Skip to main content

Advertisement

Log in

Bone Involvement in Patients with Spondyloarthropathies

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Spondyloarthropathies (SpA) are common systemic inflammatory rheumatic diseases, in which, as in other rheumatic diseases, levels of markers of bone resorption are elevated, leading to bone loss and elevated risk of vertebral fractures. However, the diseases are also associated with new bone formation in the spine, the so-called syndesmophytes. We tried to unravel the pathogenesis of formation and growth of syndesmophytes and evaluated new diagnostic and treatment options. After a successful meeting of the Working Group on Rheumatic Diseases at the ECTS 2020, we (WL and CR) were excited about the quality of the speakers (CM, JH, AG, and GL) and their complimentary lectures. Given the relative lack of reviews on spondyloarthropathies and bone, we decided to work together on a comprehensive review that might be interesting for basic scientists and clinically relevant for clinicians. Radiographic progression in axSpA is linked to several risk factors, like male sex, smoking, HLA-B-27, increased levels of CRP, presence of syndesmophytes, and marked inflammation on MRI. The potential role of mechanical stress in the context of physically demanding jobs has been also suggested to promote structural damages. Different treatment options from NSAIDs to biologic agents like TNF inhibitors (TNFi) or IL-17inhibitors (IL-17i) result in a reduction of inflammation and symptoms. However, all these different treatment options failed to show clear and reproducible results on inhibition on syndesmophyte formation. The majority of data are available on TNFi, and some studies suggested an effect in subgroups of patients with ankylosing spondylitis. Less information is available on NSAIDs and IL-17i. Since IL-17i have been introduced quite recently, more studies are expected. IL-17 inhibitors (Il-17i) potently reduce signs and symptoms, but serum level of IL-17 is not elevated, therefore, IL-17 probably has mainly a local effect. The failure of anti-IL-23 in axSpA suggests that IL-17A production could be independent from IL-23. It may be upregulated by TNFα, resulting in lower expression of DKK1 and RANKL and an increase in osteogenesis. In active AS markers of bone resorption are increased, while bone formation markers can be increased or decreased. Bone Turnover markers and additional markers related to Wnt such as DKK1, sclerostin, and RANKL are valuable for elucidating bone metabolism on a group level and they are not (yet) able to predict individual patient outcomes. The gold standard for detection of structural lesions in clinical practice is the use of conventional radiographics. However, the resolution is low compared to the change over time and the interval for detecting changes are 2 years or more. Modern techniques offer substantial advantages such as the early detection of bone marrow edema with MRI, the fivefold increased detection rate of new or growing syndesmophytes with low-dose CT, and the decrease in 18F-fluoride uptake during treatment with TNFα-inhibitors (TNFi) in a pilot study in 12 AS patients. Detection of bone involvement by new techniques, such as low-dose CT, MRI and 18-Fluoride PET-scans, and bone turnover markers, in combination with focusing on high-risk groups such as patients with early disease, elevated CRP, syndesmophytes at baseline, male patients and patients with HLA-B27 + are promising options for the near future. However, for optimal prevention of formation of syndesmophytes we need more detailed insight in the pathogenesis of bone formation in axSpA and probably more targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lories RJ, Luyten FP, de Vlam K (2009) Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis. Arthritis Res Ther 11(2):221

    PubMed  PubMed Central  Google Scholar 

  2. van der Heijde D et al (2008) Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheumatol 58(10):3063–3070

    Google Scholar 

  3. van der Heijde D et al (2008) Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheumatol 58(5):1324–1331

    Google Scholar 

  4. van der Heijde D, Landewé R, van der Linden S (2005) How should treatment effect on spinal radiographic progression in patients with ankylosing spondylitis be measured? Arthritis Rheumatol 52(7):1979–1985

    Google Scholar 

  5. Haroon N et al (2013) The Impact of TNF-inhibitors on radiographic progression in Ankylosing Spondylitis. Arthritis Rheumtol 65(10):2645–2654

    CAS  Google Scholar 

  6. Ramiro S, Stolwijk C, van Tubergen A, van der Heijde D, Dougados M, van den Bosch F, Landewé R (2015 Jan) Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study. Ann Rheum Dis 74(1):52–59

    PubMed  Google Scholar 

  7. Gong Y, Zheng N, Chen SB et al (2012) Ten years’ experience with needle biopsy in the early diagnosis of sacroiliitis. Arthritis Rheumatol 64:1399–1406

    Google Scholar 

  8. Baraliakos X et al (2014) A long-term observational study using MRI and conventional radiography. Ann Rheum Dis 73:1819–1825. https://doi.org/10.1136/annrheumdis-2013-203425

    Article  CAS  PubMed  Google Scholar 

  9. Schett G, Rudwaleit M (2010) Can we stop progression of ankylosing spondylitis? Best Pract Res Clin Rheumatol 24(3):363–371. https://doi.org/10.1016/j.berh.2010.01.005

    Article  PubMed  Google Scholar 

  10. Baraliakos X, Listing J, Rudwaleit M et al (2007) Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis 66:910–915

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Poddubnyy D, Haibel H, Listing J et al (2012) Baseline radiographic damage, elevated acute phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheumatol 64:1388–1398

    Google Scholar 

  12. Machado PM, Baraliakos X, van der Heijde D, Braun J, Landewé R (2016) MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann Rheum Dis 75:1486–1493

    PubMed  Google Scholar 

  13. Ramiro S, van Tubergen A, van der Heijde D et al (2014) Brief report : erosions and sclerosis on radiographs precede the subsequent development of syndesmophytes at the same site: a twelve-year prospective follow-up of patients with ankylosing spondylitis. Arthritis Rheumatol 66:2773–2779

    PubMed  Google Scholar 

  14. Ward MM, Hendrey MR, Malley JD, Learch TJ, Davis JC Jr, Reveille JD, Weisman MH (2009) Clinical and immunogenetic prognostic factors for radiographic severity in ankylosing spondylitis. Arthritis Rheumatol 61(7):859–866

    CAS  Google Scholar 

  15. Ramiro S, Landewé R, van Tubergen A, Boonen A, Stolwijk C, Dougados M, van den Bosch F, van der Heijde D (2015) Lifestyle factors may modify the effect of disease activity on radiographic progression in patients with ankylosing spondylitis: a longitudinal analysis. RMD Open 1(1):e000153

    PubMed  PubMed Central  Google Scholar 

  16. Perrotta FM, Lories R, Lubrano E (2021) To move or not to move: the paradoxical effect of physical exercise in axial spondyloarthritis. RMD Open 7(1):e001480

    PubMed  PubMed Central  Google Scholar 

  17. Hamersma J, Cardon LR, Bradbury L, Brophy S, van der Horst-Bruinsma I, Calin A, Brown MA (2001) Is disease severity in ankylosing spondylitis genetically determined? Arthritis Rheumatol 44(6):1396–1400

    CAS  Google Scholar 

  18. Haroon N, Maksymowych WP, Rahman P, Tsui FW, O’Shea FD, Inman RD (2012) Radiographic severity of ankylosing spondylitis is associated with polymorphism of the large multifunctional peptidase 2 gene in the Spondyloarthritis Research Consortium of Canada cohort. Arthritis Rheumatol 64(4):1119–1126

    CAS  Google Scholar 

  19. Bartolomé N, Szczypiorska M, Sánchez A, Sanz J, Juanola-Roura X, Gratacós J, Zarco-Montejo P, Collantes E, Martínez A, Tejedor D, Artieda M, Mulero J (2012) Genetic polymorphisms inside and outside the MHC improve prediction of AS radiographic severity in addition to clinical variables. Rheumatology (Oxford) 51(8):1471–1478

    Google Scholar 

  20. Cortes A, Maksymowych WP, Wordsworth BP, Inman RD, Danoy P, Rahman P, Stone MA, Corr M, Gensler LS, Gladman D, Morgan A, Marzo-Ortega H, Ward MM, SPARCC (Spondyloarthritis Research Consortium of Canada), TASC (Australo-Anglo-American Spondyloarthritis Consortium), Learch TJ, Reveille JD, Brown MA, Weisman MH (2015) Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann Rheum Dis 74(7):1387–1393

    CAS  PubMed  Google Scholar 

  21. Baeten D, Østergaard M, Wei JC-C, Sieper J, Järvinen P, Tam L-S et al (2018) Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis 2018:213328

    Google Scholar 

  22. Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, Emery P et al (2015) Secukinumab, an interleukin-17A inhibitor ankylosing spondylitis. N Engl J Med 373(26):2534–2548

    CAS  PubMed  Google Scholar 

  23. Braun J, Baraliakos X, Deodhar A, Baeten D, Sieper J, Emery P et al (2017) Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study. Ann Rheum Dis 76(6):1070–1077

    CAS  PubMed  Google Scholar 

  24. Deodhar A, van der Heijde D, Gensler LS, Kim TH, Maksymowych WP, Østergaard M, Poddubnyy D, Marzo-Ortega H, Bessette L, Tomita T, Leung A, Hojnik M, Gallo G, Li X, Adams D, Carlier H, Sieper J (2020) Ixekizumab for patients with non-radiographic axial spondyloarthritis (COAST-X): a randomised, placebo-controlled trial. Lancet 395(10217):53–64

    CAS  PubMed  Google Scholar 

  25. Dougados M, Wei JC, Landewé R, Sieper J, Baraliakos X, Van den Bosch F, Maksymowych WP, Ermann J, Walsh JA, Tomita T, Deodhar A, van der Heijde D, Li X, Zhao F, Bertram CC, Gallo G, Carlier H, Gensler LS (2020) Efficacy and safety of ixekizumab through 52 weeks in two phase 3, randomised, controlled clinical trials in patients with active radiographic axial spondyloarthritis (COAST-V and COAST-W). Ann Rheum Dis 79(2):176–185

    CAS  PubMed  Google Scholar 

  26. Rosine N, Etcheto A, Hendel-Chavez H, Seror R, Briot K, Molto A, Chanson P, Taoufik Y, Wendling D, Lories R, Berenbaum F, van den Berg R, Claudepierre P, Feydy A, Dougados M, Roux C, Miceli-Richard C (2018 May 16) Increase In Il-31 serum levels is associated with reduced structural damage in early axial spondyloarthritis. Sci Rep 8(1):7731

    PubMed  PubMed Central  Google Scholar 

  27. Appel H, Maier R, Wu P, Scheer R, Hempfing A, Kayser R et al (2011) Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther 13(3):R95

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Watad A, Rowe H, Russell T, Zhou Q, Anderson LK, Khan A et al (2020) Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann Rheum Dis 79(8):1044–1054

    CAS  PubMed  Google Scholar 

  29. Cuthbert RJ, Fragkakis EM, Dunsmuir R, Li Z, Coles M, Marzo-Ortega H et al (2017) Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol 69(9):1816–1822

    CAS  PubMed  Google Scholar 

  30. Cuthbert RJ, Watad A, Fragkakis EM, Dunsmuir R, Loughenbury P, Khan A et al (2019) Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis 78(11):1559–1565

    CAS  PubMed  Google Scholar 

  31. Vieira-Sousa E, van Duivenvoorde LM, Fonseca JE, Lories RJ, Baeten DL (2015) Review: animal models as a tool to dissect pivotal pathways driving spondyloarthritis. Arthritis Rheumatol 67(11):2813–2827

    PubMed  Google Scholar 

  32. Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, Alexander K et al (2012) β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheumatol 64(7):2211–2222

    CAS  Google Scholar 

  33. van Tok MN, Na S, Lao CR, Alvi M, Pots D, van de Sande MGH et al (2018) The initiation, but not the persistence, of experimental spondyloarthritis is dependent on interleukin-23 signaling. Front Immunol 9:1550

    PubMed  PubMed Central  Google Scholar 

  34. Sherlock JP, Joyce-Shaikh B, Turner SP, Chao C-C, Sathe M, Grein J et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat Med 18(7):1069–1076

    CAS  PubMed  Google Scholar 

  35. Reinhardt A, Yevsa T, Worbs T, Lienenklaus S, Sandrock I, Oberdörfer L et al (2016) Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol 68(10):2476–2486

    CAS  PubMed  Google Scholar 

  36. van Tok MN, van Duivenvoorde LM, Kramer I, Ingold P, Pfister S, Roth L et al (2019) Interleukin-17A inhibition diminishes inflammation and new bone formation in experimental spondyloarthritis. Arthritis Rheumatol 71(4):612–625

    PubMed  Google Scholar 

  37. Asari T, Furukawa K-I, Tanaka S, Kudo H, Mizukami H, Ono A et al (2012) Mesenchymal stem cell isolation and characterization from human spinal ligaments. Biochem Biophys Res Commun 417(4):1193–1199

    CAS  PubMed  Google Scholar 

  38. Huang H, Kim HJ, Chang EJ, Lee ZH, Hwang SJ, Kim HM, Lee Y, Kim HH (2009 Oct) IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ 16(10):1332–1343

    CAS  PubMed  Google Scholar 

  39. Nam D, Mau E, Wang Y, Wright D, Silkstone D, Whetstone H et al (2012) T-lymphocytes enable osteoblast maturation via IL-17F during the early phase of fracture repair. PLoS ONE 7(6):e40044

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Osta B, Lavocat F, Eljaafari A, Miossec P (2014) Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front Immunol 5:425

    PubMed  PubMed Central  Google Scholar 

  41. Croes M, Kruyt MC, Groen WM, van Dorenmalen KMA, Dhert WJA, Öner FC et al (2018) Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation. Sci Rep 8(1):7269

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Riegel A, Maurer T, Prior B, Stegmaier S, Heppert V, Wagner C et al (2012) Human polymorphonuclear neutrophils express RANK and are activated by its ligand. RANKL. Eur J Immunol. 42(4):975–981

    CAS  PubMed  Google Scholar 

  43. Moutsopoulos NM, Zerbe CS, Wild T, Dutzan N, Brenchley L, DiPasquale G et al (2017) Interleukin-12 and interleukin-23 blockade in leukocyte adhesion deficiency type 1. N Engl J Med 376(12):1141–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Moutsopoulos NM, Konkel J, Sarmadi M, Eskan MA, Wild T, Dutzan N et al (2014) Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med. 6(229):229ra40

    PubMed  PubMed Central  Google Scholar 

  45. Papagoras C, Chrysanthopoulou A, Mitsios A, Ntinopoulou M, Tsironidou V, Batsali AK et al (2021) IL 17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation towards bone-forming cells in ankylosing spondylitis. Eur J Immunol 51:930

    CAS  PubMed  Google Scholar 

  46. Fassio A, Gatti D, Rossini M, Idolazzi L, Giollo A, Adami G et al (2019) Secukinumab produces a quick increase in WNT signalling antagonists in patients with psoriatic arthritis. Clin Exp Rheumatol févr 37(1):133–136

    Google Scholar 

  47. McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, Blumenschein WM, McClanahan TK, O’Shea JJ, Cua DJ (2009) The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol 10:314–324

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Baeten D, Østergaard M, Wei JC, Sieper J, Järvinen P, Tam LS, Salvarani C, Kim TH, Solinger A, Datsenko Y, Pamulapati C, Visvanathan S, Hall DB, Aslanyan S, Scholl P, Padula SJ (2018 Sep) Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann Rheum Dis 77(9):1295–1302

    CAS  PubMed  Google Scholar 

  49. Deodhar A, Gensler LS, Sieper J, Clark M, Calderon C, Wang Y, Zhou Y, Leu JH, Campbell K, Sweet K, Harrison DD, Hsia EC, van der Heijde D (2019) Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol 71(2):258–270

    CAS  PubMed  Google Scholar 

  50. Ritchlin C, Rahman P, Kavanaugh A, McInnes IB, Puig L, Li S, Wang Y, Shen YK, Doyle MK, Mendelsohn AM, Gottlieb AB, PSUMMIT 2 Study Group. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial.

  51. McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, Ritchlin C, Brodmerkel C, Li S, Wang Y, Mendelsohn AM, Doyle MK (2013) Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382(9894):780–789

    CAS  PubMed  Google Scholar 

  52. Reinhardt A, Yevsa T, Worbs T, Lienenklaus S, Sandrock I, Oberdörfer L, Korn T, Weiss S, Förster R, Prinz I (2016 Oct) Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol 68(10):2476–2486

    CAS  PubMed  Google Scholar 

  53. Cuthbert RJ, Watad A, Fragkakis EM, Dunsmuir R, Loughenbury P, Khan A, Millner PA, Davison A, Marzo-Ortega H, Newton D, Bridgewood C, McGonagle DG (2019 Nov) Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann Rheum Dis 78(11):1559–1565

    CAS  PubMed  Google Scholar 

  54. Gracey E, Qaiyum Z, Almaghlouth I, Lawson D, Karki S, Avvaru N, Zhang Z, Yao Y, Ranganathan V, Baglaenko Y, Inman RD (2016 Dec) IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis 75(12):2124–2132

    CAS  PubMed  Google Scholar 

  55. Shah M, Maroof A, Gikas P, Mittal G, Keen R, Baeten D et al (2020) Dual neutralisation of IL-17F and IL-17A with bimekizumab blocks inflammation-driven osteogenic differentiation of human periosteal cells. RMD Open 6(2):e001306

    PubMed  PubMed Central  Google Scholar 

  56. Heiland GR, Appel H, Poddubnyy D et al (2012) High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis 71:572–574

    CAS  PubMed  Google Scholar 

  57. Diarra D, Stolina M, Polzer K et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163

    CAS  PubMed  Google Scholar 

  58. Uderhardt S, Diarra D, Katzenbeisser J, David JP, Zwerina J, Richards W, Kronke G, Schett G (2010) Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints. Ann Rheum Dis 69:592–597

    CAS  PubMed  Google Scholar 

  59. Gamez-Nava JI, de la Cerda-Trujillo LF, Vazquez-Villegas ML et al (2016) Association between bone turnover markers, clinical variables, spinal syndesmophytes and bone mineral density in Mexican patients with ankylosing spondylitis. Scand J Rheumatol 45:480–490

    CAS  PubMed  Google Scholar 

  60. Arends S, Spoorenberg A, Bruyn GA, Houtman PM, Leijsma MK, Kallenberg CG, Brouwer E, van der Veer E (2011) The relation between bone mineral density, bone turnover markers, and vitamin D status in ankylosing spondylitis patients with active disease: a cross-sectional analysis. Osteoporos Int 22:1431–1439

    CAS  PubMed  Google Scholar 

  61. Arends S, Spoorenberg A, Efde M, Bos R, Leijsma MK, Bootsma H, Veeger NJ, Brouwer E, van der Veer E (2014) Higher bone turnover is related to spinal radiographic damage and low bone mineral density in ankylosing spondylitis patients with active disease: a cross-sectional analysis. PLoS ONE 9:e99685

    PubMed  PubMed Central  Google Scholar 

  62. Toussirot E, Dumoulin G, Saas P, Nguyen NU, Le Huédé G, Wendling D (2008) Increased tartrate-resistant acid phosphatase serum levels in ankylosing spondylitis and relationship with the inflammatory process. Ann Rheum Dis 67:430–431

    CAS  PubMed  Google Scholar 

  63. Wang L, Gao L, Jin D, Wang P, Yang B, Deng W, Xie Z, Tang Y, Wu Y, Shen H (2015) The relationship of bone mineral density to oxidant/antioxidant status and inflammatory and bone turnover markers in a multicenter cross-sectional study of young men with ankylosing spondylitis. Calcif Tissue Int 97:12–22

    CAS  PubMed  Google Scholar 

  64. Borman P, Bodur H, Bingöl N, Bingöl S, Bostan EE (2001) Bone mineral density and bone turnover markers in a group of male ankylosing spondylitis patients: relationship to disease activity. J Clin Rheumatol 7:315–321

    CAS  PubMed  Google Scholar 

  65. Park MC, Chung SJ, Park YB, Lee SK (2008) Bone and cartilage turnover markers, bone mineral density, and radiographic damage in men with ankylosing spondylitis. Yonsei Med J 49:288–294

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Arends S, Spoorenberg A, Brouwer E, van der Veer E (2014) Clinical studies on bone-related outcome and the effect of TNF-α blocking therapy in ankylosing spondylitis. Curr Opin Rheumatol 26:259–268

    CAS  PubMed  Google Scholar 

  67. Arends S, Spoorenberg A, Houtman PM, Leijsma MK, Bos R, Kallenberg CG, Groen H, Brouwer E, van der Veer E (2012) The effect of three years of TNFα blocking therapy on markers of bone turnover and their predictive value for treatment discontinuation in patients with ankylosing spondylitis: a prospective longitudinal observational cohort study. Arthritis Res Ther 14:R98

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li H, Li Q, Chen X, Ji C, Gu J (2015) Anti-tumor necrosis factor therapy increased spine and femoral neck bone mineral density of patients with active ankylosing spondylitis with low bone mineral density. J Rheumatol 42:1413–1417

    CAS  PubMed  Google Scholar 

  69. Gengenbacher M, Sebald HJ, Villiger PM, Hofstetter W, Seitz M (2008) Infliximab inhibits bone resorption by circulating osteoclast precursor cells in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis 67:620–624

    CAS  PubMed  Google Scholar 

  70. Visvanathan S, van der Heijde D, Deodhar A, Wagner C, Baker DG, Han J, Braun J (2009) Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis. Ann Rheum Dis 68:175–182

    CAS  PubMed  Google Scholar 

  71. Choi ST, Kim JH, Kang EJ, Lee SW, Park MC, Park YB, Lee SK (2008) Osteopontin might be involved in bone remodelling rather than in inflammation in ankylosing spondylitis. Rheumatology (Oxford) 47:1775–1779

    CAS  Google Scholar 

  72. van der Weijden MA, van Denderen JC, Lems WF, Nurmohamed MT, Dijkmans BA, van der Horst-Bruinsma IE (2016) Etanercept increases bone mineral density in ankylosing spondylitis, but does not prevent vertebral fractures: results of a prospective observational cohort study. J Rheumatol 43:758–764

    PubMed  Google Scholar 

  73. Sarikaya S, Basaran A, Tekin Y, Ozdolap S, Ortancil O (2007) Is osteoporosis generalized or localized to central skeleton in ankylosing spondylitis? J Clin Rheumatol 13:20–24

    PubMed  Google Scholar 

  74. Mitra D, Elvins DM, Collins AJ (1999) Biochemical markers of bone metabolism in mild ankylosing spondylitis and their relationship with bone mineral density and vertebral fractures. J Rheumatol 26:2201–2204

    CAS  PubMed  Google Scholar 

  75. Speden DJ, Calin AI, Ring FJ, Bhalla AK (2002) Bone mineral density, calcaneal ultrasound, and bone turnover markers in women with ankylosing spondylitis. J Rheumatol 29:516–521

    PubMed  Google Scholar 

  76. Franck H, Keck E (1993) Serum osteocalcin and vitamin D metabolites in patients with ankylosing spondylitis. Ann Rheum Dis 52:343–346

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang J, Song G, Yin Z, Fu Z, Ye Z (2016) Alteration of bone turnover markers in canonical wingless pathway in patients with ankylosing spondylitis. Arch Rheumatol 31:221–228

    PubMed  PubMed Central  Google Scholar 

  78. Bay-Jensen AC, Leeming DJ, Kleyer A, Veidal SS, Schett G, Karsdal MA (2012) Ankylosing spondylitis is characterized by an increased turnover of several different metalloproteinase-derived collagen species: a cross-sectional study. Rheumatol Int 32:3565–3572

    CAS  PubMed  Google Scholar 

  79. Kwon SR, Lim MJ, Suh CH, Park SG, Hong YS, Yoon BY, Kim HA, Choi HJ, Park W (2012) Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol Int 32:2523–2527

    CAS  PubMed  Google Scholar 

  80. Franck H, Meurer T, Hofbauer LC (2004) Evaluation of bone mineral density, hormones, biochemical markers of bone metabolism, and osteoprotegerin serum levels in patients with ankylosing spondylitis. J Rheumatol 31:2236–2241

    CAS  PubMed  Google Scholar 

  81. Klingberg E, Nurkkala M, Carlsten H, Forsblad-d’Elia H (2014) Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J Rheumatol 41:1349–1356

    PubMed  Google Scholar 

  82. Tuylu T, Sari I, Solmaz D, Kozaci DL, Akar S, Gunay N, Onen F, Akkoc N (2014) Fetuin-A is related to syndesmophytes in patients with ankylosing spondylitis: a case control study. Clinics (Sao Paulo, Brazil) 69:688–693

    Google Scholar 

  83. Nocturne G, Pavy S, Boudaoud S et al (2015) Increase in Dickkopf-1 serum level in recent spondyloarthritis. Data from the DESIR cohort. PLoS ONE 10:0134974

    Google Scholar 

  84. Korkosz M, Gąsowski J, Leszczyński P, Pawlak-Buś K, Jeka S, Kucharska E, Grodzicki T (2013) High disease activity in ankylosing spondylitis is associated with increased serum sclerostin level and decreased wingless protein-3a signaling but is not linked with greater structural damage. BMC Musculoskelet Disord 14:99

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Taylan A, Sari I, Akinci B, Bilge S, Kozaci D, Akar S, Colak A, Yalcin H, Gunay N, Akkoc N (2012) Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskelet Disord 13:191

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rossini M, Viapiana O, Idolazzi L, Ghellere F, Fracassi E, Troplini S, Povino MR, Kunnathully V, Adami S, Gatti D (2016) Higher level of Dickkopf-1 is associated with low bone mineral density and higher prevalence of vertebral fractures in patients with ankylosing spondylitis. Calcif Tissue Int 98:438–445

    CAS  PubMed  Google Scholar 

  87. Sakellariou GT, Iliopoulos A, Konsta M, Kenanidis E, Potoupnis M, Tsiridis E, Gavana E, Sayegh FE (2017) Serum levels of Dkk-1, sclerostin and VEGF in patients with ankylosing spondylitis and their association with smoking, and clinical, inflammatory and radiographic parameters. Joint Bone Spine 84:309–315

    CAS  PubMed  Google Scholar 

  88. Daoussis D, Liossis SN, Solomou EE, Tsanaktsi A, Bounia K, Karampetsou M, Yiannopoulos G, Andonopoulos AP (2010) Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62:150–158

    CAS  PubMed  Google Scholar 

  89. Gulyás K, Horváth Á, Végh E et al (2020) Effects of 1-year anti-TNF-α therapies on bone mineral density and bone biomarkers in rheumatoid arthritis and ankylosing spondylitis. Clin Rheumatol 39:167–175

    PubMed  Google Scholar 

  90. Ustun N, Tok F, Kalyoncu U, Motor S, Yuksel R, Yagiz AE, Guler H, Turhanoglu AD (2014) Sclerostin and Dkk-1 in patients with ankylosing spondylitis. Acta rReumatol Portuguesa 39:146–151

    CAS  Google Scholar 

  91. Appel H, Ruiz-Heiland G, Listing J et al (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60:3257–3262

    PubMed  Google Scholar 

  92. Drake MT, Fenske JS, Blocki FA, Zierold C, Appelman-Dijkstra N, Papapoulos S, Khosla S (2018) Validation of a novel, rapid, high precision sclerostin assay not confounded by sclerostin fragments. Bone 111:36–43

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen M, Hu X, Wu M et al (2019) Serum levels of OPG, RANKL, and RANKL/OPG ratio in patients with ankylosing spondylitis: a systematic review and meta-analysis. Immunol Invest 48:490–504

    CAS  PubMed  Google Scholar 

  94. Bowness P (2015) HLA-B27. Annu Rev Immunol 33:29–48

    CAS  PubMed  Google Scholar 

  95. Acebes C, de la Piedra C, Traba ML, Seibel MJ, García Martín C, Armas J, Herrero-Beaumont G (1999) Biochemical markers of bone remodeling and bone sialoprotein in ankylosing spondylitis. Clinica Chim Acta 289:99–110

    CAS  Google Scholar 

  96. Bronson WD, Walker SE, Hillman LS, Keisler D, Hoyt T, Allen SH (1998) Bone mineral density and biochemical markers of bone metabolism in ankylosing spondylitis. J Rheumatol 25:929–935

    CAS  PubMed  Google Scholar 

  97. Chen CH, Chen HA, Liao HT, Liu CH, Tsai CY, Chou CT (2010) Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in ankylosing spondylitis: OPG is associated with poor physical mobility and reflects systemic inflammation. Clin Rheumatol 29:1155–1161

    PubMed  Google Scholar 

  98. Dhir V, Srivastava R, Aggarwal A (2013) Circulating levels of soluble receptor activator of N-κ B ligand and matrix metalloproteinase 3 (and their antagonists) in Asian Indian patients with ankylosing spondylitis. Int J Rheumatol 2013:814350

    PubMed  PubMed Central  Google Scholar 

  99. El Maghraoui A, Tellal S, Chaouir S, Lebbar K, Bezza A, Nouijai A, Achemlal L, Bouhssain S, el Derouiche M (2005) Bone turnover markers, anterior pituitary and gonadal hormones, and bone mass evaluation using quantitative computed tomography in ankylosing spondylitis. Clin Rheumatol 24:346–351

    PubMed  Google Scholar 

  100. Grisar J, Bernecker PM, Aringer M et al (2002) Ankylosing spondylitis, psoriatic arthritis, and reactive arthritis show increased bone resorption, but differ with regard to bone formation. J Rheumatol 29:1430–1436

    PubMed  Google Scholar 

  101. Hou C, Luan L, Ren C (2018) Oxidized low-density lipoprotein promotes osteoclast differentiation from CD68 positive mononuclear cells by regulating HMGB1 release. Biochem Biophys Res Commun 495:1356–1362

    CAS  PubMed  Google Scholar 

  102. Jadon DR, Sengupta R, Nightingale A et al (2017) Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res Ther 19:210

    PubMed  PubMed Central  Google Scholar 

  103. Kim HR, Lee SH, Kim HY (2006) Elevated serum levels of soluble receptor activator of nuclear factors-kappaB ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology (Oxford) 45:1197–1200

    CAS  Google Scholar 

  104. Marhoffer W, Stracke H, Masoud I, Scheja M, Graef V, Bolten W, Federlin K (1995) Evidence of impaired cartilage/bone turnover in patients with active ankylosing spondylitis. Ann Rheum Dis 54:556–559

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Muntean L, Rojas-Vargas M, Font P, Simon SP, Rednic S, Schiotis R, Stefan S, Tamas MM, Bolosiu HD, Collantes-Estévez E (2011) Relative value of the lumbar spine and hip bone mineral density and bone turnover markers in men with ankylosing spondylitis. Clin Rheumatol 30:691–695

    PubMed  Google Scholar 

  106. Niu CC, Lin SS, Yuan LJ, Chen LH, Yang CY, Chung AN, Lu ML, Tsai TT, Lai PL, Chen WJ (2017) Correlation of blood bone turnover biomarkers and Wnt signaling antagonists with AS, DISH, OPLL, and OYL. BMC Musculoskelet Disord 18:61

    PubMed  PubMed Central  Google Scholar 

  107. Perpétuo IP, Raposeiro R, Caetano-Lopes J, Vieira-Sousa E, Campanilho-Marques R, Ponte C, Canhão H, Ainola M, Fonseca JE (2015) Effect of tumor necrosis factor inhibitor therapy on osteoclasts precursors in ankylosing spondylitis. PLoS ONE 10:e0144655

    PubMed  PubMed Central  Google Scholar 

  108. Serdaroğlu Beyazal M, Erdoğan T, Türkyılmaz AK, Devrimsel G, Cüre MC, Beyazal M, Sahin I (2016) Relationship of serum osteoprotegerin with arterial stiffness, preclinical atherosclerosis, and disease activity in patients with ankylosing spondylitis. Clin Rheumatol 35:2235–2241

    PubMed  Google Scholar 

  109. Sun W, Tian L, Jiang L, Zhang S, Zhou M, Zhu J, Xue J (2019) Sclerostin rather than Dickkopf-1 is associated with mSASSS but not with disease activity score in patients with ankylosing spondylitis. Clin Rheumatol 38:989–995

    PubMed  Google Scholar 

  110. Vosse D, Landewé R, Garnero P, van der Heijde D, van der Linden S, Geusens P (2008) Association of markers of bone- and cartilage-degradation with radiological changes at baseline and after 2 years follow-up in patients with ankylosing spondylitis. Rheumatology (Oxford) 47:1219–1222

    CAS  Google Scholar 

  111. Yilmaz N, Ozaslan J (2000) Biochemical bone turnover markers in patients with ankylosing spondylitis. Clin Rheumatol 19:92–98

    CAS  PubMed  Google Scholar 

  112. Yuan TL, Chen J, Tong YL, Zhang Y, Liu YY, Wei JC, Liu Y, Zhao Y, Herrmann M (2016) Serum heme oxygenase-1 and BMP-7 are potential biomarkers for bone metabolism in patients with rheumatoid arthritis and ankylosing spondylitis. Biomed Res Int 2016:7870925

    PubMed  PubMed Central  Google Scholar 

  113. Wang R, Ward MM (2018) Epidemiology of axial spondyloarthritis: an update. Curr Opin Rheumatol 30(2):137–143

    PubMed  PubMed Central  Google Scholar 

  114. Lambert RG, Bakker PA, van der Heijde D, Weber U, Rudwaleit M, Hermann KG et al (2016) Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis 75(11):1958–1963

    PubMed  Google Scholar 

  115. de Winter J, de Hooge M, van de Sande M, de Jong H, van Hoeven L, de Koning A et al (2018) Magnetic resonance imaging of the sacroiliac joints indicating sacroiliitis according to the assessment of spondyloArthritis international society definition in healthy individuals, runners, and women with postpartum back pain. Arthritis Rheumatol 70(7):1042–1048

    PubMed  PubMed Central  Google Scholar 

  116. Weber U, Maksymowych WP (2011) Sensitivity and specificity of magnetic resonance imaging for axial spondyloarthritis. Am J Med Sci 341(4):272–277

    PubMed  Google Scholar 

  117. Wanders AJ, Landewe RB, Spoorenberg A, Dougados M, van der Linden S, Mielants H et al (2004) What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the outcome measures in rheumatology clinical trials filter. Arthritis Rheum 50(8):2622–2632

    PubMed  Google Scholar 

  118. Braun J, van den Berg R, Baraliakos X, Boehm H, Burgos-Vargas R, Collantes-Estevez E et al (2011) 2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis 70(6):896–904

    CAS  PubMed  Google Scholar 

  119. Sari I, Haroon N (2018) Radiographic progression in ankylosing spondylitis: from prognostication to disease modification. Curr Rheumatol Rep 20(12):82

    PubMed  Google Scholar 

  120. Ramiro S, Stolwijk C, van Tubergen A, van der Heijde D, Dougados M, van den Bosch F et al (2015) Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study. Ann Rheum Dis 74(1):52–59

    PubMed  Google Scholar 

  121. Molto A, Freire V, Feydy A, Paternotte S, Maksymowych WP, Benhamou M et al (2014) Assessing structural changes in axial spondyloarthritis using a low-dose biplanar imaging system. Rheumatology (Oxford) 53(9):1669–1675

    Google Scholar 

  122. de Bruin F, de Koning A, van den Berg R, Baraliakos X, Braun J, Ramiro S et al (2018) Development of the CT Syndesmophyte Score (CTSS) in patients with ankylosing spondylitis: data from the SIAS cohort. Ann Rheum Dis 77(3):371–377

    PubMed  Google Scholar 

  123. de Koning A, de Bruin F, van den Berg R, Ramiro S, Baraliakos X, Braun J et al (2018) Low-dose CT detects more progression of bone formation in comparison to conventional radiography in patients with ankylosing spondylitis: results from the SIAS cohort. Ann Rheum Dis 77(2):293–299

    PubMed  Google Scholar 

  124. Diekhoff T, Hermann KG, Greese J, Schwenke C, Poddubnyy D, Hamm B et al (2017) Comparison of MRI with radiography for detecting structural lesions of the sacroiliac joint using CT as standard of reference: results from the SIMACT study. Ann Rheum Dis 76(9):1502–1508

    PubMed  Google Scholar 

  125. Diekhoff T, Greese J, Sieper J, Poddubnyy D, Hamm B, Hermann KA (2018) Improved detection of erosions in the sacroiliac joints on MRI with volumetric interpolated breath-hold examination (VIBE): results from the SIMACT study. Ann Rheum Dis 77(11):1585–1589

    PubMed  Google Scholar 

  126. Beltran LS, Samim M, Gyftopoulos S, Bruno MT, Petchprapa CN (2018) Does the addition of DWI to fluid-sensitive conventional MRI of the sacroiliac joints improve the diagnosis of sacroiliitis? AJR Am J Roentgenol 210(6):1309–1316

    PubMed  Google Scholar 

  127. Bruijnen STG, Verweij NJF, van Duivenvoorde LM, Bravenboer N, Baeten DLP, van Denderen CJ et al (2018) Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography. Rheumatology (Oxford) 57(4):631–638

    CAS  Google Scholar 

  128. Park EK, Pak K, Park JH, Kim K, Kim SJ, Kim IJ et al (2017) Baseline increased 18F-fluoride uptake lesions at vertebral corners on positron emission tomography predict new syndesmophyte development in ankylosing spondylitis: a 2-year longitudinal study. Rheumatol Int 37(5):765–773

    CAS  PubMed  Google Scholar 

  129. Ramirez J, Nieto-Gonzalez JC, Curbelo Rodriguez R, Castaneda S, Carmona L (2018) Prevalence and risk factors for osteoporosis and fractures in axial spondyloarthritis: a systematic review and meta-analysis. Semin Arthritis Rheum 48(1):44–52

    PubMed  Google Scholar 

  130. Briot K, Durnez A, Paternotte S, Miceli-Richard C, Dougados M, Roux C (2013) Bone oedema on MRI is highly associated with low bone mineral density in patients with early inflammatory back pain: results from the DESIR cohort. Ann Rheum Dis 72(12):1914–1919

    PubMed  Google Scholar 

  131. Schett G, David JP (2010) The multiple faces of autoimmune-mediated bone loss. Nat Rev Endocrinol 6(12):698–706

    CAS  PubMed  Google Scholar 

  132. Cooper C, Carbone L, Michet CJ, Atkinson EJ, O’Fallon WM, Melton LJ 3rd (1994) Fracture risk in patients with ankylosing spondylitis: a population based study. J Rheumatol 21(10):1877–1882

    CAS  PubMed  Google Scholar 

  133. Vosse D, Landewe R, van der Heijde D, van der Linden S, van Staa TP, Geusens P (2009) Ankylosing spondylitis and the risk of fracture: results from a large primary care-based nested case-control study. Ann Rheum Dis 68(12):1839–1842

    CAS  PubMed  Google Scholar 

  134. Munoz-Ortego J, Vestergaard P, Rubio JB, Wordsworth P, Judge A, Javaid MK et al (2014) Ankylosing spondylitis is associated with an increased risk of vertebral and nonvertebral clinical fractures: a population-based cohort study. J Bone Miner Res 29(8):1770–1776

    PubMed  Google Scholar 

  135. Sahuguet J, Fechtenbaum J, Molto A, Etcheto A, Lopez-Medina C, Richette P et al (2019) Low incidence of vertebral fractures in early spondyloarthritis: 5-year prospective data of the DESIR cohort. Ann Rheum Dis 78(1):60–65

    CAS  PubMed  Google Scholar 

  136. Lim MJ, Kang KY (2020) A contemporary view of the diagnosis of osteoporosis in patients with axial spondyloarthritis. Front Med (Lausanne). 7:569449

    PubMed  PubMed Central  Google Scholar 

  137. Capaci K, Hepguler S, Argin M, Tas I (2003) Bone mineral density in mild and advanced ankylosing spondylitis. Yonsei Med J 44(3):379–384

    PubMed  Google Scholar 

  138. Briot K, Etcheto A, Miceli-Richard C, Dougados M, Roux C (2016) Bone loss in patients with early inflammatory back pain suggestive of spondyloarthritis: results from the prospective DESIR cohort. Rheumatology (Oxford) 55(2):335–342

    Google Scholar 

  139. Durnez A, Paternotte S, Fechtenbaum J, Landewe RB, Dougados M, Roux C et al (2013) Increase in bone density in patients with spondyloarthritis during anti-tumor necrosis factor therapy: 6-year followup study. J Rheumatol 40(10):1712–1718

    CAS  PubMed  Google Scholar 

  140. Ulu MA, Cevik R, Dilek B (2013) Comparison of PA spine, lateral spine, and femoral BMD measurements to determine bone loss in ankylosing spondylitis. Rheumatol Int 33(7):1705–1711

    PubMed  Google Scholar 

  141. Donnelly S, Doyle DV, Denton A, Rolfe I, McCloskey EV, Spector TD (1994) Bone mineral density and vertebral compression fracture rates in ankylosing spondylitis. Ann Rheum Dis 53(2):117–121

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Meirelles ES, Borelli A, Camargo OP (1999) Influence of disease activity and chronicity on ankylosing spondylitis bone mass loss. Clin Rheumatol 18(5):364–368

    CAS  PubMed  Google Scholar 

  143. Kang KY, Chung MK, Kim HN, Hong YS, Ju JH, Park SH (2018) Severity of sacroiliitis and erythrocyte sedimentation rate are associated with a low trabecular bone score in young male patients with ankylosing spondylitis. J Rheumatol 45(3):349–356

    PubMed  Google Scholar 

  144. Wildberger L, Boyadzhieva V, Hans D, Stoilov N, Rashkov R, Aubry-Rozier B (2017) Impact of lumbar syndesmophyte on bone health as assessed by bone density (BMD) and bone texture (TBS) in men with axial spondyloarthritis. Joint Bone Spine 84(4):463–466

    PubMed  Google Scholar 

  145. Kocijan R, Finzel S, Englbrecht M, Engelke K, Rech J, Schett G (2014) Differences in bone structure between rheumatoid arthritis and psoriatic arthritis patients relative to autoantibody positivity. Ann Rheum Dis 73(11):2022–2028

    PubMed  Google Scholar 

  146. Klingberg E, Lorentzon M, Gothlin J, Mellstrom D, Geijer M, Ohlsson C et al (2013) Bone microarchitecture in ankylosing spondylitis and the association with bone mineral density, fractures, and syndesmophytes. Arthritis Res Ther 15(6):R179

    PubMed  PubMed Central  Google Scholar 

  147. Neumann A, Haschka J, Kleyer A, Schuster L, Englbrecht M, Berlin A et al (2018) Cortical bone loss is an early feature of nonradiographic axial spondyloarthritis. Arthritis Res Ther 20(1):202

    PubMed  PubMed Central  Google Scholar 

  148. van der Heijde D, Ramiro S, Landewé R et al (2017) 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis 76:978–991

    PubMed  Google Scholar 

  149. Sepriano A, Regel A, van der Heijde D et al (2017) Efficacy and safety of biological and targeted-synthetic DMARDs: a systematic literature review informing the 2016 update of the ASAS/EULAR recommendations for the management of axial spondyloarthritis. RMD Open 3:e000396

    PubMed  PubMed Central  Google Scholar 

  150. Kroon FP, van der Burg LR, Ramiro S et al (2015) Non-steroidal anti-inflammatory drugs (NSAIDs) for axial spondyloarthritis (ankylosing spondylitis and non-radiographic axial spondyloarthritis). Cochrane Database Syst Rev 7:CD010952

    Google Scholar 

  151. Maxwell LJ, Zochling J, Boonen A et al (2015) TNF-alpha inhibitors for ankylosing spondylitis. Cochrane Database Syst Rev 4:CD005468

    Google Scholar 

  152. Dubash S, Bridgewood C, McGonagle D, Marzo-Ortega H (2019) The advent of IL-17A blockade in ankylosing spondylitis: secukinumab, ixekizumab and beyond. Expert Rev Clin Immunol 15:123–134

    CAS  PubMed  Google Scholar 

  153. Yin Y, Wang M, Liu M et al (2020) Efficacy and safety of IL-17 inhibitors for the treatment of ankylosing spondylitis: a systematic review and meta-analysis. Arthritis Res Ther 22:111

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Poddubnyy D, Rudwaleit M, Haibel H et al (2012) Effect of non-steroidal anti-inflammatory drugs on radiographic spinal progression in patients with axial spondyloarthritis: results from the German Spondyloarthritis Inception Cohort. Ann Rheum Dis 71:1616–1622

    CAS  PubMed  Google Scholar 

  155. Haroon N, Inman RD, Learch TJ et al (2013) The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum 65:2645–2654

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Ramiro S, Stolwijk C, van Tubergen A et al (2015) Evolution of radiographic damage in ankylosing spondylitis: a 12 year prospective follow-up of the OASIS study. Ann Rheum Dis 74:52–59

    PubMed  Google Scholar 

  157. Park JW, Kim MJ, Lee JS et al (2019) Impact of tumor necrosis factor inhibitor versus nonsteroidal antiinflammatory drug treatment on radiographic progression in early ankylosing spondylitis: its relationship to inflammation control during treatment. Arthritis Rheumatol 71:82–90

    CAS  PubMed  Google Scholar 

  158. Kang KY, Ju JH, Park SH, Kim HY (2013) The paradoxical effects of TNF inhibitors on bone mineral density and radiographic progression in patients with ankylosing spondylitis. Rheumatology (Oxford) 52:718–726

    CAS  Google Scholar 

  159. Baraliakos X, Haibel H, Listing J, Sieper J, Braun J (2014) Continuous long-term anti-TNF therapy does not lead to an increase in the rate of new bone formation over 8 years in patients with ankylosing spondylitis. Ann Rheum Dis 73:710–715

    CAS  PubMed  Google Scholar 

  160. Park JW, Kwon HM, Park JK et al (2016) Impact of dose tapering of tumor necrosis factor inhibitor on radiographic progression in ankylosing spondylitis. PLoS ONE 11:e0168958

    PubMed  PubMed Central  Google Scholar 

  161. Molnar C, Scherer A, Baraliakos X (2018) TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss Clinical Quality Management cohort. Ann Rheum Dis 77:63–69

    CAS  PubMed  Google Scholar 

  162. Sepriano A, Ramiro S, Wichuk S (2021) TNF inhibitors reduce spinal radiographic progression in patients with radiographic axial spondyloarthritis: a longitudinal analysis from the ALBERTA FORCAST cohort. Arthritis Rheumatol. https://doi.org/10.1002/art.41667

    Article  PubMed  PubMed Central  Google Scholar 

  163. Baraliakos X, Listing J, Rudwaleit M, Brandt J, Sieper J, Braun J (2005) Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumour necrosis factor alpha antibody infliximab. Ann Rheum Dis 64:1462–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Baraliakos X, Listing J, Brandt J (2007) Radiographic progression in patients with ankylosing spondylitis after 4 years of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology (Oxford) 46:1450–1453

    CAS  Google Scholar 

  165. van der Heijde D, Landewé R, Baraliakos X (2008) Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum 58:3063–3070

    PubMed  Google Scholar 

  166. van der Heijde D, Landewé R, Einstein S (2008) Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum 58:1324–1331

    PubMed  Google Scholar 

  167. van der Heijde D, Salonen D, Weissman BN (2009) Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther 11:R127

    PubMed  PubMed Central  Google Scholar 

  168. Braun J, Haibel H, de Hooge M (2019) Spinal radiographic progression over 2 years in ankylosing spondylitis patients treated with secukinumab: a historical cohort comparison. Arthritis Res Ther 21:142

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wanders A, Dv H, Landewé R (2005) Nonsteroidal antiinflammatory drugs reduce radiographic progression in patients with ankylosing spondylitis: a randomized clinical trial. Arthritis Rheum 52:1756–1765

    CAS  PubMed  Google Scholar 

  170. Sieper J, Listing J, Poddubnyy D (2016) Effect of continuous versus on-demand treatment of ankylosing spondylitis with diclofenac over 2 years on radiographic progression of the spine: results from a randomised multicentre trial (ENRADAS). Ann Rheum Dis 75:1438–1443

    CAS  PubMed  Google Scholar 

  171. Braun J, Baraliakos X, Hermann KG (2014) The effect of two golimumab doses on radiographic progression in ankylosing spondylitis: results through 4 years of the GO-RAISE trial. Ann Rheum Dis 73:1107–1113

    CAS  PubMed  Google Scholar 

  172. Braun J, Baraliakos X, Deodhar A (2017) Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study. Ann Rheum Dis 76:1070–1077

    CAS  PubMed  Google Scholar 

  173. Braun J, Baraliakos X, Deodhar A (2019) Secukinumab shows sustained efficacy and low structural progression in ankylosing spondylitis: 4-year results from the MEASURE 1 study. Rheumatology (Oxford) 58:859–868

    CAS  Google Scholar 

  174. Wang R, Bathon JM, Ward MM (2020) Nonsteroidal antiinflammatory drugs as potential disease-modifying medications in axial spondyloarthritis. Arthritis Rheumatol 72:518–528

    PubMed  PubMed Central  Google Scholar 

  175. Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    CAS  PubMed  Google Scholar 

  176. Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20:521–526

    CAS  PubMed  Google Scholar 

  177. Proft F, Muche B, Listing J, Rios-Rodriguez V, Sieper J, Poddubnyy D (2017) Study protocol: COmparison of the effect of treatment with Nonsteroidal anti- inflammatory drugs added to anti-tumour necrosis factor a therapy versus anti-tumour necrosis factor a therapy alone on progression of StrUctural damage in the spine over two years in patients with ankyLosing spondylitis (CONSUL)–an open-label randomized controlled multicenter trial. BMJ Open 7:e014591

    PubMed  PubMed Central  Google Scholar 

  178. Tan S, Wang R, Ward MM et al (2015) Syndesmophyte growth in ankylosing spondylitis. Curr Opin Rheumatol 27:326–332

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Maksymowych WP, Chiowchanwisawakit P, Clare T, Pedersen SJ, Østergaard M, Lambert RG (2009) Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum 60:93–102

    PubMed  Google Scholar 

  180. Braun J, Baraliakos X, Hermann KG et al (2012) Golimumab reduces spinal inflammation in ankylosing spondylitis: MRI results of the randomised, placebo- controlled GO-RAISE study. Ann Rheum Dis 71:878–884

    CAS  PubMed  Google Scholar 

  181. Braun J, Baraliakos X, Golder W et al (2003) Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis, before and after successful therapy with infliximab: evaluation of a new scoring system. Arthritis Rheum 48:1126–1136

    CAS  PubMed  Google Scholar 

  182. Baraliakos X, Davis J, Tsuji W, Braun J et al (2005) Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis before and after therapy with the tumor necrosis factor alpha receptor fusion protein etanercept. Arthritis Rheum 52:1216–1223

    CAS  PubMed  Google Scholar 

  183. Lambert RG, Salonen D, Rahman P et al (2007) Adalimumab significantly reduces both spinal and sacroiliac joint inflammation in patients with ankylosing spondylitis: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 56:4005–4014

    CAS  PubMed  Google Scholar 

  184. Zhang JR, Liu XJ, Xu WD, Dai SM (2016) Effects of tumor necrosis factor-α inhibitors on new bone formation in ankylosing spondylitis. Joint Bone Spine 83:257–264

    CAS  PubMed  Google Scholar 

  185. Claudepierre P, Wendling D (2008) Are inflammation and ossification on separate tracks in ankylosing spondylitis? Joint Bone Spine 75:520–522

    CAS  PubMed  Google Scholar 

  186. Wendling D, Claudepierre P (2013) New bone formation in axial spondyloarthritis. Joint Bone Spine 80:454–458

    PubMed  Google Scholar 

  187. Baraliakos X, Gensler LS, D’Angelo S et al (2020) Biologic therapy and spinal radiographic progression in patients with axial spondyloarthritis: a structured literature review. Ther Adv Musculoskelet Dis 12:1759720

    Google Scholar 

  188. Jeong H, Eun YH, Kim IY et al (2018) Effect of tumor necrosis factor α inhibitors on spinal radiographic progression in patients with ankylosing spondylitis. Int J Rheum Dis 21:1098–1105

    CAS  PubMed  Google Scholar 

  189. Schett G, Lories RJ, D’Agostino MA (2017) Enthesitis: from pathophysiology to treatment. Nat Rev Rheumatol 13:731–741

    CAS  PubMed  Google Scholar 

  190. Gravallese EM, Schett G (2018) Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat Rev Rheumatol 14:631–640

    CAS  PubMed  Google Scholar 

  191. Baraliakos X, Østergaard M, Gensler LS (2020) Comparison of the effects of secukinumab and adalimumab biosimilar on radiographic progression in patients with ankylosing spondylitis: design of a randomized, phase IIIb study (SURPASS). Clin Drug Investig 40:269–278

    CAS  PubMed  Google Scholar 

  192. Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49:2–19

    CAS  PubMed  Google Scholar 

  193. Papapoulos SE (2020) Pamidronate; a model compound of the pharmacology of nitrogen-containing bisphosphonates; a Leiden historical perspective. Bone 134:115244

    CAS  PubMed  Google Scholar 

  194. Rogers MJ, Mönkkönen J, Munoz MA (2020) Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 139:115493

    CAS  PubMed  Google Scholar 

  195. Peris P, Monegal A, Guañabens N (2021) Bisphosphonates in inflammatory rheumatic diseases. Bone 146:115887

    CAS  PubMed  Google Scholar 

  196. Giusti A, Camellino D, Saverino D et al (2020) Zoledronate decreases CTLA-4 in vivo and in vitro independently of its action on bone resorption. Bone 138:115512

    CAS  PubMed  Google Scholar 

  197. Frediani B, Giusti A, Bianchi G et al (2018) Clodronate in the management of different musculoskeletal conditions. Minerva Med 109:300–325

    PubMed  Google Scholar 

  198. Giusti A, Bianchi G (2015) Treatment of complex regional pain syndrome type I with bisphosphonates. RMD Open 1:e000056

    PubMed  PubMed Central  Google Scholar 

  199. Coates L, Packham JC, Creamer P et al (2017) Clinical efficacy of oral alendronate in ankylosing spondylitis: a randomised placebo-controlled trial. Clin Exp Rheumatol 35:445–451

    PubMed  Google Scholar 

  200. Mok CC, Li OC, Chan KL, Ho LY, Hui PK (2015) Effect of golimumab and pamidronate on clinical efficacy and MRI inflammation in axial spondyloarthritis: a 48-week open randomized trial. Scand J Rheumatol 44:480–486

    CAS  PubMed  Google Scholar 

  201. Viapiana O, Gatti D, Idolazzi L et al (2014) Bisphosphonates vs infliximab in ankylosing spondylitis treatment. Rheumatology (Oxford) 53:90–94

    CAS  Google Scholar 

  202. Maksymowych WP, Jhangri GS, Fitzgerald AA et al (2002) A six-month randomized, controlled, double-blind, dose-response comparison of intravenous pamidronate (60 mg versus 10 mg) in the treatment of nonsteroidal antiinflammatory drug-refractory ankylosing spondylitis. Arthritis Rheum 46:766–773

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Lems.

Ethics declarations

Conflict of interest

Willem F Lems, speakers fee and advisory boards: Galapagos, Pfizer, Lilly, Amgen, and UCB. Corinne Miceli-Richard: None in relation with this paper. Judith Haschka : None in relation with this paper. Andrea Giusti: None in relation with this paper. Gitte Lund Christensen: None in relation with this paper and Roland Kocijan: None in relation with this paper. Nicolas Rosine: None in relation with this paper. Niklas Rye Jørgensen: None in relation with this paper. Gerolamo Bianchi: None in relation with this paper. Christian Roux: None in relation to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lems, W., Miceli-Richard, C., Haschka, J. et al. Bone Involvement in Patients with Spondyloarthropathies. Calcif Tissue Int 110, 393–420 (2022). https://doi.org/10.1007/s00223-021-00933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00933-1

Navigation