Skip to main content

Advertisement

Log in

From Stem to Sternum: The Role of Shp2 in the Skeleton

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmad S, Banville D, Zhao Z, Fischer EH, Shen SH (1993) A widely expressed human protein-tyrosine phosphatase containing src homology 2 domains. Proc Natl Acad Sci U S A 90:2197–2201. https://doi.org/10.1073/pnas.90.6.2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neel BG, Gu H, Pao L (2003) The ’Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28:284–293. https://doi.org/10.1016/S0968-0004(03)00091-4

    Article  CAS  PubMed  Google Scholar 

  3. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE (1998) Crystal structure of the tyrosine phosphatase SHP-2. Cell 92:441–450. https://doi.org/10.1016/s0092-8674(00)80938-1

    Article  CAS  PubMed  Google Scholar 

  4. Yu Z-H, Xu J, Walls CD, Chen L, Zhang S, Zhang R et al (2013) Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 288:10472–10482. https://doi.org/10.1074/jbc.M113.450023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ran H, Tsutsumi R, Araki T, Neel BG (2016) Sticking it to cancer with molecular glue for SHP2. Cancer Cell 30:194–196. https://doi.org/10.1016/j.ccell.2016.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cunnick JM, Mei L, Doupnik CA, Wu J (2001) Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) conferring binding and activation of SHP2. J Biol Chem 276:24380–24387. https://doi.org/10.1074/jbc.M010275200

    Article  CAS  PubMed  Google Scholar 

  7. Yao Z, Darowski K, St-Denis N, Wong V, Offensperger F, Villedieu A et al (2017) A Global Analysis of the receptor tyrosine kinase-protein phosphatase interactome. Mol Cell 65:347–360. https://doi.org/10.1016/j.molcel.2016.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fukada T, Yoshida Y, Nishida K, Ohtani T, Shirogane T, Hibi M et al (1999) Signaling through Gp130: toward a general scenario of cytokine action. Growth Factors 17:81–91. https://doi.org/10.3109/08977199909103518

    Article  CAS  PubMed  Google Scholar 

  9. Saxton TM, Ciruna BG, Holmyard D, Kulkarni S, Harpal K, Rossant J et al (2000) The SH2 tyrosine phosphatase shp2 is required for mammalian limb development. Nat Genet 24:420–423. https://doi.org/10.1038/74279

    Article  CAS  PubMed  Google Scholar 

  10. Tsutsumi R, Ran H, Neel BG (2018) Off-target inhibition by active site-targeting SHP2 inhibitors. FEBS Open Bio 8:1405–1411. https://doi.org/10.1002/2211-5463.12493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin H, Huang J, Cao X, Wang Z-X, Cao J, Hu Y et al (2018) Inhibition of Src homology 2 domain-containing protein tyrosine phosphatase-2 facilitates cd31hiendomucinhi blood vessel and bone formation in ovariectomized mice. Cell Physiol Biochem 50:1068–1083. https://doi.org/10.1159/000494531

    Article  CAS  PubMed  Google Scholar 

  12. Tanowitz M, Si J, Yu DH, Feng GS, Mei L (1999) Regulation of neuregulin-mediated acetylcholine receptor synthesis by protein tyrosine phosphatase SHP2. J Neurosci 19:9426–9435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwai LK, Payne LS, Luczynski MT, Chang F, Xu H, Clinton RW et al (2013) Phosphoproteomics of collagen receptor networks reveals SHP-2 phosphorylation downstream of wild-type DDR2 and its lung cancer mutants. Biochem J 454:501–513. https://doi.org/10.1042/BJ20121750

    Article  CAS  PubMed  Google Scholar 

  14. Kaneshiro S, Ebina K, Shi K, Higuchi C, Hirao M, Okamoto M et al (2014) IL-6 negatively regulates osteoblast differentiation through the SHP2/MEK2 and SHP2/Akt2 pathways in vitro. J Bone Miner Metab 32:378–392. https://doi.org/10.1007/s00774-013-0514-1

    Article  CAS  PubMed  Google Scholar 

  15. Sims NA, Jenkins BJ, Quinn JMW, Nakamura A, Glatt M, Gillespie MT et al (2004) Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest 113:379–389. https://doi.org/10.1172/JCI19872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bauler TJ, Kamiya N, Lapinski PE, Langewisch E, Mishina Y, Wilkinson JE et al (2011) Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations. Dis Model Mech 4:228–239. https://doi.org/10.1242/dmm.006130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishida K, Hirano T (2003) The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci 94:1029–1033. https://doi.org/10.1111/j.1349-7006.2003.tb01396.x

    Article  CAS  PubMed  Google Scholar 

  18. Tajan M, Pernin-Grandjean J, Beton N, Gennero I, Capilla F, Neel BG et al (2018) Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth. Hum Mol Genet 27:2276–2289. https://doi.org/10.1093/hmg/ddy133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kapur S, Mohan S, Baylink DJ, Lau K-HW (2005) Fluid shear stress synergizes with insulin-like growth factor-I (IGF-I) on osteoblast proliferation through integrin-dependent activation of IGF-I mitogenic signaling pathway. J Biol Chem 280:20163–20170. https://doi.org/10.1074/jbc.M501460200

    Article  CAS  PubMed  Google Scholar 

  20. Ergun-Longmire B, Wajnrajch MP (2000) Growth and Growth Disorders. In: Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K et al (eds) Feingold KR. Endotext. MDText.com, Inc, South Dartmouth (MA)

    Google Scholar 

  21. Tajan M, Batut A, Cadoudal T, Deleruyelle S, Le Gonidec S, Saint Laurent C et al (2014) LEOPARD syndrome-associated SHP2 mutation confers leanness and protection from diet-induced obesity. Proc Natl Acad Sci U S A 111:E4494-4503. https://doi.org/10.1073/pnas.1406107111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou Y, Mohan A, Moore DC, Lin L, Zhou FL, Cao J et al (2015) SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion. FASEB J 29:1635–1645. https://doi.org/10.1096/fj.14-260844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langdon YG, Goetz SC, Berg AE, Swanik JT, Conlon FL (2007) SHP-2 is required for the maintenance of cardiac progenitors. Development 134:4119–4130. https://doi.org/10.1242/dev.009290

    Article  CAS  PubMed  Google Scholar 

  24. Lecoq-Lafon C, Verdier F, Fichelson S, Chrétien S, Gisselbrecht S, Lacombe C et al (1999) Erythropoietin induces the tyrosine phosphorylation of GAB1 and its association with SHC, SHP2, SHIP, and phosphatidylinositol 3-kinase. Blood 93:2578–2585

    Article  CAS  PubMed  Google Scholar 

  25. Gu H, Pratt JC, Burakoff SJ, Neel BG (1998) Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell 2:729–740. https://doi.org/10.1016/s1097-2765(00)80288-9

    Article  CAS  PubMed  Google Scholar 

  26. Gu H, Neel BG (2003) The “Gab” in signal transduction. Trends Cell Biol 13:122–130. https://doi.org/10.1016/s0962-8924(03)00002-3

    Article  CAS  PubMed  Google Scholar 

  27. Cunningham CC, Corr EM, McCarthy GM, Dunne A (2016) Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling. Osteoarthr Cartil 24:2141–2152. https://doi.org/10.1016/j.joca.2016.07.001

    Article  CAS  Google Scholar 

  28. Wang L, Huang J, Moore DC, Song Y, Ehrlich MG, Yang W (2019) SHP2 regulates intramembranous ossification by modifying the TGFβ and BMP2 signaling pathway. Bone 120:327–335. https://doi.org/10.1016/j.bone.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  29. Persson E, Souza PPC, Floriano-Marcelino T, Conaway HH, Henning P, Lerner UH (2019) Activation of Shc1 allows oncostatin M to induce RANKL and osteoclast formation more effectively than leukemia inhibitory factor. Front Immunol 10:1164. https://doi.org/10.3389/fimmu.2019.01164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park H-J, Gholam-Zadeh M, Yoon S-Y, Suh J-H, Choi H-S (2021) Estrogen decreases cytoskeletal organization by forming an ERα/SHP2/c-Src complex in osteoclasts to protect against ovariectomy-induced bone loss in mice. Antioxidants 10:619. https://doi.org/10.3390/antiox10040619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang H, Wang L, Shigley C, Yang W (2022) Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 10:10. https://doi.org/10.1038/s41413-021-00181-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dance M, Montagner A, Salles J-P, Yart A, Raynal P (2008) The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 20:453–459. https://doi.org/10.1016/j.cellsig.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  33. Bunda S, Heir P, Srikumar T, Cook JD, Burrell K, Kano Y et al (2014) Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Proc Natl Acad Sci U S A 111:E3785-3794. https://doi.org/10.1073/pnas.1406559111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y et al (2015) Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun 6:8859. https://doi.org/10.1038/ncomms9859

    Article  CAS  PubMed  Google Scholar 

  35. Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG (1994) Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc Natl Acad Sci U S A 91:7335–7339. https://doi.org/10.1073/pnas.91.15.7335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJ, Cooper JA et al (1994) A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 14:509–517. https://doi.org/10.1128/mcb.14.1.509-517.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vogel W, Ullrich A (1996) Multiple in vivo phosphorylated tyrosine phosphatase SHP-2 engages binding to Grb2 via tyrosine 584. Cell Growth Differ 7:1589–1597

    CAS  PubMed  Google Scholar 

  38. Chong ZZ, Lin S-H, Kang J-Q, Maiese K (2003) The tyrosine phosphatase SHP2 modulates MAP kinase p38 and caspase 1 and 3 to foster neuronal survival. Cell Mol Neurobiol 23:561–578. https://doi.org/10.1023/a:1025158314016

    Article  CAS  PubMed  Google Scholar 

  39. Chan G, Kalaitzidis D, Neel BG (2008) The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev 27:179–192. https://doi.org/10.1007/s10555-008-9126-y

    Article  CAS  PubMed  Google Scholar 

  40. Nakaoka Y, Shioyama W, Kunimoto S, Arita Y, Higuchi K, Yamamoto K et al (2010) SHP2 mediates gp130-dependent cardiomyocyte hypertrophy via negative regulation of skeletal alpha-actin gene. J Mol Cell Cardiol 49:157–164. https://doi.org/10.1016/j.yjmcc.2010.03.001

    Article  CAS  PubMed  Google Scholar 

  41. Kang HJ, Chung D-H, Sung CO, Yoo SH, Yu E, Kim N et al (2017) SHP2 is induced by the HBx-NF-κB pathway and contributes to fibrosis during human early hepatocellular carcinoma development. Oncotarget 8:27263–27276. https://doi.org/10.18632/oncotarget.15930

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yart A, Laffargue M, Mayeux P, Chretien S, Peres C, Tonks N et al (2001) A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of Ras and mitogen-activated protein kinases by epidermal growth factor. J Biol Chem 276:8856–8864. https://doi.org/10.1074/jbc.M006966200

    Article  CAS  PubMed  Google Scholar 

  43. Liu W, Yu W-M, Zhang J, Chan RJ, Loh ML, Zhang Z et al (2017) Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Leukemia 31:1415–1422. https://doi.org/10.1038/leu.2016.326

    Article  CAS  PubMed  Google Scholar 

  44. Zhang SQ, Tsiaras WG, Araki T, Wen G, Minichiello L, Klein R et al (2002) Receptor-specific regulation of phosphatidylinositol 3’-kinase activation by the protein tyrosine phosphatase Shp2. Mol Cell Biol 22:4062–4072. https://doi.org/10.1128/MCB.22.12.4062-4072.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zehender A, Huang J, Györfi A-H, Matei A-E, Trinh-Minh T, Xu X et al (2018) The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat Commun 9:3259. https://doi.org/10.1038/s41467-018-05768-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L, Modi H, McDonald T, Rossi J, Yee J-K, Bhatia R (2011) A critical role for SHP2 in STAT5 activation and growth factor-mediated proliferation, survival, and differentiation of human CD34+ cells. Blood 118:1504–1515. https://doi.org/10.1182/blood-2010-06-288910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schindeler A, Little DG (2006) Ras-MAPK signaling in osteogenic differentiation: friend or foe? J Bone Miner Res 21:1331–1338. https://doi.org/10.1359/jbmr.060603

    Article  PubMed  Google Scholar 

  48. Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176:709–718. https://doi.org/10.1083/jcb.200610046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Majidinia M, Sadeghpour A, Yousefi B (2018) The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 233:2937–2948. https://doi.org/10.1002/jcp.26042

    Article  CAS  PubMed  Google Scholar 

  50. Weng T, Mao F, Wang Y, Sun Q, Li R, Yang G et al (2010) Osteoblastic molecular scaffold Gab1 is required for maintaining bone homeostasis. J Cell Sci 123:682–689. https://doi.org/10.1242/jcs.058396

    Article  CAS  PubMed  Google Scholar 

  51. Higuchi C, Myoui A, Hashimoto N, Kuriyama K, Yoshioka K, Yoshikawa H et al (2002) Continuous inhibition of MAPK signaling promotes the early osteoblastic differentiation and mineralization of the extracellular matrix. J Bone Miner Res 17:1785–1794. https://doi.org/10.1359/jbmr.2002.17.10.1785

    Article  CAS  PubMed  Google Scholar 

  52. Nakayama K, Tamura Y, Suzawa M, Harada S-I, Fukumoto S, Kato M et al (2003) Receptor tyrosine kinases inhibit bone morphogenetic protein-Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells. J Bone Miner Res 18:827–835. https://doi.org/10.1359/jbmr.2003.18.5.827

    Article  CAS  PubMed  Google Scholar 

  53. Armstrong L, Jett K, Birch P, Kendler DL, McKay H, Tsang E et al (2013) The generalized bone phenotype in children with neurofibromatosis 1: a sibling matched case-control study. Am J Med Genet A 161A:1654–1661. https://doi.org/10.1002/ajmg.a.36001

    Article  CAS  PubMed  Google Scholar 

  54. Ma Y, Gross AM, Dombi E, Pemov A, Choi K, Chaney K et al (2020) A molecular basis for neurofibroma-associated skeletal manifestations in NF1. Genet Med 22:1786–1793. https://doi.org/10.1038/s41436-020-0885-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu HH, Ji K, Alderson N, He Z, Li S, Liu W et al (2011) Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood 117:5350–5361. https://doi.org/10.1182/blood-2011-01-333476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kan C, Yang F, Wang S (2018) SHP2-mediated signal networks in stem cell homeostasis and dysfunction. Stem Cells Int 2018:e8351374. https://doi.org/10.1155/2018/8351374

    Article  CAS  Google Scholar 

  57. Chan G, Cheung LS, Yang W, Milyavsky M, Sanders AD, Gu S et al (2011) Essential role for Ptpn11 in survival of hematopoietic stem and progenitor cells. Blood 117:4253–4261. https://doi.org/10.1182/blood-2010-11-319517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Niihori T, Aoki Y, Ohashi H, Kurosawa K, Kondoh T, Ishikiriyama S et al (2005) Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia. J Hum Genet 50:192–202. https://doi.org/10.1007/s10038-005-0239-7

    Article  CAS  PubMed  Google Scholar 

  59. Tartaglia M, Gelb BD, Zenker M (2011) Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab 25:161–179. https://doi.org/10.1016/j.beem.2010.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Romano AA, Allanson JE, Dahlgren J, Gelb BD, Hall B, Pierpont ME et al (2010) Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 126:746–759. https://doi.org/10.1542/peds.2009-3207

    Article  PubMed  Google Scholar 

  61. Noonan JA, Raaijmakers R, Hall BD (2003) Adult height in Noonan syndrome. Am J Med Genet 123A:68–71. https://doi.org/10.1002/ajmg.a.20502

    Article  PubMed  Google Scholar 

  62. Binder G, Neuer K, Ranke MB, Wittekindt NE (2005) PTPN11 mutations are associated with mild growth hormone resistance in individuals with Noonan syndrome. J Clin Endocrinol Metab 90:5377–5381. https://doi.org/10.1210/jc.2005-0995

    Article  CAS  PubMed  Google Scholar 

  63. Limal J-M, Parfait B, Cabrol S, Bonnet D, Leheup B, Lyonnet S et al (2006) Noonan syndrome: relationships between genotype, growth, and growth factors. J Clin Endocrinol Metab 91:300–306. https://doi.org/10.1210/jc.2005-0983

    Article  CAS  PubMed  Google Scholar 

  64. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H et al (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468. https://doi.org/10.1038/ng772

    Article  CAS  PubMed  Google Scholar 

  65. Keilhack H, David FS, McGregor M, Cantley LC, Neel BG (2005) Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. J Biol Chem 280:30984–30993. https://doi.org/10.1074/jbc.M504699200

    Article  CAS  PubMed  Google Scholar 

  66. Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V et al (2006) Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 78:279–290

    Article  CAS  PubMed  Google Scholar 

  67. Fragale A, Tartaglia M, Wu J, Gelb BD (2004) Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat 23:267–277. https://doi.org/10.1002/humu.20005

    Article  CAS  PubMed  Google Scholar 

  68. De Rocca S-Nédélec A, Edouard T, Tréguer K, Tajan M, Araki T, Dance M et al (2012) Noonan syndrome-causing SHP2 mutants inhibit insulin-like growth factor 1 release via growth hormone-induced ERK hyperactivation, which contributes to short stature. Proc Natl Acad Sci U S A 109:4257–4262. https://doi.org/10.1073/pnas.1119803109

    Article  Google Scholar 

  69. Uhlén P, Burch PM, Zito CI, Estrada M, Ehrlich BE, Bennett AM (2006) Gain-of-function/Noonan syndrome SHP-2/Ptpn11 mutants enhance calcium oscillations and impair NFAT signaling. Proc Natl Acad Sci U S A 103:2160–2165. https://doi.org/10.1073/pnas.0510876103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sarkozy A, Digilio MC, Dallapiccola B (2008) Leopard syndrome. Orphanet J Rare Dis 3:13. https://doi.org/10.1186/1750-1172-3-13

    Article  PubMed  PubMed Central  Google Scholar 

  71. Digilio MC, Sarkozy A, de Zorzi A, Pacileo G, Limongelli G, Mingarelli R et al (2006) LEOPARD syndrome: clinical diagnosis in the first year of life. Am J Med Genet A 140:740–746. https://doi.org/10.1002/ajmg.a.31156

    Article  PubMed  Google Scholar 

  72. Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG (2006) PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem 281:6785–6792. https://doi.org/10.1074/jbc.M513068200

    Article  CAS  PubMed  Google Scholar 

  73. Sobreira NLM, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, Stevens EL et al (2010) Whole-genome sequencing of a single proband together with linkage analysis identifies a mendelian disease gene. PLoS Genet 6:e1000991. https://doi.org/10.1371/journal.pgen.1000991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim HKW, Feng G-S, Chen D, King PD, Kamiya N (2014) Targeted disruption of Shp2 in chondrocytes leads to metachondromatosis with multiple cartilaginous protrusions. J Bone Miner Res 29:761–769. https://doi.org/10.1002/jbmr.2062

    Article  CAS  PubMed  Google Scholar 

  75. Bowen ME, Boyden ED, Holm IA, Campos-Xavier B, Bonafé L, Superti-Furga A et al (2011) Loss-of-function mutations in PTPN11 cause metachondromatosis, but not Ollier disease or Maffucci syndrome. PLoS Genet 7:e1002050. https://doi.org/10.1371/journal.pgen.1002050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bowen ME, Ayturk UM, Kurek KC, Yang W, Warman ML (2014) SHP2 Regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates. PLOS Genet 10:e1004364. https://doi.org/10.1371/journal.pgen.1004364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang W, Neel BG (2013) From an orphan disease to a generalized molecular mechanism. Rare Dis 1:e26657. https://doi.org/10.4161/rdis.26657

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yang W, Wang J, Moore DC, Liang H, Dooner M, Wu Q et al (2013) Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature 499:491–495. https://doi.org/10.1038/nature12396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K et al (2004) Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res 64:8816–8820. https://doi.org/10.1158/0008-5472.CAN-04-1923

    Article  CAS  PubMed  Google Scholar 

  80. Martinelli S, Carta C, Flex E, Binni F, Cordisco EL, Moretti S et al (2006) Activating PTPN11 mutations play a minor role in pediatric and adult solid tumors. Cancer Genet Cytogenet 166:124–129. https://doi.org/10.1016/j.cancergencyto.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  81. Chen Y-NP, LaMarche MJ, Chan HM, Fekkes P, Garcia-Fortanet J, Acker MG et al (2016) Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 535:148–152. https://doi.org/10.1038/nature18621

    Article  CAS  PubMed  Google Scholar 

  82. Nichols RJ, Haderk F, Stahlhut C, Schulze CJ, Hemmati G, Wildes D et al (2018) RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat Cell Biol 20:1064–1073. https://doi.org/10.1038/s41556-018-0169-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun B, Jensen NR, Chung D, Yang M, LaRue AC, Cheung HW et al (2019) Synergistic effects of SHP2 and PI3K pathway inhibitors in GAB2-overexpressing ovarian cancer. Am J Cancer Res 9:145–159

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Prahallad A, Heynen GJJE, Germano G, Willems SM, Evers B, Vecchione L et al (2015) PTPN11 Is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep 12:1978–1985. https://doi.org/10.1016/j.celrep.2015.08.037

    Article  CAS  PubMed  Google Scholar 

  85. Ruess DA, Heynen GJ, Ciecielski KJ, Ai J, Berninger A, Kabacaoglu D et al (2018) Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 24:954–960. https://doi.org/10.1038/s41591-018-0024-8

    Article  CAS  PubMed  Google Scholar 

  86. Fedele C, Ran H, Diskin B, Wei W, Jen J, Geer MJ et al (2018) SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov 8:1237–1249. https://doi.org/10.1158/2159-8290.CD-18-0444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kerr DL, Haderk F, Bivona TG (2021) Allosteric SHP2 inhibitors in cancer: targeting the intersection of RAS, resistance, and the immune microenvironment. Curr Opin Chem Biol 62:1–12. https://doi.org/10.1016/j.cbpa.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  88. Mohi MG, Neel BG (2007) The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev 17:23–30. https://doi.org/10.1016/j.gde.2006.12.011

    Article  CAS  PubMed  Google Scholar 

  89. Shen D, Chen W, Zhu J, Wu G, Shen R, Xi M et al (2020) Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur J Med Chem 190:112117. https://doi.org/10.1016/j.ejmech.2020.112117

    Article  CAS  PubMed  Google Scholar 

  90. Tajan M, de Rocca SA, Valet P, Edouard T, Yart A (2015) SHP2 sails from physiology to pathology. Eur J Med Genet 58:509–525. https://doi.org/10.1016/j.ejmg.2015.08.005

    Article  PubMed  Google Scholar 

  91. Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F et al (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 16:2352–2364. https://doi.org/10.1093/emboj/16.9.2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Saxton TM, Pawson T (1999) Morphogenetic movements at gastrulation require the SH2 tyrosine phosphatase Shp2. Proc Natl Acad Sci U S A 96:3790–3795. https://doi.org/10.1073/pnas.96.7.3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fornaro M, Burch PM, Yang W, Zhang L, Hamilton CE, Kim JH et al (2006) SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J Cell Biol 175:87–97. https://doi.org/10.1083/jcb.200602029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang SQ, Yang W, Kontaridis MI, Bivona TG, Wen G, Araki T et al (2004) Shp2 regulates SRC family kinase activity and Ras/Erk activation by controlling Csk recruitment. Mol Cell 13:341–355. https://doi.org/10.1016/s1097-2765(04)00050-4

    Article  PubMed  Google Scholar 

  95. Lapinski PE, Meyer MF, Feng G-S, Kamiya N, King PD (2013) Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice. Dis Model Mech 6:1448–1458. https://doi.org/10.1242/dmm.012849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389–394. https://doi.org/10.1016/s0945-053x(00)00094-9

    Article  PubMed  Google Scholar 

  97. Zuo C, Wang L, Kamalesh RM, Bowen ME, Moore DC, Dooner MS et al (2018) SHP2 regulates skeletal cell fate by modifying SOX9 expression and transcriptional activity. Bone Res 6:12. https://doi.org/10.1038/s41413-018-0013-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang L, Yang H, Huang J, Pei S, Wang L, Feng JQ et al (2021) Targeted Ptpn11 deletion in mice reveals the essential role of SHP2 in osteoblast differentiation and skeletal homeostasis. Bone Res 9:6. https://doi.org/10.1038/s41413-020-00129-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim HKW, Aruwajoye O, Sucato D, Richards BS, Feng G-S, Chen D et al (2013) Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and kyphosis in mice. Spine 38:E1307-1312. https://doi.org/10.1097/BRS.0b013e3182a3d370

    Article  PubMed  Google Scholar 

  100. Wang L, Huang J, Moore DC, Zuo C, Wu Q, Xie L et al (2017) SHP2 regulates the osteogenic fate of growth plate hypertrophic chondrocytes. Sci Rep 7:12699. https://doi.org/10.1038/s41598-017-12767-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kamiya N, Shen J, Noda K, Kitami M, Feng G-S, Chen D et al (2015) SHP2-deficiency in chondrocytes deforms orofacial cartilage and ciliogenesis in mice. J Bone Miner Res 30:2028–2032. https://doi.org/10.1002/jbmr.2541

    Article  CAS  PubMed  Google Scholar 

  102. Qu CK, Nguyen S, Chen J, Feng GS (2001) Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development. Blood 97:911–914. https://doi.org/10.1182/blood.v97.4.911

    Article  CAS  PubMed  Google Scholar 

  103. Broxmeyer HE, Etienne-Julan M, Gotoh A, Braun SE, Lu L, Cooper S et al (2013) Hematopoietic colony formation from human growth factor-dependent TF1 cells and human cord blood myeloid progenitor cells depends on SHP2 phosphatase function. Stem Cells Dev 22:998–1006. https://doi.org/10.1089/scd.2012.0478

    Article  CAS  PubMed  Google Scholar 

  104. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8:265–277. https://doi.org/10.1023/a:1008942828960

    Article  CAS  PubMed  Google Scholar 

  105. Kim H-J, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ et al (2006) Glucocorticoids suppress bone formation via the osteoclast. J Clin Invest 116:2152–2160. https://doi.org/10.1172/JCI28084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang C, McCoy K, Davis JL, Schmidt-Supprian M, Sasaki Y, Faccio R et al (2010) NIK stabilization in osteoclasts results in osteoporosis and enhanced inflammatory osteolysis. PLoS ONE 5:e15383. https://doi.org/10.1371/journal.pone.0015383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J (2010) Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr Pharm Des 16:1843–1862. https://doi.org/10.2174/138161210791209027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zeng L-F, Zhang R-Y, Yu Z-H, Li S, Wu L, Gunawan AM et al (2014) Therapeutic potential of targeting the oncogenic SHP2 phosphatase. J Med Chem 57:6594–6609. https://doi.org/10.1021/jm5006176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. He R, Zeng L-F, He Y, Zhang S, Zhang Z-Y (2013) Small molecule tools for functional interrogation of protein tyrosine phosphatases. FEBS J 280:731–750. https://doi.org/10.1111/j.1742-4658.2012.08718.x

    Article  CAS  PubMed  Google Scholar 

  110. Garcia Fortanet J, Chen CH-T, Chen Y-NP, Chen Z, Deng Z, Firestone B et al (2016) Allosteric inhibition of SHP2: identification of a potent, selective, and orally efficacious phosphatase inhibitor. J Med Chem 59:7773–7782. https://doi.org/10.1021/acs.jmedchem.6b00680

    Article  CAS  PubMed  Google Scholar 

  111. Reszka AA, Rodan GA (2003) Bisphosphonate mechanism of action. Curr Rheumatol Rep 5:65–74. https://doi.org/10.1007/s11926-003-0085-6

    Article  PubMed  Google Scholar 

  112. Chen L, Sung S-S, Yip MLR, Lawrence HR, Ren Y, Guida WC et al (2006) Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol Pharmacol 70:562–570. https://doi.org/10.1124/mol.106.025536

    Article  CAS  PubMed  Google Scholar 

  113. Zhang B, Du Y, Lu W, Yan X, Yang Q, Yang W et al (2016) Increased activity of Src homology 2 domain containing phosphotyrosine phosphatase 2 (Shp2) regulates activity-dependent AMPA receptor trafficking. J Biol Chem 291:18856–18866. https://doi.org/10.1074/jbc.M116.714501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126. https://doi.org/10.1146/annurev.neuro.25.112701.142758

    Article  CAS  PubMed  Google Scholar 

  115. Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110:443–455. https://doi.org/10.1016/s0092-8674(02)00897-8

    Article  CAS  PubMed  Google Scholar 

  116. Hellmuth K, Grosskopf S, Lum CT, Würtele M, Röder N, von Kries JP et al (2008) Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc Natl Acad Sci U S A 105:7275–7280. https://doi.org/10.1073/pnas.0710468105

    Article  PubMed  PubMed Central  Google Scholar 

  117. Timmerman I, Hoogenboezem M, Bennett AM, Geerts D, Hordijk PL, van Buul JD (2012) The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation. Mol Biol Cell 23:4212–4225. https://doi.org/10.1091/mbc.E12-01-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tao B, Jin W, Xu J, Liang Z, Yao J, Zhang Y et al (1950) Myeloid-specific disruption of tyrosine phosphatase Shp2 promotes alternative activation of macrophages and predisposes mice to pulmonary fibrosis. J Immunol 2014(193):2801–2811. https://doi.org/10.4049/jimmunol.1303463

    Article  CAS  Google Scholar 

  119. Zhao L, Xia J, Li T, Zhou H, Ouyang W, Hong Z et al (2016) Shp2 deficiency impairs the inflammatory response against haemophilus influenzae by regulating macrophage polarization. J Infect Dis 214:625–633. https://doi.org/10.1093/infdis/jiw205

    Article  CAS  PubMed  Google Scholar 

  120. Li F-F, Shen J, Shen H-J, Zhang X, Cao R, Zhang Y et al (1950) Shp2 plays an important role in acute cigarette smoke-mediated lung inflammation. J Immunol 2012(189):3159–3167. https://doi.org/10.4049/jimmunol.1200197

    Article  CAS  Google Scholar 

  121. Li S, Wang L, Zhao Q, Liu Y, He L, Xu Q et al (2014) SHP2 positively regulates tgfβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein hook1. J Biol Chem 289:34152–34160. https://doi.org/10.1074/jbc.M113.546077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen J, Cao Z, Guan J (2018) SHP2 inhibitor PHPS1 protects against atherosclerosis by inhibiting smooth muscle cell proliferation. BMC Cardiovasc Disord 18:72. https://doi.org/10.1186/s12872-018-0816-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang Z-Y (2002) Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 42:209–234. https://doi.org/10.1146/annurev.pharmtox.42.083001.144616

    Article  CAS  PubMed  Google Scholar 

  124. Zhang X, He Y, Liu S, Yu Z, Jiang Z-X, Yang Z et al (2010) Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem 53:2482–2493. https://doi.org/10.1021/jm901645u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sharma N, Everingham S, Ramdas B, Kapur R, Craig AWB (1950) SHP2 phosphatase promotes mast cell chemotaxis toward stem cell factor via enhancing activation of the Lyn/Vav/Rac signaling axis. J Immunol 2014(192):4859–4866. https://doi.org/10.4049/jimmunol.1301155

    Article  CAS  Google Scholar 

  126. Sharma N, Kumar V, Everingham S, Mali RS, Kapur R, Zeng L-F et al (2012) SH2 domain-containing phosphatase 2 is a critical regulator of connective tissue mast cell survival and homeostasis in mice. Mol Cell Biol 32:2653–2663. https://doi.org/10.1128/MCB.00308-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sharma N, Everingham S, Zeng L-F, Zhang Z-Y, Kapur R, Craig AWB (2014) Oncogenic KIT-induced aggressive systemic mastocytosis requires SHP2/PTPN11 phosphatase for disease progression in mice. Oncotarget 5:6130–6141. https://doi.org/10.18632/oncotarget.2177

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mali RS, Ma P, Zeng L-F, Martin H, Ramdas B, He Y et al (2012) Role of SHP2 phosphatase in KIT-induced transformation: identification of SHP2 as a druggable target in diseases involving oncogenic KIT. Blood 120:2669–2678. https://doi.org/10.1182/blood-2011-08-375873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Maeshima K, Stanford SM, Hammaker D, Sacchetti C, Zeng L, Ai R et al (2016) Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation. JCI Insight 1:e86580. https://doi.org/10.1172/jci.insight.86580

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wang J, Mizui M, Zeng L-F, Bronson R, Finnell M, Terhorst C et al (2016) Inhibition of SHP2 ameliorates the pathogenesis of systemic lupus erythematosus. J Clin Invest 126:2077–2092. https://doi.org/10.1172/JCI87037

    Article  PubMed  PubMed Central  Google Scholar 

  131. Grosskopf S, Eckert C, Arkona C, Radetzki S, Böhm K, Heinemann U et al (2015) Selective inhibitors of the protein tyrosine phosphatase SHP2 block cellular motility and growth of cancer cells in vitro and in vivo. ChemMedChem 10:815–826. https://doi.org/10.1002/cmdc.201500015

    Article  CAS  PubMed  Google Scholar 

  132. Griger J, Schneider R, Lahmann I, Schöwel V, Keller C, Spuler S et al (2017) Loss of Ptpn11 (Shp2) drives satellite cells into quiescence. Elife 6:e21552. https://doi.org/10.7554/eLife.21552

    Article  PubMed  PubMed Central  Google Scholar 

  133. Sun Y-J, Zhuo Z-L, Xian H-P, Chen K-Z, Yang F, Zhao X-T (2017) Shp2 regulates migratory behavior and response to EGFR-TKIs through ERK1/2 pathway activation in non-small cell lung cancer cells. Oncotarget 8:91123–91133. https://doi.org/10.18632/oncotarget.20249

    Article  PubMed  PubMed Central  Google Scholar 

  134. LaMarche MJ, Acker M, Argintaru A, Bauer D, Boisclair J, Chan H et al (2020) Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J Med Chem 63:13578–13594. https://doi.org/10.1021/acs.jmedchem.0c01170

    Article  CAS  PubMed  Google Scholar 

  135. Yuan X, Bu H, Zhou J, Yang C-Y, Zhang H (2020) Recent advances of SHP2 inhibitors in cancer therapy: current development and clinical application. J Med Chem 63:11368–11396. https://doi.org/10.1021/acs.jmedchem.0c00249

    Article  CAS  PubMed  Google Scholar 

  136. Sun X, Ren Y, Gunawan S, Teng P, Chen Z, Lawrence HR et al (2018) Selective inhibition of leukemia-associated SHP2E69K mutant by the allosteric SHP2 inhibitor SHP099. Leukemia 32:1246–1249. https://doi.org/10.1038/s41375-018-0020-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xie J, Si X, Gu S, Wang M, Shen J, Li H et al (2017) Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. J Med Chem 60:10205–10219. https://doi.org/10.1021/acs.jmedchem.7b01520

    Article  CAS  PubMed  Google Scholar 

  138. Gripp KW, Schill L, Schoyer L, Stronach B, Bennett AM, Blaser S et al (2020) The sixth international RASopathies symposium: precision medicine-From promise to practice. Am J Med Genet A 182:597–606. https://doi.org/10.1002/ajmg.a.61434

    Article  PubMed  Google Scholar 

  139. Choi E, Kikuchi S, Gao H, Brodzik K, Nassour I, Yopp A et al (2019) Mitotic regulators and the SHP2-MAPK pathway promote IR endocytosis and feedback regulation of insulin signaling. Nat Commun 10:1473. https://doi.org/10.1038/s41467-019-09318-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A et al (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308. https://doi.org/10.1016/j.cell.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D et al (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142:309–319. https://doi.org/10.1016/j.cell.2010.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, Wongjarupong N et al (2018) Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology 68:333–348. https://doi.org/10.1002/hep.29803

    Article  CAS  PubMed  Google Scholar 

  143. Wang J, Huang L, Huang Y, Jiang Y, Zhang L, Feng G et al (2021) Therapeutic effect of the injectable thermosensitive hydrogel loaded with SHP099 on intervertebral disc degeneration. Life Sci 266:118891. https://doi.org/10.1016/j.lfs.2020.118891

    Article  CAS  PubMed  Google Scholar 

  144. Celil AB, Campbell PG (2005) BMP-2 and insulin-like growth factor-I mediate Osterix (Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem 280:31353–31359. https://doi.org/10.1074/jbc.M503845200

    Article  CAS  PubMed  Google Scholar 

  145. Ge C, Yang Q, Zhao G, Yu H, Kirkwood KL, Franceschi RT (2012) Interactions between extracellular signal-regulated kinase 1/2 and P38 map kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J Bone Miner Res 27:538–551. https://doi.org/10.1002/jbmr.561

    Article  CAS  PubMed  Google Scholar 

  146. Nabinger SC, Li X, Ramdas B, He Y, Zhang X, Zeng L et al (2013) The Protein tyrosine phosphatase, Shp2, positively contributes to FLT3-ITD-induced hematopoietic progenitor hyperproliferation and malignant disease in vivo. Leukemia 27:398–408. https://doi.org/10.1038/leu.2012.308

    Article  CAS  PubMed  Google Scholar 

  147. Chen M-J, Wang Y-C, Wu D-W, Chen C-Y, Lee H (2019) Association of nuclear localization of SHP2 and YAP1 with unfavorable prognosis in non-small cell lung cancer. Pathol - Res Pract 215:801–806. https://doi.org/10.1016/j.prp.2019.01.027

    Article  CAS  PubMed  Google Scholar 

  148. Zhang Y, Lu W, Zhao Q, Chen J, Wang T, Ji J (2022) The role of the protein tyrosine phosphatase SHP2 in ossification. Dev Dyn 251:748–758. https://doi.org/10.1002/dvdy.449

    Article  CAS  PubMed  Google Scholar 

  149. Paccoud R, Saint-Laurent C, Piccolo E, Tajan M, Dortignac A, Pereira O et al (2021) SHP2 drives inflammation-triggered insulin resistance by reshaping tissue macrophage populations. Sci Transl Med 13:eabe2587. https://doi.org/10.1126/scitranslmed.abe2587

    Article  CAS  PubMed  Google Scholar 

  150. Yue X, Han T, Hao W, Wang M, Fu Y (2020) SHP2 knockdown ameliorates liver insulin resistance by activating IRS-2 phosphorylation through the AKT and ERK1/2 signaling pathways. FEBS Open Bio 10:2578–2587. https://doi.org/10.1002/2211-5463.12992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chang C-J, Lin C-F, Chen B-C, Lin P-Y, Chen C-L (2022) SHP2: The protein tyrosine phosphatase involved in chronic pulmonary inflammation and fibrosis. IUBMB Life 74:131–142. https://doi.org/10.1002/iub.2559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biomedical Laboratory Research and Development Program of the Department of Veterans Affairs (VA Merit Award to A.C.L., BX000333 and BX005168).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved of the final manuscript.

Corresponding author

Correspondence to Amanda C. LaRue.

Ethics declarations

Competing interests

Nathaniel R. Jensen, Ryan R. Kelly, Kirsten D. Kelly, Stephanie K. Khoo, Sara J. Sidles and Amanda C. LaRue declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jensen, N.R., Kelly, R.R., Kelly, K.D. et al. From Stem to Sternum: The Role of Shp2 in the Skeleton. Calcif Tissue Int 112, 403–421 (2023). https://doi.org/10.1007/s00223-022-01042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-01042-3

Keywords

Navigation