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Abstract
Circulating calciprotein particles (CPP), colloids of calcium, phosphate and proteins, were identified as potential drivers 
of the calcification process in chronic kidney disease. The present study compared CPP produced using different protocols 
with respect to particle morphology, composition, particle number and in vitro calcification potency. CPP were synthesized 
with 4.4 mM (CPP-A and B) or 6 mM (CPP-C and D) phosphate and 2.8 mM (CPP-A and B) or 10 mM (CPP-C and D) 
calcium, with either bovine fetuin-A (CPP-C) or fetal bovine serum (CPP-A, B and D) as a source of protein, and incubated 
for 7 (CPP-A2) or 14 days (CPP-B2), 12 h (CPP-C2, D2 and B1) or 30 min (CPP-D1). Particle number was determined 
with nanoparticle tracking and calcium content was measured in CPP preparations and to determine human vascular smooth 
muscle cell (hVSMC) calcification. Morphologically, CPP-C2 were the largest. Particle number did not correspond to the 
calcium content of CPP. Both methods of quantification resulted in variable potencies of CPP2 to calcify VSMC, with 
CPP-B2 as most stable inducer of hVSMC calcification. In contrast, CPP-B1 and D1 were unable to induce calcification of 
hVSMC, and endogenous CPP derived from pooled serum of dialysis patients were only able to calcify hVSMC to a small 
extent compared to CPP2.
CPP synthesized using different protocols appear morphologically similar, but in vitro calcification potency is dependent 
on composition and how the CPP are quantified. Synthetic CPP are not comparable to endogenous CPP in terms of the 
calcification propensity.

Keywords CPP · Vascular calcification · Calcium content · Chronic kidney disease

Introduction

Cardiovascular complications are the main cause of death 
in patients with chronic kidney disease (CKD) [1]. As a 
result of renal failure, serum phosphate  (Pi) concentrations 
are elevated in CKD patients.  Pi is a strong promotor of 

vascular calcification and is associated with an increased 
risk for cardiovascular mortality [2–4].

Recently, several groups have demonstrated that increased 
serum  Pi levels lead to the formation of calciprotein particles 
(CPP). CPP consist of  Pi, calcium  (Ca2+) and serum proteins 
such as the liver-derived mineral-binding protein, fetuin-A 
[5]. In the CKD-associated calcification milieu, amorphous 
primary CPP (CPP1) transform spontaneously into crystal-
line, hydroxyapatite-containing secondary CPP (CPP2). 
The transition from CPP1 to CPP2 is inhibited by serum 
components such as fetuin-A, albumin and magnesium [6]. 
Circulating CPP appear elevated in end-stage kidney dis-
ease patients compared to adults without renal impairment, 
with a greater preponderance of CPP2 [7–10]. The presence 
of CPP in CKD patients is associated with increased aortic 
stiffness, coronary artery calcification, and risk of death [7, 
11–13]. CPP2 have been shown to directly induce vascular 
smooth muscle cells (VSMC) calcification in vitro [14–16]. 
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Therefore, CPP2 are considered important drivers of vascu-
lar calcification and mediators of phosphate toxicity [17].

To further study the role of CPP in vascular calcification, 
several research groups have developed protocols to synthe-
size CPP1 and CPP2 in vitro [5, 6, 8–10, 13, 14, 18–31]. In 
these studies, supraphysiologic concentrations of  Ca2+ and 
 Pi up to 10 mmol/L are incubated with serum protein(s) to 
generate CPP. Different protein sources and variable con-
centrations of  Pi and  Ca2+ are used, depending on the pro-
tocol. Currently, there is no consensus on how to produce 
CPP1 or CPP2 synthetically. Therefore, the comparability 
and reproducibility of the results described in independent 
studies using synthetic CPP is currently greatly hampered.

This study aimed to investigate the effect of different CPP 
synthesis strategies on (1) CPP characteristics with respect 
to their morphology, composition, and quantity, and (2) their 
calcification potential in vitro. Additionally, characteristics 
of CPP1 and CPP2 were compared to endogenous CPP iso-
lated from the serum of CKD patients.

Methods

Protocol Selection

To collect the most frequently used protocols for synthe-
sizing CPP2 a PubMed search was conducted in March 
2019: “calciprotein particles” [All Fields] OR “calciprotein 
particle” [All Fields] NOT “review” [pt]. Potential articles 
were excluded when studies lacked a clear description in the 
method section of CPP2 synthesis consisting of a protein 
source and specified the source and concentration of  Pi and 
 Ca2+. All included articles are listed in Table 1. To facilitate 
comparisons between the protocols,  NaH2PO4 was used as 
 Pi source in all protocols.

Generation and Isolation of Synthetic CPP1 
and CPP2

CPP1 and CPP2 were generated according to two and four 
different protocols, respectively (summarized in Table 2). 
All CPP mixtures were prepared in open-cap T75 flasks 
with a final medium volume of 50 mL with gentle swirling 
between any addition. The CPP mixtures were prepared as 
follows. First, either 10% v/v FBS (Batch No. S14344S1810, 
BioWest, GE healthcare, Little Chalfont, UK) (CPP-A/B), 
40% v/v FBS (CPP-D) or 1 mg/mL bovine fetuin-A (F2379, 
Sigma, Saint Louis, Missouri, USA) (CPP-C) was added to 
pre-warmed incubation solution at 37 °C. For CPP-A/B phe-
nol-red free Dulbecco’s modified eagle medium (DMEM, 
#21063029, Gibco, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA), 1 mmol/L sodium pyruvate (Gibco), 
0.1 mmol/L non-essential amino acids (GE Healthcare) and 

antibiotics (either 10 μg/mL ciprofloxacine or 100 U peni-
cillin and 100 μg streptomycin) or M199 (Gibco) supple-
mented with 2 mmol l-glutamine and antibiotics was used 
as incubation solution and 140 mmol/L NaCl, 50 mmol/L 
Tris–HCl set to pH 7.4 for CPP-C/D. Second,  Pi  (NaH2PO4) 
was added to a final concentration of 4.4 mmol/L in CPP-
A/B and 6 mmol/L in CPP-C/D. Third, a concentrated  CaCl2 
stock was added to reach a final concentration of 2.8 mmol/L 
in CPP-A/B and 10 mmol/L in CPP-C/D. Finally, the mix-
tures were swirled gently and incubated for 14 days (CPP-
B2), 7 days (CCP-A2), 12 h (CPP-B1, C2 and D2) or 30 min 
(CPP-D1) in a humidified incubator at 37 °C containing 
5%  CO2 (v/v). To isolate CPP from the mixtures, samples 
were centrifuged in a high-speed centrifuge for 2 h at least 
24,000×g at 4 °C and washed in Tris-buffered saline (TBS). 
Subsequently, CPP were re-centrifuged before resuspending 
in TBS. Isolated CPP were used immediately for the calcifi-
cation experiments and the remaining samples were stored 
at 4 °C or – 80 °C for 14 days.

Transmission Electron Microscopy, 
Energy‑Dispersive Spectroscopy and X‑Ray Powder 
Diffraction of Synthetic CPP

For transmission electron microscopy (TEM) imaging, 
CPP pellets were washed in milli-Q water and transferred 
onto a Formvar-coated copper grid. After air-drying, high-
resolution images were obtained using a JEOL JEM 1400 
microscope (JEOL USA Inc., Peabody, Massachusetts, 
USA) with an accelerating voltage of 60 kV. Images were 
acquired using a Gatan Orius digital camera system (Gatan 
Inc., Pleasanton, California, USA). For energy-dispersive 
X-ray (EDX) analysis of CPP2, CPP pellets were washed 
in milli-Q water and airdried on copper tape for analysis. 
Micro-elemental analysis was performed in combination 
with a GeminiSEM Sigma 300 electron microscope (Zeiss, 
Oberkochen, Germany), using a Quantax 200 detector 
(Bruker, Massachusetts, USA). Measurements were obtained 
at an accelerating voltage of 20 kV. Elemental analysis of 
CPP1 were performed with an EDX arm on the JEOL JEM 
1400 microscope. For X-ray diffraction (XRD) analysis, 
diffractograms were measured on a Panalytical Empyrean 
(Malvern Panalytical, Malvern, UK) in transmission mode 
with fine-focus sealed tube, focusing mirror and PIXcel3D 
detector, using CuKα radiation. The samples were measured 
in 0.5 mm soda glass capillaries with a wall thickness of 
0.01 mm.

Nanoparticle Tracking Analysis

CPP quantification and size distribution was analyzed by 
nanoparticle tracking analysis (NTA) using a NanoSight 
NS300, with a 488 nm laser and sCMOS camera (Malvern 
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Panalytical, Malvern, UK). CPP pellets originating from 
equal volumes of CPP mixture were washed, diluted and 
measured in TBS. Samples were analyzed under a constant 
flow rate (50) at 25 °C. For each sample, three 30 s videos 
were captured with a camera level of 14. Data were analyzed 
using NTA 3.2.16 software with a detection threshold of 5.

Ca2+ Measurements in CPP Samples

Ca2+ concentration of the CPP pellets and concentrates were 
dissolved in 0.1 M HCl and measured using the o-cresol-
phthalein complexone method [32]. Volumes were kept 
equal between the CPP samples and resulting values were 
corrected for the concentration factor.

Isolation of Endogenous CPP

We created three pools of uraemic serum using samples 
obtained from patients undergoing chronic haemodialysis 
therapy for ESKD (Department of Nephrology, The Royal 

Melbourne Hospital), enrolled in the FLKESI prospective 
observational study, as previously described [27]. All par-
ticipants gave written informed consent, and the study was 
approved by local ethics committee (Melbourne Health 
Research and Ethics Committee ref.: 2012.141) and was 
conducted in accordance with the Declaration of Helsinki. 
Each pool was derived from 10 unique patients using equal 
volumes of fresh (unfrozen) serum (10 mL) from each par-
ticipant. Endogenous CPP were isolated by differential cen-
trifugation according to published methods [5]. CPP pellets 
were washed twice in TBS (50 mM Tris, 140 mM NaCl, 
pH 7.4) and resuspended in the same buffer (1 mL) prior to 
estimation of particle concentrations using NTA (see below). 
CPP were diluted to the desired concentration using TBS 
and stored at 4 °C without freezing.

Cell Culture

hVSMC were purchased from ATCC (#PCS-100-012, 
Manassas, Virginia, USA) and grown in medium consisting 

Table 2  Frequently used protocols in literature included in this paper

NEAA non-essential amino acids

Protocol name Protein source Concen-
tration  Pi 
(final)

Type of  Pi Concentra-
tion  CaCl2 
(final)

Incubation time Incubation 
tempera-
ture

Incubation buffer Storage solution

CPP-B1 10% FBS 4.4 mM NaH2PO4 2.8 mM 12 h 37 °C Phenol red-
free DMEM 
medium + 1% 
(v/v) sodium 
pyruvate and 
1% (v/v) NEAA 
and antibiotics

TBS

CPP-D1 40% FBS 6 mM NaH2PO4 10 mM 30 min 37 °C 140 mM NaCl,
50 mM Tris–HCl, 

pH 7.4

TBS

CPP-A2 10% FBS 4.4 mM NaH2PO4 2.8 mM 7 days 37 °C Phenol red-
free DMEM 
medium + 1% 
(v/v) sodium 
pyruvate and 
1% (v/v) NEAA 
and antibiotics

TBS

CPP-B2 10% FBS 4.4 mM NaH2PO4 2.8 mM 14 days 37 °C Phenol red-
free DMEM 
medium + 1% 
(v/v) sodium 
pyruvate and 
1% (v/v) NEAA 
and antibiotics

TBS

CPP-C2 1 mg/ml Bovine 
fetuin-A

6 mM NaH2PO4 10 mM 12 h 37 °C 140 mM NaCl,
50 mM Tris–HCl, 

pH 7.4

TBS

CPP-D2 40% FBS 6 mM NaH2PO4 10 mM 12 h 37 °C 140 mM NaCl,
50 mM Tris–HCl, 

pH 7.4

TBS
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of DMEM (Lonza, Basel, Switzerland) supplemented with 
20% (v/v) FBS, 2 mmol/L l-glutamine, 0.1 mmol/L non-
essential amino acids and antibiotics for all experiments 
except for the experiment of Fig. 5G. Here, phenol red free-
medium 199 (M199, Gibco) supplemented with 10% (v/v) 
FBS, 2 mmol/L l-glutamine and antibiotics was used and 
all cells were incubated at 37 °C in a humidified incubator 
containing 5%  CO2 (v/v). Cells were used for experiments 
up to passage ten. For calcification experiments, cells were 
seeded in 12-well plates and grown to confluence. Experi-
mental medium consisted of DMEM supplemented with 5% 
(v/v) FBS, 4 mmol/L l-glutamine, 0.1 mmol/L non-essential 
amino acids and antibiotics. Only 5% (v/v) FBS was used 
in experiments to be able to induce calcification, but not 
increase cytotoxicity of the VSMC during incubation. CPP2 
were added at a fixed concentration according to their  Ca2+ 
content equal to 100 µg  Ca2+ per mL medium (100 CPP2) 
for 24 h. For the experiments based on particle number, 
CPP2 were added at 5 ×  109 particles per mL cell culture 
medium for 24 h. This number was based on the amount of 
CPP-B used when treating the cells with 100 CPP2. Addi-
tionally, CPP1 and CPP2 were added to the experimental 
medium in a concentration of  108 particles per mL for 72 h 
to compare the effects to endogenous CPP, which could only 
be tested at lower concentrations due to their levels in vivo. 
For the experiment using endogenous CPP hVSMC were 
seeded at 2 ×  104 cells/cm2 in 24-well plates (Corning) and 
grown to 80% confluence. Cells were then serum-starved for 
12 h in M199 with 0.5% BSA (Sigma), before switching to 
fresh M199 medium containing 5% EV-depleted FBS and 
antibiotics supplemented with  108/mL CPP (endogenous or 
synthetic) or vehicle (TBS) 72 h.

Analysis of VSMC Calcification

For quantification of total calcium deposition, cells were 
washed with phosphate-buffered saline (PBS) and decalci-
fied in 0.1 M HCl at room temperature. Calcium concentra-
tion in the supernatant was measured using the o-cresol-
phthalein complexone method. Next, total cell lysis and total 
protein isolation of the cell monolayer was achieved by add-
ing 0.1 M NaOH/0.1% (w/v) sodium dodecyl sulfate (SDS). 
Calcium concentration was normalized for total protein, as 
measured by Pierce BCA protein detection kit according 
to the manufacturer’s protocol (Life Technologies, Thermo 
Fisher Scientific). For the experiment with endogenous CPP 
mineralization was measured as previously described [30]. 
The monolayer was gently washed with 0.9% saline and the 
cells lysed with 0.1% SDS in 0.1 M NaOH (Sigma). Insolu-
ble precipitates were dissolved overnight at 4 °C with 0.6 M 
HCl (Sigma) and the calcium concentration measured using 
a fluorometric probe (Ex/Em = 500/530 nm; #K409-100; 
BioVision) using a multimode plate reader (Sigma). Limit 

of detection 0.05 µM. Total protein content was determined 
using the micro-BCA assay (Pierce Scientific) and used for 
normalization.

Alizarin Red Staining

For visualization of calcium deposition, alizarin red was 
used as previously described [33]. Briefly, cell cultures were 
washed with PBS and fixed in 4% (v/v) buffered formal-
dehyde for 15 min, washed twice with milli-Q water and 
stained in 2% (w/v) alizarin red (Sigma) for 5 min. Before 
imaging the cells were washed with milli-Q water to remove 
excess Alizarin Red staining.

Statistical Analysis

Statistical analyses were conducted in GraphPad Prism 7 
(San Diego, California, USA). Parametric data as identi-
fied by the Shapiro–Wilk test was analyzed by a one-way 
ANOVA followed by the Tukey or šídák post hoc test to 
correct for multiple comparisons. A P-value of < 0.05 was 
considered statistically significant. Data are presented as 
mean ± standard error of the mean (SE) of at least three 
independent experiments each consisting of at least three 
replicates.

Results

Protocol Selection

A PubMed search (“calciprotein particles” [All Fields] OR 
“calciprotein particle” [All Fields] NOT “review” [pt]) was 
performed to identify articles that describe CPP2 synthesis 
in the context of CKD (inclusion criteria 1). Only studies 
describing synthesis methods of CPP were included, result-
ing in exclusion of 27 out of the 49 articles (n = 7 review arti-
cles, n = 20 cohort studies). The 22 remaining articles that 
provided sufficient methodological details (inclusion criteria 
2) are summarized in Table 1. We identified four protocols 
used across multiple articles and selected these for side-by-
side comparison: CPP-A2, CPP-B2, CPP-C2 and CPP-D2 
(Fig. 1). The protocols differ in concentrations of  Ca2+ and 
 Pi, protein source and incubation time (Table 1). CPP-A2 are 
formed in medium containing lower amount of serum and 
high concentrations of  Ca2+ and  Pi for 7 days. Additionally, 
this protocol was tested with a prolonged incubation time 
of 14 days because this yields more ripened CPP2 (protocol 
CPP-B2). In CPP-C2 and CPP-D2 high levels of both  Ca2+ 
and  Pi were added to a physiological buffer of 140 mM NaCl 
and 50 mM Tris (pH 7.4), containing either bovine fetuin-
A (CPP-C2) or 40% FBS (CPP-D2) as the protein source, 
requiring only an incubation time of 12 h. Additionally, two 
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protocols to synthesize CPP1 (CPP-B1 and CPP-D1) were 
also considered. These protocols are identical to CPP-A/B2 
and CPP-D2, with a shortened incubation time of 12 h and 
30 min, respectively. CPP-C1 was too unstable in our hands, 
and therefore not considered further in this study.

Characterization of CPP2 Morphology 
and Elemental Composition

The different CPP2 were compared based on morphol-
ogy, elemental composition and crystallinity using TEM 
and EDX analysis. Optically the morphology of all CPP2 
was similar (Fig.  2A–D). EDX analysis demonstrated 
that CPP-C2 and CPP-D2 contain most  Pi and  Ca2+ 
(Fig. 2E–H). Moreover, CPP-C2 were significantly larger in 
long axis diameter (310 ± 20 versus 190 ± 10, 200 ± 10 and 

200 ± 10 nm for CPP-A2, B2 and D2, respectively, Fig. 2I). 
X-ray diffraction (XRD) analysis showed that CPP-C2 con-
tain the most crystalline hydroxyapatite compared to the 
other CPP2 preparations (Fig. 2J).

Calcification Potency of CPP2

To test calcification potency of the different CPP2 prepa-
rations, we treated hVSMC for 24 h with a fixed amount 
of CPP2 spiked into the culture medium. In the first set 
of experiments, the  Ca2+ content of the CPP2 was used to 
standardize the amount added; here we used 100 µg  Ca2+ 
per ml medium (100 CPP2), as this has been widely used in 
other in vitro studies of CPP [14–16, 26, 30]. The  Ca2+ con-
tent of CPP-D2 (3080 ± 290 µg/mL  Ca2+) was significantly 
higher than CPP-A2 (1060 ± 210 µg/mL  Ca2+), CPP-B2 

Fig. 1  Flowchart of literature 
search and protocol selection. A 
PubMed search was performed 
in May 2019 which resulted in 
49 articles. Twenty-seven arti-
cles were excluded because they 
did not synthesize CPP in vitro. 
The twenty-two included 
articles were screened and the 
three most used protocols were 
selected (Protocol A, C and 
D). Protocol B was added to 
the comparison to have more 
matured CPP-A2. Additionally, 
protocols for CPP1 A/B and D 
are also included

PubMed search
"calciprotein particles"[All Fields] 
OR "calciprotein particle"[All Fields] 
NOT "review"[pt] 

Result 49 articles

Included 22 articles

Inclusion criteria (1) 
Description of CPP 
synthesis incl. protein 
source, phosphate 
and calcium

Inclusion criteria (2) 
Complete description
and protocol used in 
more than two articles

Excluded 
7 reviews
20 cohort studies

‘CPP-A2’
10% v/v FBS
4.4 mM Pi
2.8 mM CaCl2

7 days 
incubation

‘CPP-C2’
1 mg/ml FetA
6 mM Pi
10 mM CaCl2

12 hours 
incubation

‘CPP-D2’
40% v/v FBS
6 mM Pi
10 mM CaCl2

12 hours 
incubation

‘CPP-B2’
10% v/v FBS
4.4 mM Pi
2.8 mM CaCl2

14 days 
incubation

‘CPP-B1’
10% v/v FBS
4.4 mM Pi
2.8 mM CaCl2

12 hours 
incubation

‘CPP-D1’
40% v/v FBS
6 mM Pi
10 mM CaCl2

30 minutes 
incubation

CPP1

CPP2
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(1160 ± 210 µg/mL  Ca2+) and CPP-C2 (1800 ± 170 µg/mL 
 Ca2+, Fig. 3A). Supplementation of CPP2 standardized to 
the amount of  Ca2+ content led to variable calcium deposi-
tion (Fig. 3B), in which CPP-D2 induced least calcification 
(50 ± 10 µg  Ca2+/mg protein). Stimulation with CPP-A2 
resulted in less calcification (210 ± 40 µg  Ca2+/mg protein) 
compared to CPP-B2 (650 ± 190 µg  Ca2+/mg protein) and 
CPP-C2 (620 ± 150 µg  Ca2+/mg protein). The highest cal-
cification potency of CPP-B2 and CPP-C2 was confirmed 
visually with alizarin red staining of hVSMC (Fig. 3C).

However, because the  Ca2+ content does not neces-
sarily correspond with the number of particles present, 
we repeated the hVSMC experiment keeping the number 
of CPP2 constant. CPP2 quantity was measured using 
NTA (Fig. 4A) and expressed as the particle number per 
ml. Interestingly, the distribution of CPP2 particle num-
bers showed a different pattern to the measured  Ca2+ 

content. CPP-C2 yielded the highest number of particles 
(2.4 ×  1011 ± 8.3 ×  1010) compared to the other protocols 
(1.4 ×  1010 ± 2.1 ×  109 (CPP-A2), 3.6 ×  1010 ± 1.4 ×  109 
(CPP-B2) and 7.1 ×  1010 ± 1.2 ×  1010 particles/ml (CPP-D2), 
Fig. 4A). After treatment of hVSMC with 5 ×  109 particles 
per ml medium, which approximates to the particle number 
in 100 CPP-B2, calcification measurements were similar 
between CPP-A2 and CPP-B2 (850 ± 180 versus 720 ± 20 µg 
 Ca2+/mg protein, Fig. 4B). Compared to CPP-A2, calcium 
deposition was significantly lower in CPP-C2 (850 ± 180 
versus 360 ± 100 µg  Ca2+/mg protein). CPP-D2 was least 
potent to induce hVSMC calcification (120 ± 20 µg  Ca2+/mg 
protein), which was confirmed by Alizarin Red S staining in 
hVSMC (Fig. 4C).

Another option to normalize the quantity CPP to, is 
using total protein concentration. However, the protein con-
tent shows the same trend as found with calcium content 
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Fig. 2  Morphological and elemental characteristics of the different 
CPP2. Transmission electron microscopy (TEM) images of A  CPP-
A2, B  CPP-B2, C  CPP-C2, D  CPP-D2 based protocols. Scale bars 
correspond to 500 nm. E–H Relative amounts of electrolytes incor-
porated in the CPP were measured with energy-dispersive X-ray spec-
troscopy (EDX). I Size of the CPP as quantified on the TEM images. 

J With X-ray diffraction the crystallinity was determined in the dif-
ferently synthesized CPP. “+” signs indicate hydroxyapatite peaks. 
Lines indicate CPP-A2 (grey), CPP-B2 (black), CPP-C2 (red) and 
CPP-D2 (blue). Data are presented as mean ± SE of three independent 
experiments, *P < 0.05 versus all other CPP
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between the protocols (Supplemental Fig. S1). CPP-D2 had 
the highest protein content (3.7 ± 0.1 mg/ml), second most 
CPP-C2 (1.4 ± 0.1 mg/ml) and CPP-A2 and CPP-B2 show 
the same lowest protein content (0.8 ± 0.1 and 0.9 ± 0.1 mg/
ml, respectively). Normalization to protein content would 
therefore not change the calcification potency of the different 
CPP2 preparations.

Comparison Between Endogenous and Synthetically 
Made CPP

To determine which protocol of in vitro generated CPP that 
best resembles native CPP, we isolated CPP from the pooled 
serum of patients requiring haemodialysis therapy. In this 
endogenous CPP sample, CPP1 and CPP2 were identified 
by their characteristic morphology on cryo-TEM, with CPP2 
only representing 8% of the particles observed. Semiquanti-
tative XRD analysis identified these CPP samples as mostly 
amorphous in addition to a minor crystalline component, 
consistent with the predominance of CPP1 (Supplemental 
Fig. S2). NTA analysis revealed particle numbers equiva-
lent to 1.1 ×  107 ± 7.8 ×  106 particles/ml in serum (Sup-
plemental Fig. S3), which is several orders of magnitude 
lower than the amount of 5 ×  109 particles/ml that was used 
in this study and elsewhere. Consequently, we adapted the 
experimental conditions of our in vitro experiments to match 
the levels of endogenous CPP. First, we generated CPP-B1 

and CPP-D1 in addition to the previously tested CPP2 to 
assess the comparative calcification potency of CPP1. TEM 
pictures of CPP-B1 and CPP-D1 confirmed successful syn-
thesis of CPP1 (Fig. 5A, B). Elemental analysis using EDX 
confirmed high calcium and phosphorus levels in the CPP1 
(Fig. 5C, D). Second, we used a lower number of particles/
ml  (108) and prolonged hVSMC stimulation time of 72 h to 
compare calcification potency of CPP1 and CPP2 to endog-
enous CPP. No increased calcium deposition was measured 
after hVSMC exposed to CPP-D1 (6 ± 0), CPP-C2 (9 ± 1) 
and CPP-D2 (8 ± 1) compared to control (6 ± 0 µg  Ca2+/mg 
protein, Fig. 5G). Likewise, CPP-B1 did not increase calci-
fication (8 ± 6, Supplemental Fig. S4A). Endogenous CPP 
(E-CPP), CPP-A2 and CPP-B2 significantly increased cal-
cium deposition compared to control (E-CPP (35 ± 2), CPP-
A2 (66 ± 5), CPP-B2 (25 ± 3 µg  Ca2+/mg protein, Fig. 5G). 
Calcification of CPP-B2 was comparable to endogenous 
CPP calcification, whereas CPP-A2 was more potent to cal-
cify than endogenous CPP.

Stability of CPP2 After Prolonged Storage

To assess the stability of CPP2, calcification potency was 
studied after prolonged storage at 4  °C or following a 
freeze–thaw cycle after storage at – 80 °C. After 14 days 
of storage,  Ca2+ content was measured again and all  Ca2+ 
contents were comparable to the freshly measured  Ca2+ 
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Fig. 3  Calcium deposition after standardization by calcium con-
tent. A  Ca2+ content measured in the concentrated samples of CPP 
with the o-cresolphthalein complexone method. VSMC were incu-
bated with CPP volumes equal to 100 μg Ca/ml. B  Ca2+ deposition 

was measured after 24 h and C alizarin red staining was performed 
to visualize calcification. Scale bars correspond to 100 μm. Data are 
presented as mean ± SE of three independent experiments, *P < 0.05
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contents (Supplemental Fig. S5A). Additionally, the cor-
responding calcium deposition in hVSMC cultures was not 
significantly different from the calcification measured with 
fresh CPP2 samples across all four CPP2 types (Supplemen-
tal Fig. S5B).

Discussion

In this study, we show that commonly used protocols for 
CPP synthesis result in particles of different sizes, com-
position and in vitro calcification potency. Our systematic 
comparison of four widely used protocols to generate CPP, 
demonstrate that (1) the incubation with fetuin-A compared 

to FBS results in larger particles, (2) the use of high  Ca2+ 
and  Pi concentration increases the  Ca2+ content and (3) the 
incubation based on  Ca2+ content normalization results in 
significant differences in particle numbers. Altogether, these 
findings demonstrate the heterogeneity of experimental con-
ditions applied in CPP research that greatly hampers reliable 
comparisons between the various studies.

Our most striking finding is that the  Ca2+ content of 
CPP is not a reliable method to quantify CPP particles, 
when comparing different synthetic protocols. Measuring 
 Ca2+ content, is a fast, cheap and the most used method to 
quantify the amount of CPP whereas determining the num-
ber of particles by nanoparticle tracking analysis (NTA) 
is more time-consuming, more expensive and less widely 
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Fig. 5  Calcium deposition after stimulation with physiological levels 
of endogenous CPP, CPP1 and CPP2. Transmission electron micros-
copy (TEM) images of A  CPP-B1, B  CPP-D. Relative amounts of 
electrolytes incorporated in the CPP were measured with energy-dis-
persive X-ray spectroscopy for C CPP-B1 and D CPP-D1. E Distri-
bution of the number and size of particles measured by nanoparticle 
tracking analysis (NTA) of CPP-A2 (solid line), CPP-B2 (dotted line), 

CPP-C2 (intermittent dashed line), CPP-D2 (intermittent dashed 
dotted line) protocols. F NTA analysis of CPP-B1 (dotted line) and 
CPP-D1 (intermittent line). G Calcification deposition of the CPP 
was studied after standardizing for particle number and hVSMC were 
incubated with  108 particles/ml. Data are presented as mean ± SE of 
three independent experiments. Significance (p < 0.001) is depicted as 
different from control (a) or E-CPP (b). E-CPP, endogenous CPP
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used. Indeed, even in the minority of studies where NTA 
was performed [5, 10, 14],  Ca2+ content was still used to 
determine treatment dose. Our data clearly demonstrate that 
these two methods of quantitation do not correlate. Perhaps 
more importantly, the  Ca2+ content of CPP is not predictive 
of the calcification potency in vitro. In this study, CPP-D2 
demonstrated the highest  Ca2+ content of all CPP mixtures. 
However, CPP-D2 was not potent to calcify VSMC in all 
conditions. CPP-D2 also contained the highest total protein 
content, which could inhibit its calcification potency. Based 
on our analysis, this experimental approach should be recon-
sidered to enable better comparison between studies.

To our knowledge, we are the first to compare a large 
number of different protocols to synthesize both CPP1 and 
CPP2 and investigate their calcification potency on hVSMC. 
Previous studies have shown the calcification potency of 
CPP-A2 and CPP-B2 [14–16] and CPP-D2 [30], but proto-
col CPP-C2 was never tested on its calcification potency. As 
CPP maybe key drivers of calcification, most protocols are 
used in vitro to investigate different aspects of the calcifica-
tion process, including VSMC calcification.

Previously, a few studies compared endogenous CPP and 
synthetic CPP [5, 34]. Calcium phosphate particles isolated 
from atherosclerotic plagues and synthetic counterparts were 
compared on morphology, chemical properties and endothe-
lial toxicity [34], concluding that there are no distinct differ-
ences. These natural and synthetic particles were cultured 
using supplementation of 1 mmol/L  CaCl2 and 1 mmol/L 
 Na2HPO4 in DMEM containing 10% (v/v) FBS and incu-
bated for 6 weeks, which is a similar, but longer, protocol 
as the CPP-A/B2. Despite the very long maturation time, 
these synthetic particles did not calcify bovine and porcine 
pericardium, but induced apoptosis-mediated endothelial 
toxicity. Likewise, protein content of endogenous CPP com-
pared to uremic human serum derived CPP2 (comparable to 
CPP-D2) reflected the same predicted biological effects in 
pathways such as atherosclerosis, coagulation and comple-
ment system [5].

Endogenous CPP from CKD patients are a mixture of 
CPP1 and CPP2 [5]. Therefore, both CPP1 and CPP2 were 
tested in our experimental set-up. In contrast to CPP2, CPP1 
are not able to induce calcification in VSMC, confirming 
previous findings [14]. As shown here in this study and by 
others, CPP1 consist of amorphous material and are spheri-
cal entities, whereas CPP2 resemble a crystalline structure 
and are ellipsoid shaped particles [5, 9]. Probably this crys-
talline structure explains the increased potency of CPP2 to 
calcify tissues compared to CPP1. In healthy individuals, 
calciprotein monomers (CPM) may be the predominant 
form of protein-mineral complexes in the circulation [10, 
35]. This very small (± 9 nm in diameter) particle can cross 
the glomerular filtration barrier and is cleared by proximal 
tubule cells [35], whereas the larger CPP1 and CPP2 are 

mainly cleared by the liver and spleen [21, 24, 36]. Physi-
ologically these particles are interesting because they do 
not only circulate in CKD patients, but also in the general 
population. CPM were in different cell types not cytotoxic 
and were not able to induce an inflammatory response, in 
contrast to CPP1 and CPP2 [35]. It has been suggested that 
CPM play a role in the negative feedback loop to keep serum 
phosphate levels within the normal range, rather than induc-
ing ectopic calcification [36].

Our data demonstrates that endogenous CPP are able to 
induce low-level VSMC calcification with particle numbers 
equivalent to those observed in some dialysis patients with 
poorly controlled mineral balance [37]. Endogenous CPP 
contain more fetuin-A compared to synthetic CPP [5] and 
have a less crystalline structure [8]. Multiple studies showed 
that fetuin-A is an inhibitor of soft-tissue calcification [8, 
38–40]. Fetuin-A stabilizes the amorphous phase after Ca-Pi 
aggregation and delays crystallization into hydroxyapatite 
[9, 25]. Once matured into CPP2, the fetuin-A coat shields 
the crystalline core to prevent further growth and mediates 
safe disposal via macrophages [21, 24, 41]. Nevertheless, 
CPP-C2 that were formed solely using fetuin-A as a protein 
source were largest and most crystalline in our experiments.

The observation that fetuin-A enables most efficient CPP2 
formation and potently induces VSMC calcification is of 
interest. A potential explanation is that, in addition to fetuin-
A, other serum proteins determine CPP stabilization and 
their cytotoxicity [6, 42]. These proteins were absent in the 
synthesis protocol of CPP-C2, but are present in endogenous 
CPP [5, 12]. However, supplementation of fetuin-A to aque-
ous solutions containing  Ca2+ and  Pi prevented Ca-Pi crys-
tallization effectively [43]. In vivo fetuin-A likely acquire 
other serum proteins from serum to the CPP [44]. There-
fore, the translational value of CPP synthesized in presence 
of fetuin-A but in absence of other serum proteins is ques-
tionable, as endogenous CPP never solely contain fetuin-A. 
The differences in protein composition may therefore partly 
explain difference in the calcification potency of CPP2.

Formation of endogenous CPP is dependent on serum 
proteins available in the individual patient. In CKD 
patients the levels of fetuin-A and other proteins are 
lower than in healthy adults [7]. Moreover, CPP formed 
in uremic serum have been demonstrated to be uniquely 
enriched for carbonate-substituted apatite, DNA frag-
ments, small RNA and microbe-derived components [5]. 
Recently, it was shown that after feeding CPM, CPP1 
and CPP2 are formed, probably as a buffering system to 
handle high loads of calcium and phosphate. This was 
found to form in both healthy adults and in CKD patients 
stage 3 or higher, with a more pronounced effect of CPM 
formation in CKD patients [45]. This implies that CKD 
patients have an impaired buffering system for calcium 
and phosphate loads. Additionally, CKD patients have high 
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levels of protein bound uremic toxins such as indoxyl sul-
fate and p-cresyl sulfate [46]. Although further research 
is required, these factors may contribute to the higher 
potency of endogenous CPP to calcify VSMC.

A strength of this study it that we compared six dif-
ferent protocols to generate CPP1 and CPP2. Although 
multiple studies already showed VSMC calcification 
after CPP stimulation [14–16, 23, 30], we are the first to 
compare the effect of different synthetic CPP on VSMC 
calcification. Our results highlight that not all protocols 
yield the same CPP. The main limitation of our study is 
that we did not consider different sources of serum (e.g., 
from dialysis patients), which could affect translation of 
our results for CKD conditions. Moreover, our study was 
biased towards more frequently described CPP generation 
protocols. It should be noted that additional protocols have 
been described [16, 47–49]. The multitude of CPP genera-
tion protocols highlights the importance of our study. A 
standardized protocol to synthesize CPP would improve 
the reproducibility and the comparability of studies with 
synthetic CPP.

To conclude, this study demonstrates that it is important 
to standardize CPP synthesis protocols. Based on our results, 
we recommend the use of serum instead of fetuin-A alone as 
a source of protein, lower CPP concentrations determined 
by particle number, and to consider CPP1 in the experimen-
tal set-up to better mimic the in vivo environment of CKD 
patients.
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