Skip to main content
Log in

New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1)

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

A healthy skeleton depends on a continuous renewal and maintenance of the bone tissue. The process of bone remodeling is highly controlled and consists of a fine-tuned balance between bone formation and bone resorption. Biochemical markers of bone turnover are already in use for monitoring diseases and treatment involving the skeletal system, but novel biomarkers reflecting specific biological processes in bone and interacting tissues may prove useful for diagnostic, prognostic, and monitoring purposes. The Wnt-signaling pathway is one of the most important pathways controlling bone metabolism and consequently the action of inhibitors of the pathway such as sclerostin and Dickkopf-related protein 1 (DKK1) have crucial roles in controlling bone formation and resorption. Thus, they might be potential markers for clinical use as they reflect a number of physiological and pathophysiological events in bone and in the cross-talk with other tissues in the human body. This review focuses on the clinical utility of measurements of circulating sclerostin and DKK1 levels based on preanalytical and analytical considerations and on evidence obtained from published clinical studies. While accumulating evidence points to clear associations with a number of disease states for the two markers, and thus, the potential for especially sclerostin as a biochemical marker that may be used clinically, the lack of standardization or harmonization of the assays still hampers the clinical utility of the markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Takada J et al (2020) Relationship between P1NP, a biochemical marker of bone turnover, and bone mineral density in patients transitioned from alendronate to romosozumab or teriparatide: a post hoc analysis of the STRUCTURE trial. J Bone Miner Metab 38(3):310–315

    Article  CAS  Google Scholar 

  2. Tian A et al (2019) Reference markers of bone turnover for prediction of fracture: a meta-analysis. J Orthop Surg Res 14(1):68

    Article  Google Scholar 

  3. Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20(11):1394–1404

    Article  CAS  Google Scholar 

  4. Lojk J, Marc J (2021) Roles of non-canonical wnt signalling pathways in bone biology. Int J Mol Sci 22(19):10840

    Article  CAS  Google Scholar 

  5. Mulati M et al (2020) The long noncoding RNA Crnde regulates osteoblast proliferation through the Wnt/beta-catenin signaling pathway in mice. Bone 130:115076

    Article  CAS  Google Scholar 

  6. Geng A et al (2020) A novel function of R-spondin1 in regulating estrogen receptor expression independent of Wnt/beta-catenin signaling. Elife. https://doi.org/10.7554/eLife.56434

    Article  Google Scholar 

  7. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  Google Scholar 

  8. Chen M et al (2021) Morusin induces osteogenic differentiation of bone marrow mesenchymal stem cells by canonical Wnt/beta-catenin pathway and prevents bone loss in an ovariectomized rat model. Stem Cell Res Ther 12(1):173

    Article  Google Scholar 

  9. Galli C et al (2012) The importance of WNT pathways for bone metabolism and their regulation by implant topography. Eur Cell Mater 24:46–59

    Article  CAS  Google Scholar 

  10. Peng J et al (2021) Bone Sclerostin and Dickkopf-related protein-1 are positively correlated with bone mineral density, bone microarchitecture, and bone strength in postmenopausal osteoporosis. BMC Musculoskelet Disord 22(1):480

    Article  CAS  Google Scholar 

  11. Robling AG, Bonewald LF (2020) The osteocyte: new insights. Annu Rev Physiol 82:485–506

    Article  CAS  Google Scholar 

  12. Marvin MJ et al (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15(3):316–327

    Article  CAS  Google Scholar 

  13. Kim J et al (2020) Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat Commun 11(1):5357

    Article  CAS  Google Scholar 

  14. Kikuchi A (2000) Regulation of beta-catenin signaling in the Wnt pathway. Biochem Biophys Res Commun 268(2):243–248

    Article  CAS  Google Scholar 

  15. Lee DK et al (2006) Activation of the canonical Wnt/beta-catenin pathway enhances monocyte adhesion to endothelial cells. Biochem Biophys Res Commun 347(1):109–116

    Article  CAS  Google Scholar 

  16. Salbach-Hirsch J et al (2015) Structural and functional insights into sclerostin-glycosaminoglycan interactions in bone. Biomaterials 67:335–345

    Article  CAS  Google Scholar 

  17. Brogi S et al (2017) Activation of the Wnt pathway by small peptides: rational design synthesis and biological evaluation. Chem Med Chem 12(24):2074–2085

    Article  CAS  Google Scholar 

  18. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25(57):7469–7481

    Article  CAS  Google Scholar 

  19. Ahn VE et al (2011) Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Dev Cell 21(5):862–873

    Article  CAS  Google Scholar 

  20. Khalili S, Rasaee MJ, Bamdad T (2017) 3D structure of DKK1 indicates its involvement in both canonical and non-canonical Wnt pathways. Mol Biol (Mosk) 51(1):180–192

    Article  CAS  Google Scholar 

  21. Robling AG et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875

    Article  CAS  Google Scholar 

  22. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116(5):1202–1209

    Article  CAS  Google Scholar 

  23. Cosman F et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543

    Article  CAS  Google Scholar 

  24. Chapurlat RD, Confavreux CB (2016) Novel biological markers of bone: from bone metabolism to bone physiology. Rheumatology (Oxford) 55(10):1714–1725

    Article  Google Scholar 

  25. Cavalier E et al (2016) The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club. Osteoporos Int 27(7):2181–2195

    Article  CAS  Google Scholar 

  26. Weivoda MM, Youssef SJ, Oursler MJ (2017) Sclerostin expression and functions beyond the osteocyte. Bone 96:45–50

    Article  CAS  Google Scholar 

  27. Martinez-Gil N et al (2021) Genetics and genomics of SOST: functional analysis of variants and genomic regulation in osteoblasts. Int J Mol Sci 22(2):489

    Article  CAS  Google Scholar 

  28. Almroth G et al (2016) Sclerostin, TNF-alpha and Interleukin-18 Correlate and are together with klotho related to other growth factors and cytokines in haemodialysis patients. Scand J Immunol 83(1):58–63

    Article  CAS  Google Scholar 

  29. Deepak V, Kayastha P, McNamara LM (2017) Estrogen deficiency attenuates fluid flow-induced [Ca(2+)]i oscillations and mechanoresponsiveness of MLO-Y4 osteocytes. FASEB J 31(7):3027–3039

    Article  CAS  Google Scholar 

  30. Galea GL et al (2013) Estrogen receptor alpha mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor beta. J Biol Chem 288(13):9035–9048

    Article  CAS  Google Scholar 

  31. Zhang Y et al (2004) The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol Cell Biol 24(11):4677–4684

    Article  CAS  Google Scholar 

  32. Delanaye P et al (2018) Sclerostin and chronic kidney disease: the assay impacts what we (thought to) know. Nephrol Dial Transplant 33(8):1404–1410

    Article  CAS  Google Scholar 

  33. van Lierop A et al (2012) The role of sclerostin in the pathophysiology of sclerosing bone dysplasias. Clinical Reviews in Bone and Mineral Metabolism 10:108–116

    Article  CAS  Google Scholar 

  34. McNulty M et al (2011) Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab 96(7):E1159–E1162

    Article  Google Scholar 

  35. Piec I et al (2016) How accurate is your sclerostin measurement? Comparison between three commercially available sclerostin ELISA kits. Calcif Tissue Int 98(6):546–555

    Article  CAS  Google Scholar 

  36. Costa AG et al (2014) Comparison of two commercially available ELISAs for circulating sclerostin. Osteoporos Int 25(5):1547–1554

    Article  CAS  Google Scholar 

  37. Kerschan-Schindl K et al (2022) Circulating bioactive sclerostin levels in an Austrian population-based cohort. Wien Klin Wochenschr 134(1–2):39–44

    Article  CAS  Google Scholar 

  38. Drake MT et al (2018) Validation of a novel, rapid, high precision sclerostin assay not confounded by sclerostin fragments. Bone 111:36–43

    Article  CAS  Google Scholar 

  39. Mare A et al (2019) Clinical inference of serum and bone sclerostin levels in patients with end-stage kidney disease. J Clin Med 8(12):2027

    Article  Google Scholar 

  40. Kuipers AL et al (2014) Association of volumetric bone mineral density with abdominal aortic calcification in African ancestry men. Osteoporos Int 25(3):1063–1069

    Article  CAS  Google Scholar 

  41. Modder UI et al (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26(2):373–379

    Article  CAS  Google Scholar 

  42. Costa AG et al (2013) Circulating sclerostin levels and markers of bone turnover in Chinese-American and white women. J Clin Endocrinol Metab 98(12):4736–4743

    Article  CAS  Google Scholar 

  43. Ardawi MS et al (2011) Determinants of serum sclerostin in healthy pre- and postmenopausal women. J Bone Miner Res 26(12):2812–2822

    Article  CAS  Google Scholar 

  44. Kirmani S et al (2012) Sclerostin levels during growth in children. Osteoporos Int 23(3):1123–1130

    Article  CAS  Google Scholar 

  45. Fischer DC et al (2012) Paediatric reference values for the C-terminal fragment of fibroblast-growth factor-23, sclerostin, bone-specific alkaline phosphatase and isoform 5b of tartrate-resistant acid phosphatase. Ann Clin Biochem 49(Pt 6):546–553

    Article  CAS  Google Scholar 

  46. Dawson-Hughes B et al (2014) Serum sclerostin levels vary with season. J Clin Endocrinol Metab 99(1):E149–E152

    Article  Google Scholar 

  47. Sharma-Ghimire P et al (2022) Sclerostin and Dickkopf-1 characteristics according to age and physical activity levels in premenopausal women. J Clin Densitom 25(2):168–177

    Article  Google Scholar 

  48. Voorzanger-Rousselot N et al (2009) Assessment of circulating Dickkopf-1 with a new two-site immunoassay in healthy subjects and women with breast cancer and bone metastases. Calcif Tissue Int 84(5):348–354

    Article  CAS  Google Scholar 

  49. Garnero P et al (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24(2):489–494

    Article  CAS  Google Scholar 

  50. Cejka D et al (2012) Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol Dial Transplant 27(1):226–230

    Article  CAS  Google Scholar 

  51. Kuo TH et al (2019) Serum sclerostin levels are positively related to bone mineral density in peritoneal dialysis patients: a cross-sectional study. BMC Nephrol 20(1):266

    Article  Google Scholar 

  52. Arasu A et al (2012) Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab 97(6):2027–2032

    Article  CAS  Google Scholar 

  53. Ardawi MS et al (2012) High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study. J Bone Miner Res 27(12):2592–2602

    Article  CAS  Google Scholar 

  54. Szulc P et al (2013) Lower fracture risk in older men with higher sclerostin concentration: a prospective analysis from the MINOS study. J Bone Miner Res 28(4):855–864

    Article  CAS  Google Scholar 

  55. Lim Y et al (2016) Decreased plasma levels of sclerostin but not Dickkopf-1 are associated with an increased prevalence of osteoporotic fracture and lower bone mineral density in postmenopausal korean women. Calcif Tissue Int 99(4):350–359

    Article  CAS  Google Scholar 

  56. Piters E et al (2010) Common genetic variation in the DKK1 gene is associated with hip axis length but not with bone mineral density and bone turnover markers in young adult men: results from the Odense Androgen Study. Calcif Tissue Int 86(4):271–281

    Article  CAS  Google Scholar 

  57. Gaudio A et al (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95(5):2248–2253

    Article  CAS  Google Scholar 

  58. Hygum K et al (2017) Mechanisms in endocrinology: Diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol 176(3):R137–R157

    Article  CAS  Google Scholar 

  59. Piccoli A et al (2020) Sclerostin regulation, microarchitecture, and advanced glycation end-products in the bone of elderly women with Type 2 diabetes. J Bone Miner Res 35(12):2415–2422

    Article  CAS  Google Scholar 

  60. Lauterlein JL et al (2021) Serum sclerostin and glucose homeostasis: No association in healthy men. Cross-sectional and prospective data from the EGIR-RISC study. Bone 143:115681

    Article  CAS  Google Scholar 

  61. Umekwe N et al (2022) Plasma FGF-21 and sclerostin levels, glycemia, adiposity, and insulin sensitivity in normoglycemic black and white adults. J Endocr Soc 6(1):183

    Article  Google Scholar 

  62. Starup-Linde J et al (2021) Glucose variability and low bone turnover in people with type 2 diabetes. Bone 153:116159

    Article  CAS  Google Scholar 

  63. Wedrychowicz A, Sztefko K, Starzyk JB (2019) Sclerostin and its significance for children and adolescents with type 1 diabetes mellitus (T1D). Bone 120:387–392

    Article  CAS  Google Scholar 

  64. Wedrychowicz A, Sztefko K, Starzyk JB (2019) Sclerostin and its association with insulin resistance in children and adolescents. Bone 120:232–238

    Article  CAS  Google Scholar 

  65. Kurban S, Selver Eklioglu B, Selver MB (2022) Investigation of the relationship between serum sclerostin and dickkopf-1 protein levels with bone turnover in children and adolescents with type-1 diabetes mellitus. J Pediatr Endocrinol Metab 35(5):673–679

    Article  CAS  Google Scholar 

  66. Faienza MF et al (2017) High sclerostin and dickkopf-1 (DKK-1) serum levels in children and adolescents with Type 1 diabetes mellitus. J Clin Endocrinol Metab 102(4):1174–1181

    Article  Google Scholar 

  67. Lattanzio S et al (2014) Circulating dickkopf-1 in diabetes mellitus: association with platelet activation and effects of improved metabolic control and low-dose aspirin. J Am Heart Assoc. https://doi.org/10.1161/JAHA.114.001000

    Article  Google Scholar 

  68. Shi J et al (2017) Serum sclerostin levels in patients with ankylosing spondylitis and rheumatoid arthritis: a systematic review and meta-analysis. Biomed Res Int 2017:9295313

    Google Scholar 

  69. Zhang L et al (2016) Serum DKK-1 level in the development of ankylosing spondylitis and rheumatic arthritis: a meta-analysis. Exp Mol Med 48:e228

    Article  CAS  Google Scholar 

  70. Ardawi MS et al (2012) Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos Int 23(6):1789–1797

    Article  CAS  Google Scholar 

  71. van Lierop AH et al (2010) Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol 163(5):833–837

    Article  Google Scholar 

  72. Belaya ZE et al (2013) Serum extracellular secreted antagonists of the canonical Wnt/beta-catenin signaling pathway in patients with Cushing’s syndrome. Osteoporos Int 24(8):2191–2199

    Article  CAS  Google Scholar 

  73. van Lierop AH et al (2012) Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J Clin Endocrinol Metab 97(10):E1953–E1957

    Article  Google Scholar 

  74. Brabnikova Maresova K, Pavelka K, Stepan JJ (2013) Acute effects of glucocorticoids on serum markers of osteoclasts, osteoblasts, and osteocytes. Calcif Tissue Int 92(4):354–361

    Article  CAS  Google Scholar 

  75. Coluzzi F et al (2011) Bone metastatic disease: taking aim at new therapeutic targets. Curr Med Chem 18(20):3093–3115

    Article  CAS  Google Scholar 

  76. Compton JT, Lee FY (2014) A review of osteocyte function and the emerging importance of sclerostin. J Bone Joint Surg Am 96(19):1659–1668

    Article  Google Scholar 

  77. Yavropoulou MP et al (2012) Serum sclerostin levels in Paget’s disease and prostate cancer with bone metastases with a wide range of bone turnover. Bone 51(1):153–157

    Article  CAS  Google Scholar 

  78. Wibmer C et al (2016) Serum sclerostin levels in renal cell carcinoma patients with bone metastases. Sci Rep 6:33551

    Article  CAS  Google Scholar 

  79. El-Mahdy RI et al (2020) Circulating osteocyte-related biomarkers (vitamin D, sclerostin, dickkopf-1), hepcidin, and oxidative stress markers in early breast cancer: Their impact in disease progression and outcome. J Steroid Biochem Mol Biol 204:105773

    Article  CAS  Google Scholar 

  80. Galliera E et al (2020) Longitudinal evaluation of Wnt inhibitors and comparison with others serum osteoimmunological biomarkers in osteolytic bone metastasis. J Leukoc Biol 108(2):697–704

    Article  CAS  Google Scholar 

  81. Terpos E, Christoulas D, Gavriatopoulou M (2018) Biology and treatment of myeloma related bone disease. Metabolism 80:80–90

    Article  CAS  Google Scholar 

  82. Kaiser M et al (2008) Serum concentrations of DKK-1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Haematol 80(6):490–494

    Article  CAS  Google Scholar 

  83. Heider U et al (2009) Serum concentrations of DKK-1 decrease in patients with multiple myeloma responding to anti-myeloma treatment. Eur J Haematol 82(1):31–38

    Article  CAS  Google Scholar 

  84. Brunetti G et al (2011) Sclerostin is overexpressed by plasma cells from multiple myeloma patients. Ann N Y Acad Sci 1237:19–23

    Article  CAS  Google Scholar 

  85. Heath DJ et al (2009) Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 24(3):425–436

    Article  CAS  Google Scholar 

  86. Tian E et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  CAS  Google Scholar 

  87. Laroche M et al (2012) Dual-energy X-ray absorptiometry and biochemical markers of bone turnover after autologous stem cell transplantation in myeloma. Eur J Haematol 88(5):388–395

    Article  CAS  Google Scholar 

  88. Politou MC et al (2006) Serum concentrations of Dickkopf-1 protein are increased in patients with multiple myeloma and reduced after autologous stem cell transplantation. Int J Cancer 119(7):1728–1731

    Article  CAS  Google Scholar 

  89. Mabille C et al (2018) DKK1 and sclerostin are early markers of relapse in multiple myeloma. Bone 113:114–117

    Article  CAS  Google Scholar 

  90. Lemaire O et al (2010) DKK1 correlates with response and predicts rapid relapse after autologous stem cell transplantation in multiple myeloma. Eur J Haematol 84(3):276–277

    Article  Google Scholar 

  91. Vliegenthart R et al (2002) Stroke is associated with coronary calcification as detected by electron-beam CT: the rotterdam coronary calcification study. Stroke 33(2):462–465

    Article  Google Scholar 

  92. Kondos GT et al (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107(20):2571–2576

    Article  Google Scholar 

  93. Jean G et al (2016) High serum sclerostin levels are associated with a better outcome in haemodialysis patients. Nephron 132(3):181–190

    Article  CAS  Google Scholar 

  94. Zou Y et al (2020) Association of sclerostin with cardiovascular events and mortality in dialysis patients. Ren Fail 42(1):282–288

    Article  CAS  Google Scholar 

  95. Kanbay M et al (2014) Serum sclerostin and adverse outcomes in nondialyzed chronic kidney disease patients. J Clin Endocrinol Metab 99(10):E1854–E1861

    Article  CAS  Google Scholar 

  96. Drechsler C et al (2015) High levels of circulating sclerostin are associated with better cardiovascular survival in incident dialysis patients: results from the NECOSAD study. Nephrol Dial Transplant 30(2):288–293

    Article  CAS  Google Scholar 

  97. Morales-Santana S et al (2013) Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels. Diabetes Care 36(6):1667–1674

    Article  CAS  Google Scholar 

  98. Chen A et al (2018) Associations of sclerostin with carotid artery atherosclerosis and all-cause mortality in Chinese patients undergoing maintenance hemodialysis. BMC Nephrol 19(1):264

    Article  CAS  Google Scholar 

  99. Gaudio A et al (2014) The relationship between inhibitors of the Wnt signalling pathway (sclerostin and Dickkopf-1) and carotid intima-media thickness in postmenopausal women with type 2 diabetes mellitus. Diab Vasc Dis Res 11(1):48–52

    Article  CAS  Google Scholar 

  100. Hampson G et al (2013) The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in post-menopausal women. Bone 56(1):42–47

    Article  CAS  Google Scholar 

  101. Pelletier S et al (2015) Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int 26(8):2165–2174

    Article  CAS  Google Scholar 

  102. Paccou J et al (2014) The relationships between serum sclerostin, bone mineral density, and vascular calcification in rheumatoid arthritis. J Clin Endocrinol Metab 99(12):4740–4748

    Article  CAS  Google Scholar 

  103. Kanbay M et al (2016) Sclerostin, cardiovascular disease and mortality: a systematic review and meta-analysis. Int Urol Nephrol 48(12):2029–2042

    Article  CAS  Google Scholar 

  104. Ketteler M et al (2017) Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: what’s changed and why it matters. Kidney Int 92(1):26–36

    Article  Google Scholar 

  105. Pelletier S et al (2013) The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 8(5):819–823

    Article  CAS  Google Scholar 

  106. Evenepoel P, D’Haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88(2):235–240

    Article  CAS  Google Scholar 

  107. Jorgensen NR et al (2022) Patients with cirrhosis have elevated bone turnover but normal hepatic production of osteoprotegerin. J Clin Endocrinol Metab 107(3):e980–e995

    Article  Google Scholar 

  108. Durosier C et al (2013) Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J Clin Endocrinol Metab 98(9):3873–3883

    Article  CAS  Google Scholar 

  109. Ishimura E et al (2014) Relationship between serum sclerostin, bone metabolism markers, and bone mineral density in maintenance hemodialysis patients. J Clin Endocrinol Metab 99(11):4315–4320

    Article  CAS  Google Scholar 

  110. Viaene L et al (2013) Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol Dial Transplant 28(12):3024–3030

    Article  CAS  Google Scholar 

  111. Lima F et al (2019) Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers. Clin Nephrol 91(4):222–230

    Article  CAS  Google Scholar 

  112. Cejka D et al (2011) Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 6(4):877–882

    Article  CAS  Google Scholar 

  113. Ryan ZC et al (2013) Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA 110(15):6199–6204

    Article  CAS  Google Scholar 

  114. de Oliveira RA et al (2015) Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int 87(5):1039–1045

    Article  Google Scholar 

  115. Evenepoel P et al (2019) Bone mineral density, bone turnover markers, and incident fractures in de novo kidney transplant recipients. Kidney Int 95(6):1461–1470

    Article  Google Scholar 

  116. Malluche HH et al (2014) Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin J Am Soc Nephrol 9(7):1254–1262

    Article  CAS  Google Scholar 

  117. Moyses RM et al (2015) Can we compare serum sclerostin results obtained with different assays in hemodialysis patients? Int Urol Nephrol 47(5):847–850

    Article  CAS  Google Scholar 

  118. Hamada-Ode K et al (2019) Serum dickkopf-related protein 1 and sclerostin may predict the progression of chronic kidney disease in Japanese patients. Nephrol Dial Transplant 34(8):1426–1427

    Article  CAS  Google Scholar 

  119. Morena M et al (2015) Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis: potential partners in vascular calcifications. Nephrol Dial Transplant 30(8):1345–1356

    Article  CAS  Google Scholar 

  120. Thambiah S et al (2012) Circulating sclerostin and Dickkopf-1 (DKK1) in predialysis chronic kidney disease (CKD): relationship with bone density and arterial stiffness. Calcif Tissue Int 90(6):473–480

    Article  CAS  Google Scholar 

  121. Register TC et al (2013) Plasma Dickkopf1 (DKK1) concentrations negatively associate with atherosclerotic calcified plaque in African-Americans with type 2 diabetes. J Clin Endocrinol Metab 98(1):E60–E65

    Article  CAS  Google Scholar 

  122. Szulc P et al (2014) Severe abdominal aortic calcification in older men is negatively associated with DKK1 serum levels: the STRAMBO study. J Clin Endocrinol Metab 99(2):617–624

    Article  CAS  Google Scholar 

  123. Forster CM et al (2020) Circulating levels of dickkopf-related protein 1 decrease as measured GFR declines and are associated with PTH levels. Am J Nephrol 51(11):871–880

    Article  CAS  Google Scholar 

  124. Mause SF et al (2016) Validation of commercially available ELISAs for the detection of circulating sclerostin in hemodialysis patients. Discoveries (Craiova) 4(1):e55

    Article  Google Scholar 

  125. Swanson C et al (2017) 24-hour profile of serum sclerostin and its association with bone biomarkers in men. Osteoporos Int 28(11):3205–3213

    Article  CAS  Google Scholar 

  126. van der Spoel E et al (2019) The 24-hour serum profiles of bone markers in healthy older men and women. Bone 120:61–69

    Article  Google Scholar 

  127. Hygum K et al (2019) The diurnal variation of bone formation is attenuated in adult patients with type 2 diabetes. Eur J Endocrinol 181(3):221–231

    Article  CAS  Google Scholar 

  128. Araujo M et al (2019) Comparison of serum levels with bone content and gene expression indicate a contradictory effect of kidney transplantation on sclerostin. Kidney Int 96(5):1100–1104

    Article  CAS  Google Scholar 

  129. Voorzanger-Rousselot N et al (2009) Platelet is a major contributor to circulating levels of Dickkopf-1: clinical implications in patients with multiple myeloma. Br J Haematol 145(2):264–266

    Article  CAS  Google Scholar 

  130. van Lierop AH et al (2011) Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 26(12):2804–2811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Niklas Rye Jørgensen.

Ethics declarations

Conflict of interest

Aylin Sepinci Dincel and Niklas Rye Jørgensen declare that they have no conflict of interest relevant to this manuscript.

Human and Animal Rights

No permissions for human or animal experiments have been sought and no informed consents from patients have been obtained as this is irrelevant as the current study is a review of existing literature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dincel, A.S., Jørgensen, N.R. & on behalf of the IOF-IFCC Joint Committee on Bone Metabolism (C-BM). New Emerging Biomarkers for Bone Disease: Sclerostin and Dickkopf-1 (DKK1). Calcif Tissue Int 112, 243–257 (2023). https://doi.org/10.1007/s00223-022-01020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-01020-9

Keywords

Navigation