Inventiones mathematicae © Springer-Verlag 1999

Erratum

Homomorphisms of Barsotti–Tate groups and crystals in positive characteristic

A.J. de Jong

Department of Mathematics, MIT, Cambridge, MA 02139-4307, USA

Invent. math. 134, 301-333 (1998)

Oblatum 16-IV-1999 / Published online: 6 July 1999

The assertion (iii) of Lemma 2.1 is false. A counter example was found by T. Zink and W. Messing. We quickly indicate the construction. Let G_0 be a *p*-divisible group over a perfect field *k*, together with a closed immersion $i : \alpha_p \to G_0$ over *k*. Set $G_1 = G_0/i(\alpha_p)$. Further, let $j : \alpha_{p,k[[t]]} \to (G_0 \times G_0)_{k[[t]]}$ be the embedding equal to *i* in the first coordinate and equal to $t \cdot i$ in the second. Set $G := \operatorname{Coker}(j)$, and $H = G_{1,k[[t]]}$. The counter example is the homomorphism $\gamma : G \to H$ induced by the mapping $pr_2 : G_0 \times G_0 \to G_0$. Indeed, $\operatorname{Ker}(\gamma_{k((t))}) \cong (G_0)_{k((t))}$ is a *p*-divisible group, but $\operatorname{Ker}(\gamma_0) \cong G_1 \times \alpha_p$ is not.

Lemma 2.1 part (iii) is used only in Definition 2.2. To correct this, one should replace the text "Note....over *S*." in the definition of semistable reduction by the *condition* that $G^{\mu} = \text{Ker}(G_1 \rightarrow G_2)$ and $G^{\text{et}} = \text{Coker}(G_1 \rightarrow G_2)$ are *p*-divisible groups over *S*. No other changes are necessary.

The mistake in the proof is in the module theoretic assertion "*e* generates *L* implies (*) is exact" on page 332. The reader can easily find a counter example. Messing and Zink point out that the proof does produce a kernel and cokernel for α in the category of *p*-divisible groups over *R*.