic membrane and ossicular chain 
(tympanoplasty). With a more profound understanding of 
the molecular patterns and overall mechanisms that drive 
the pathogenesis and progression of cholesteatoma, phar-
maceutical intervention may become a valid alternative to 
surgery in the early stages and prophylaxis for the high rate 
of recurrence after surgery. In preventing bone destruction, 
medications commonly used in the treatment of osteopo-
rosis may be a possible treatment option, possibly through 
topical application. Evidence from an in vitro study with 

Fig. 3   Increased osteocyte lacunar numbers with signs of higher 
viability in cholesteatoma. A Representative high magnification 
qBEI images showing an overall high frequency of mineralized lacu-
nae. B Quantification of the number of the osteocyte lacunae (N.Ot.
Lc/B.Ar), C fraction of empty lacunae per total number of lacunae 

(Fr.Emp.Lc), D number of mineralized lacunae per bone area (N.Mn.
Lc/B.Ar), and E osteocyte lacunar area (Ot.Lc.Ar). ANOVA with 
Tukey’s multiple comparison tests were performed in panels B–E. 
*p < 0.05
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cultured keratinocytes from cholesteatoma showed that the 
bisphosphate pamidronate inhibited bone resorption [36]. 
As the resorptive process appears to be driven by osteo-
clasts activated by RANKL, bisphosphonates or recombi-
nant monoclonal RANKL antibodies might prevent com-
plications and serve as a bridge to surgery. Moreover, since 
a high dose calcium diet prevented hypomineralization of 
auditory ossicles in vitamin D receptor deficient mice [37], 
modulation of calcium homeostasis might also be effective 

as an additive measure to improve bone mineralization of 
ossicles in cholesteatoma.

In conclusion, we demonstrated resorption-related poros-
ity, matrix hypomineralization and altered biomechanical 
properties as distinct phenomena of the incus in chole-
steatoma patients. These results indicate that the low bone 
turnover state normally present in auditory ossicles can be 
activated under certain conditions, which calls for further 
mechanistic investigation. The possible dependence of 

Fig. 4   Lower matrix mineralization in incudes obtained from chole-
steatoma compared to control and otitis media patients. A Represent-
ative, pseudocolored qBEI images of the incus in controls, chronic 
otitis media and cholesteatoma. B BMDD histograms of the incus of 
control (green curve), chronic otitis media (blue curve), and chole-

steatoma patients (red curve). C Quantification of the mean calcium 
content (CaMean). D Quantification of the mineralization heterogene-
ity (CaWidth). ANOVA with Tukey’s multiple comparison tests were 
performed in panels C and D. *p < 0.05, ***p < 0.001

Fig. 5   Increased modulus/hard-
ness ratio as a biomechanical 
feature of incudes affected by 
cholesteatoma. A Quantifica-
tion of hardness, B modulus, 
and C modulus/hardness ratio. 
ANOVA with Tukey’s multiple 
comparison tests were per-
formed in all panels. *p < 0.05 
**p < 0.005
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conductive hearing loss on ossicular quality in cholestea-
toma as well as other ear and bone diseases should be further 
investigated.
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