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Abstract
The arboreal gas is the probability measure on (unrooted spanning) forests of a graph
in which each forest is weighted by a factor β > 0 per edge. It arises as the q → 0
limit of the q-state random cluster model with p = βq. We prove that in dimensions
d � 3 the arboreal gas undergoes a percolation phase transition. This contrasts with
the case of d = 2 where no percolation transition occurs.

The starting point for our analysis is an exact relationship between the arboreal
gas and a non-linear sigma model with target space the fermionic hyperbolic plane
H

0|2. This latter model can be thought of as the 0-state Potts model, with the arbo-
real gas being its random cluster representation. Unlike the standard Potts models,
the H

0|2 model has continuous symmetries. By combining a renormalisation group
analysis with Ward identities we prove that this symmetry is spontaneously broken
at low temperatures. In terms of the arboreal gas, this symmetry breaking translates
into the existence of infinite trees in the thermodynamic limit. Our analysis also es-
tablishes massless free field correlations at low temperatures and the existence of a
macroscopic tree on finite tori.
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1 Introduction

This paper has two distinct motivations. The first is to study the percolative properties
of the arboreal gas, and the second is to understand spontaneously broken continuous
symmetries. We first present our results from the percolation perspective, and then
turn to continuous symmetries.
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1.1 Main results for the arboreal gas

The arboreal gas is the uniform measure on (unrooted spanning) forests of a
weighted graph. More precisely, given an undirected graph G = (�,E), a forest
F = (�,E(F )) is an acyclic subgraph of G having the same vertex set as G. Given
an edge weight β > 0 (inverse temperature) and a vertex weight h � 0 (external field),
the probability of a forest F under the arboreal gas measure is

P
G
β,h[F ] =

1

ZG
β,h

β |E(F)| ∏

T ∈F

(1+ h|V (T )|) (1.1)

where T ∈ F denotes that T is a tree in the forest, i.e., a connected component of F ,
|E(F)| is the number of edges in F , and |V (T )| is the number of vertices in T . The
arboreal gas is also known as the (weighted) uniform forest model, as Bernoulli bond
percolation conditioned to be acyclic, and as the q → 0 limit of the q-state random
cluster model with p/q converging to β , see [57].

We study the arboreal gas on a sequence of tori �N = Z
d/LN

Z
d with L fixed

and N →∞. To simplify notation, we will use �N to denote both the graph and
its vertex set. From the percolation point of view, the most fundamental question
concerns whether a typical forest F under the law (1.1) contains a giant tree. In all
dimensions, elementary arguments show that giant trees can exist only if h= 0 and
if β is large enough, in the sense that connection probabilities decay exponentially
whenever h > 0 or β is small; see Appendix A.2.

The existence of a percolative phase for h = 0 and β large does not, however,
follow from standard techniques. The subtlety of the existence of a percolative phase
is perhaps best evidenced by considering the case d = 2: in this case giant trees do
not exist for any β > 0 [20]. Our main result is that for d � 3 giant trees do exist for
β large and h= 0, and that truncated correlations have massless free field decay. To
state our result precisely, let {0↔ x} denote the event that 0 and x are connected, i.e.,
in the same tree.

Theorem 1.1 Let d � 3 and L � L0(d). Then there is β0 ∈ (0,∞) such that for
β � β0 there exist ζd(β)= 1−O(1/β), c(β)= c+O(1/β) with c > 0, and κ > 0
such that

P
�N

β,0 [0↔ x] = ζd(β)+ c(β)

β|x|d−2
+O(

1

β|x|d−2+κ
)+O(

1

βLκN
), (1.2)

where |x| denotes the Euclidean norm.

Numerical evidence for this phase transition of the arboreal gas was given in [40].
More broadly our work was inspired by [21, 37, 38, 40, 60, 61], and we discuss
further motivation later.

Although both the arboreal gas and Bernoulli bond percolation have phase tran-
sitions for d � 3, the supercritical phases of these models behave very differently:
(1.2) shows that the arboreal gas behaves like a critical model even in the supercrit-
ical phase, in the sense that it has massless free field truncated correlation decay.
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While this behaviour looks unusual when viewed through the lens of supercritical
percolation, it is natural from the viewpoint of broken continuous symmetries. We
will return to this point in Sect. 1.2.

Theorem 1.1 concerns the arboreal gas on large finite tori in zero external field
(i.e., h= 0). Another limit to consider the arboreal gas in is the weak infinite volume
limit. To this end, we consider the limit obtained by first taking N →∞ with h > 0
and then taking h ↓ 0. In a manner similar to that for Bernoulli bond percolation
in [47, Sect. 5] and [2, Sect. 2.2], the external field is equivalent to considering the
arboreal gas on an extended graph Gg = (� ∪ {g},E ∪ Eg) where Eg = � × {g}
and each edge in Eg has weight h. The additional vertex g is called the ghost vertex.
The measure (1.1) is then obtained by forgetting the connections to the ghost. This
rephrases that the product in (1.1) is equivalent to connecting a uniformly chosen
vertex in each tree T to g with probability h|V (T )|/(1+h|V (T )|). For vertices x, y ∈
�, we continue to denote by {x ↔ y} the event that x and y are connected in the
random forest subgraph of G with law (1.1), i.e., {x ↔ y} denotes the event that
there is a path from x to y in the random subgraph, and that this (necessarily unique)
path does not contain g. We write {x↔ g} to denote the event that x is connected to
g.

The event {0↔ g} is a finite volume proxy for the event that the tree T0 containing
0 becomes infinite in the infinite volume limit when h ↓ 0. Indeed, let us define

θd(β)= lim
h↓0

lim
N→∞P

�N

β,h[0↔ g], (1.3)

and let P
Z

d

β be any (possibly subsequential) weak infinite volume limit

limh↓0 limN→∞ P
�N

β,h . Then

θd(β)= P
Z

d

β [|T0| =∞], (1.4)

see Proposition A.6. By a stochastic domination argument it is straightforward to
show that

θd(β)= 0 for 0 � β < pc(d)/(1− pc(d)) <∞, (1.5)

where pc(d) is the critical probability for Bernoulli bond percolation on Z
d , see

Proposition A.3. When d = 2, θ2(β) = 0 for all β > 0 by [20, Sect. 4.2]. The next
theorem shows that for d � 3 the arboreal gas also has a phase transition in this
infinite volume limit.

Theorem 1.2 Let d � 3 and L � L0(d). Then there is β0 ∈ (0,∞) such that for
β � β0 the limit (1.3) exists and

θd(β)2 = ζd(β)= 1−O(1/β), (1.6)

where ζd(β) is the finite volume density of the tree containing 0 from Theorem 1.1.

In fact, our proof shows that θd(β) ∼ 1− c/β with c = (−�Z
d
)−1(0,0) > 0 the

expected time a simple random walk spends at the origin. This behaviour is different
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from that of Bernoulli bond percolation and more generally that of the random clus-
ter model with q > 0. For these models the percolation probability is governed by
Peierls’ contours and is 1−O((1− p)2d) by [70, Remark 5.10].

That the arboreal gas behaves critically within its supercritical phase can be further
quantified in terms of the following truncated two-point functions:

τβ(x)= lim
h↓0

τβ,h(x),

τβ,h(x)= lim
N→∞P

�N

β,h[0↔ x,0 � g],
(1.7)

σβ(x)= lim
h↓0

σβ,h(x),

σβ,h(x)= lim
N→∞

(
P

�N

β,h[0 � g]2 − P
�N

β,h[0 � x,0 � g, x � g]
)
.

(1.8)

Theorem 1.3 Under the assumptions of Theorem 1.2, for β � β0, the limits
(1.7)–(1.8) exist and there exist constants ci (β)= ci +O(1/β) and κ > 0 such that

τβ(x)= c1(β)

β|x|d−2
+O(

1

β|x|d−2+κ
), (1.9)

σβ(x)= c2(β)

β2|x|2d−4
+O(

1

β2|x|2d−4+κ
). (1.10)

The constants satisfy (c2(β)/c1(β)2)θd(β)2 = 1 and c(β)= 2c1(β), c(β) from The-
orem 1.1.

Further results could be deduced from our analysis, but to maintain focus we have
not carried these out in detail. We mention some of them below in Sect. 1.4 when
discussing our results and open problems.

1.2 The H
0|2 model and its continuous symmetries

In [37, 38], the arboreal gas was related to a fermionic field theory and a supersym-
metric non-linear sigma model with target space one half of the degenerate super-
sphere S

0|2. In [20] this was reinterpreted as a non-linear sigma model with hyper-
bolic target space H0|2, which we refer to as the H0|2 model for short. The reinterpre-
tation was essential in [20]; it is less essential for the present work, but nevertheless
we continue to use the H

0|2 formulation of the model.
Briefly, the H

0|2 model is defined as follows, see [20, Sect. 2] for further details.
For every vertex x ∈�, there are two (anticommuting) Grassmann variables ξx and
ηx and we then set

zx =
√

1− 2ξxηx = 1− ξxηx. (1.11)

Thus the zx commute with each other and with the odd elements ξx and ηx . The
formal triples ux = (ξx, ηx, zx) are supervectors with two odd components ξx , ηx
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and an even component zx . These supervectors satisfy the sigma model constraint
ux · ux =−1 for the super inner product

ux · uy =−ξxηy − ξyηx − zxzy. (1.12)

In analogy with the tetrahedral representation of the q-state Potts model, see [26,
Sect. 2.2], the sigma model constraint can be thought of as ux ·ux = q−1 with q = 0.
The constraint is also reminiscent of the embedding of the hyperbolic space H

2 in
R

3 equipped with the standard quadratic form with Lorentzian signature (1,1,−1).
Indeed, −ξxηy − ξyηx is the fermionic analogue of the Euclidean inner product on
R

2.
Let F be a (non-commutative) polynomial in the variables {ξx, ηx}x∈�. The ex-

pectation of F with respect to the H
0|2 model is

〈F 〉β,h = 1

Zβ,h

∫
(
∏

x∈�

∂ηx ∂ξx

1

zx

)e
β
2 (u,�u)−h(1,z−1)F. (1.13)

In this expression,
∫ ∏

x∈� ∂ηx ∂ξx denotes the Grassmann integral (i.e., the coefficient
of the top degree monomial of the integrand), Zβ,h is a normalising constant, and

1

2
(u,�u)=−1

2

∑

xy∈E(�)

(ux − uy) · (ux − uy)=
∑

xy∈E(�)

(ux · uy + 1),

(1, z)=
∑

x∈�

zx,

(1.14)

where xy ∈ E(�) denotes that x and y are nearest neighbours (counting every pair
once), and the inner products are given by (1.12). The factors 1/zx in (1.13) are
the canonical fermionic volume form invariant under the symmetries associated with
(1.12) as discussed further below.

As explained in [20, Sect. 2.1] (see also [37] where such relations were first ob-
served) connection and edge probabilities of the arboreal gas are equivalent to corre-
lation functions of the H

0|2 model. The following proposition summarises the rela-
tions we need, see Appendix A for the proof.

Proposition 1.4 For any finite graph G, any β � 0 and h � 0,

Pβ,h[0↔ g] = 〈z0〉β,h, (1.15)

Pβ,h[0↔ x,0 � g] = 〈ξ0ηx〉β,h, (1.16)

Pβ,h[0↔ x] + Pβ,h[0 � x,0↔ g, x↔ g] = −〈u0 · ux〉β,h, (1.17)

and the normalising constants in (1.1) and (1.13) are equal. In particular,

Pβ,0[0↔ x] = −〈u0 ·ux〉β,0 =−〈z0zx〉β,0 = 〈ξ0ηx〉β,0 = 1−〈ξ0η0ξxηx〉β,0. (1.18)

These relations resemble those between the Potts model and the random cluster
model, giving further credence to our proposal that the H

0|2 model may be inter-
preted as the 0-state Potts model, with the arboreal gas playing the role of the 0-state



Percolation transition for random forests in d � 3

random cluster model. Nevertheless, there are important differences from the q-state
Potts model with q � 2. Chief amongst them is that the H

0|2 model has continuous
symmetries. To make this precise, let

T =
∑

x∈�

zx∂ξx , T̄ =
∑

x∈�

zx∂ηx . (1.19)

One way to understand the significance of T , T̄ is via the identities 〈T F 〉β,0 =
〈T̄ F 〉β,0 = 0 for any polynomial F in the variables ξ and η; see [20, Sect. 2.2]. For
example, 〈T ξ0〉β,0 = 〈z0〉β,0 = 0. Identities derived in this way are conventionally
called Ward identities.

The maps T and T̄ are infinitesimal generators of two global internal supersymme-
tries of the H

0|2 model. These supersymmetries are explicitly broken if h �= 0. They
are analogues of infinitesimal Lorentz boosts or infinitesimal rotations. Together with
a further internal symmetry corresponding to rotations in the ξ , η plane, these oper-
ators generate the symmetry algebra osp(1|2) of the H

0|2 model. For details and
further explanations we again refer to [20, Sect. 2.2]. As generators of continuous
symmetries, T and T̄ imply Ward identities that are not available for the Potts model
with q � 2. These identities are crucial for our analysis and will be discussed below.

The phase transition of the arboreal gas corresponds to a spontaneous breaking of
the above supersymmetries in the infinite volume limit. By spontaneous symmetry
breaking we mean that there is an observable F for which limN→∞ limh↓0〈F 〉β,h �=
limh↓0 limN→∞〈F 〉β,h. Indeed, this is shown in our next theorem for the H

0|2 model
from which Theorems 1.2 and 1.3 follow immediately by (1.15)–(1.17) (except for
the same statements relating the constants, which we omitted here). A similar refor-
mulation applies to Theorem 1.1.

Theorem 1.5 Let d � 3 and L � L0(d). There exists β0 ∈ (0,∞) and constants
θd(β)= 1+O(1/β) and ci (β)= ci +O(1/β) and κ > 0 (all dependent on d) such
that for β � β0,

lim
h↓0

lim
N→∞〈z0〉β,h = θd(β) (1.20)

lim
h↓0

lim
N→∞〈ξ0ηx〉β,h = c1(β)

β|x|d−2 +O(
1

β|x|d−2+κ
) (1.21)

lim
h↓0

lim
N→∞

(
〈z0zx〉β,h − 〈z0〉β,h〈zx〉β,h

)
=− c2(β)

β2|x|2d−4
+O(

1

β2|x|2d−4+κ
). (1.22)

In particular,

lim
h↓0

lim
N→∞〈u0 · ux〉β,h =−θd(β)2 − 2c1(β)

β|x|d−2
+O(

1

β|x|d−2+κ
). (1.23)

In fact, the constants ci (β) both satisfy ci (β)= (cd)i +O(1/β), where cd is the
leading constant in the asymptotics of the Green function of the Laplacian −�Z

d
on

Z
d :

(−�Z
d

)−1(0, x)= cd

|x|d−2
+O(|x|−(d−2)−1). (1.24)
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Our proof of Theorem 1.5 is by a rigorous renormalisation group analysis aided by
Ward identities. We set ψ =√βη and ψ̄ =√βξ . Algebra then shows the fermionic
density in (1.13) is equivalent to

exp

⎡

⎣−(ψ,−�ψ̄)− 1

β
(1+ h)

∑

x∈�

ψxψ̄x − 1

2β

∑

x∈�

ψxψ̄x

∑

e∈Ed

ψx+eψ̄x+e

⎤

⎦ ,

(1.25)
where the 1 in the quadratic term arises from putting the H

0|2 volume form (see
(1.13)) into the exponential, i.e.,

∏

x∈�

1

zx

=
∏

x∈�

e+ξxηx =
∏

x∈�

e−ηxξx = exp

[
− 1

β

∑

x∈�

ψxψ̄x

]
, (1.26)

and Ed = {e1, . . . , e2d} are the standard unit vectors (where ed+j = −ej ). The re-
formulation (1.25) looks very much like a fermionic version of the ϕ4 spin model.
However, the following differences are important:

(1) Due to the fermionic nature of the field, and because the fermionic field only
has two components (different for example from the case of Dirac fermions with
four components), the quartic term actually has gradients in it: denoting the discrete
gradient in direction e ∈ Ed by (∇eψ)x =ψx+e −ψx , the quartic term can be written
as

1

2
ψxψ̄x

∑

e∈Ed

ψx+eψ̄x+e = 1

2
ψxψ̄x

∑

e∈Ed

(∇eψ)x(∇eψ̄)x =ψxψ̄x(∇ψ)x(∇ψ̄)x,

(1.27)
where we introduced the shorthand notation

(∇ψ)x(∇ψ̄)x = 1

2

∑

e∈Ed

(∇eψ)x(∇eψ̄)x.

(2) The coupling constants 1
β
(1+ h) of the quadratic and 1

β
of the quartic terms

are related, and they are equal in the case h= 0 of ultimate interest. This relation is
due to the geometric origin of the model as a non-linear sigma model and analogous
relations are present in intrinsic coordinates for other sigma models like the vector
O(n) model. We remark that if the coupling constant of the quartic term was much
smaller than that of the quadratic term (so h � 0) the study of the model would
reduce to an exercise in fermionic cluster expansions (but see Appendix A.2 for even
simpler arguments in this case).

To study the case of equal coupling constants, we will first consider their renor-
malisation group trajectories as a one parameter family among the set of all renor-
malisation group trajectories obtained by allowing the initial quadratic and quartic
couplings to vary independent of one another. We will then place the equal-initial-
coupling trajectories on the critical manifold of the renormalisation group dynamical
system using the following Ward identity for the H

0|2 model:

〈z0〉β,h = 〈T ξ0〉β,h =−
∑

x∈�

h〈ξ0T zx〉β,h = h
∑

x∈�

〈ξ0ηx〉β,h, (1.28)
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where T is the symmetry generator (1.19); in the second equality we have used [20,
Lemma 2.3].

After taking into account the two points above (in particular that the flow of the ex-
panding quadratic term is constrained by the Ward identity), power counting heuris-
tics predict that the lower critical dimension for spontaneous symmetry breaking with
free field low temperature fluctuations is two for the H0|2 model. We expect that these
considerations generalise to all non-linear sigma models with continuous symmetry,
in agreement with the Goldstone mechanism. In conjunction with [20], our results
rigorously establish that the lower critical dimension is two for the H

0|2 model.

1.3 Background on non-linear sigma models and renormalisation

The low temperature renormalisation group analysis of non-linear sigma models with
non-abelian continuous symmetry is a notorious problem that was famously consid-
ered by Balaban for the case of O(n) symmetry, see [10, 11] and references therein.
Our comparatively simple analysis of the H

0|2 model, which is a non-linear sigma
model with non-abelian continuous OSp(1|2) symmetry, is made possible mainly
by the fact that it does not suffer a large field problem because it has a fermionic
representation. Our approach to the H

0|2 model differs from Balaban’s approach to
the O(n) model on a conceptual level, in that it is based on intrinsic coordinates as
opposed to extrinsic ones. In the extrinsic approach of Balaban the sphere S

n−1 is
embedded into R

n and the renormalised action evolves as a function of Rn-valued
fields, manifestly preserving O(n) symmetry. The intrinsic approach we use, which
is similar to the one taken in the physics literature (see [79]), is based on local coordi-
nates for the target space H

0|2. The renormalised action does not have the OSp(1|2)

symmetry of the model, and Ward identities are used a posteriori to enforce the es-
sential constraints (relations between couplings) due to the symmetry. It is unclear to
us how to implement an extrinsic approach in our situation of OSp(1|2) symmetry,
and more generally for noncompact symmetries.

Somewhat remarkably, despite its simplicity, the H
0|2 model has all of the main

features present in the non-abelian O(n) models, including: absence of sponta-
neous symmetry breaking in 2d (proven in [20]); mass generation in 2d (conjectured
in [38]); and a spontaneous symmetry breaking phase transition with massless low
temperature fluctuations in d � 3 (the main result of this work).

The H0|2 model is a member of the family of hyperbolic sigma models with target
spaces H

n|2m, see [39] for a discussion of some aspects of this. By supersymmetric
localisation the observables of the H

0|2 model considered in Theorem 1.5 are equiv-
alent to the analogous ones of the non-linear sigma model with target H2|4. While
this relation does not play a role in this paper, it leads to a more direct representa-
tion of the continuous symmetry breaking observed here. In brief, in the H

2|4 model
each vertex comes equipped with two real and four Grassmann fields. By expressing
these fields in horospherical coordinates one of the real fields and the four Grass-
mann fields can be integrated out. The marginal distribution of the remaining real
field, which is called the t-field, may be viewed as a ‘∇φ’ random surface model,
albeit with a nonconvex and nonlocal Hamiltonian. By this we mean that the poten-
tial is invariant under the global translation tx �→ tx + r for r ∈R. See [20] for more
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details, where this perspective was used to prove the absence of symmetry breaking
in d = 2. The full Hn|2m family has been important for advancing our understand-
ing of other aspects of these models [20, 39]. Of particular note, we mention that
the H

2|2 model has received substantial prior attention due to its exact connection to
linearly reinforced random walks and its motivation from random matrix theory, see
[42, 72, 78, 80, 81].

For hyperbolic sigma models with target Hn, n � 1, spontaneous symmetry break-
ing for all β > 0 was shown in [78], and with target H2|2 for β large in [42] (see also
[43]). For motivation from random matrix theory and the Anderson transition see
[76, 77]. These proofs make essential use of the horospherical coordinates mentioned
above. Moreover, the proof of symmetry breaking for the H

2|2 model in [42] relies
on an infinite number of Ward identifies resulting from supersymmetric localisation.
These identities are absent in the H

0|2 model, limiting the applicability of the meth-
ods of [42] to our setting. At the same time, the H

2|2 model has no purely fermionic
representation, and so our methods do not apply there, at least without significant
further developments.

Introductions to fermionic renormalisation include [22, 66, 73], see also [53]. Re-
cent probabilistic applications of these approaches to fermionic renormalisation in-
clude the study of interacting dimers [51, 52] and two-dimensional finite range Ising
models [7, 8, 49, 50]. Our organisation of the renormalisation group is instead based
on a finite range decomposition and polymer coordinates, and follows [28] and its
further developments in [12, 16, 17, 29–32, 36]. This approach has its origins in [33].
For an introduction to this approach in a hierarchical bosonic context see [18]. Previ-
ous applications of this approach include the study of 4d weakly self-avoiding walks
[14, 15]; the nearest-neighbour critical 4d |ϕ|4 model [13, 75] and long-range ver-
sions thereof [63, 74]; the ultraviolet ϕ4

3 problem [34, 35]; analysis of the Kosterlitz–
Thousless transition of the 2d Coulomb gas [41, 45]; the Cauchy–Born problem [1];
and others.

While the construction of the bulk renormalisation group flow is simpler for the
intrinsic representation of the H

0|2 model than in many of the previous references,
a crucial novelty of our present work is the combination of the finite range renor-
malisation group approach with Ward identities, together with a precise analysis of
a nontrivial zero mode. This has enabled us to apply these methods to a non-linear
sigma model in the phase of broken symmetry. It would be extremely interesting to
understand this approach for bosonic non-linear sigma models where, while ‘large
fields’ cause serious complications, the formal perturbative analysis is very much in
parallel to the fermionic version we study in this paper. Ward identities of a different
type have previously been used in the renormalisation group analyses in [9] and [23]
and many follow-up works including [51, 52]. Finally, we mention that Theorem 1.1
yields quantitative finite volume statements. The proof implements a rigorous finite
size analysis along the lines of that proposed in [27]. It would be very interesting to
extend this to even higher precision as discussed in Sect. 1.4 below.

1.4 Future directions for the arboreal gas

In this section we discuss several interesting open directions, including the geometric
structure of the weak infinite volume limits of the arboreal gas and its relation to the
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uniform spanning tree, and a conjectural finite size universality similar to Wigner–
Dyson universality from random matrix theory.

1.4.1 Finite volume behaviour

The detailed finite volume behaviour of the arboreal gas would be very interesting to
understand beyond the precision of Theorem 1.1. On the complete graph at supercrit-
ical temperatures it is known that there is a unique macroscopic cluster, and that there
are an unbounded number of clusters whose sizes are of order |�|2/3 [64]. The fluc-
tuations of the macroscopic cluster are non-Gaussian of scale |�|2/3 and the distribu-
tion of the ordered cluster sizes of the mesoscopic clusters has been determined [64].
The joint law of the mesoscopic clusters can be characterised [65, Sect. 1.4.3]. In-
triguingly, |�|2/3 is the size of the largest tree at criticality on the complete graph,
and the order statistics of the supercritical mesoscopic clusters can be related to the
order statistics at the critical point [65, Sect. 1.4.3].

Going beyond the complete graph, is this distribution of ordered cluster sizes uni-
versal, at least in sufficiently high dimensions? This would be similar to the con-
jectured universality of Wigner–Dyson statistics from random matrix theory [67] or
the conjectured universality of the distribution of macroscopic loops in loop repre-
sentations of O(n) (and other) spin systems [55, 68]. More generally it would be an
instance of the universality of low temperature fluctuations in finite volume in models
with continuous symmetries.

Finally, we mention that on expander graphs the existence of a phase transition
for the arboreal gas is not difficult to show by using a natural split–merge dynamics
[54]. It would be interesting if this dynamical approach could also be used to obtain
information about the cluster size distribution.

1.4.2 Infinite volume behaviour and relation to the uniform spanning tree

As mentioned previously, the arboreal gas is also known as the uniform forest model
[57]. We emphasise that the arboreal gas is not what is typically known as the uniform
spanning forest (USF), which is in fact the weak limit as �N ↑ Z

d of a uniform
spanning tree (UST) [69]. On a finite graph, the UST is the β →∞ limit of the
arboreal gas. The correct scaling of the external field for this limit is h= βκ and we
thus write PUST,κ = limβ→∞ Pβ,βκ for the UST on a finite graph (plus ghost vertex if
κ > 0). For κ > 0, this measure is also known as the rooted spanning forest, because
disregarding the connections to the ghost vertex disconnects the tree of the UST, with
vertices previously connected to the ghost becoming roots. The distributions of rooted
and unrooted forests are not the same. To help prevent confusion we will refer to the
rooted spanning forests as (a special case of) the UST.

It is trivial that P�N

UST,0[0↔ x] = 1. Nevertheless, the behaviour of the UST in the
weak infinite volume limit depends on the dimension d . This limit can be defined
as PZ

d

UST = limκ↓0 limN→∞ P
�N

UST,κ and is independent of the finite volume boundary
conditions (e.g. free, wired, or periodic as above) imposed on �N , see [69]. Even
though the function 10↔x is not continuous with respect to the topology of weak
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convergence, it is still true that

P
Z

d

UST[0↔ x] = lim
κ↓0

lim
N→∞P

�N

UST,κ [0↔ x]. (1.29)

The order of limits here is essential. In this infinite volume limit the UST disconnects
into infinitely many infinite trees if d > 4, but remains a single connected tree if
d � 4, see [69]. Moreover,

P
Z

d

UST[0↔ x] + P
Z

d

UST[0 � x, |T0| =∞, |Tx | =∞] = 1. (1.30)

On the left-hand side, the second term vanishes if d � 4 whereas the first term tends to
0 as |x| →∞ if d > 4. Furthermore, the geometric structure of the trees under PZ

d

UST
is well understood. In particular, all trees are one-ended, meaning that removing one
edge from a tree results in two trees, of which one is finite [24, 69].

For the arboreal gas, the existence and uniqueness of infinite volume limits is an
open question. Nonetheless, subsequential limits exist, and in such an infinite volume
limit all trees are finite almost surely when β is small, while Theorem 1.2 implies the
existence of an infinite tree for β large. Moreover, by Theorem 1.3,

lim
h↓0

lim
N→∞

(
P

�N

β,h[0↔ x] + P
�N

β,h[0 � x,0↔ g, x↔ g]
)

= θd(β)2 + 2c1(β)

β|x|d−2
+O(

1

β|x|d−2+κ
). (1.31)

By analogy with the UST, we expect that only the first term on the left-hand side
contributes for d � 4 and that only the second term contributes asymptotically as
|x| →∞ for d > 4. The tempting conjecture that the UST stochastically dominates
the arboreal gas on the torus is consistent with these expectations. The analogue of
the left-hand side of (1.31) plays an important role in the proof of uniqueness of the
infinite cluster in Bernoulli percolation in [4]; this is related to the vanishing of the
second term. As already mentioned, for the arboreal gas we only expect this to be
true in d � 4. Significant progress towards this statement has been obtained in [58],
where it is shown that translation-invariant infinite volume limits of the arboreal gas
have a unique infinite tree in d = 3,4. More precisely, [58] makes use of the existence
results of the present paper and establishes uniqueness.

Beyond the questions above, it would be interesting to analyse more detailed ge-
ometric aspects of the arboreal gas. For example, can one construct scaling limits as
has been done for some spanning tree models [3, 5, 6, 48]?

Finally, we mention that a detailed analysis of the infinite volume behaviour of
the arboreal gas on regular trees with wired boundary conditions has been carried out
[44, 71]. This infinite volume behaviour is consistent with the finite volume behaviour
of the complete graph, e.g., at all supercritical temperatures the sizes of finite clusters
have the same distribution as those of critical percolation.

1.4.3 Order of phase transition

Our analysis could be extended to a detailed study of the approach h ↓ 0. To keep the
length of this paper within bounds, we do not carry this out, but here briefly comment
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on what we expect can be shown by extensions of our analysis. As discussed above,
a natural object is the magnetisation

M(β,h)= lim
N→∞MN(β,h), MN(β,h)= P

�N

β,h[0↔ g], (1.32)

and the corresponding susceptibility (neglecting questions concerning the order of
limits)

χ(β,h)= ∂

∂h
M(β,h)=

∑

x

σβ,h(x). (1.33)

Thus for the arboreal gas, the susceptibility is not the sum over τβ,h(x) as is the
case for Bernoulli bond percolation, but the sum over σβ,h(x). In terms of the sigma
model, χ maybe viewed as the longitudinal susceptibility, often denoted χ||. In this
interpretation, the sum over τβ,h(x) is the transversal susceptibility χ⊥ and satisfies
the Ward identity χ⊥(β,h)=∑x τβ,h(x)= h−1M(β,h) which is crucial in our anal-
ysis. For the longitudinal susceptibility, we expect that it would be possible to extend
our analysis to show

χ(β,h)∼

⎧
⎪⎨

⎪⎩

C(β)h−1/2 (d = 3)

C(β)| logh| (d = 4)

C(β) (d > 4).

(1.34)

Defining the free energy f (β,h)= limN→∞ |�N |−1 logZ
�N

β,h , for β � β0 the previ-

ous asymptotics suggest that h �→ f (β,h) is C2 in d > 4 but only C1 for d = 3,4.
In fact, extrapolating from our renormalisation group analysis we believe that for
β � β0 the free energy is Cn but not Cn+1 as a function of h � 0 for n= � d−1

2 �. It
is unclear how this is connected to the geometry of the component graph of the UST,
which also changes as the dimension is varied [25, 59].

1.4.4 Critical behaviour

The critical behaviour of the H
0|2 model and its generalisations (the H

0|2M mod-
els) were studied in [46, 62], using ε-expansions formally continued from the O(n)

models, with the motivation of being candidates for the CFTs relevant for a dS-CFT
correspondence. Rigorous results about the critical behaviour of the arboreal gas on
Z

d for d � 3 would be very interesting.

1.5 Organisation and notation

This paper is organised as follows. In Sect. 2, we show how Theorem 1.5 is reduced
to renormalisation group results with the help of the Ward identity (1.28). The main
renormalisation group input is Theorem 2.1 and 2.3. Sections 3–7 then prove these
renormalisation group results. Section 3 is concerned with the construction of the bulk
renormalisation group flow, and Sect. 4 uses this analysis to compute the susceptibil-
ity. In Sect. 5 we extend this construction to include observables. The renormalisation
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group flow for observables is then used in Sect. 6 to compute pointwise correlation
functions. These computations involve a precise analysis of the zero mode. The short
Sect. 7 then collects the results and establishes Theorems 2.1 and 2.3. Finally, in Ap-
pendix A we collect relations between the arboreal gas and the H

0|2 model as well
as basic percolation and high temperature properties of the arboreal gas, and in Ap-
pendix B we include some background material about the finite range decomposition
that we use.

Throughout we use an ∼ bn to denote limn→∞ an/bn = 1, an � bn to denote the
existence of c,C > 0 such that can � bn � Can, an � bn if an � Cbn, and an =
O(bn) if |an|� |bn|. We write a∧b=min{a, b}. We consider the dimension d � 3 to
be fixed, and hence allow implicit constants to depend on d . In Sects. 1 and 2 we allow
implicit constants to depend on L as well, as this dependence does not play a role. In
subsequent sections L-dependence is made explicit, though uniformity in L is only
crucial in the contractive estimate of Theorem 3.13. Our main theorems hypothesise
L= L(d) is large, and for geometric convenience we will assume throughout that L

is at least 2d+2.

2 Consequences of combining renormalisation and Ward identities

In our renormalisation group analysis, which provides the foundation for the proofs of
the theorems stated in Sect. 1, we will not assume any relation between the coupling
constants of the quadratic and quartic terms in (1.25) (except that they are small). The
equality of the quadratic and quartic couplings is restored with the help of the Ward
identity (1.28), i.e.,

〈z0〉β,h = h
∑

x∈�

〈ξ0ηx〉β,h, and in particular 〈z0〉β,0 = 0. (2.1)

This application of the Ward identity is the subject of this section.
In our analysis we distinguish between two orders of limits. We first analyse

the ‘infinite volume’ limit limh↓0 limN→∞, and prove Theorem 1.5 (and thus The-
orems 1.2–1.3). Using results of this analysis (and with several applications of the
Ward identity), we then also analyse the much more delicate ‘finite volume’ limit
limN→∞ limh↓0 in order to prove Theorem 1.1.

2.1 Infinite volume correlation functions

For m2 > 0 arbitrary and coupling constants s0, a0, b0, which eventually will be
taken small, we consider the model with fermionic Gaussian reference measure with
covariance

C = (−�+m2)−1 (2.2)

on �N and interaction

V0 = V0(�N)=
∑

x∈�N

[
s0(∇ψ)x(∇ψ̄)x + a0ψxψ̄x + b0ψxψ̄x(∇ψ)x(∇ψ̄)x

]
,

(2.3)
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where we recall the squared gradient notation from (1.27). Thus the corresponding
expectation is

〈F 〉m2,s0,a0,b0
= 1

Zm2,s0,a0,b0

1

det(−�+m2)

∫
∂ψ∂ψ̄ e−(ψ,(−�+m2)ψ̄)−V0F, (2.4)

where
∫

∂ψ∂ψ̄ denotes the Grassmann integral, and Zm2,s0,a0,b0
is defined such that

〈1〉m2,s0,a0,b0
= 1. We emphasise the connection to the arboreal gas arises only if m2,

s0, a0, b0 are chosen to agree with (1.25), c.f. (2.14)–(2.15) below.
The following result states that for correctly chosen a0 the correlation functions of

the fields ψ and ψ̄ψ are to leading order multiples of those of the free (Grassmann
Gaussian) case b0 = 0 if first N →∞ and then m2 ↓ 0. The result resembles those
in [14, 15, 75] for weakly self-avoiding walks in dimension 4. Compared to the latter
results, our analysis is substantially simplified since the H

0|2 model can be studied
in terms of only fermionic variables with a quartic interaction that is irrelevant in
dimensions d > 2. However, in Sect. 2.2, we state an improvement of the following
result that captures the full zero mode of the low temperature phase and goes beyond
the analysis of [14, 15, 75].

Theorem 2.1 Let d � 3 and L � L0(d). For b0 sufficiently small and m2 � 0, there
are s0 = sc

0(b0,m
2) and a0 = ac

0(b0,m
2) independent of N so that the following hold:

The functions sc
0 and ac

0 are continuous in both variables, differentiable in b0 with
uniformly bounded b0-derivatives, and satisfy the estimates

sc
0(b0,m

2)=O(b0), ac
0(b0,m

2)=O(b0) (2.5)

uniformly in m2 � 0. There exists κ > 0 such that if the torus sidelength satisfies
L−N � m,

∑

x∈�N

〈ψ̄0ψx〉m2,s0,a0,b0
= 1

m2
+ O(b0L

−(2+κ)N )

m4
. (2.6)

Moreover, there are functions

λ= λ(b0,m
2)= 1+O(b0), γ = γ (b0,m

2)= (−�Z
d +m2)−1(0,0)+O(b0),

(2.7)
having the same continuity properties as sc

0 and ac
0 such that

〈ψ̄0ψ0〉m2,s0,a0,b0
= γ +O(b0L

−κN), (2.8)

〈ψ̄0ψx〉m2,s0,a0,b0
= (−�+m2)−1(0, x)+O(b0|x|−(d−2)−κ )+O(b0L

−κN),

(2.9)

〈ψ̄0ψ0; ψ̄xψx〉m2,s0,a0,b0
= − λ2(−�+m2)−1(0, x)2 +O(b0|x|−2(d−2)−κ )

+O(b0L
−κN). (2.10)

Here 〈A;B〉 = 〈AB〉 − 〈A〉〈B〉.
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The proof of this theorem is given in Sects. 3–7. We now show how to derive
Theorem 1.5 for the H

0|2 model from it together with the Ward identity (1.28). To
this end, assuming s0 >−1 we further rescale ψ by 1/

√
1+ s0 (and likewise for ψ̄ )

in (1.25), and thus set

ξ =
√

1+ s0

β
ψ̄, η=

√
1+ s0

β
ψ. (2.11)

Up to a normalisation constant, the fermionic density (1.25) becomes, see also (1.27),

exp

⎡

⎣−
∑

x∈�N

(
(1+ s0)(∇ψ)x(∇ψ̄)x + 1+ s0

β
(1+ h)ψxψ̄x

+ (1+ s0)
2

β
ψxψ̄x(∇ψ)x(∇ψ̄)x

)⎤

⎦ . (2.12)

For any m2 � 0 and s0 >−1, (2.12) is of the form (2.4) with

a0 = 1+ s0

β
(1+ h)−m2, b0 = (1+ s0)

2

β
. (2.13)

To use Theorem 2.1 to study the arboreal gas we need to invert this implicit relation
between (β,h) and (m2, s0, a0, b0). This is achieved by the following corollary. A key
observation is that the Ward identity (1.28) allows us to identify the critical point with
h= 0. To make this precise, with sc

0 and ac
0 as in Theorem 2.1, define the functions

β(b0,m
2)= (1+ sc

0(b0,m
2))2

b0
, (2.14)

h(b0,m
2)=−1+ ac

0(b0,m
2)+m2

b0
(1+ sc

0(b0,m
2)). (2.15)

By Theorem 2.1, both functions are continuous in b0 > 0 small enough and m2 � 0.

Corollary 2.2 (i) Assume b0 > 0 is small enough. Then

h(b0,m
2)=m2β(b0,m

2)(1+O(b0)). (2.16)

In particular, h(b0,0)= 0 and h(b0,m
2) > 0 if m2 > 0.

(ii) For β large enough and h � 0, there are functions b̃0(β,h) > 0 and
m̃2(β,h) � 0 such that h(b̃0, m̃

2)= h and β(b̃0, m̃
2)= β . Both functions are right-

continuous as h ↓ 0 when β is fixed.

Proof To prove (i), we use the Ward identity (2.1) with (β,h) given by (2.14)–(2.15).
The left- and right-hand sides of (2.1) are, respectively,

〈z0〉β,h = 1− 1+ sc
0(b0,m

2)

β
〈ψ̄0ψ0〉m2,s0,a0,b0

, (2.17)
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h
∑

x∈�N

〈ξ0ηx〉β,h = (1+ sc
0(b0,m

2))h(b0,m
2)

β(b0,m2)

∑

x∈�N

〈ψ̄0ψx〉m2,s0,a0,b0
. (2.18)

By Theorem 2.1, in the limit N →∞, we obtain from (2.1) that if m2 > 0, the identity

1− 1+ sc
0(b0,m

2)

β(b0,m2)
γ (b0,m

2)= (1+ sc
0(b0,m

2))h(b0,m
2)

β(b0,m2)m2
(2.19)

holds. Solving for h, we have

h(b0,m
2)=m2

[
β(b0,m

2)

1+ sc
0(b0,m2)

− γ (b0,m
2)

]
. (2.20)

Since sc
0(b0,m

2) =O(b0), β(b0,m
2) � 1/b0, and γ (b0,m

2) =O(1), all uniformly
in m2 � 0, we obtain h(b0,m

2)=m2β(b0,m
2)(1+O(b0)). In particular, h(b0,0)=

0.
Claim (ii) follows from an implicit function theorem argument that uses that sc

0
and ac

0 are continuous in m2 � 0 and differentiable in b0 if m2 > 0 with b0-derivatives
uniformly bounded in m2 > 0. This argument is the same as the proof of [15, Propo-
sition 4.2] (with our notation s0 instead of z0, a0 instead of ν0, b0 instead of g0, and
with 1/β instead of g and h instead of ν) and is omitted here. �

Assuming Theorem 2.1, the proof of Theorem 1.5 is immediate from the last
corollary. The main statements of Theorems 1.2 and 1.3 then follow immediately, ex-
cept for the identifications θd(β)2 = ζd(β), (c2(β)/c1(β)2)θd(β)2 = 1, and c(β) =
2c2(β) which we will obtain in Sect. 2.2.

Proof of Theorem 1.5 Given β � β0 and h > 0 we choose b0 > 0 and m2 > 0 as in
Corollary 2.2 (ii). Since zx = 1− ξxηx and using (2.11) we then have

〈z0〉β,h = 1− 〈ξ0η0〉β,h = 1− 1+ s0

β
〈ψ̄0ψ0〉m2,s0,a0,b0

, (2.21)

〈ξ0ηx〉β,h = 1+ s0

β
〈ψ̄0ψx〉m2,s0,a0,b0

, (2.22)

〈z0zx〉β,h − 〈z0〉2β,h = 〈ξ0η0ξxηx〉β,h − 〈ξ0η0〉2β,h

= (1+ s0)
2

β2 〈ψ̄0ψ0; ψ̄xψx〉m2,s0,a0,b0
. (2.23)

Taking N →∞ and then h ↓ 0, the results follow from Corollary 2.2 (i) and Theo-
rem 2.1 with

θd(β)= 1− b0γ

1+ sc
0
, c1(β)= (1+ sc

0)cd, c2(β)= λ2(1+ sc
0)

2c2
d, (2.24)

where the functions λ and γ are evaluated at m2 = 0 and b0 given as above, cd is
the constant in the asymptotics of the free Green’s function on Z

d , see (1.24), and we
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have used the simplification of the error terms O(|x|−(d−2)−1)+O(b0|x|−(d−2+κ))=
O(|x|−(d−2+κ)) and O(|x|−2(d−2)−1) + O(b0|x|−2(d−2)−κ)) = O(|x|−2(d−2)−κ)).

�

2.2 Finite volume limit

The next theorem extends Theorem 2.1 by more precise estimates valid in the limit
m2 ↓ 0 with �N fixed. In these estimates tN ∈ (0,1/m2) is a continuous function of
m2 > 0 that satisfies

tN − 1

m2
=O(L2N) and (2.25)

lim
m↓0

[
(−�+m2)−1(0, x)− tN

|�N |
]
= (−�Z

d

)−1(0, x)+O(L−(d−2)N ), (2.26)

where on the right-hand side �Z
d

is the Laplacian on Z
d , on the left-hand side �

is the Laplacian on �N , and |�N | = LdN denotes the volume of the torus �N . We
define

WN(x)=WN,m2(x)= (−�+m2)−1(0, x)− tN

|�N | , (2.27)

so that WN(x) is essentially the torus Green’s function (−�+m2)−1 with the zero
mode omitted.

In the following theorem, and throughout this section, �N is fixed and the pa-
rameters (β,h) are related to (m2, s0, a0, b0) as in Corollary 2.2. We will write
〈·〉m2,b0

= 〈·〉m2,sc
0(b0,m

2),ac
0(b0,m

2),b0
for the corresponding expectation and similarly

for the partition function Zm2,b0
.

Theorem 2.3 Under the conditions of Theorem 2.1 except that we no longer restrict
L−N � m, in addition to the functions ac

0, sc
0, λ, and γ , there are functions ãc

N,N =
ãc
N,N (b0,m

2) and uc
N = uc

N(b0,m
2), both continuous in b0 small and m2 � 0, as

well as

ũc
N,N = ũc

N,N (b0,m
2)= tN ãc

N,N(b0,m
2)+O(b0L

−κN), (2.28)

continuous in b0 small and m2 > 0, such that, for x ∈�N ,

∑

x∈�N

〈ψ̄0ψx〉m2,b0
= 1

m2
− 1

m4

ãc
N,N

1+ ũc
N,N

, (2.29)

〈ψ̄0ψ0〉m2,b0
= γ + λtN |�N |−1

1+ ũc
N,N

+E00, (2.30)

〈ψ̄0ψ0ψ̄xψx〉m2,b0
=−λ2WN(x)2 + γ 2 + −2λ2WN(x)+ 2λγ

1+ ũc
N,N

tN |�N |−1 +E00xx,

(2.31)
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and

Zm2,b0
= e−uc

N |�N |(1+ ũc
N,N ). (2.32)

The remainder terms satisfy

E00 = O(b0L
−(d−2+κ)N + b0L

−κN(m2|�N |)−1)

1+ ũc
N,N

, (2.33)

E00xx =O(b0|x|−2(d−2)−κ )+O(b0L
−(d−2+κ)N )

+ (O(b0|x|−(d−2+κ))+O(b0L
−κN))

(m2|�N |)−1

1+ ũc
N,N

. (2.34)

The proof of this theorem is again given in Sects. 3–7. This proof also gives a
bound on ãc

N,N of order b0L
−(2+κ)N for a small κ > 0. We did not state this bound

above because (by using the Ward identity (2.1)) the existence of ãc
N,N with its re-

lation to the correlation functions as stated in the theorem is, in fact, sufficient to
determine its precise asymptotic value of order b0/|�N | = b0L

−dN � b0L
−(2+κ)N ,

see Lemmas 2.4–2.5 below. Using this precise asymptotic information on ãc
N,N , The-

orem 1.1 then follows from Theorem 2.3. The key computation occurs in Lemma 2.6,
where the asymptotic value of ãc

N,N is used to exhibit important cancelations between
the terms on the right-hand side of (2.31).

Lemma 2.4 Under the conditions of Theorem 2.3,

E
�N

β,0 |T0| = b0

1+ sc
0(b0,0)

1+O(b0L
−κN)

ãc
N,N(b0,0)

+O(b0L
2N). (2.35)

In particular, if b0 > 0 this implies 1/ãc
N,N(b0,0)=O(|�N |/b0) and ãc

N,N (b0,0) >

0.

Proof From (1.18), we have that

E
�N

β,0 |T0| =
∑

x∈�N

Pβ,0[0↔ x] =
∑

x∈�N

〈ξ0ηx〉β,0 = lim
h→0

∑

x∈�N

〈ξ0ηx〉β,h. (2.36)

Changing variables,

∑

x∈�N

〈ξ0ηx〉β,h = b0

1+ sc
0(b0,m2)

∑

x∈�N

〈ψ̄0ψx〉m2,b0
, (2.37)

where (β,h) and (b0,m
2) are related as in (2.14) and (2.15). To evaluate the right-

hand side we use (2.29). Note that

1

m2
− 1

m4

ãc
N,N

1+ ũc
N,N

= 1

m2

1+ ũc
N,N − ãc

N,Nm−2

1+ ũc
N,N
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= 1+ ãc
N,N (tN −m−2)+O(b0L

−κN)

m2 + ãc
N,N tNm2 +O(b0m2L−κN)

= 1+ ãc
N,NO(L2N)+O(b0L

−κN)

m2 + ãc
N,N (1+O(m2L2N))+O(b0m2L−κN)

, (2.38)

where the second equality is due to (2.28) and the third follows from (2.25). As
m2 ↓ 0, the right-hand side of the third equality behaves asymptotically as

1+ ãc
N,NO(L2N)+O(b0L

−κN)

ãc
N,N

= 1+O(b0L
−κN)

ãc
N,N

+O(L2N). (2.39)

Since sc
0(b0,0)=O(b0) by Theorem 2.1 we therefore obtain the first claim:

E
�N

β,0 |T0| = b0

1+ sc
0(b0,0)

lim
m2↓0

∑

x∈�N

〈ψ̄0ψx〉m2,b0

= b0

1+ sc
0(b0,0)

1+O(b0L
−κN)

ãc
N,N(b0,0)

+O(b0L
2N). (2.40)

For the second claim, let us observe that, on the one hand,

Zβ,h =
(

β

1+ sc
0

)|�N |
(det(−�+m2))Zm2,b0

=
(

βe−uc
N

1+ sc
0

)|�N |
(det(−�+m2))(1+ ũc

N,N ), (2.41)

where the first equality is by Proposition 1.4 and (2.4), (2.11), and (2.12), and the
second equality is (2.32). On the other hand, by (1.1),

lim
h→0

Zβ,h = Zβ,0 > 0. (2.42)

Since, by Theorem 2.3, uc
N and sc

0 remain bounded as m2 ↓ 0 with �N fixed (and
thus also β which is given by (2.14)), from det(−� + m2) ↓ 0, we conclude that
1 + ũc

N,N diverges as m2 ↓ 0. By (2.28), this implies ãc
N,N (b0,0) > 0. The upper

bound on 1/ãc
N,N(b0,0) follows by re-arranging (2.35) and using the trivial bound

|T0|� |�N |. �

Using that ãc
N,N is at least of order b0/|�N | as established in the previous lemma,

the following lemma gives an asymptotic representation of ãc
N,N of order b0/|�N | in

terms of γ from Theorem 2.3.

Lemma 2.5 Under the conditions of Theorem 2.3 and if b0 > 0,

1= b0

1+ sc
0(b0,0)

[
γ (b0,0)+ λ(b0,0)

|�N |ãc
N,N (b0,0)

(1+O(b0L
−κN))

]
. (2.43)
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Proof The Ward identity 〈z0〉β,0 = 0 implies

0= 〈z0〉β,0 = 1− 〈ξ0η0〉β,0 = 1− lim
m2↓0

1+ sc
0(b0,m

2)

β(b0,m2)
〈ψ̄0ψ0〉m2,b0

= 1− lim
m2↓0

b0

1+ sc
0(b0,m2)

〈ψ̄0ψ0〉m2,b0
, (2.44)

where we used (2.11) and that β = β(b0,m
2) is as in (2.14). To compute 〈ψ̄0ψ0〉m2,b0

,
we apply (2.30). Since ũc

N,N = ãc
N,N tN +O(b0L

−κN) and tN =m−2 +O(L2N),

lim
m2↓0

〈ψ̄0ψ0〉m2,b0
= γ (b0,0)+ lim

m2↓0

λ(b0,m
2)tN |�N |−1

1+ ãc
N,N (b0,m2)tN +O(b0L−κN)

+ lim
m2↓0

E00

= γ (b0,0)+ λ(b0,0)|�N |−1

ãc
N,N (b0,0)

+ lim
m2↓0

E00. (2.45)

The limits in the second line exist by Theorem 2.3 and Lemma 2.4, which in par-
ticular implies ãc

N,N (b0,0) > 0 since b0 > 0. As m2 ↓ 0, the error term E00 is

bounded by O(b0L
−κN/(|�N |ãc

N,N )) = (λ(b0,0)|�N |−1/ãc
N,N)O(b0L

−κN) since
λ(b0,0)= 1−O(b0) � 1/2, finishing the proof. �

Given Theorem 2.3, the following lemma is the main step in the proof of The-
orem 1.1. It uses the asymptotic representation of ãc

N,N to exhibit cancelations in
expressions in Theorem 2.3.

Lemma 2.6 Under the conditions of Theorem 2.3 and if b0 > 0,

P
�N

β,0 [0↔ x] = θd(β)2 + 2
b0

1+ sc
0
λθd(β)(−�Z

d

)−1(0, x)

+O(b2
0|x|−(d−2)−κ )+O(b0L

−(d−2)N )+O(b2
0L
−κN), (2.46)

where θd(β) is defined in (2.24).

Proof By the last expression for Pβ,0[0↔ x] in (1.18) and (2.11), (2.14):

P
�N

β,0 [0↔ x] = 1− lim
h↓0
〈ξ0η0ξxηx〉β,h

= 1− lim
m2↓0

[
b2

0

(1+ sc
0)

2 〈ψ̄0ψ0ψ̄xψx〉m2,b0

]
. (2.47)

To compute limm2↓0〈ψ̄0ψ0ψ̄xψx〉m2,b0
we start from (2.31). By Lemma 2.4, as

m2 ↓ 0 with �N fixed,

1

1+ ũc
N,N

∼ 1

m−2ãc
N,N (b0,0)

=O(
m2|�N |

b0
). (2.48)
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This implies the error term in (2.31) is, as m2 ↓ 0 with �N fixed,

|E00xx |� O(|x|−(d−2)−κ )+O(L−κN). (2.49)

For the main term we have (recall WN(x)=WN,m2(x), see (2.27))

lim
m2↓0

〈ψ̄0ψ0ψ̄xψx〉m2,b0
− lim

m2↓0
|E00xx |

= −λ2WN,0(x)2 + γ 2 + lim
m2↓0

−2λ2WN(x)+ 2λγ

1+ ũc
N,N

tN |�N |−1

=−λ2WN,0(x)2 + γ 2 + 2(−λWN,0(x)+ γ )
λ

ãc
N,N |�N | , (2.50)

where on the right-hand side the functions λ, γ , and ãc
N,N are evaluated at m2 = 0.

By Lemma 2.5,

b0

1+ sc
0

λ

ãc
N,N |�N | =

(
1− b0γ

1+ sc
0

)
(1+O(b0L

−κN)) (2.51)

so that

−
(

b0

1+ sc
0

)2 2λ2WN,0(x)

ãc
N,N |�N | (1+O(b0L

−κN))=− 2b0

1+ sc
0
(1− b0γ

1+ sc
0
)λWN,0(x)

(2.52)
(

b0

1+ sc
0

)2 2λγ

ãc
N,N |�N | (1+O(b0L

−κN))= 2γ
b0

1+ s0
− 2γ 2

(
b0

1+ sc
0

)2

.

(2.53)

Substituting these bounds into (2.50) and then (2.47) we obtain

P
�N

β,0 [0↔ x] = 1−
(

b0

1+ sc
0

)2

lim
m2↓0

〈ψ̄0ψ0ψ̄xψx〉m2,b0

= (1− γ b0

1+ s0
)2 + 2b0λ

1+ sc
0
(1− b0γ

1+ sc
0
)WN,0(x)+

(
b0λWN,0(x)

1+ sc
0

)2

+O(b2
0L
−κNWN,0(x))+O(b2

0L
−κN)+O(b2

0|E00xx |). (2.54)

Using the definition (2.24) of θd(β), that WN,0(x)= (−�Z
d
)−1(0, x)+O(L−(d−2)N )

by (2.26), and in particular WN,0(x)=O(|x|−(d−2)), the claim follows. �

The next (and final) lemma is inessential for the main conclusions, but will allow
us to identify the constants from the infinite volume and the finite volume analyses.

Lemma 2.7 Under the conditions of Theorem 2.3 and if b0 > 0, then λθd(β)= 1.
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Proof Let

wN = b0

1+ sc
0

1

ãc
N,N |�N | = E

�N

β,0
|T0|
|�N | +O(b0L

−κN + b0L
−(d−2)N ), (2.55)

where the second equality is due to Lemma 2.4. The density E
�N

β,0 |T0|/|�N | can also
be computed by summing the estimate in Lemma 2.6 and dividing by |�N |. Subtract-
ing this result from (2.55) gives

wN − θd(β)2 =O(b0L
−κN). (2.56)

On the other hand, (2.43) shows that

λwN − θd(β)=O(b0L
−κN). (2.57)

The limit w = limN→∞wN thus exists and satisfies λw = θd(β) and w = θd(β)2.
Since θd(β)= 1−O(1/β) �= 0 this implies λθd(β)= 1. �

Proof of Theorem 1.1 The proof follows by rewriting Lemma 2.6. Let cd be the con-
stant in the Green function asymptotics of (1.24), and recall the constants θd(β) and
ci (β) from (2.24). Theorem 1.1 then follows from Lemma 2.6 by setting

ζd(β)= θd(β)2, c(β)= (1+ sc
0)2λθd(β)cd, (2.58)

and simplifying the error terms using O(b0|x|−(d−2)−1) + O(b2
0|x|−(d−2+κ)) =

O(β−1|x|−(d−2+κ)) and O(b0L
−(d−2)N )+O(b2

0L
−κN)=O(β−1L−κN). �

Completion of proof of Theorems 1.2 and 1.3 For Theorem 1.2, ζd(β) = θd(β)2

was established in the previous proof. For Theorem 1.3, the identity
(c2(β)/c1(β)2)θd(β)2 = 1 is equivalent (by (2.24)) to θd(β)λ= 1, i.e., Lemma 2.7.
Similarly, c(β)= 2λθd(β)c1(β)= 2c1(β). �

Remark 2.8 To compute Pβ,0[0 ↔ x] we started from the expression 1 −
〈ξ0η0ξxηx〉β,0 in (1.18). An alternative route would have been to start from 〈ξ0ηx〉β,0.
For technical reasons arising in Sect. 5 it is, however, easier to obtain sufficient pre-
cision when working with 〈ξ0η0ξxηx〉β,0.

3 The bulk renormalisation group flow

We will prove Theorems 2.1 and 2.3 by a renormalisation group analysis that is set
up following [28, 32] and [14, 15]; see also [18] for a conceptual introduction. Our
proof is largely self-contained. The exceptions to self-containment concern general
properties about finite range decomposition, norms, and approximation by local poly-
nomials that were developed systematically in [12, 29, 30]. The properties we need
are all reviewed in this section. The first six subsections set up the framework of the
analysis, and the remaining three define and analyse the renormalisation group flow.

Throughout �=�N is the discrete torus of side length LN . We leave L implicit;
it will eventually be chosen large. We sometimes omit the N when it does not play a
role.
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3.1 Finite range decomposition

Let � denote the lattice Laplacian on �N , and let m2 > 0. Our starting point for the
analysis is the decomposition

C = (−�+m2)−1 = C1 + · · · +CN−1 +CN,N (3.1)

where the Cj (with j < N ) and CN,N are positive semidefinite m2-dependent matri-
ces indexed by �N . These covariances can be chosen with the following properties,
see [18, Proposition 3.3.1 and Sect. 3.4] and Appendix B. The notation CN,N for the
last covariance is explained below.

3.1.1 Finite range property

For j < N , the covariances Cj satisfy the finite range property

Cj(x, y)= 0 if |x − y|∞ � 1

2
Lj . (3.2)

Moreover, they are invariant under lattice symmetries and independent of �N in the
sense that Cj (x, y) can be identified as a function of x − y that is independent of
the torus �N . They are defined and continuous for m2 � 0 including the endpoint
m2 = 0 (and in fact smooth).

3.1.2 Scaling estimates

The covariances satisfy estimates consistent with the decay of the Green function:

|∇αCj+1(x, y)|� Oα,s(ϑj (m
2))L−(d−2+|α|)j , (3.3)

where for an arbitrary fixed constant s,

ϑj (m
2)= 1

2d +m2

(
1+ m2L2j

2d +m2

)−s

. (3.4)

The discrete gradient in (3.3) can act on either the x or the y variable, and is defined
as follows. Recalling that e1, . . . , ed denote the standard unit vectors generating Z

d ,
that ed+j =−ej , and that Ed = {e1, . . . , e2d}, for any multiindex α ∈N

Ed

0 , we define

the discrete derivative in directions α with order |α| =∑2d
i=1 α(ei) by:

∇α =
2d∏

i=1

∇α(ei )
ei

, ∇ef = f (x + e)− f (x), (3.5)

with ∇k
ei
=∇ei

· · ·∇ei
, where there are k terms on the right-hand side.
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3.1.3 Zero mode

By the above independence of the covariances Cj with j < N from �N , all finite
volume torus effects are concentrated in the last covariance CN,N . We further separate
this covariance into a bounded part and the zero mode:

CN,N = CN + tNQN, (3.6)

where tN is an m2-dependent constant and QN is the projection onto the zero mode,
i.e., the matrix with all entries equal to 1/|�N |. The bounded contribution CN (which
does depend on �N ) satisfies the estimates (3.3) with j = N and also extends con-
tinuously to m2 = 0. The constant tN satisfies

tN > 0, tN − 1

m2 =O(L2N). (3.7)

In this section, we only consider the effect of CN (which is parallel to that of the
Cj with j < N ) while the nontrivial finite volume effect of tN will be analysed in
Sects. 4–6.

The above properties imply (2.26) and WN(x) in (2.27) is given by WN(x) =
C1(x)+ · · · +CN(x).

3.2 Grassmann Gaussian integration

For X ⊂ � = �N , we denote by N (X) the Grassmann algebra generated by ψx ,
ψ̄x , x ∈ X with the natural inclusions N (X) ⊂ N (X′) for X ⊂ X′. Moreover, we
denote by N (X � X) the doubled algebra with generators ψx , ψ̄x , ζx , ζ̄x and by
θ : N (X) → N (X � X) the doubling homomorphism acting on the generators of
N (X) by

θψx =ψx + ζx, θψ̄x = ψ̄x + ζ̄x . (3.8)

For a covariance matrix C the associated Gaussian expectation EC acts on N (X�X)

on the ζ , ζ̄ variables. Explicitly, when C is positive definite, F ∈N (X �X) maps to
ECF ∈N (X) given by

ECF = EC[F ] = (detC)

∫
∂ζ ∂ζ̄ e−(ζ,C−1 ζ̄ )F. (3.9)

Thus ECθ : N (�) → N (�) is the fermionic convolution of F ∈ N (�) with the
fermionic Gaussian measure with covariance C. Recall the following well-known
facts about ECθ ; elementary proofs can be found in, e.g., [29]. First, this convolution
operator can be written as

ECθF = EC[θF ] = eLC F (3.10)

where LC =∑x,y∈� Cxy∂ψy ∂ψ̄x
. In particular, it follows that ECθ has the semigroup

property

EC2θ ◦EC1θ = EC1+C2θ. (3.11)
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This formula also holds for C positive semidefinite if we take (3.10) as the definition
of ECθF , which we will in the sequel. The identity (3.10) is a fermionic version of
the relation between Gaussian convolution and the heat equation, and (3.11), which
follows from (3.10), is the analogue of the fact that the sum of two independent
Gaussian processes is Gaussian with covariance given by the sum of the covariances.
The identity (3.10) allows for the evaluation of moments, e.g., ECθψ̄xψy = ψ̄xψy +
Cxy . An important consequence of the finite range property (3.2) of Cj is that if
Fi ∈N (Xi) with dist∞(X1,X2) > 1

2Lj then, by (3.10),

ECj

[
θ(F1F2)

]
=
(
ECj

[θF1]
)(

ECj
[θF2]

)
. (3.12)

3.3 Symmetries

We briefly discuss symmetries, which are important in extracting the relevant and
marginal contributions in each renormalisation group step (see Sect. 3.6 below). We
call an element F ∈N (�) symplectically invariant or U(1) invariant if every mono-
mial in its representation has the same number of factors of ψ̄ and ψ . We remark that
in [29, 30], to which we will sometimes refer, this property is called (global) gauge
invariance. Similarly, F ∈ N (� ��) is U(1) invariant if the combined number of
factors of ψ̄ and ζ̄ is the same as the combined number of factors of ψ and ζ . We
denote by Nsym(X) the subalgebra of N (X) of U(1) invariant elements and likewise
for Nsym(� ��). The maps θ and EC preserve U(1) symmetry.

A bijection E : �→� is an automorphism of the torus � if it maps nearest neigh-
bours to nearest neighbours. Bijections act as homomorphisms on the algebra N (�)

by Eψx = ψEx and Eψ̄x = ψ̄Ex and similarly for N (� ��). If C is invariant un-
der lattice symmetries, i.e., C(Ex,Ey)= C(x, y) for all automorphisms E, then the
convolution ECθ commutes with automorphisms of �, i.e., EECθF = ECθEF . In
particular EECj

θF = ECj
θEF for the covariances of the finite range decomposition

(3.1). An important consequence of this discussion is that if X ⊂ �, F ∈ Nsym(X)

and F is invariant under lattice symmetries that fix X, then ECj
θF ∈Nsym(X) is also

invariant under such lattice symmetries.

3.4 Polymer coordinates

We will use (3.11) and the decomposition (3.1) to study the progressive integration

Zj+1 = ECj+1

[
θZj

]
, (3.13)

for a given Z0 ∈N (�). To be concrete here, the reader may keep Z0 = e−V0(�) with
V0(�) from (2.3) in mind, but to compute correlation functions we will consider
generalisations of this choice of Z0 in Sect. 6. The analysis is performed by defin-
ing suitable coordinates (polymer coordinates) and norms (on polymer coordinates)
that enable the progressive integration to be treated as a dynamical system: this is the
renormalisation group. Towards this end, this section defines local polymer coordi-
nates as in [28, 32]. Section 3.5 then defines relevant norms, and norms on polymer
coordinates are introduced in Sect. 3.8 after other preliminary material is introduced.
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Fig. 1 Illustration of j -blocks
when L= 2

3.4.1 Blocks and polymers

Recall �=�N denotes a torus of side length LN . Partition �N into nested scale-j
blocks Bj of side lengths Lj where j = 0, . . . ,N . Thus scale-0 blocks are simply
the points in �, while the only scale-N block is � itself, see Fig. 1. The set of j -
polymers Pj =Pj (�) consists of finite unions of blocks in Bj . To define a notion of
connectedness, say X,Y ∈ Pj do not touch if infx∈X,y∈Y |x − y|∞ > 1. A polymer is
connected if it is not empty and there is a path of touching blocks between any two
blocks of the polymer. The subset of connected j -polymers is denoted Cj . We will
drop j - prefixes when the scale is clear.

For a fixed j -polymer X, let Bj (X) denote the set of j -blocks contained in X and
let |Bj (X)| be the number of such blocks. Connected polymers X with |Bj (X)|� 2d

are called small sets and the collection of all small sets is denoted Sj . Polymers
which are not small will be called large. Finally, for X ∈ Pj we define its small set
neighbourhood X� ∈ Pj as the union of all small sets containing a block in Bj (X),
and its closure X̄ as the smallest Y ∈Pj+1 such that X ⊂ Y .

3.4.2 Coordinates

We will write Zj in the form

Zj = e−uj |�N | ∑

X∈Pj

e−Vj (�N\X)Kj (X), (3.14)

where the uj are constants (essentially the free energy), the Vj (X) are functions
of the fields ψ̄x , ψx for x in a neighbourhood of X, parametrised by finitely many
coupling constants which require special attention (and are independent of X), and
everything else is organised into the functions Kj(X), which will be called polymer
activities. Unlike the Vj , the polymer activities track quantities whose precise value
is not important. Explicit (somewhat complicated) formulas for the evolution of Kj

will be given below. An essential point will be that they can be tracked in terms of
estimates. The tuple (Vj ,Kj ) together with the representation (3.14) will be referred



R. Bauerschmidt et al.

to as polymer coordinates. In the remainder of this subsection, we will discuss some
structural properties of these coordinates.

Coupling constants. We will always identify Vj with the coupling constants which
parametrise it. Explicitly, for coupling constants Vj = (zj , yj , aj , bj ) ∈C

4 and a set
X ⊂�N , let

Vj (X)=
∑

x∈X

[
yj (∇ψ)x(∇ψ̄)x + zj

2
((−�ψ)xψ̄x +ψx(−�ψ̄)x)

+ ajψxψ̄x + bjψxψ̄x(∇ψ)x(∇ψ̄)x

]
. (3.15)

For the scale j = 0, if we set Z0 = e−V0(�N), then the polymer coordinates take the
simple form

Z0 = e−V0(�N) = e−u0|�N | ∑

X⊂�N

e−V0(�N\X)K0(X), (3.16)

with

K0(X)= 1X=∅, u0 = 0. (3.17)

To study the recursion Zj+1 = ECj+1θZj at a general scale j = 1, . . . ,N , we
will make a choice of coupling constants Vj and of polymer activities Kj =
(Kj (X))X∈Pj (X) such that

Zj = e−uj |�N | ∑

X∈Pj

e−Vj (�N\X)Kj (X). (3.18)

Polymer activities. The Kj will be defined in such a way that they satisfy the
locality and symmetry property Kj(X) ∈ Nsym(X�) and the following important
component factorisation property: for X,Y ∈Pj that do not touch,

Kj(X ∪ Y)=Kj(X)Kj (Y ). (3.19)

Note that since they are U(1) symmetric, the Kj(X) are even elements of N , so they
commute and the product on the right-hand side is unambiguous. Using the previous
identity,

Kj(X)=
∏

Y∈Comp(X)

Kj (Y ), (3.20)

where Comp(X) denotes the set of connected components of the polymer X. In
particular, each Kj = (Kj (X))X∈Pj (�N ) satisfying (3.19) can be identified with
its restriction Kj = (Kj (X))X∈Cj (�N ). We say that Kj is automorphism invari-
ant if EKj(X) = Kj(E(X)) for all X ∈ Pj (�N) and all torus automorphisms
E ∈Aut(�N) that map blocks in Bj to blocks in Bj .
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Definition 3.1 Let K∅

j (�N) be the linear space of automorphism invariant Kj =
(Kj (X))X∈Cj (�N ) with Kj(X) ∈Nsym(X�) for every X ∈ Cj .

Polymer coordinates at scale j are thus a choice of (the coupling constants) Vj

together with a choice of (polymer activities) Kj from the space K∅

j . The renormal-
isation group map is a particular choice of a map (Vj ,Kj ) �→ (Vj+1,Kj+1).

For a given Zj , the above conditions do not determine Kj uniquely given Vj (see
the proof of Proposition 3.11, where the non-uniqueness is apparent). We will state
our specific choice of such a map in Sect. 3.7 below. The goal is to choose Vj such
that the size of the Kj decrease rapidly as j increases when the sizes of Vj and Kj are
measured in appropriate norms. Thus Kj will capture the irrelevant (or contracting)
directions of the renormalisation group dynamics, while the relevant (or expanding)
and marginal directions will be captured by the Vj coordinates. The next section
defines the norms we will use.

3.5 Norms

We now define the Tj (�) norms we will use on the Grassmann algebras N (�). Gen-
eral properties of these norms were systematically developed in [29], to which we
will refer for some proofs. To help the reader, in places where we specialise the defi-
nitions of [29] we indicate the more general notation that is used in [29].

We start with some notation. For any set S, we write S∗ for the set of finite se-
quences in S. We write �f =�× {±1} and for (x, σ ) ∈�f we write ψx,σ = ψx if
σ =+1 and ψx,σ = ψ̄x if σ =−1. Then every element F ∈N (�) can be written in
the form

F =
∑

z∈�∗f

1

z!Fzψ
z (3.21)

where ψz = ψz1 · · ·ψzn if z = (z1, . . . , zn). We are using the notation that z! = n! if
the sequence z has length n. The representation in (3.21) is in general not unique. To
obtain a unique representation we require that the Fz are antisymmetric with respect
to permutations of the components of z (this is possible due to the antisymmetry of the
Grassmann variables). Antisymmetry implies that Fz = 0 if z has length exceeding
2|�| or if z has any repeated entries.

Definition 3.2 Let p� = 2d . The space of test functions �j(�) is defined as the set of
functions g : �∗f →R, z �→ gz together with norm

‖g‖�j (�) = sup
n�0

sup
z∈�n

f

sup
|αi |�p�

�−nLj(|α1|+···|αn|)|∇α1
z1
· · ·∇αn

zn
gz|. (3.22)

In this definition,∇αi
zi

denotes the discrete derivative∇αi with multiindex αi acting
on the spatial part of the ith component of the finite sequence z.

The �j(�) norm measures spatial smoothness of test functions, which act as sub-
stitutes for fields. Restricted to sequences of fixed length, it is a lattice Cp� norm at
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spatial scale Lj and field scale �. We will mainly use the following choice of � when
using the �j(�) norm:

�j = �0L
− 1

2 (d−2)j (3.23)

for a large constant �0, and �j will always be as in (3.23). This choice captures the
size of the covariances in the decomposition (3.1). Indeed, regarding the covariances
Cj as functions of sequences of length 2 (i.e., as the coefficient in (3.21) of F =∑

x,y ψ̄xψyCj (x, y)), the bounds (3.3) imply

‖Cj‖�j (�j ) � 1, (3.24)

when �0 is chosen as a large (L-dependent, due to the index j + 1 on the left-hand
side of (3.3)) constant relative to the constants in (3.3) with |α|� 2p�. From now on,
we will always assume that �0 is fixed in this way.

Definition 3.3 We define Tj (�) to be the algebra N (�) together with the dual norm

‖F‖Tj (�) = sup
‖g‖�j (�)�1

|〈F,g〉|, where 〈F,g〉 =
∑

z∈�∗f

1

z!Fzgz (3.25)

when F ∈N (�) is expressed as in (3.21).
An analogous definition applies to N (���), and we then write Tj (���)= Tj (�)

for this norm (with the first notation to emphasise the doubled algebra), where we
recall that N (� ��) is defined above (3.8).

The Tj (�) norm measures smoothness of field functionals F ∈ N (�) with re-
spect to fields whose size is measured by �j(�). They therefore implement the power
counting on which renormalisation relies. Important, but relatively straightforwardly
verified, properties of these norms are systematically developed in [29]; we sum-
marise the ones we need now.

Product property. First, the Tj (�) norm defines a Banach algebra, i.e., the follow-
ing product property holds (see [29, Proposition 3.7]): for F1,F2 ∈N (�),

‖F1F2‖Tj (�) � ‖F1‖Tj (�)‖F2‖Tj (�). (3.26)

Using the product property, we may gain some intuition regarding these norms by
considering the following simple examples:

‖ψxψ̄x‖Tj (�) � ‖ψx‖Tj (�)‖ψ̄x‖Tj (�) = �2, (3.27)

‖(∇eψ)xψ̄x‖Tj (�) � ‖∇eψx‖Tj (�)‖ψ̄x‖Tj (�) = �2L−j . (3.28)

The following more subtle example relies on ψ2
x = ψ̄2

x = 0 and plays an important
role for our model:

‖ψxψ̄xψx+eψ̄x+e‖Tj (�) = ‖ψxψ̄x(∇eψ)x(∇eψ̄)x‖Tj (�) � �4L−2j . (3.29)
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In general each factor of the fields contributes a factor � and each derivative a factor
L−j .

Monotonicity. Second, as follows immediately from the definition, the following
monotonicity properties hold: for � � �′ and F ∈N (�),

‖F‖Tj (�) � ‖F‖Tj (�′), ‖F‖Tj+1(�) � ‖F‖Tj (�′). (3.30)

Doubling map. Third, the doubling map satisfies (see [29, Proposition 3.12]): for
F ∈N (�),

‖θF‖Tj (�) � ‖F‖Tj (2�) (3.31)

where the norm on the left-hand side is the Tj (�)= Tj (� � �) norm on N (� ��).
Gram inequality. Finally, the following contraction bound for the fermionic Gaus-

sian expectation is an application of the Gram inequality whose importance is well-
known in fermionic renormalisation. It is proved in [29, Proposition 3.19].

Proposition 3.4 Assume C is a covariance matrix with ‖C‖�j (�) � 1. For F ∈N (��
�), then

‖ECF‖Tj (�) � ‖F‖Tj (�). (3.32)

In particular, for F ∈N (�), by (3.31) the fermionic Gaussian convolution satisfies

‖ECθF‖Tj (�) � ‖F‖Tj (2�). (3.33)

For our choices of �j and of the finite range covariance matrices Cj , the inequali-
ties (3.30) and (3.33) in particular imply

‖F‖Tj+1(�j+1) � ‖F‖Tj+1(2�j+1) � ‖F‖Tj (�j ),

‖ECj+1θF‖Tj+1(�j+1) � ‖F‖Tj (�j ).
(3.34)

We remark that the existence of this contraction estimate for the expectation com-
bined with (3.40) below is what makes renormalisation of fermionic fields much sim-
pler than that of bosonic ones.

3.6 Localisation

To define the renormalisation group map we need one more important ingredient:
the localisation operators LocX and LocX,Y that will be used to extract the relevant
and marginal terms from the Kj coordinate to incorporate them in the renormalisation
from Vj into Vj+1. These operators are generalised Taylor approximations which take
as inputs F ∈ N (X) and produce best approximations of F in a finite dimensional
space of local field polynomials.
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3.6.1 Local field polynomials

By formal local field polynomials we refer to formal polynomials in the symbols
ψ, ψ̄,∇ψ,∇ψ̄,�ψ,�ψ̄,∇2ψ, . . . (without spatial index). The dimension of a for-
mal local field monomial is given by (d−2)/2 times the number of factors of ψ or ψ̄

plus the number of discrete derivatives ∇ in its representation, where � is treated as
two discrete derivatives. The classification of local monomials according to dimen-
sion is known as power counting in the renormalisation group literature. Relevant
monomials are those with dimension strictly greater than d , marginal ones those with
dimension equal to d , and irrelevant those with dimension strictly less than d . Con-
cretely, we consider the following space of formal local field polynomials, consisting
of the relevant and marginal monomials consistent with symmetry constraints.

Definition 3.5 Let V∅ ∼= C
4 be the linear space of formal local field polynomials of

the form

V = y(∇ψ)(∇ψ̄)+ z

2
((−�ψ)ψ̄ +ψ(−�ψ̄))+ aψψ̄ + bψψ̄(∇ψ)(∇ψ̄). (3.35)

We will identify elements V ∈ V∅ with their coupling constants (z, y, a, b) ∈C
4.

Sometimes we include a constant term u and write u+ V ∈ C⊕ V∅ with u+ V ∼=
(u, z, y, a, b) ∈C

5.
Given a set X ⊂ �, a formal local field polynomial P can be specialised to an

element of N (�) by replacing formal monomials by evaluations. For example, if
P = ψ̄ψ , P(X)=∑x∈X ψ̄xψx . We call polynomials arising in this way local poly-
nomials. The most important case is V �→ V (X), with

V (X)=
∑

x∈X

[
y(∇ψ)x(∇ψ̄)x + z

2
((−�ψ)xψ̄x +ψx(−�ψ̄)x)

+ aψxψ̄x + bψxψ̄x(∇ψ)x(∇ψ̄)x

]
, (3.36)

where �=− 1
2

∑
e∈Ed

∇−e∇e and (∇ψ)x(∇ψ̄)x = 1
2

∑
e∈Ed

∇eψx∇eψ̄x are the lat-
tice Laplacian and the square of the lattice gradient; recall that Ed = {e1, . . . , e2d}.
For a constant u ∈ C we write u(X) = u|X|, where |X| is the number of points in
X ⊂�. Thus (u+ V )(X)= u(X)+ V (X)= u|X| + V (X).

Definition 3.6 For X ⊂ �, define V∅(X) = {V (X) : V ∈ V∅} ⊂ N (�) and analo-
gously (C⊕ V∅)(X)= {u|X| + V (X) : u ∈C, V ∈ V∅} ⊂N (�).

The space V∅ contains all formal local field polynomials whose constituent mono-
mials have dimension at most d that are (i) U(1) invariant, (ii) respect lattice sym-
metries (if EX =X for an automorphism E, then EV (X)= V (X)), (iii) V (X) �= 0,
and (iv) have no constant terms. Note that ECθ preserves V∅(X) by the discussion
in Sect. 3.3. We emphasise that there is no (ψ̄ψ)2 term, which would be consistent
with having dimension as most d (if d = 3,4) and symmetries, because it vanishes
upon specialisation by anticommutativity of the fermionic variables.
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Two further remarks are in order. First, the monomial ψψ̄(∇ψ)(∇ψ̄) has dimen-
sion 2d − 2 > d for d � 3; we include it in V∅ since it occurs in the initial potential.
Second, the monomials multiplying z and y are equivalent upon specialisation when
X =� by summation by parts, and differ only by boundary terms for general X ⊂�.
This would allow us to keep only one of them, but it will be simpler to keep both.

3.6.2 Localisation

The localisation operators LocX and LocX,Y associate local field monomials to el-
ements of N (X). In renormalisation group terminology, the image of Loc projects
onto the space of all relevant and marginal local polynomials. The precise definitions
of the localisation operators do not play a direct role in this paper. Rather, only their
abstract properties, summarised in the following Proposition 3.8, will be required.
Nonetheless, to give some intuition for the action of LocX and LocX,Y , we include
the following typical examples (see also [30, Sect. 1.5]). The examples indicate (as
stated at the beginning of this section) that the localisation operators are generalised
Taylor approximations.

Example 3.7 (i) Let F be a monomial in {ψ̄x,ψx} of degree greater than four. Then
LocX F = 0.

(ii) Consider F = ∑x∈X

∑
y∈� q(x − y)ψ̄yψy where the kernel q : Zd → R

has finite support and is invariant under lattice rotations. Then provided � is large
enough,

LocX F =
∑

x∈X

[
q(1)ψ̄xψx + q(∗∗)

(
1

2
ψ̄x(�ψ)x + 1

2
(�ψ̄)xψx + (∇ψ̄)x(∇ψ)x

)]

=
∑

x∈X

Px, (3.37)

where q(1) =∑y∈Zd q(y) and q(∗∗) =∑y∈Zd y2
1q(y) (and y1 denotes the first com-

ponent of y ∈ Z
d ), and with the same Px as in (3.37),

LocX,Y F =
∑

y∈Y

Py. (3.38)

Thus
∑n

i=1 LocX,Xi
F = LocX F if X is the disjoint union of X1, . . . ,Xn.

For the definition of LocX and LocX,Y , we use the general framework developed
in [30]. In short, the definitions of LocX and LocX,Y are those of [30, Definition 1.6
and 1.15]. These definitions require a choice of field dimensions, which we choose as
[ψ] = [ψ̄] = (d−2)/2, a choice of maximal field dimension d+, which we choose as
d+ = d , and a choice of a space P̂ of test polynomials, which we define exactly as in
[30, (1.19)] with the substitution ∇e∇e →−∇e∇−e explained in [30, Example 1.3].
The following properties are then almost immediate from [30].



R. Bauerschmidt et al.

Proposition 3.8 For L= L(d) sufficiently large there is a universal C̄ > 0 such that:
for j < N and any small sets Y ⊂ X ∈ Sj , the linear maps LocX,Y : N (X�) →
N (Y�) have the following properties:

(i) They are bounded:

‖LocX,Y F‖Tj (�j ) � C̄‖F‖Tj (�j ). (3.39)

(ii) The maps LocX = LocX,X : N (X�)→N (X�) satisfy the contraction bound

‖(1− LocX)F‖Tj+1(2�j+1) � C̄L−dL−( d−2
2 ∧1)‖F‖Tj (�j ). (3.40)

(iii) If X is the disjoint union of X1, . . . ,Xn then LocX =∑n
i=1 LocX,Xi

.
(iv) The maps are Euclidean invariant: if E ∈ Aut(�N) then E LocX,Y F =

LocEX,EY EF .
(v) For a block B , small polymers X1, . . . ,Xn, and any Fi ∈Nsym(X�

i ) such that∑n
i=1 LocXi,B Fi is invariant under automorphisms of �N that fix B ,

n∑

i=1

LocXi,B Fi ∈ (C⊕ V∅)(B). (3.41)

We remark that the image of LocX,Y is in general a larger space of local field
monomials than V∅(Y ), often denoted V in [30] — for example first gradients of the
field can arise which only need cancel upon the symmetrisation in (3.41). Since we
will not use this larger space directly we have not assigned a symbol for it.

Proof of Proposition 3.8 The bound (i) is [30, Proposition 1.16], the contraction bound
(ii) is [30, Proposition 1.12], the decomposition property (iii) holds by the definition
of LocX,Y in [30, Definition 1.15], and the Euclidean invariance (iv) is [30, Proposi-
tion 1.9]. Note that the parameter A′ in [30, Proposition 1.12] does not appear here
as it applies to the boson field φ; our fermionic context corresponds to φ = 0. For
the application of [30, Proposition 1.12] we have used that p� was fixed to be 2d in
Definition 3.2, and that we have only considered the action of Loc on small sets.

Finally, property (v) follows from [30, Proposition 1.10] and the fact that the space
V∅ defined in Definition 3.5 contains all local polynomials of dimension at most d

invariant under lattice automorphisms that fix a point. �

3.7 Definition of the renormalisation group map

The renormalisation group map �j+1 =�j+1,N,m2 is a map

�j+1 : (Vj ,Kj ) �→ (uj+1,Vj+1,Kj+1) (3.42)

acting on

Vj ∈ V∅, Kj ∈K∅

j (�N), (3.43)
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with uj+1 ∈ C, the space of coupling constants V∅ as in Definition 3.5, and the
space of polymer activities K∅

j (�N) as in Definition 3.1. The map will have mild

dependence on m2 and �N as a consequence of this dependence of the covariance
matrices. As indicated above the u-coordinate does not influence the dynamics of the
remaining coordinates. Thus we can always explicitly assume that the incoming u-
component of �j+1 is 0 and separate it from Vj+1 in the output. This means that we
will often regard �j+1 as a map (Vj ,Kj ) �→ (Vj+1,Kj+1) where uj = uj+1 = 0.

The explicit definition of the map �j+1 is given in (3.48) and (3.49) below. The
essential consequences of the definition are Proposition 3.11, which enables the it-
erative application of the renormalisation group maps, and the estimates of Theo-
rem 3.13.

At first sight, the definition of �j+1 may appear somewhat complicated, but it fol-
lows from simple principles that are outlined in the proof of Proposition 3.11 below.
Compared to other implementations of the fermionic renormalisation group, the fi-
nite range property of the covariances in our implementation means we do not require
infinite expansions, nor do we require norms which control the spatial complexity of
polymers beyond simple volume estimates. As such, establishing useful norm esti-
mates becomes an essentially combinatorial problem. This feature is especially use-
ful in models with bosonic fields, see [28, 36] and [18, Appendix A] for introductory
discussions, but it also provides appealing features in the present fermionic context.
For example, the flows on tori with two distinct side lengths LN1 < LN2 coincide up
to the final length scale LN1−1 for polymers which do not wrap around either torus,
making the definition of the infinite volume flow and its relation to the finite volume
one particularly transparent (see Proposition 3.12 below).

For the definition of the renormalisation group map �j+1, we identify Vj ∈ V∅

with the tuple (Vj (B))B∈Bj (�N ), i.e., the field monomials corresponding to the cou-
pling constants Vj evaluated over a block B , and the tuple (Kj (X))X∈Cj (�N ) with
its extension (Kj (X))X∈Pj (�N ) determined by the component factorisation property
(3.19). We also introduce, assuming j + 1 < N ,

Q(B)=
∑

X∈Sj :X⊃B

LocX,B Kj (X), (B ∈ Bj ), (3.44)

J (B,B)=−
∑

X∈Sj \Bj :X⊃B

LocX,B Kj (X), (B ∈ Bj ), (3.45)

J (B,X)= LocX,B Kj (X), (X ∈ Sj \Bj ,B ∈ Bj (X)),

(3.46)

and J (B,X)= 0 otherwise. If j + 1=N we simply set Q= J = 0.
As a consequence of the properties of Loc from Proposition 3.8 (c.f. in particu-

lar property (v)), Q(B) arises from an element of V∅ and represents the marginal
and relevant contributions from Kj associated with the block B . These contributions
(which are marginal or relevant in the sense of power counting) only come from
K(X) for small sets X, as large sets X will yield contracting contributions for en-
tropic reasons (as opposed to power counting reasons) considered later. The J (B,X)
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are a technical device for removing the Q contribution from Kj . An important prop-
erty is that

∑

X

J (B,X)= 0, (B ∈ Bj ). (3.47)

The application of this property occurs in (3.111). We indicate the motivation for
the form of J below. For a fuller discussion we refer to [28, Lectures 4–5] and [19,
Appendix A, 12.3.2].

We will specify the V - and K-components of the renormalisation group map sep-
arately.

V -component. The first definition defines the V -component of the renormalisation
group map. This map is given by first-order perturbation theory, i.e., ECj+1[θVj (B)],
plus the higher-order contribution ECj+1[θQ(B)] representing the marginal and rel-
evant contributions from Kj as discussed above. Here recall the definition of the
doubling map θ from (3.8), i.e., θF is obtained from F by replacing ψ by ψ + ζ and
ψ̄ by ψ̄ + ζ̄ , and that the expectation only acts on (ζ, ζ̄ ).

Definition 3.9 The map (Vj ,Kj ) �→ (uj+1,Vj+1) is defined by

uj+1|B| + Vj+1(B)= ECj+1

[
θ(Vj (B)−Q(B))

]
, (B ∈ Bj ). (3.48)

We emphasise that Vj+1 is evaluated on B ∈ Bj here; Vj+1 can then be extended
to Bj+1 by additivity. When Kj is automorphism invariant, which is the case if Kj ∈
K∅

j (�N), the right-hand side of (3.48) is in (C⊕ V∅)(B) and can thus be identified

with an element of C⊕ V∅ ∼=C
5. This can be checked by using Proposition 3.8 (iv)

and (v) and the properties of progressive integration discussed in Sect. 3.2. Recall
that we sometimes write the left-hand side as (u+ V )j+1(B). Since Vj+1(B) has no
constant term by definition, the constant uj+1 is unambiguously defined.

K-component. The following formula for the K-component of the renormalisation
group map is more involved. It is engineered to achieve the desired factorisation and
contraction properties of the renormalisation group map. The explicit formula will
enable a relatively straightforward verification of the estimates which follow from
it; the formula itself is the result of relatively simple manipulations explained in the
proof Proposition 3.11 below.

Definition 3.10 For U ∈ Pj+1, the map (Vj ,Kj ) �→Kj+1(U) is defined by

Kj+1(U)= euj+1|U |

×
∑

(X ,X̌)∈G(U)

e−(u+V )j+1(U\X̌∪XX )
ECj+1

⎡

⎣Ǩj (X̌)
∏

(B,X)∈X
θJ (B,X)

⎤

⎦

(3.49)
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where

Ǩj (X)=
∏

W∈Comp(X)

Ǩj (W),

Ǩj (W)=
∑

Y∈Pj (W)

(θKj (W \ Y))(δI )Y −
∑

B∈Bj (W)

θJ (B,W),
(3.50)

(δI )X =
∏

B∈Bj (X)

δI (B), δI (B)= θe−Vj (B) − e−(u+V )j+1(B). (3.51)

Following [28, Sect. 5.1.2], we define the set G(U) (and the corresponding notation
X and XX ) as follows: X̌ ∈ Pj and X is a set of pairs (B,X) with X ∈ Sj and B ∈
Bj (X) with the following properties: each X appears in at most one pair (B,X) ∈X ,
the different X do not touch, XX =∪(B,X)∈XX does not touch X̌, and the closure of
the union of X̌ with ∪(B,X)∈XB� is U .

The following proposition is essentially [28, Proposition 5.1]. The only differences
are that we have factored out the factor e−uj+1|�| and that the doubling map θ is ex-
plicit (it is implicit in [28]). Explicitly, note that Kj+1(U) and Vj+1(X) are elements
of the Grassmann algebra N (�), i.e., they depend on the fields (ψ, ψ̄), but since the
doubling map θ replaces (ψ, ψ̄) by (ψ + ζ, ψ̄ + ζ̄ ), the functions Ǩj (X) and (δI )X

above depend on all of (ψ, ψ̄, ζ, ζ̄ ).
For convenience and because it also demystifies the somewhat complicated for-

mula for the renormalisation group map, we have included a proof along with some
additional explanations. The proof of this proposition does not rely on the specific
choice of Q and J in (3.44)–(3.46) or on the property (3.47). This choice only be-
comes important in the proof of Theorem 3.13.

Proposition 3.11 Given (Vj ,Kj ) define Zj by (3.18) with uj = 0. Suppose Kj has
the factorisation property (3.19) with respect to Pj . Then with the above choice of
(uj+1,Vj+1,Kj+1) and Zj+1 given by (3.18) with j + 1 in place of j , we have
Zj+1 = ECj+1θZj , and Kj+1 has the factorisation property (3.19) with respect to
Pj+1. Moreover, if Kj is automorphism invariant then so is Kj+1.

Proof The proof essentially consists of algebraically manipulating the expression

Zj =
∑

X∈Pj

I�\XK(X) (3.52)

where I (B) = e−Vj (B) and K(X) = Kj(X). These manipulations only rely on fac-
torisation properties of I and K (and not on their precise definitions). Hence we will
explicitly state the required factorisation properties, and later specialise to the context
of Proposition 3.11. We will use that IY =∏B∈Bj (Y ) I (B) factors over blocks and
K(X) factors over connected components of X.

Change of coupling constants. Given any Ĩ (B) ∈N (B) for B ∈ Bj , let δI (B)=
θI (B)− Ĩ (B) and Ĩ Y =∏B∈Bj (Y ) Ĩ (B), i.e., θI (B) depends on (ψ + ζ, ψ̄ + ζ̄ ) by
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definition of θ , Ĩ (B) on (ψ, ψ̄), and δI (B) depends on (ψ, ψ̄, ζ, ζ̄ ). The binomial
expansion identity

θI�\X =
∑

Y⊂�\X
ĨY (δI )�\(X∪Y) (3.53)

and (3.52) lead to, after changing the index of summation,

θZj =
∑

X∈Pj

Ĩ�\XK̃(X), K̃(X)=
∑

Y∈Pj (X)

(δI )Y θK(X \ Y). (3.54)

We will later make the particular choice of Ĩ that corresponds to (3.51). Thus Ĩ

corresponds to the next-scale coupling constants Vj+1. This will be important for
obtaining the desired contractive properties of the renormalisation group map in The-
orem 3.13. Exhibiting that the K coordinate is contractive will be aided by the fol-
lowing re-arrangements.

Cancellation of small sets. Keeping in mind that K̃ factors over components
(since K factors over components), we can then define Ǩ(Y ) to be K̃(Y ) −∑

B∈Bj (Y ) θJ (B,Y ) for any connected polymer Y (and zero otherwise), where

J (B,Y ) ∈N (B) are given. This yields the following formula for K̃ :

K̃(X)=
∏

Y∈Comp(X)

⎛

⎝Ǩ(Y )+
∑

B∈Bj (Y )

θJ (B,Y )

⎞

⎠ . (3.55)

Again we will later specialise to J as defined in (3.45) and (3.46), in particular
J (B,Y )= 0 unless Y is a small set. The motivation for this step is that, for Y that are
small sets but not blocks, the effect is that Ǩ has the relevant and marginal contribu-
tions corresponding to

∑
B J (B,Y ) removed. This step does not remove the relevant

and marginal contributions of blocks due to the choice (3.45). However, relevant and
marginal contributions of blocks will be removed by appropriate choice of Ĩ . Both
cancellations occur in the estimates in Sect. 3.8.3.

We next substitute (3.55) into (3.54) and re-arrange the resulting sum. Expanding
the product, (3.55) can be written as

K̃(X)=
∑

X̌⊂Comp(X)

Ǩ(X̌)
∏

Y∈Comp(X\X̌)

∑

B∈Bj (Y )

θJ (B,Y ). (3.56)

Given the polymer X \ X̌, there is a (X \ X̌)-dependent set of sets X ⊂ {(B,Y ) : B ∈
Bj (Y ),Y ∈ Cj } such that

∏

Y∈Comp(X\X̌)

∑

B∈Bj (Y )

J (B,Y )=
∑

X

∏

(B,Y )∈X
J (B,Y ), (3.57)

where the sum on the right-hand is over the aforementioned sets of X . Explicitly,
the sets comprising X are sets of pairs (B,Y ) where (i) B is a block in Y , (ii) each
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component Y occurs in exactly one pair, and (iii) Y is a component of X \ X̌. In
particular, X = X̌ ∪XX . Thus

K̃(X)=
∑

(X ,X̌)

Ǩ(X̌)
∏

(B,Y )∈X
θJ (B,Y ). (3.58)

Substituting this into (3.54), and using that Ĩ X ∈N (�) is a constant with respect
to ECj+1 , i.e., the expectation acts on (ζ, ζ̄ ) while Ĩ X depends on (ψ, ψ̄),

ECj+1θZj =
∑

X∈Pj

Ĩ�\X
ECj+1K̃(X)

=
∑

X∈Pj

∑

(X ,X̌)

Ĩ�\(X̌∪XX )
ECj+1

⎡

⎣Ǩ(X̌)
∏

(B,Y )∈X
θJ (B,Y )

⎤

⎦ (3.59)

where XX is by definition
⋃

(B,Y )∈X Y , and hence X = X̌ ∪XX by the definition of
the set X .

Reblocking. Next we organise the last right-hand side of (3.59) as a sum over next-
scale polymers U ∈Pj+1. We start by inserting the partition of unity

1=
∑

U∈Pj+1

1
X̌∪[∪(B,Y )∈XB�]=U

for every (X , X̌) (3.60)

into the sum and changing the order of the sums. This gives

ECj+1θZj =
∑

U∈Pj+1

Ĩ�\UK ′(U) (3.61)

with

K ′(U)=
∑

(X ,X̌)∈G(U)

ĨU\(X̌∪XX )
ECj+1

⎡

⎣Ǩ(X̌)
∏

(B,Y )∈X
θJ (B,Y )

⎤

⎦ , (3.62)

where we make the definition that G(U) consists of (X , X̌) such that X̌ ∈ Pj , X
satisfies (i) and (ii) above, XX does not touch X̌, and X̌ ∪ [∪(B,Y )∈XB�] = U . The
sum over X in (3.59) has been incorporated into the sum over (X̌,X ).

Conclusion. We now specialise to the setting of Proposition 3.11. Thus we take
J as in (3.45) and (3.46), and Ĩ (B)= e−(u+V )j+1(B) with the exponent as defined in
(3.48), and Kj+1(U) as defined in (3.49). The arguments above show that

ECj+1θZj = e−uj+1|�| ∑

U∈Pj+1

e−Vj+1(�\U)Kj+1(U). (3.63)

What remains is to prove the claims regarding factorisation and automorphism invari-
ance. For factorisation, note that

∑
G(U1∪U2)

=∑G(U1)

∑
G(U2)

for U1,U2 ∈ Pj+1
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that do not touch. Moreover, since U1 and U2 are separated by a distance at least
Lj+1 > 1

2Lj+1 + 2d+1Lj , the expectations in the definition of Kj+1(U1 ∪ U2) fac-
tor. Here we have used our standing assumption that L > 2d+2, that J (B,Y ) = 0 if
Y /∈ Sj , and that the range of Cj+1 is 1

2Lj+1. Automorphism invariance follows from
the formula for Kj+1 and the properties of ECj+1θ discussed in Sect. 3.3. �

Proposition 3.11 implies in particular that if Kj has the factorisation prop-
erty (3.19), then we can identify (Kj+1(X))X∈Pj+1(�N) with its restriction to con-
nected polymers (Kj+1(X))X∈Cj+1(�N). Moreover, if the Kj are also automorphism

invariant, then Kj+1 ∈K∅

j+1(�N).
By construction and the consistency of the covariances Cj with j < N for different

values of N , the maps defined for different �N are also consistent in the following
sense:

Proposition 3.12 For j + 1 < N and U ∈ Pj+1(�N), Vj+1(U) and Kj+1(U) above
depend on (Vj ,Kj ) only through Vj (X), Kj(X) with X ∈ Pj (U

�). Moreover, for
U ∈ Pj+1(�N) ∩ Pj+1(�M) with the natural local identification of �N and �M ,
the map (Vj ,Kj ) �→ (Vj+1(U),Kj+1(U)) is independent of N and M .

Temporarily indicating the N -dependence of �j+1 = �j+1,N explicitly, consis-
tency implies the existence of an infinite volume limit �j+1,∞ = limN→∞�j+1,N

defined for arguments Vj ∈ V∅ and Kj = (Kj (X))X∈Cj (Zd ) ∈ K∅

j (Zd). Explicitly,

if we write �j+1,N (Vj ,Kj )= (V N
j+1,K

N
j+1) and omit the N for the infinite volume

map, Kj+1(U)= limN→∞KN
j+1(U), and similarly for Vj+1. The limits exist as the

sequences are constant after finitely many terms. This infinite volume limit does not
carry the full information from the �j+1,N because terms indexed by polymers that
wrap around the torus are lost, but it does carry complete information about small
sets at all scales and thus about the flow of Vj . As for the finite-volume maps, the
infinite volume limit carries a mild dependence on m2. We typically omit this from
the notation.

3.8 Estimates for the renormalisation group map

The renormalisation group map �j+1 = �j+1,N is a function of (V ,K) ∈ V∅ ⊕
K∅

j (�N). The size of V and K will be measured in the norms

‖V ‖j = sup
B∈Bj

‖V (B)‖Tj (�j ) (3.64)

‖K‖j = sup
X∈Cj

A(|Bj (X)|−2d )+‖K(X)‖Tj (�j ) (3.65)

where A > 1 is a parameter that will be chosen sufficiently large. The space of bulk
coupling constants V∅ ∼= C

4 has finite dimension. The space for polymer activities
K∅

j (�N) is also finite-dimensional for N <∞ since an element Kj ∈ K∅

j (�N) is
a finite collection of elements Kj(X) of the finite-dimensional Grassmann algebra
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N (�N). Thus V∅ ⊕K∅

j (�N) is a finite-dimensional complex normed vector space
with the above norms, and therefore a Banach space.

Theorem 3.13 Let d � 3, L � L0(d), and A � A0(L,d). Assume that uj = 0. There
exists ε = ε(L,A) > 0 such that if j + 1 < N and ‖Vj‖j + ‖Kj‖j � ε then

‖uj+1 + Vj+1 −ECj+1θVj‖j+1 � O(Ld‖Kj‖j ) (3.66)

‖Kj+1‖j+1 � O(L−( d−2
2 ∧1) +A−η)‖Kj‖j

+O(Aν)(‖Vj‖2
j + ‖Kj‖2

j ), (3.67)

where η = η(d) and ν = ν(d) are positive geometric constants. The maps �j+1 are
entire in (Vj ,Kj ) and hence all derivatives of any order are uniformly bounded on
‖Vj‖j + ‖Kj‖j � ε. Moreover, the maps �j+1 are continuous in m2 � 0.

The last renormalisation group map �N satisfies the same bound with L−( d−2
2 ∧1)

replaced by 1.

Theorem 3.13 is the analogue of [31, 32] for the four-dimensional weakly self-
avoiding walk, but much simpler since (i) we are only working with fermionic vari-
ables, and (ii) we are above the lower critical dimension (two for our model). The
factors Ld and Aν in the error bounds are harmless. On the other hand, it is essential
that O(L−( d−2

2 ∧1) +A−η) < 1 for L and A large: this estimate establishes that K is
irrelevant (contracting) in renormalisation group terminology.

The remainder of this subsection proves Theorem 3.13. Readers not familiar with
the use of the renormalisation group might want to skip the somewhat technical proof
on a first reading and proceed to Sects. 3.9 and 4 to get an idea of how these estimates
are used.

Throughout the rest of Sect. 3.8 the hypotheses of Theorem 3.13 will be assumed
to hold.

The substantive claims of Theorem 3.13 are the estimates (3.66) and (3.67): these
quickly yield the claims regarding derivatives by a standard Cauchy estimate, as we
now explain. Recall that given two Banach spaces X and Y and a domain D ⊂C we
say that a function g : D→X is analytic if it satisfies the Cauchy-Riemann equation
∂z̄g = 0. For an open set O ⊆X, we then say that a function F : O → Y is analytic
if F ◦ g is analytic for every analytic function g : D → X. After (possibly) adding
some additional coordinates to ensure all necessary monomials are in the domain,
the maps (Vj ,Kj ) �→ (Vj+1,Kj+1) are multivariate polynomials, and the norm esti-
mates (3.66) and (3.67) extend to this larger space. Being multivariate polynomials,
the �j+1 are analytic functions.

We use analyticity and the Cauchy integral formula to extract derivatives. Namely,
if (V ,K) and (V̇ (i), K̇(i))ni=1 are collections of polymer coordinates at scale j satis-
fying ‖V ‖j + ‖K‖j � ε/2 and ‖V̇ (i)‖j + ‖K̇(i)‖j � 1, then

Dn�j+1|(V ,K)(V̇
(i), K̇(i))ni=1

=
∮
· · ·
∮ n∏

i=1

dwi

w2
i

�j+1(V +
n∑

i=1

wiV̇
(i),K +

n∑

i=1

wiK̇
(i)) (3.68)
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where the n-tuple of contours are circles around 0 with radius ε/(2n). The statement
of Theorem 3.13 regarding boundedness of derivatives follows.

The asserted continuity in m2 � 0 follows from the explicit formulas for
(Vj+1,Kj+1), that Loc is linear, and that the covariances Cj are continuous in
m2 � 0.

3.8.1 Coupling constants

We begin with the bound (3.66) for Vj+1. The first term on the right-hand side in the
definition (3.48) of uj+1+Vj+1 produces the expectation term in (3.66). For B ∈ Bj ,
the remainder in (3.48) is bounded as follows:

‖Q(B)‖Tj (�j ) �
∑

X∈Sj :X⊃B

‖LocX,B Kj (X)‖Tj (�j )

� O(1) sup
B,X

‖LocX,B Kj (X)‖Tj (�j ) � O(1)‖Kj‖j (3.69)

where we have used that the number of small sets containing a fixed block is O(1) in
the second step, and (3.39) in the third. Since each block in Bj+1 contains Ld blocks
in Bj , by using (3.34) to bound the expectation and change of scale in the norm, the
first claim (3.66) follows.

The remainder of Sect. 3.8 establishes the bound (3.67) for Kj+1. The following
basic observations will be used repeatedly. Note that by (3.34) the main term con-
tributing to uj+1|B| + Vj+1(B) is bounded by, for B ∈ Bj ,

‖ECj+1θVj (B)‖Tj+1(�j+1) � ‖Vj (B)‖Tj (�j ). (3.70)

By combining this with (3.69) we have that, for B ∈ Bj ,

uj+1|B|� ‖Vj‖j +O(‖Kj‖j ),
‖Vj+1(B)‖Tj+1(�j+1) � ‖Vj‖j +O(‖Kj‖j ).

(3.71)

3.8.2 Preparation for bound of the non-perturbative coordinate

To derive (3.67), we first separate from Kj+1(U) a leading contribution. This contri-
bution is:

Lj+1(U)=
∑

X∈Cj :X̄=U

e−Vj+1(U\X)euj+1|X|ECj+1

⎡

⎣θKj (X)−
∑

B∈Bj

θJ (B,X)

⎤

⎦

+
∑

X∈Pj :X̄=U

e−Vj+1(U\X)euj+1|X|ECj+1

[
(δI )X

]
. (3.72)

Note that while the first sum on the right-hand side is over connected polymers, the
second is over all polymers. This expression includes the contributions to Kj+1 ex-
plicitly linear in Kj , and all other terms in the definition of Kj+1 are higher order,
see Sect. 3.8.5 below.
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We may divide each of the sums on the right-hand side in (3.72) into the contri-
butions from small sets X ∈ Sj and large sets X ∈ Pj \ Sj . We recall that small sets
are, by definition, connected. These restricted sums will be denoted by Lj+1,S(U)

and Lj+1,P\S(U) respectively:

Lj+1(U)= Lj+1,S(U)+Lj+1,P\S(U). (3.73)

Large sets are easier to handle because they lose combinatorial entropy under
change of scale (reblocking), i.e., |Bj (X)|will be significantly larger than |Bj+1(X̄)|.
In renormalisation group terminology, they are irrelevant. Small sets, on the other
hand, require careful treatment.

3.8.3 Small sets

The main estimate on small sets is summarised as follows.

Proposition 3.14 The contribution Lj+1,S to (3.72) satisfies

‖Lj+1,S‖j+1 =O(L−( d−2
2 ∧1)‖Kj‖j +Ld(‖Vj‖2

j + ‖Kj‖2
j )). (3.74)

In order to bound

Lj+1,S(U)=
∑

X∈Sj :X̄=U

e−Vj+1(U\X)euj+1|X|

×ECj+1

⎡

⎣θKj (X)−
∑

B∈Bj

θJ (B,X)+ (δI )X

⎤

⎦ , (3.75)

we consider the terms X ∈ Sj \ Bj and X ∈ Bj in the outer sum separately. By the
definition of J in (3.46), for any X ∈ Sj \Bj ,

∑

B∈Bj (X)

ECj+1

[
θJ (B,X)

]
=

∑

B∈Bj (X)

ECj+1

[
θ LocX,B Kj (X)

]

= ECj+1

[
θ LocX Kj (X)

]
, (3.76)

where the final equality follows from Proposition 3.8 (iii). Thus the contribution to
Lj+1,S from X ∈ Sj \Bj is

ECj+1

[
θ(1− LocX)Kj (X)

]
+ECj+1

[
(δI )X

]
. (3.77)

The contribution to Lj+1,S from X = B ∈ Bj is

ECj+1

[
θKj (B)+ δI (B)− θJ (B,B)

]
= ECj+1

[
θ(1− LocB)Kj (B)

]

+ECj+1

[
δI (B)+ θQ(B)

]
. (3.78)
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We now give a series of estimates, bounding the right-hand sides of (3.77) and
(3.78) and the term outside the expectation in (3.75), and then assemble them into a
proof for Proposition 3.14.

Lemma 3.15 For any U ∈ Cj+1,

∑

X∈Sj :X̄=U

∥∥∥ECj+1

[
θ(1− LocX)Kj (X)

]∥∥∥
Tj+1(�j+1)

=O(L−( d−2
2 ∧1))‖Kj‖j . (3.79)

Proof Note that X̄ ∈ Sj+1 if X ∈ Sj , so it suffices to prove the lemma for U ∈ Sj+1.
Now for any U ∈ Sj+1, since there are O(Ld) small sets X ∈ Sj such that X̄ = U

we get

∑

X∈Sj :X̄=U

∥∥∥ECj+1

[
θ(1− LocX)Kj (X)

]∥∥∥
Tj+1(�j+1)

� O(Ld) sup
X∈Sj

∥∥∥ECj+1

[
θ(1− LocX)Kj (X)

]∥∥∥
Tj+1(�j+1)

� O(Ld) sup
X∈Sj

‖(1− LocX)Kj (X)‖Tj+1(2�j+1)

� O(Ld)O(L−d)(L−( d−2
2 ∧1)) sup

X∈Sj

‖Kj(X)‖Tj (�j )

� O(L−( d−2
2 ∧1))‖Kj‖j (3.80)

where we have used the contraction estimate (3.33) for the expectation in the second
step and the contraction estimate (3.40) for LocX in the third step. �

Lemma 3.16 For B ∈ Bj ,
∥∥∥ECj+1

[
δI (B)+ θQ(B)

]∥∥∥
Tj+1(�j+1)

=O(‖Vj‖2
j + ‖Kj‖2

j ), (3.81)

Proof By the definition of (u+ V )j+1 in (3.48) we have

ECj+1

[
δI (B)+ θQ(B)

]
= ECj+1

[
θe−Vj (B) − 1+ θVj (B)

]

−
[
e−(u+V )j+1(B) − 1+ (u+ V )j+1(B)

]
. (3.82)

By the product property (3.26), if for some V and some k we have ‖V (B)‖Tk(�k) � 1,
then

‖e−V (B) − 1+ V (B)‖Tk(�k) � O(‖V (B)‖2
Tk(�k)

). (3.83)

Recall that ECj+1θ is contractive as a map from Tj (�j ) to Tj+1(�j+1) by (3.34).
Applying these estimates to the Tj+1(�j+1) norm of (3.82) and using (3.71) gives the
bound (3.81). �
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Lemma 3.17 For X ∈Pj ,

∥∥∥ECj+1

[
(δI )X

]∥∥∥
Tj+1(�j+1)

= (O(‖Vj‖j + ‖Kj‖j ))|Bj (X)|. (3.84)

Proof Using that ECj+1 satisfies the contraction estimate (3.32), it suffices to show

‖(δI )X‖Tj+1(�j+1) = (O(‖Vj‖j + ‖Kj‖j ))|Bj (X)|. (3.85)

By the product property (3.26) it suffices to prove this estimate for a single block. In
this case,

‖δI (B)‖Tj+1(�j+1) � ‖θ(e−Vj (B) − 1)‖Tj+1(�j+1) + ‖e−(u+V )j+1(B) − 1‖Tj+1(�j+1)

� O(‖Vj (B)‖Tj+1(2�j+1))+O(‖(u+ V )j+1(B)‖Tj+1(�j+1))

(3.86)

by the product property (3.26) of the norms and (3.31). Using 2�j+1 � �j and (3.30)
for the first term and (3.71) for the second term bounds the right-hand side by
O(‖Vj‖j + ‖Kj‖j ) as needed. �

We need one further general estimate.

Lemma 3.18 If ‖Kj‖j + ‖Vj‖j � ε = ε(d,L) is sufficiently small, then if X̄ = U ∈
Pj+1,

‖e−Vj+1(U\X)+uj+1|X|‖Tj+1(�j+1) � 2|Bj (X)|. (3.87)

Proof By the product property (3.26) and (3.71) to bound Vj+1 and uj+1,

‖e−Vj+1(U\X)+uj+1|X|‖Tj+1(�j+1) � (1+O(ε))|Bj (U)|, (3.88)

and |Bj (U)| is at most Ld |Bj+1(U)|� Ld |Bj (X)|. The claim follows provided (1+
O(ε))L

d � 2. �

Proof of Proposition 3.14 To estimate the summands of Lj+1,S(U), we use the prod-
uct property of the ‖ · ‖Tj+1(�) norm to combine Lemma 3.18 with Lemma 3.15,
Lemma 3.16 for X ∈ Bj , and with Lemma 3.17 for X ∈ Sj\Bj . For the sum of the

terms (δI )X we use that (1 + ‖Vj‖2
j + ‖Kj‖2

j )
Ld � 2 provided ε = ε(L) is small

enough. Altogether, we obtain

‖Lj+1,S(U)‖Tj+1(�j+1) =O(L−( d−2
2 ∧1)‖Kj‖j +Ld(‖Vj‖2

j + ‖Kj‖2
j )), (3.89)

which proves the lemma. �



R. Bauerschmidt et al.

3.8.4 Large sets

Next we consider the contribution to (3.72) from the terms X /∈ Sj in the sums, i.e.,
Lj+1,P\S . The main estimate of this section is summarised in the following proposi-
tion.

Proposition 3.19 The contribution Lj+1,P\S to (3.72) satisfies

‖Lj+1,P\S‖j+1 =O(A−η‖Kj‖j +Aν[‖Vj‖j + ‖Kj‖j ]2) (3.90)

We begin by recording a combinatorial fact, see [28, Lemmas 6.15 and 6.16] or
[32, Lemma C.3] for details on its proof. For the statement, recall that if X ∈ Pj , then
its closure X̄ ∈ Pj+1 denotes the smallest next-scale polymer containing X.

Lemma 3.20 Let L � 2d + 1. There is a geometric constant η= η(d) > 0 depending
only on d such that for all X ∈ Cj \ Sj ,

|Bj (X)|� (1+ 2η)|Bj+1(X̄)|. (3.91)

Moreover, for all X ∈Pj , |Bj (X)|� |Bj+1(X)| and

|Bj (X)|� (1+ η)|Bj+1(X̄)| − (1+ η)2d+1|Comp(X)|. (3.92)

We also record an application of this estimate to sums indexed by large polymers
which will be used in this and in the next section. By (3.91), if A = A(L) is large
enough,

A|Bj+1(U)| ∑

X∈Cj \Sj :X̄=U

(A/2)−|Bj (X)| � (2Ld

21+2ηA−2η)|Bj+1(U)| � A−η|Bj+1(U)|,

(3.93)
as the set of X ∈ Pj with X̄ = U has size at most 2Ld |Bj+1(U)|. Similarly, by (3.92),

if α � A(1+η)2d+1
,

A|Bj+1(U)| ∑

X∈Pj :X̄=U

(A/2)−|Bj (X)|α−|Comp(X)| � A−(η/2)|Bj+1(U)|. (3.94)

Proof of Proposition 3.19 From (3.72) and (3.73), recall that (as J (B,X)= 0 for large
X)

Lj+1,P\S(U)=
∑

X∈Cj \Sj :X̄=U

e−Vj+1(U\X)+uj+1|X|ECj+1

[
θKj (X)

]
(3.95)

+
∑

X∈Pj \Sj :X̄=U

e−Vj+1(U\X)+uj+1|X|ECj+1

[
(δI )X

]
.
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We first consider the case U ∈ Cj+1 \ Sj+1, and proceed as follows: for ‖Kj‖j +
‖Vj‖j � ε with ε sufficiently small, by Lemma 3.18 the j + 1 norm of the K contri-
bution to (3.95) is bounded by

A|Bj+1(U)|−2d ∑

X∈Cj \Sj :X̄=U

2|Bj (X)|
∥∥∥ECj+1

[
θKj (X)

]∥∥∥
Tj+1(�j+1)

. (3.96)

By the definition of ‖Kj‖j and noting that (|Bj (X)| − 2d)+ = |Bj (X)| − 2d since
X /∈ Sj ,

∥∥∥ECj+1

[
θKj (X)

]∥∥∥
Tj+1(�j+1)

� A−(|Bj (X)|−2d )‖Kj‖j , (3.97)

where we have also used the contraction estimates (3.33) and (3.30). Inserting this
bound into (3.96) and using (3.93) gives that the K contribution to (3.95) is bounded
by

A|Bj+1(U)| ∑

X∈Cj \Sj :X̄=U

(A/2)−|Bj (X)|‖Kj‖j � A−η‖Kj‖j . (3.98)

This is the desired bound for the first term in (3.95).
To bound the j + 1 norm of the δI contribution to (3.95), Lemmas 3.17 and 3.18

and the product property yield (provided ε is sufficiently small depending on L)

A|Bj+1(U)|−2d

∥∥∥∥
∑

X∈Pj \Sj :X̄=U

e−Vj+1(U\X)+uj+1|X|ECj+1

[
(δI )X

]∥∥∥∥
Tj+1(�j+1)

� A|Bj+1(U)|−2d ∑

X∈Pj \Sj :X̄=U

[
2O(‖Vj‖j + ‖Kj‖j )

]|Bj (X)|
. (3.99)

Since U ∈ Cj+1 \ Sj+1 and X̄ = U , each X in the last sum must have |Bj (X)| �
2d + 1. If ‖Vj‖j + ‖Kj‖j < ε and ε is sufficiently small (depending on A), then

the quantity in brackets is less than 1/A2+2(1+η)2d+1
. By the elementary inequality

(c2)n−2 � cn for c ∈ (0,1), n > 4 and using that |Bj (X)| � 2d + 1 > 4 for each
summand, we obtain the upper bound

[O(‖Vj‖j + ‖Kj‖j )]2A|Bj+1(U)| ∑

X∈Pj \Sj :X̄=U

A−|Bj (X)|A−(1+η)2d+1|Bj (X)|.

(3.100)
Using (3.94), it follows that the δI contribution to (3.95) is bounded by

O(A−η/2[‖Vj‖j + ‖Kj‖j ]2)=O([‖Vj‖j + ‖Kj‖j ]2), (3.101)

for A sufficiently large. We have now completed the bound on (3.72) provided U ∈
Cj+1\Sj+1.



R. Bauerschmidt et al.

The argument is similar if U ∈ Sj+1. In this case the prefactor A|Bj+1(U)|−2d
gets

replaced by 1 in (3.96) and (3.99). For the K contribution, in place of (3.98) we ob-
tain, since 1+ 2d � |Bj (X)|� Ld |Bj+1(U)|� (2L)d and the number of summands

in this case is at most 2(2L)d ,
∥∥∥∥

∑

X∈Cj \Sj :X̄=U

e−Vj+1(U\X)+uj+1|X|ECj+1

[
θKj (X)

]∥∥∥∥
Tj+1(�j+1)

� A−122(2L)d‖Kj‖j =O(A−η‖Kj‖j ) (3.102)

for A large enough depending on L and d . For the δI contribution, in place of (3.99)
we have

∥∥∥∥
∑

X∈Pj \Sj :X̄=U

e−Vj+1(U\X)+uj+1|X|ECj+1

[
(δI )X

]∥∥∥∥
Tj+1(�j+1)

� O
(

22(2L)d [‖Vj‖j + ‖Kj‖j ]2
)

(3.103)

since each summand on the left-hand side has |Bj (X)|� 2.
Thus for A=A(L,d) sufficiently large and ε = ε(A,L) sufficiently small, the ex-

pression (3.95) is bounded in the Tj+1(�j+1) norm by O(A−η‖Kj‖j +Aν[‖Vj‖j +
‖Kj‖j ]2) in all cases. �

3.8.5 Non-linear part

Finally, we consider the non-linear contribution Kj+1−Lj+1. To conclude the proof
of (3.67), and hence the proof of Theorem 3.13, we prove the following estimate.

Proposition 3.21

‖Kj+1 −Lj+1‖j+1 � AνO(‖Kj‖(‖Kj‖j + ‖Vj‖j )). (3.104)

Before diving into the proof, let us review the terms which remain to be estimated.
Recall the definition of Kj+1(U) from (3.49) and the leading part Lj+1(U) from
(3.72). Write |X | for the number of pairs in X . With respect to the indexing of sum-
mands for Kj+1(U), the leading part Lj+1(U) results from the terms with |X | = 0
and X̌ = X by only keeping the terms in the formula for Ǩ(X) with either a single
factor θKj (X) when X ∈ Cj , a single factor (δI )X when X ∈ Pj , or a single factor∑

B θJ (B,X). It follows that we can write

Kj+1(U)−Lj+1(U)=R1(U)+R2(U)+R3(U), (3.105)

where

R1(U)= euj+1|U | ∑

G1(U)

e−(u+V )j+1(U\XX )
ECj+1

[ ∏

(B,X)∈X
θJ (B,X)

]
, (3.106)
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R2(U)= euj+1|U | ∑

G2(U)

e−(u+V )j+1(U\X̌∪XX )

×ECj+1

[
(Ǩ(X̌)− (δI )X̌1|X |=0)

∏

(B,X)∈X
θJ (B,X)

]
, (3.107)

and

R3(U)= euj+1|U | ∑

G3(U)

e−(u+V )j+1(U\X̌)

×ECj+1

[
Ǩ(X̌)− θK(X̌)− (δI )X̌ +

∑

B∈Bj

θJ (B, X̌)

]
, (3.108)

when the subsets Gi (U)⊂ G(U) are defined as follows. The set G1(U) is defined by
imposing the conditions |X | = 1 and X̌ =∅. The set G2(U) is defined to consist of
(X , X̌) such that XX ∪ X̌ has at least two components. In particular, if X = ∅, X̌

has least two components and if X̌ = ∅ then |X | � 2. Finally, G3(U) is defined by
the conditions |X | = 0 and X̌ ∈ Cj .

The next lemma clearly implies Proposition 3.21.

Lemma 3.22 For i ∈ {1,2,3},
‖Ri‖j+1 � AνO(‖Kj‖(‖Kj‖j + ‖Vj‖j )). (3.109)

Proof of Lemma 3.22 for i = 1 We begin by bounding R1. This bound exploits that∑
X J (B,X) = 0 for every B ∈ Bj , see (3.45)–(3.46) and (3.47). As X is a single

pair {(B,X)}, XX =X. Since X̌ =∅ we can write

R1(U)= euj+1|U | ∑

B∈Bj

∑

XX∈Sj

e−(u+V )j+1(U\XX )
ECj+1

[
θJ (B,XX )

]
1
B�=U

.

(3.110)
Since

∑
XX J (B,XX )= 0 for B ∈ Bj , we can rewrite

R1(U)= euj+1|U | ∑

B∈Bj

∑

XX∈Sj

e−(u+V )j+1(U\XX )(1− e(u+V )j+1(XX ))

×ECj+1

[
θJ (B,XX )

]
1
B�=U

. (3.111)

Since XX ∈ Sj we have ‖1 − e(u+V )j+1(XX )‖Tj+1(�j+1) = O(Ld(‖Vj‖j + ‖Kj‖j ))
by (3.71). Moreover, (3.39) implies ‖J (B,X)‖Tj (�j ) =O(‖Kj‖j ), so ‖ECj+1θJ (B,

X)‖Tj+1(�j+1) = O(‖Kj‖j ) since ECj+1θ is a contraction. Finally, exactly as in the

proof of Lemma 3.18, ‖euj+1(U)e−(u+V )j+1(U\XX )‖Tj+1(�j+1) � (1+O(ε))|Bj (U)| �
2 for ε = ε(L) small enough, since U is the closure of B�. As there are O(Ld)

summands in (3.111) we have shown

‖R1(U)‖Tj+1(�j+1) � O(L2d(‖Vj‖j + ‖Kj‖j )‖Kj‖j )
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� O(Aν(‖Vj‖j + ‖Kj‖j )‖Kj‖j ). (3.112)

Since A(|Bj+1(U)|−2d )+ = 1 for any contributing U (as U is the closure of B� for
some block B), this concludes the desired bound on R1(U). �

Before proceeding to the proof of Lemma 3.22 for i = 2, we first provide estimates

on the norms of Ǩ(X̌) and Ǩ(X̌)− (δI )X̌ .

Lemma 3.23 If ‖Vj‖j + ‖Kj‖j � ε and ε = ε(A,L) is sufficiently small, then

‖Ǩ(X̌)‖Tj+1(�j+1) � [A2d

O(‖Vj‖j + ‖Kj‖j )]|Comp(X̌)|(A
2

)−|Bj (X̌)|,
(3.113)

‖Ǩ(X̌)− (δI )X̌‖Tj+1(�j+1) � [A2d

O(‖Vj‖j + ‖Kj‖j )]|Comp(X̌)|−1

×O(A2d‖Kj‖j )(A
2

)−|Bj (X̌)|. (3.114)

The proof of these estimates is postponed until the conclusion of the main argu-
ment.

Proof of Lemma 3.22 for i = 2 If ‖Vj‖j + ‖Kj‖j is small enough, arguing as in

(3.87) implies ‖euj+1(U)e−(u+V )j+1(U\X̌∪XX )‖Tj+1(�j+1) � 2|Bj (U)|, and by (3.39),
‖J (B,X)‖Tj (�j ) = O(‖Kj‖j ). Thus using that ECj+1 contracts from Tj+1(�j+1 �
�j+1) into Tj+1(�j+1) we obtain

‖R2(U)‖Tj+1(�j+1) � 2|Bj (U)| ∑

G2(U)

[O(‖Kj‖j )]|X |‖Ǩ(X̌)− (δI )X̌1X=∅‖Tj+1(�j+1).

(3.115)
For brevity let us write b for the factors O(‖Vj‖j + ‖Kj‖j ) above. By (3.115) and
Lemma 3.23, it suffices to show

A|Bj+1(U)|2|Bj (U)| ∑

G2(U)

(bA2d

)|X |+|Comp(X̌)|(A
2

)−|Bj (X̌)| � AνO(b2). (3.116)

Indeed, (3.115) is bounded by O(A−|Bj+1(U)|‖Kj‖j /b) times this quantity. The small
‖Kj‖j /b is due to the fact that if |X | � 1 there is a factor ‖Kj‖j in (3.115) and if
|X | = 0 then (3.114) provides such a factor in place of b. Hence (3.116) gives

‖R2‖j+1 � O(Aν)(‖Vj‖j + ‖Kj‖j )‖Kj‖j . (3.117)

To verify (3.116), first note that since |Bj (U)|� Ld |Bj+1(U)|, for any c > 0 the
prefactor can be bounded by

A|Bj+1(U)|2|Bj (U)| � (
A

2
)(1−c)|Bj+1(U)|2(Ld+1)|Bj+1(U)|(A

2
)c|Bj+1(U)|. (3.118)
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Taking c > 1, the product of the first two terms on the last right-hand side is less than
1 for A sufficiently large. It thus suffices to prove that for some c > 1

(
A

2
)c|Bj+1(U)| ∑

G2(U)

(bA2d

)|X |+|Comp(X̌)|(A
2

)−|Bj (X̌)| � AνO(b2). (3.119)

At this point we appeal to [28, proof of Lemma 6.17]; this result estimates the same
sum but over G(U) instead of G2(U). However, following exactly the same proof as
in [28] but using that the sum is over G2(U), the supremum over n � 1 in [28, (6.85)]
becomes a supremum over n � 2 since |X | + |Comp(X̌)|� 2. This yields that there
exists c > 1 such that if A=A(L,d) is large enough, then there is an m such that for
all U ∈Pj+1,

(
A

2
)c|Bj+1(U)| ∑

G2(U)

(bA2d

)|X |+|Comp(X̌)|(A
2

)−|Bj (X̌)| =O((bAm)2), (3.120)

which is AνO(b2) as needed. �

Proof of Lemma 3.23 For notational convenience, for Y ∈ Cj let

K̃(Y )=
∑

W∈Pj (Y )

θKj (Y \W)(δI)W . (3.121)

We first establish that the claimed bounds follow from the definition of Ǩ(X) in
(3.50) if we show, for Y ∈ Cj ,

∥∥∥∥K̃(Y )−
∑

B∈Bj (Y )

θJ (B,Y )

∥∥∥∥
Tj+1(�j+1)

� A2d

O(‖Vj‖j + ‖Kj‖j )

× (
A

2
)−|Bj (Y )| (3.122)

∥∥∥∥K̃(Y )− (δI )Y −
∑

B∈Bj (Y )

θJ (B,Y )

∥∥∥∥
Tj+1(�j+1)

� A2d

O(‖Kj‖j )(A
2

)−|Bj (Y )|.

(3.123)

Indeed, though Ǩ(X̌) − (δI )X̌ does not factor over components X of X̌, it can be
written as a sum of |Comp(X̌)| terms, each of which is a product over the compo-
nents X of X̌. That is, we use the formula (a + b)n − an =∑n−1

k=0 akb(a + b)n−k−1

with a = (δI )X and b = Ǩ(X) − (δI )X . Thus each summand contains one factor
Ǩ(X)− (δI )X and the rest of the factors are either Ǩ(X) or (δI )X . The estimates
(3.113)-(3.114) then follow by using (3.122)-(3.123) and Lemma 3.17.

To establish (3.122)–(3.123) we apply the triangle inequality. Since J (B,Y )= 0
if Y /∈ Sj ,

∥∥∥∥
∑

B∈Bj (Y )

θJ (B,Y )

∥∥∥∥
Tj+1(�j+1)

� O(‖Kj‖j ) (3.124)
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where we have used ‖J (B,X)‖Tj (�j ) = O(‖Kj‖j ), that θ contracts from Tj (�j )

into Tj+1(�j+1) and that |Bj (Y )| � 2d . This shows the J contributions to (3.122)
and (3.123) satisfy the requisite bounds. For the other contributions, note that by
(3.85), component factorisation of Kj , and the contraction property of the norms and
θ , for B ∈ Bj and Z ∈ Pj we have

‖δI (B)‖Tj+1(�j+1) � O(‖Vj‖j + ‖Kj‖j ), (3.125)

‖θKj (Z)‖Tj+1(�j+1) � A
−∑W∈Comp(Z)(|Bj (W)|−2d )+‖Kj‖|Comp(Z)|

j . (3.126)

We now impose the condition that ε � A−2d
and that O(ε) � A−1 in the implicit

bound below. Plugging the previous bounds into the expression for K̃(Y ) we have

‖K̃(Y )− (δI )Y ‖Tj+1(�j+1)

�
∑

Z∈Pj (Y ):Y �=Z

‖(δI )ZθKj (Y \Z)‖Tj+1(�j+1)

�
∑

Z∈Pj (Y ):Y �=Z

(O(‖Vj‖j + ‖Kj‖j ))|Bj (Z)|

× ‖Kj‖|Comp(Y\Z)|
j A

−∑W∈Comp(Y\Z)(|Bj (W)|−2d )+

�
∑

Z∈Pj (Y ):Y �=Z

(
A2d‖Kj‖j

)|Comp(Y\Z)|
(O(‖Vj‖j + ‖Kj‖j ))|Bj (Z)|A−|Bj (Y\Z)|

� A2d‖Kj‖j (O(‖Vj‖j + ‖Kj‖j )+A−1)|Bj (Y )|

� A2d‖Kj‖j
(

A

2

)−|Bj (Y )|
. (3.127)

Since ‖(δI )Y ‖Tj+1(�j+1) � [O(‖Vj‖j + ‖Kj‖j )]|Bj (Y )| � AO(‖Vj‖j + ‖Kj‖j )×
A−|Bj (Y )| if O(ε) � A−1, by the triangle inequality we also have

‖K̃(Y )‖Tj+1(�j+1) � A2d

O(‖Vj‖j + ‖Kj‖j )
(

A

2

)−|Bj (Y )|
. (3.128)

Together with (3.124) this proves the lemma. �

Proof of Lemma 3.22 for i = 3 The bound on R3(U) is similar to that of R2(U)

but simpler since only connected X̌ are involved. In particular, the analogue of
Lemma 3.23 only involves the reasoning leading to (3.127), with the key difference
being that now also Z �= ∅. We omit the details. �

3.9 Flow of the renormalisation group

Recall the infinite volume limit of the renormalisation group maps �j+1,∞ discussed
below Proposition 3.12. We equip K∅

j (Zd) with the norm ‖K‖j defined by (3.65).
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This space is now infinite dimensional, but it is clear that it is still complete as a
normed space, i.e., a Banach space. Moreover, by the consistency of the finite vol-
ume renormalisation group maps (Proposition 3.12), the estimates given in Theo-
rem 3.13 also hold for the infinite volume limit. Next we study the iteration of the
renormalisation group maps as a dynamical system. In what follows K0 = 0 means
K0(X)= 1X=∅ for X ∈ Pj .

In the next theorem (and later in the paper) we write OL(·) to indicate a bound
with a constant that may depend on L, but where the constant is uniform in j , i.e.,
fj =OL(L−j ) if there is a C = C(L) such that fj � CL−j for all j .

Theorem 3.24 Let d � 3, L � L0, and A � A0(L). For m2 � 0 arbitrary and b0

small, there exist V c
0 (m2, b0) and κ > 0 such that if (V0,K0)= (V c

0 (m2, b0),0) and
(Vj+1,Kj+1)=�j+1,∞,m2(Vj ,Kj ) is the flow of the infinite volume renormalisation
group map then

‖Vj‖j =OL(b0L
−κj ), ‖Kj‖j =OL(b2

0L
−κj ). (3.129)

The components of V c
0 (m2, b0) are continuous and uniformly bounded in m2 � 0 and

differentiable in b0 with uniformly bounded derivative.

Proof of Theorem 3.24 The proof is by a version of the stable manifold theorem for
smooth dynamical systems. Specifically, we use [28, Theorem 2.16].

To start, we write down the dynamical system corresponding to the renormalisa-
tion group map. The definition of Vj+1 is (3.48). We start with the contribution to
Vj+1 arising from the first term

ECj+1

[
θVj (B)

]
= ũj+1|B| + Ṽj+1(B), (3.130)

where ũj+1 and Ṽj+1 are defined by the right-hand side. These can be computed by
the Wick formula (3.10), which gives

z̃j+1 = zj + κzb
j bj , ỹj+1 = yj + κ

yb
j bj ,

ãj+1 = aj + κab
j bj , b̃j+1 = bj ,

(3.131)

with κ
yb
j = −Cj+1(0), κab

j = �Cj+1(0), and κzb
j = 1

2d
�Cj+1(0). Indeed, non-

constant contributions only arise from quartic terms, and Wick’s formula gives

EC

[
θ(ψxψ̄x(∇eψ)x(∇eψ̄)x)

]

=ψxψ̄x(∇eψ)x(∇eψ̄)x −C(0)(∇eψ)x(∇eψ̄)x −∇e∇−eC(0)ψxψ̄x

+∇−eC(0)ψx(∇eψ̄)x −∇eC(0)ψ̄x(∇eψ)x + (constant). (3.132)

Since ∇eC(0) = C(e) − C(0) = 1
2d

∑
e∈Ed

(C(e) − C(0)) = 1
2d

�C(0) for all e ∈
Ed by symmetry, and since the lattice Laplacian has the representations � =
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− 1
2

∑
e∈Ed

∇e∇−e =∑e∈Ed
∇e , therefore

EC

[
θ(ψxψ̄x(∇ψ)x(∇ψ̄)x)

]

= 1

2

∑

e∈Ed

EC

[
θ(ψxψ̄x(∇eψ)x(∇eψ̄)x)

]

=ψxψ̄x(∇ψ)x(∇ψ̄)x −C(0)(∇ψ)x(∇ψ̄)x +�C(0)ψxψ̄x

+ �C(0)

2d
(
1

2
ψx(�ψ̄)x + 1

2
(�ψ)xψ̄x)+ (constant). (3.133)

Since ‖Vj (B)‖Tj (�j ) is comparable with |zj | + |yj | + L2j |aj | + L−(d−2)j |bj |, i.e.,
‖Vj (B)‖Tj (�j ) = OL(|zj | + |yj | + L2j |aj | + L−(d−2)j |bj |) = OL(‖Vj (B)‖Tj (�j )),
it is natural to define the rescaled variables and coefficients ẑj = zj , ŷj = yj ,

âj = L2j aj , b̂j = L−(d−2)j bj , κ̂ab
j = L2+dj κab

j , κ̂
yb
j = L(d−2)j κ

yb
j , and κ̂zb

j =
L(d−2)j κzb

j . The definition (3.48) of Vj+1 then becomes

ẑj+1 = ẑj + κ̂zb
j b̂j + r̂z

j , ŷj+1 = ŷj + κ̂
yb
j b̂j + r̂

y
j , (3.134)

âj+1 = L2âj + κ̂ab
j b̂j + r̂a

j , b̂j+1 = L−(d−2)b̂j + r̂b
j . (3.135)

Here r̂j is the 4-component vector of real numbers determined by the Loc step of the
renormalisation group map. Each component is thus a linear function of Kj , and by
(3.66) of Theorem 3.13 has size O(Ld‖Kj‖j ). The κ̂j are uniformly bounded in j

by the covariance estimates (3.3).
We now reorganize variables. Set vj = (ŷj , ẑj , âj ) and wj = (b̂j ,Kj ) and use

‖ · ‖j for the norm given by maximum of the (norm of the) respective components.
The index j does not play a role for ‖vj‖j , but it does for ‖wj‖j . By the computa-
tion above and Theorem 3.13 the infinite volume renormalisation group map can be
written in the block diagonal form

(
vj+1
wj+1

)
=
(

E Bj

0 Dj

)(
vj

wj

)
+
(

0
gj+1(vj ,wj )

)
. (3.136)

In this formula, E comes from the first terms on the right-hand sides of the ẑ, ŷ,
and â equations in (3.134) and (3.135), Bj represents the κ̂xb

j and the r̂x
j terms with

x = z, y, a, and Dj represents the first term in the b̂ equation in (3.135) and the lin-
earisation of (0,Kj ) �→Kj+1. Finally, gj+1(vj ,wj ) is then the non-linear remainder
of Kj+1 after the linearisation is removed. It follows from these identifications that
gj (0,0)= 0 and Dgj (0,0)= 0. Moreover gj is analytic in its arguments, so that all
structural hypotheses required to apply [28, Theorem 2.16] hold.

As for the requisite norm estimates, since it is a 3 × 3 triangular matrix with
non-zero diagonal entries, E is invertible with bounded inverse E−1. As indicated
above, ‖r̂j‖j+1 = O(Ld‖Kj‖j ), so ‖Bj‖j→j+1 is bounded. Finally, the derivative
estimates on the renormalisation group map from Theorem 3.13 imply the following
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norm bounds on Dj :

‖Dj‖j→j+1 � b0 max{L−(d−2),O(L−3 +A−η)}� O(b0L
−κ), (3.137)

with the latter inequality holding provided A is large enough.
For every m2 � 0, b0 sufficiently small, and K0 = 0, [28, Theorem 2.16] now

implies that we can find an initial 3-tuple of coupling constants vc
0(m

2, b0), or equiv-
alently an initial local potential V c

0 (m2, b0), so that for some κ > 0,

‖vj‖j + ‖wj‖j =OL(b0L
−κj ). (3.138)

These bounds are not explicit in the statement of [28, Theorem 2.16], but are im-
mediate from its proof (because the proof constructs a solution in a correspondingly
weighted sequence space). In particular this bound implies that ‖Kj‖j + ‖Vj‖j =
OL(‖vj‖j + ‖wj‖j )=OL(b0L

−κj ).
Smoothness of the renormalisation group map implies that V c

0 (m2, b0) is smooth
in b0. To see that V c

0 (m2, b0) is also continuous in m2 � 0, one can for example regard
vj and wj as bounded continuous functions of m2, i.e., consider vj ∈ Cb([0,∞),R3)

and wj ∈ Cb([0,∞),R × K∅

j (Zd)). Since all the estimates above are uniform in

m2 � 0, the previous argument applies in these spaces and shows that the solution is
continuous in m2. �

Remark 3.25 Note that while Theorem 3.13 assumes that uj = 0 and produces uj+1,
it is trivial to extend the statement to uj �= 0 by simply adding uj to the uj+1 pro-
duced for uj = 0.

By consistency, the finite volume renormalisation group flow for Vj agrees with
the infinite volume renormalisation group flow up to scale j < N provided both have
the same initial condition. As a result we obtain the following corollary by iterating
the recursion (3.67) for the K-coordinate using the a priori knowledge that ‖Vj‖j =
OL(b0L

−κj ) due to Theorem 3.24.

Corollary 3.26 Under the same assumptions as in Theorem 3.24, the same estimates
hold for the finite volume renormalisation group flow for all j � N , and the Vj and
uj produced by the finite volume renormalisation group flow are the same as those
for the infinite volume flow when j < N .

From this it follows that if e−uN |�N | denotes the total prefactor accumulated in the
renormalisation group flow up to scale N , then uN is uniformly bounded in N and
m2 as m2 ↓ 0 if we begin with V0 as in Theorem 3.24. Indeed, up to scale N − 1 this
follows from the bounds (3.129) and (3.71). In passing from the scale N−1 to N , the
renormalisation group step is �N -dependent, but is nevertheless uniformly bounded
by the last statement of Theorem 3.13.
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4 Computation of the susceptibility

In the remainder of the paper, we will use the notation (with �=�N )

〈F 〉 = 〈F 〉V0 =
EC

[
e−V0(�)F

]

EC

[
e−V0(�)

] (4.1)

and assume that (Vj ,Kj )j=0,...,N is a renormalisation group flow, i.e., (Vj+1,

Kj+1)=�j+1(Vj ,Kj ).
In this section we express the susceptibility in terms of the dynamical system

generated by the (bulk) renormalisation group flow. First recall that Z0 = e−V0(�)

and that

C = (−�+m2)−1 = C1 + · · · +CN−1 +CN,N, CN,N = CN + tNQN, (4.2)

where � is the Laplacian on �N , tN =m−2 −O(L2N) is a constant, and the matrix
QN is the orthogonal projection onto constants (i.e., all entries equal 1/|�N |). Using
(3.11) and (3.13), with uN as in (3.18), we then set

ZN,N = EtNQN

[
θZN

]
= EC

[
θZ0

]
, Z̃N,N = euN |�N |ZN,N (4.3)

where EtNQN
θ is the fermionic Gaussian convolution with covariance tNQN defined

in Sect. 3.1. Thus Z̃N,N is still a function of ψ , ψ̄ , i.e., an element of N (�). Note
that EC[Z0] is the constant term of ZN,N , i.e., obtained from ZN,N by formally set-
ting ψ̄ and ψ to 0. The following technical device of restricting to constant fields ψ ,
ψ̄ will be useful for extracting information. By restriction to constant ψ , ψ̄ we mean
applying the homomorphism from N (�) onto itself that acts on the generators by
ψx �→ 1

|�|
∑

x∈� ψx and likewise for the ψ̄x . The result is an element in the subal-

gebra of N (�) generated by 1
|�|
∑

x∈� ψx and 1
|�|
∑

x∈� ψ̄x ; we will simply denote

these generators by ψ and ψ̄ when no confusion can arise. To explain the notation
in the next proposition, note that a general even element of this subalgebra can be
written as F 0 + F 2ψψ̄ for some constants F 0, F 2, c.f. (3.21).

Proposition 4.1 Restricted to constant ψ , ψ̄ ,

Z̃N,N = 1+ ũN,N − |�N |ãN,Nψψ̄,

ũN,N = k0
N + ãN,N tN , ãN,N = aN − k2

N

|�N |
(4.4)

where

k0
N =O(‖KN‖N), k2

N =O(�−2
N ‖KN‖N). (4.5)

If V0, K0 are continuous in m2 � 0 and b0 small enough, then so are k0
N and k2

N .
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Proof Since the set of N -polymers PN(�N) is {∅,�N } and euN |�N | is a constant,
(3.18) and (4.3) simplify to

Z̃N,N = EtNQN

[
θ(e−VN(�N) +KN(�N))

]
. (4.6)

We now evaluate the integral over the zero mode with covariance tNQN . To this
end, we restrict VN(�N) and KN(�N) to spatially constant ψ , ψ̄ and denote these
restrictions by ṼN (�N) and K̃N(�N). Since ṼN and K̃N are even, they are of the
form

ṼN (�N,ψ, ψ̄)= |�N |aNψψ̄ (4.7)

K̃N(�N,ψ, ψ̄)= k0
N + k2

Nψψ̄, (4.8)

where the form of ṼN follows from the representation (3.36). Thus restricted to con-
stant ψ and ψ̄ the integrand in (4.6) is

e−ṼN (�N) + K̃N(�N)= 1+ k0
N − (|�N |aN − k2

N)ψψ̄. (4.9)

Therefore applying the fermionic Wick formula EtNQN
θψψ̄ = −tN |�N |−1 + ψψ̄ ,

we obtain (4.4). The continuity claims for k0
N and k2

N follow as (Vj ,Kj ) is a renor-
malisation group flow (see below (4.1)) and since the renormalisation group map has
this continuity.

The bounds (4.5) follow from the definition of the TN(�N) norm. Indeed, since
k0 is the constant coefficient of KN(�N), clearly k0

N = O(‖KN‖N). Similarly, set-
ting g(x,1),(y,−1) = 1 for all x, y ∈ �N and gz = 0 for all other sequences, we have
‖g‖�N(�N ) = �−2

N and

|k2
N | = |〈KN(�N),g〉|� ‖g‖�N(�N )‖KN‖N = �−2

N ‖KN‖N (4.10)

where 〈·, ·〉 is the pairing from Definition 3.3. �

Proposition 4.2 Using the notation of Proposition 4.1,

∑

x∈�N

〈ψ̄0ψx〉 = 1

m2
− 1

m4

ãN,N

1+ ũN,N

. (4.11)

Proof We amend the algebra N (�N) by two Grassmann variables σ and σ̄ which we
view as constant fields σx = σ and σ̄x = σ̄ . We then consider the fermionic cumulant
generating function (an element of the Grassmann algebra generated by σ and σ̄ )

�(σ, σ̄ )= logEC

[
Z0(ψ, ψ̄)e(σ,ψ̄)+(ψ,σ̄ )

]
, (4.12)

where C is as in (4.2). By translation invariance

∑

x∈�N

〈ψ̄0ψx〉 = 1

|�N |
∑

x,y∈�N

〈ψ̄xψy〉 = 1

|�N |∂σ̄ ∂σ �(σ, σ̄ ). (4.13)
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The linear change of generators ψ �→ψ +Cσ , ψ̄ �→ ψ̄ +Cσ̄ yields

�(σ, σ̄ )= (σ,Cσ̄ )+ logEC

[
θZ0(Cσ,Cσ̄ )

]
, (4.14)

where the right-hand side is to be interpreted as applying the doubling homomor-
phism and then restricting to constant σ , σ̄ . Since σ is constant in x ∈�N , we have
Cσ =m−2σ . With (4.3) thus

�(σ, σ̄ )=m−2|�N |σ σ̄ + log Z̃N,N(m−2σ,m−2σ̄ )− uN |�N |. (4.15)

As a result, by (4.4)–(4.5),

1

|�N |∂σ̄ ∂σ �(σ, σ̄ )= 1

m2 −
1

m4

ãN,N

1+ ũN,N

. (4.16)
�

5 The observable renormalisation group flow

Recall that 〈·〉 denotes the expectation (4.1), in which we will ultimately choose V0 =
V c

0 (b0,m
2) as in Theorem 3.24. This section sets up and analyses the renormalisation

group flow associated to source fields. This will enable the computation of correlation
functions (observables) like 〈ψ̄aψb〉 in Sect. 6. Our strategy is inspired by that used
in [14, 75], but with important differences arising due to the presence of a non-trivial
zero mode in our setting.

5.1 Observable coupling constants

As in the proofs in Sect. 4, we amend the Grassmann algebra by two source fields.
Now, however, the additional fields are not constant in space but rather are localised
at two points a, b ∈�=�N . We distinguish between two cases:

Case (1). For the two point function 〈ψ̄aψb〉 (which we call ‘Case (1)’), the addi-
tional source fields σa and σ̄b are two additional Grassmann variables that anticom-
mute with each other and the ψ , ψ̄ .

Case (2). For the quartic correlation function 〈ψ̄aψaψ̄bψb〉 (called ‘Case (2)’), we
introduce additional Grassmann variables ϑ̄x , ϑx for x ∈ {a, b} and the additional
source fields σa and σb are the commuting variables σx = ϑ̄xϑx for x ∈ {a, b}. This
explicit U(1) invariant choice will be convenient when discussing symmetries.

In both cases we relabel the initial potential V0 from Sect. 3 as V
∅

0 and set V0 =
V

∅

0 + V �
0 where V �

0 is an observable part to be defined.
Case (1). In this case,

V �
0 =−λa,0σaψ̄a − λb,0ψbσ̄b. (5.1)

The spatial index of V �
0 signals the local nature of the source fields. More pre-

cisely, the evaluation of V �
0 on a set X is defined to be spatially localised: V �

0 (X)=
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−λa,0σaψ̄a1a∈X − λb,0ψbσ̄b1b∈X . Recalling that C = (−� + m2)−1, see (3.1), it
follows that

〈ψ̄aψb〉 = 1

λa,0λb,0
∂σ̄b

∂σa logEC

[
e−V0(�)

]
. (5.2)

Obtaining (5.2) is just a matter of expanding e−V �
0 (�), using 〈ψ̄a〉 = 〈ψb〉 = 0, and

applying the rules of Grassmann calculus. Note the order of ∂σ̄b
and ∂σa , which is

important to obtain the correct sign. Although (5.2) holds for any constants λa,0,
λb,0, it is convenient for us to leave these as variables to be tracked with respect to
the renormalisation group flow.

Case (2). Similarly to the previous case, we choose

V �
0 =−λa,0σaψ̄aψa − λb,0σbψ̄bψb, (5.3)

so that

〈ψ̄aψa〉 = 1

λa,0
∂σa logEC

[
e−V0(�)

]∣∣∣
λb,0=0

(5.4)

〈ψ̄aψaψ̄bψb〉 − 〈ψ̄aψa〉〈ψ̄bψb〉 = 1

λa,0λb,0
∂σb

∂σa logEC

[
e−V0(�)

]
. (5.5)

To distinguish the coupling constants in the two cases, we will sometimes write λ
(p)

a,0
with p = 1 or p = 2 instead of λa,0, and analogously for the other coupling constants.

5.2 The free observable flow

To orient the reader and motivate the discussion which follows, let us first consider the
noninteracting case V

∅

0 = 0, in which the microscopic model is explicitly fermionic
Gaussian. In this case, one may compute all correlations explicitly by applying the
fermionic Wick rule. The same computation can be carried out inductively using the
finite range decomposition of the covariance C, and we review this now as it will be
the starting point for our analysis of the interacting case.

To begin the discussion, observe that all source fields square to zero, i.e., σ 2
a =

σ̄ 2
b = σ 2

b = 0. This implies that V �
0 (�)3 = 0 since V �

0 (�) has no constant term and
has at least one least source field in each of its two summands. Given V �

0 , we induc-
tively define renormalised interaction potentials that share this property:

u�
j+1(�)+ V �

j+1(�)= ECj+1

[
θV �

j (�)
]
− 1

2
ECj+1

[
θV �

j (�); θV �
j (�)

]
(5.6)

where

ECj+1

[
θV �

j (�); θV �
j (�)

]
= ECj+1

[
θV �

j (�)2
]
−
(
ECj+1

[
V �

j (�)
])2

(5.7)
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and u�
j+1(�) collects the terms that do not contain ψ or ψ̄ . Consequently, one can

check that

ECj+1

[
θe
−V �

j (�)
]
= ECj+1

[
θ(1− V �

j (�)+ 1

2
V �

j (�)2)
]
= e

−u�
j+1(�)−V �

j+1(�)
.

(5.8)
For convenience, in the last step when j = N , we set CN+1 = tNQN . This sepa-

ration of the zero mode is not essential here but will be useful for our analysis in the
interacting case.

For j > 0, the V �
j have terms not present in V �

0 , for example the terms involving
q in the next definition. The nilpotency of the source fields σa , σb limits the possibil-
ities.

Definition 5.1 Let V� be the space of formal field polynomials u� + V � of the form:

V � =−λaσaψ̄a − λbψbσ̄b + σaσ̄b

r

2
(ψ̄aψa + ψ̄bψb),

u� =−σaσ̄bq,

⎫
⎬

⎭ in Case (1),

V � =−σaλaψ̄aψa − σbλbψ̄bψb−σaσb

η

2
(ψ̄aψb + ψ̄bψa)

+ σaσb

r

2
(ψ̄aψa + ψ̄bψb)),

u� =−σaγa − σbγb − σaσbq,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

in Case (2),

for observable coupling constants (λa, λb, q, r) ∈ C
4 respectively (λa, λb, γa, γb, q,

η, r) ∈C
7. For X ⊂�, we define (u� + V �)(X) ∈N �(X ∩ {a, b}) by

(u� + V �)(X)=−λaσaψ̄a1a∈X − λbψbσ̄b1b∈X − σaσ̄bq1a∈X,b∈X

+ σaσ̄b

r

2
(ψ̄aψa + ψ̄bψb)1a∈X,b∈X (5.9)

in Case (1), and analogously in Case (2).

Remark 5.2 The terms corresponding to r do not appear at any step of the free observ-
able flow (5.6) if we start with them equal to 0. We include them here in preparation
for the interacting model.

The evolutions of u�
j + V �

j → u�
j+1 and V �

j → V �
j+1 are equivalent to the evolu-

tion of the coupling constants (λa, λb, q, r) respectively (λa, λb, γa, γb, q, η, r). By
computation of the fermionic Gaussian moments in (5.6), the flow of the observable
coupling constants according to (5.6) is then given as follows. Note that the evolution
of coupling constants in V � is independent of the coupling constants in u�.

Lemma 5.3 Let V
∅

0 = 0, and let u�
j and V �

j be of the form as in Definition 5.1. The
map (5.6) is then given as follows. In Case (1), for x ∈ {a, b},

λx,j+1 = λx,j (5.10)
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qj+1 = qj + λa,j λb,jCj+1(a, b)+ rjCj+1(0,0) (5.11)

rj+1 = rj , (5.12)

whereas in Case (2), for x ∈ {a, b},

λx,j+1 = λx,j (5.13)

γx,j+1 = γx,j + λx,jCj+1(0,0) (5.14)

qj+1 = qj + ηjCj+1(a, b)+ rjCj+1(0,0)− λa,j λb,jCj+1(a, b)2 (5.15)

ηj+1 = ηj − 2λa,jλb,jCj+1(a, b) (5.16)

rj+1 = rj . (5.17)

Proof This follows from straightforward evaluation of (5.6) using (3.10). �

To continue the warm-up for the interacting case, we illustrate how these equa-
tions reproduce the direct computations of correlation functions (and explain the ter-
minology of observable coupling constants). When r0 = 0, by a computation using
Definition 5.1, the formulas (5.2) and (5.4)–(5.5) imply the correlation functions in
Cases (1) and (2) are given by

〈ψ̄aψb〉 = qN+1

λa,0λb,0
, 〈ψ̄aψa〉 = γa,N+1

λa,0
, 〈ψ̄aψa; ψ̄bψb〉 = qN+1

λa,0λb,0
,

(5.18)
with q = q(1) and λ= λ(1) for the first equation and q = q(2), γ = γ (2), and λ= λ(2)

for the last two. Recalling the convention CN+1 = tNQN , for Case (2) with r0 = 0 a
computation using (5.13), (5.15) and (5.16) shows

qN+1 =−λ0,aλ0,b

⎛

⎝
∑

k�N

Ck(a, b)+ tNQN(a, b)

⎞

⎠
2

=−λ0,aλ0,b(−�+m2)−1(a, b)2, (5.19)

with the final equality by (3.1). Combined with (5.18), this gives

〈ψ̄aψa; ψ̄bψb〉 = −(−�+m2)−1(a, b)2, (5.20)

as expected for free fermions.

Remark 5.4 In the preceding computation we kept the potential in the exponential
for the entire computation, whereas in Sects. 4 and 6 the zero mode is integrated out
directly without rewriting the integrand in this form (see, e.g., (4.3)). We distinguish
these two approaches by using N + 1 subscripts for the former and (N,N) for the
latter, and by putting tildes on quantities associated with the (N,N)th step as was
done in Sect. 4.
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Before moving to the interacting model, we introduce the coalescence scale jab

as the largest integer j such that Ck+1(a, b)= 0 for all k < j , i.e.,

jab = �logL(2|a − b|∞)�. (5.21)

In the degenerate cases λa = 0 or λb = 0 when only one of the source fields is present
we use the convention jab = +∞. Note that the finite range property (3.2) implies
that qj = ηj = rj = 0 for j < jab provided they are all 0 when j = 0. This will also
be true in the interacting case.

In connection with the coalescence scale, we also make a convenient choice of the
block decomposition of �N based on the relative positions of a and b. Namely, we
center the block decomposition such that point a is in the center (up to rounding if L

is even) of the blocks at all scales 1 � j � N . This implies that if |a − b|∞ < 1
2Lj+1

the scale-j blocks containing a and b are contained in a common scale-(j +1) block.

5.3 Norms with observables

To extend the above computation for V ∅ = 0 to the interacting case, we will extend
the renormalisation group map to the Grassmann algebra amended by the source
fields. In Case (2), recall that the source fields σa and σb are even elements rather than
Grassmann generators themselves, i.e., they are commuting elements also satisfying
σ 2

a = σ 2
b = 0. In both Cases (1) and (2), this algebra has the decomposition

N (X)=N∅(X)⊕N a(X)⊕N b(X)⊕N ab(X)=N∅(X)⊕N �(X) (5.22)

where N∅(X) is spanned by monomials with no factors of σ , N a(X) is spanned by
monomials containing a factor σa but no factor σ̄b (respectively σb), analogously for
N b(X), and N ab(X) is spanned by monomials containing σaσ̄b respectively σaσb.
Thus any F ∈N (X) can be written as

F = F∅ + F� =
{

F∅ + σaFa + σ̄bFb + σaσ̄bFab, Case (1)

F∅ + σaFa + σbFb + σaσbFab, Case (2),
(5.23)

with F∅,Fa,Fb,Fab ∈N∅(X). We denote by π∅, πa , πb and πab the projections
on the respective components, e.g., πaF = σaFa , and π� = πa + πb + πab . We will
use superscripts instead of subscripts in the decomposition when the factors of σ are
included, e.g., Fa = σaFa and F∅ = F∅.

We say that F is U(1) invariant if the number of generators with a bar is equal
to the number without a bar. Explicitly, in Case (1) this means F∅ and Fab are
U(1) invariant, Fa has one more factor with a bar than without, and similarly for
Fb . In Case (2) this means all of F∅, Fa , Fb and Fab are U(1) invariant (recall that
σa = ϑ̄aϑa and σb = ϑ̄bϑb). Denote by Nsym(X) the subalgebra of U(1) invariant
elements.

For F decomposed according to (5.23) we define

‖F‖Tj (�j ) = ‖F∅‖Tj (�j ) + �a,j‖Fa‖Tj (�j ) + �b,j‖Fb‖Tj (�j ) + �ab,j‖Fab‖Tj (�j )

(5.24)
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where

�a,j = �b,j =
{

�−1
j , Case (1)

�−2
j , Case (2),

�ab,j =
{

�−2
j , Case (1)

�−2
j �−2

j∧jab
, Case (2).

(5.25)

In particular, ‖σa‖Tj (�j ) = �a,j and ‖σaσb‖Tj (�j ) = �ab,j and, in Cases (1) and (2),
respectively,

‖σaψ̄a‖Tj (�j ) = �a,j �j = 1, ‖σaψ̄aψa‖Tj (�j ) = �a,j �
2
j = 1 (5.26)

and, again in the two cases respectively,

‖σaσ̄bψ̄xψx‖Tj (�j ) = �ab,j �
2
j = 1, ‖σaσbψ̄xψx‖Tj (�j ) = �ab,j �

2
j = �−2

j∧jab
.

(5.27)
In both cases these terms do not change size under change of scale, provided that
j � jab for the last term. Thus they are marginal. As will be seen in Sect. 6, see
the paragraph following Lemma 6.3, the choices of �a,j and �ab,j are appropriate to
capture the leading behaviour of correlation functions.

The extended definition (5.24) of the Tj (�j ) norm satisfies the properties dis-
cussed in Sect. 3.5, with the exception of the generalisation of the monotonicity es-
timate ‖F∅‖Tj+1(2�j+1) � ‖F∅‖Tj (�j ). Checking these properties is straightforward
by using the properties of the bulk norm, and, in the case of the product property,
using that �ab,j � �a,j �b,j (recall (3.23)). Similar reasoning also yields a weaker
monotonicity-type estimate: by (5.24), (3.23), and monotonicity in the bulk alge-
bra,

‖F‖Tj+1(�j+1) � ‖F‖Tj+1(2�j+1) � 16L2(d−2)‖F‖Tj (�j ). (5.28)

5.4 Localisation with observables

We combine the space V∅ of bulk coupling constants from Definition 3.5 with the
space V� of observable coupling constants from Definition 5.1 into

V = V∅ ⊕ V�. (5.29)

We extend the localisation operators LocX,Y from Sect. 3.6 to the amended Grass-
mann algebra (5.22) as follows. As in the bulk setting, we will focus on the key
properties of the extended localisation operators. The extension of LocX,Y is linear
and block diagonal with respect to the decomposition (5.22), and so can be defined
separately on each summand. On N∅(X), the restriction LocX,Y is defined to coin-
cide with the operators from Proposition 3.8. From now on we denote this restriction
by Loc∅X or loc∅X if we want to distinguish it from the extended version. To define
the restriction Loc�

X,Y of LocX,Y to N �(X), we continue to employ the systematic

framework from [30, Sect. 1.7], as follows. Let loca , locb , and locab be the locali-
sation operators from [30, Definition 1.17] with maximal dimensions (for the Cases
(p = 1) and (p = 2))

da+ = db+ =
p

2
(d − 2), dab+ = d − 2. (5.30)
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Case (1). For σaFa ∈ N a(X) we set LocX,Y (σaFa) = σa loca
X∩{a},Y∩{a}Fa , and

likewise for point b. For σaσ̄bFab ∈ N ab(X) we set LocX,Y (σaσ̄bFab) = σaσ̄b×
locab

X∩{a,b},Y∩{a,b} Fab .
Case (2). The definitions in Case (2) are analogous, but with σ̄b replaced by σb.
The superscripts ∅, a, b, ab are present to indicate that we have assigned differ-

ent maximal dimensions to the summands in (5.22). We use the same choice of field
dimensions [ψ] = [ψ̄] = (d − 2)/2 as in Sect. 3.6. We note that loca

X,∅ = locb
X,∅ =

locab
X,∅ = 0. The main difference between these operators and Loc∅ is that the ex-

pressions produced by loca , locb , locab are local, i.e., supported near a and b. A
second difference is that the maximal dimensions vary.

Before giving the general properties of the extended Loc we include an example
in Case (1).

Example 5.5 Consider Case (1). Then:
(i) If F ∈N (�) is a field monomial of degree greater than one or if F has gra-

dients in it, then Loca
X F = Locb

X F = 0. Here (and in the rest of this example) we
do not count factors of σa and σb in the degree. If F has degree greater than 2 or is
degree two and has gradients Locab

X F = 0.
(ii) If F = σaψ̄x + σ̄bψy + σaσ̄bψ̄xψy , then

LocX F = σaψ̄a1a∈X + σ̄bψb1b∈X

+ σaσ̄b

(
ψ̄aψa1a∈X,b/∈X + ψ̄bψb1b∈X,a /∈X + 1

2
[ψ̄aψa + ψ̄bψb]1a,b∈X

)
.

(5.31)

The next proposition summarises the key properties of the operators LocX,Y . As
with Proposition 3.8, these properties follow from [30]. That the choice of maxi-
mal dimensions (5.30) produce contractive estimates can intuitively be understood
by considering the marginal monomials. By (5.26) and (5.27), these are exactly the
monomials with dimensions da+ = db+ respectively dab+ .

Proposition 5.6 For L= L(d) sufficiently large there is a universal C̄ > 0 such that:
for j < N and any small sets Y ⊂ X ∈ Sj , the linear maps Loc�

X,Y : N �(X�)→
N �(Y�) have the following properties:

(i) They are bounded:

‖Loc�
X,Y F‖Tj (�j ) � C̄‖F‖Tj (�j ). (5.32)

(ii) For j � jab , the maps Loc�
X = Loc�

X,X : N �(X�)→ N �(X�) satisfy the con-
traction bound:

‖(1− Loc�
X)F‖Tj+1(2�j+1) � C̄L−( d−2

2 ∧1)‖F‖Tj (�j ). (5.33)

Moreover, the bound (5.33) holds also for j < jab if Fab = 0.
(iii) If X is the disjoint union of X1, . . . ,Xn then Loc�

X =
∑n

i=1 Loc�
X,Xi

.
(iv) For a block B and polymers X ⊃ B , Loc�

X,B F ∈ V�(B) if F ∈N �
sym(X).
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Properties (i)–(iii) follow from [30] in the same way as the corresponding proper-
ties in Proposition 3.8 by making use of the observation that

‖σa‖Tj+1(2�j+1) � 2Lda+‖σa‖Tj (�j ), ‖σb‖Tj+1(2�j+1) � 2Ldb+‖σb‖Tj (�j ),

(5.34)

‖σaσb‖Tj+1(2�j+1) � 4Ldab+ ‖σaσb‖Tj (�j ), if j � jab, (5.35)

in Case (2) and analogously in Case (1). These factors of Ld+ correspond to the
missing L−d+ factors in (5.33) as compared to Proposition 3.8. It only remains to
verify (iv), i.e., to identify the image of Loc�

X,B when acting on F ∈N �
sym(X).

Case (1). By the choice of dimensions in its specification, the image of σa loca is
spanned by the local monomials σa , σaψ̄a , σaψa . The condition of U(1) invariance
then implies that if σaFa ∈ N a

sym(X) only the monomial σaψ̄a is admissible. The

situation is analogous for locb . Similarly, σaσ̄b locab has image spanned by σaσ̄b and
σaσ̄bψ̄xψx for x ∈ {a, b} as well as further first order monomials with at most (d −
2)/2 gradients, e.g., σaσ̄b∇e1ψx . Only the even monomials σaσ̄b , σaσ̄bψ̄aψa , and
σaσ̄bψ̄bψb are compatible with U(1) symmetry. In summary, Loc�

X,Y F is contained
in V� if F ∈N �

sym(X).
Case (2). By the choice of dimensions, in this case σa loca has image spanned

by the local monomials σa , σaψ̄aψa as well as further first order monomials with at
most d − 2 gradients, and U(1) symmetry implies that only the even terms σa and
σaψ̄aψa arise in the image if F ∈ Nsym(X). The analysis for σb locb is analogous.
Lastly, σaσb locab has image spanned by σaσb and the monomials σaσbψ̄xψx for
x ∈ {a, b} and first order monomials with at most (d−2)/2 gradients. Again only the
even monomials are compatible with U(1) symmetry.

5.5 Definition of the renormalisation group map with observables

In this section the renormalisation group map �j+1 =�j+1,N,m2 is extended to in-
clude the observable components (as in Sect. 3, we omit the N and m2-dependence
when there is no risk of confusion). To this end, we now call the renormalisa-
tion group map from Sect. 3.8 the bulk component and denote it by �

∅

j+1, and

�j+1 = (�
∅

j+1,�
�
j+1) will now refer to the renormalisation group map extended

to the algebra with observables. The map ��
j+1 is the observable component of the

renormalisation group map. This extension will be defined so that the bulk compo-
nents of Kj+1 and Vj+1 only depend on the bulk components of Kj and Vj . In other
words,

π∅�j+1(Vj ,Kj )=�
∅

j+1(π∅Vj ,π∅Kj). (5.36)

On the other hand, the observable components V �
j+1 and K�

j+1 will depend on both
the observable and the bulk components of (Vj ,Kj ). The observable component
��

j+1 is upper-triangular in the sense that the a component πa�
�
j+1(Vj ,Kj ) of

��
j+1(Vj ,Kj ) only depends on (V

∅

j ,K
∅

j ) and (V a
j ,Ka

j ) but not on (V b
j ,Kb

j ) or

(V ab
j ,Kab

j ), and similarly for the b component. The ab component depends on all
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components from the previous scale. We will use an initial condition V0 ∈ V and
K0(X)= 1X=∅.

We now give the precise definition of the observable component of the renormal-
isation group map ��

j+1 : (Vj ,Kj ) �→ (u�
j+1,V

�
j+1,K

�
j+1). For j + 1 < N , given

(Vj ,Kj ) and B ∈ Bj , define Q(B) and J (B,X) as in (3.44)–(3.46) using the
extended version of Loc from Sect. 5.4. If j + 1 = N set Q = J = 0. We let
Q�(B) = π�Q(B) and J �(B,X) = π�J (B,X) denote the observable components.
The new detail for the observable renormalisation group map is that, to define V �

j+1,
we include the second order contribution from V �

j in order to maintain better control
on the renormalisation group flow. To this end, for j + 1 � N and B,B ′ ∈ Bj , let

P �(B,B ′)= 1

2
ECj+1

[
θ(V �

j (B)−Q�(B)); θ(V �
j (B ′)−Q�(B ′))

]
,

P �(B)=
∑

B ′∈Bj

P �(B,B ′).
(5.37)

The following observations will be useful later. Since V �(B),Q�(B) ∈ V�(B), the
sum over B ′ contains at most two non-zero terms, corresponding to the blocks con-
taining a and b. Since the covariance matrix Cj+1 has the finite range property (3.2),
also P �(B,B ′) = 0 for B �= B ′ if |a − b|∞ � 1

2Lj+1. Finally, if a and b are not in
the same block, then P �(B,B)= 0 since the source fields square to zero.

With these definitions in place, u�
j+1+V �

j+1 is defined in the same way as uj+1+
Vj+1 with the addition of the second order term P �, and K�

j+1 is then defined in the
same way as Kj+1:

Definition 5.7 The map (Vj ,Kj ) �→ (u�
j+1,V

�
j+1) is defined, for B ∈ Bj , by

u�
j+1(B)+ V �

j+1(B)= ECj+1

[
θ(V �

j (B)−Q�(B))
]
− P �(B) (5.38)

where u�
j+1 consists of all monomials that do not contain factors of ψ or ψ̄ . Explic-

itly,

u�
j+1 =

{
−σaσ̄bqj+1, Case (1),

−σaσbqj+1 − σaγa,j+1 − σbγb,j+1, Case (2).
(5.39)

The map (Vj ,Kj ) �→ K
∅

j+1 + K�
j+1 is defined by the same formula as in Defini-

tion 3.10 except that V ∅ and u∅ are replaced by V = V ∅ + V � and u= u∅ + u�.

Propositions 3.11 and 3.12 also hold for this extended definition of the renormali-
sation group map. The proofs are the same as presented in Sect. 3.7.

5.6 Estimates for the renormalisation group map with observables

In this section, the O-notation refers to scale j + 1 norms, i.e., for F,G ∈N (�), we
write F = G + O(t) to denote that ‖F −G‖Tj+1(�j+1) � O(t). We use ‖Vj‖j and
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‖Kj‖j defined in (3.64)–(3.65), with the understanding that the right-hand sides of
the definitions are the norm (5.24) which accounts for source fields.

Theorem 5.8 Under the assumptions of Theorem 3.13, if also ‖V �
j ‖j + ‖K�

j ‖j � ε

and u�
j = 0, then for j + 1 < N the observable components of the renormalisation

group map ��
j+1 satisfy

u�
j+1(�)+ V �

j+1(�)= ECj+1

[
θV �

j (�)
]
− 1

2
ECj+1

[
θV �

j (�); θV �
j (�)

]

+O(L2(d−2)‖K�
j ‖j ) (5.40)

‖K�
j+1‖j+1 � O(L−( d−2

2 ∧1) +A−η)‖K�
j ‖j

+O(Aν)(‖V ∅

j ‖j + ‖Kj‖j )(‖Vj‖j + ‖Kj‖j ), (5.41)

provided that Kab
j (X) = 0 for X ∈ Sj if j < jab . Both η = η(d) and ν = ν(d) are

positive geometric constants. For j + 1=N , ��
N is bounded.

The first estimate in the theorem expresses that the evolution of u� + V � is given
by second-order perturbation theory, plus a higher order remainder due to K�. The
second estimate states that K� is contracting (for L and A large), up to error terms
at most as large as the bulk coupling constants V ∅ and K = K∅ +K�. The addi-
tional factor ‖Vj‖j + ‖Kj‖j � ‖V �

j ‖j will be small (but of order 1) while all other
coordinates will be exponentially small in j . Indeed, as a consequence of the above
theorem, Proposition 5.15 below states that if the bulk flow (V ∅,K∅) is as con-
structed in Sect. 3.9 then V � remains bounded while K� goes to 0 exponentially fast.

The proof of the theorem follows that of Theorem 3.13 closely, with improvements
for the leading terms that allow for V � to be tracked to second order. It is given in
the remainder of this subsection. The reader may again wish to skip the details of this
proof on a first reading and proceed to the application of these estimates Sect. 5.7.

5.6.1 Coupling constants

We first give a bound on u�
j+1(�)+ V �

j+1(�). By Proposition 5.6 (iii),

Q�(�)=
∑

X∈Sj

Loc�
X Kj (X). (5.42)

Since only small sets X that contain a or b contribute, Proposition 5.6 (i) implies

‖Q�(�)‖Tj (�j ) � O(1)‖K�
j ‖j . (5.43)

By algebraic manipulation, the product property, that ECj+1θ is a contraction, (5.28),
and (5.43),

P �(�)= 1

2
ECj+1

[
θV �

j (�); θV �
j (�)

]
+ECj+1

[
θQ�

j (�); θ(V �
j (�)+ 1

2
Q�

j (�))
]
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= 1

2
ECj+1

[
θV �

j (�); θV �
j (�)

]
+O(L4(d−2)‖K�

j ‖j (‖V �
j ‖j + ‖K�

j ‖j )).
(5.44)

Putting these pieces together establishes (5.40) as L2(d−2)(‖Vj‖j + ‖Kj‖j ) � 1 if
ε = ε(L) is small enough. An immediate consequence is

‖u�
j+1(�)‖Tj+1(�j+1) � O(‖V �

j ‖j +L2(d−2)‖K�
j ‖j ), (5.45)

‖V �
j+1(�)‖Tj+1(�j+1) � O(‖V �

j ‖j +L2(d−2)‖K�
j ‖j ). (5.46)

The same bounds hold with � replaced by any X ∈ Pj . These will be used in the
following analysis.

5.6.2 Small sets

The most significant improvement in the analysis concerns small sets, which we now
analyse to second order. To simplify notation, we write

V̂ �
j = V �

j −Q�, Ṽ �
j+1 = u�

j+1 + V �
j+1. (5.47)

Lemma 5.9 For any B,B ′ ∈ Bj ,

P �(B,B ′)= 1

2
ECj+1

[
θV̂ �

j (B)θV̂ �
j (B ′)

]
− 1

2
Ṽ �

j+1(B)Ṽ �
j+1(B

′). (5.48)

Proof Note that P �(B,B ′) = 1
2ECj+1[θV̂ �

j (B); θV̂ �
j (B ′)]. Since it is quadratic in

V̂ �
j ∈ V�, P �(B,B ′) can only contain monomials with a factor of σaσ̄b (Case (1))

or σaσb (Case (2)) because σ 2
a = σ 2

b = σ̄ 2
b = 0. Similarly, for any W ∈ V� and

B,B ′,B ′′ ∈ Bj , it follows that P �(B,B ′)W(B ′′)= 0. The claim follows as this im-
plies that (ECj+1 [θV̂ �

j (B)])(ECj+1 [θV̂ �
j (B ′)]) is the same as

(
ECj+1

[
θV̂ �

j (B)
]
− P �(B)

)(
ECj+1

[
θV̂ �

j (B ′)
]
− P �(B ′)

)
= Ṽ �

j+1(B)Ṽ �
j+1(B

′).
(5.49)

�

The next lemmas are analogues of Lemmas 3.16–3.17 that apply to the observable
components. We begin with the replacement for Lemma 3.17. For B ∈ Bj , recall B̄

denotes the scale j + 1-block containing B .

Lemma 5.10 Suppose that ‖Vj‖j + ‖Kj‖j � 1. Then for any X ∈ Pj , denoting by
n ∈ {0,1,2} the number of B ∈ Bj (X) containing a or b,

∥∥∥π�ECj+1

[
(δI )X

]∥∥∥
Tj+1(�j+1)

� O(‖Vj‖j +L2(d−2)‖Kj‖j )n(O(‖V ∅

j ‖j + ‖K∅

j ‖j ))|Bj (X)|−n. (5.50)
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For any B ∈ Bj such that B̄ contains at most one of a and b,

∥∥∥π�ECj+1

[
δI (B)

]∥∥∥
Tj+1(�j+1)

� O(L2(d−2)‖K�
j ‖j )+O(‖Vj‖j +L2(d−2)‖Kj‖j )(‖V ∅

j ‖j + ‖K∅

j ‖j ). (5.51)

Moreover if |a − b|∞ � 1
2Lj+1 then for any X ∈Pj with |Bj (X)| = 2,

∥∥∥π�ECj+1

[
(δI )X

]∥∥∥
Tj+1(�j+1)

� O((‖Vj‖j +L2(d−2)‖Kj‖j )(‖V ∅

j ‖j +L2(d−2)‖Kj‖j )). (5.52)

Proof Throughout the proof, we will use that for V representing either Vj or uj+1 +
Vj+1 one has

π�e
−V (B) = π�(e

−V∅(B)−V �(B))

=−V �(B)+ 1

2
V �(B)2 +O(‖V �(B)‖Tj+1(�j+1)‖V ∅(B)‖Tj+1(�j+1)),

(5.53)

where we recall that the O-notation refers to terms whose Tj+1(�j+1)-norms are
bounded by the indicated numbers, up to multiplicative constants. For both of the
choices for V , one has ‖V ∅(B)‖Tj+1(�j+1) � ‖V ∅

j ‖j +O(‖K∅

j ‖j ) � O(1) by (3.71)

and ‖V �(B)‖Tj+1(�j+1) � O(‖V �
j ‖j +L2(d−2)‖K�

j ‖j ) by using (5.45)–(5.46) (with B

instead of �).
To show (5.50), for each B ∈ Bj , write δI (B)= π∅δI (B)+π�δI (B) and expand

the product defining (δI )X using that there are n blocks B for which π�δI (B) �=
0. The claim then follows since ‖π∅δI (B)‖Tj+1(�j+1) � O(‖V ∅

j ‖j + ‖K∅

j ‖j ) by

Lemma 3.17 and ‖π�δI (B)‖Tj+1(�j+1) =O(‖V �
j ‖j + L2(d−2)‖K�

j ‖j ) which follows
from the previous paragraph (as the doubling map commutes with π�).

For the bound (5.51), using that B can contain only a or b by assumption and that
source fields square to zero, one has V �(B)2 = 0 for V either Vj or uj+1 + Vj+1.
Thus (5.53) simplifies to

π�e
−V (B) = π�(e

−V∅(B)−V �(B))

=−V �(B)+O(‖V �(B)‖Tj+1(�j+1)‖V ∅(B)‖Tj+1(�j+1)). (5.54)

Observe that P �(B) = 0 since B̄ contains only one of a and b, see the remark
below (5.37). As a result, (5.38) and the above show that the term linear in
V �

j (B) in π�ECj+1δI (B) cancels in expectation. The claim (5.51) then follows from

‖ECj+1θQ�(B)‖Tj+1(�j+1) = O(L2(d−2)‖K�
j ‖j ) by (5.43) and (5.28), and bounding

the quadratic terms using (3.71) and (5.45)–(5.46) as below (5.53).
For the final assertion (5.52), we first show that ECj+1(π�δI )X = L4(d−2)×

O(‖V ∅

j ‖j + ‖Kj‖j )(‖V �
j ‖j + ‖K�

j ‖j ), where we emphasise that π� is inside the
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product over X. To see this bound, let X = B ∪B ′, and note that V �(B) and V �(B ′)
are either 0 or polynomials in ψa , ψ̄a and ψb , ψ̄b respectively. Since by assump-
tion Cj+1(a, b) = 0, ECj+1θV �(B)V �(B ′) = 0. Hence a nonvanishing contribution
to ECj+1(π�δI )X involves at least one factor V ∅ from the expansion of the δI by
(5.53). The factor of L4(d−2) arises from applying (5.28). The estimate (5.52) now
follows similarly to the previous cases:

π�ECj+1(δI )X = π�ECj+1(π∅δI + π�δI)X

=O((‖Vj‖j +L2(d−2)‖Kj‖j )(‖V ∅

j ‖j +L2(d−2)‖Kj‖j )) (5.55)

as the cross terms with one factor π� and one factor π∅ satisfy this bound as above.
�

Next we replace Lemma 3.16. Unlike before we explicitly consider terms arising
from two blocks, in order to obtain a cancellation up to a third order error in V �.
Indeed, note that the right-hand side of (5.56) involves ‖Vj‖j‖V ∅

j ‖j � (‖V ∅

j ‖j +
‖V �

j ‖j )‖V ∅

j ‖j but no term ‖V �
j ‖2

j , and that ‖V ∅

j ‖j is exponentially small in j along
the flow while ‖V �

j ‖j is of order 1. The K-terms are higher order.

Lemma 5.11 Suppose that ‖V ∅

j ‖j +‖K∅

j ‖j � ε and ‖V �
j ‖j +‖K�

j ‖j � ε. Then for
B ∈ Bj ,

∥∥∥∥∥∥
π�ECj+1

⎡

⎣δI (B)+ 1

2

∑

B ′ �=B,B ′⊂B̄

δI (B)δI (B ′)+ θQ(B)

⎤

⎦

∥∥∥∥∥∥
Tj+1(�j+1)

=O(L4d(‖Vj‖j + ‖Kj‖j )(‖V ∅

j ‖j + ‖Kj‖j )). (5.56)

Proof Recall Ṽ �
j+1 = u�

j+1 + V �
j+1. Using (5.38) to re-express ECj+1[θQ�(B)], the

term inside the norm on the left-hand side of (5.56) equals

π�ECj+1

⎡

⎣δI (B)+ 1

2

∑

B ′ �=B,B ′⊂B̄

δI (B)δI (B ′)

⎤

⎦

+ECj+1

[
θV �

j (B)
]
−
∑

B ′
P �(B,B ′)− Ṽ �

j+1(B). (5.57)

We start with the one block terms B ′ = B in (5.57). Using Lemma 5.9 to rewrite
P(B,B) and since δI (B)= θe−Vj (B) − e−(Vj+1+uj+1)(B), these terms are

π�ECj+1θ

[
e−Vj (B) − 1+ V �

j (B)− 1

2
V̂ �

j (B)2
]

− π�

[
e−(Vj+1+uj+1)(B) − 1+ Ṽ �

j+1(B)− 1

2
Ṽ �

j+1(B)2
]

. (5.58)



Percolation transition for random forests in d � 3

To estimate these terms, first note that if V = Vj+1+uj+1 then (5.40) and its con-
sequences (5.45)–(5.46) imply ‖V ∅‖Tj+1(�j+1) � 1, ‖V �‖Tj+1(�j+1) � 1. This bound
also holds for V = Vj provided ε is sufficiently small by (5.28), we then have for
V = Vj or V = uj+1 + Vj+1,

π�e
−V (B) = π�(e

−V �(B) + (e−V∅(B) − 1)e−V �(B))

= − V �(B)+ 1

2
V �(B)2

+O((‖V �
j ‖j +L2(d−2)‖K�

j ‖)(‖V ∅

j ‖j + ‖K∅

j ‖j )), (5.59)

where we have used V �(B)3 = 0, and in the case V = uj+1 + Vj+1, (3.71) to
control ‖u∅j+1 + V

∅

j+1‖j+1 in terms of ‖V ∅

j ‖j + ‖K∅

j ‖j and (5.46) to control
‖u�

j+1 + V �
j+1‖j+1 similarly. Using also

V̂ �
j (B)2 = (V �

j (B)−Q(B))2

= V �
j (B)2 +O(L4(d−2)‖K�

j ‖j (‖V �
j ‖j + ‖K�

j ‖j )), (5.60)

by the product property, (5.43), (5.28), and the assumed norm bounds, the estimate
for the one block terms follow.

Recall that P �(B,B ′)= 0 unless a, b are each in one of the two blocks. Thus for
B ′ �= B the two block terms in (5.57) are, by Lemma 5.9,

1

2
π�

(
ECj+1

[
δI (B)δI (B ′)

]
−ECj+1

[
θV̂ �

j (B)θV̂ �
j (B ′)

]
+ Ṽ �

j+1(B)Ṽ �
j+1(B

′)
)

.

(5.61)
We start by rewriting this in a more convenient form. Let δV �

j = θV̂ �
j − Ṽ �

j+1. By

(5.38), ECj+1θV̂ �
j = Ṽ �

j+1+P � = Ṽ �
j+1+O(σaσb), where O(σaσb) denotes a mono-

mial containing a factor σaσ̄b in Case (1) or a factor σaσb in Case (2). Since all terms
in δV �

j contain a source field (that is, a σ -factor) and source fields square to zero, we
obtain

ECj+1

[
δV �

j (B)δV �
j (B ′)

]

= ECj+1

[
θV̂ �

j (B)θV̂ �
j (B ′)

]
+ Ṽ �

j+1(B)Ṽ �
j+1(B

′)

− Ṽ �
j+1(B)ECj+1

[
θV̂ �

j (B ′)
]
− Ṽ �

j+1(B
′)ECj+1

[
θV̂ �

j (B)
]

= ECj+1

[
θV̂ �

j (B)θV̂ �
j (B ′)

]
− Ṽ �

j+1(B)Ṽ �
j+1(B

′). (5.62)

Therefore we need to estimate

1

2
π�ECj+1

[
δI (B)δI (B ′)

]
− 1

2
ECj+1

[
δV �

j (B)δV �
j (B ′)

]
. (5.63)

First write

π�[δI (B)δI (B ′)] = π�δI (B)π�δI (B ′)+ π�δI (B)π∅δI (B ′)
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+ π∅δI (B)π�δI (B ′). (5.64)

The second and third terms on the right-hand side are O((‖V �
j ‖j +L2(d−2)‖K�

j ‖j )×
(‖V ∅

j ‖j + ‖K∅

j ‖j )) using Lemma 3.17 for π∅δI and ‖π�δI (B)‖Tj+1(�j+1) =
O(‖V �

j ‖j +L2(d−2)‖K�
j ‖j ) by (5.46). Using (5.59), the term π�δI (B)π�δI (B ′) can

be estimated as

π�(δVj (B)− 1

2
(θVj (B)2 − Ṽj+1(B)2))π�(δVj (B

′)− 1

2
(θVj (B

′)2 − Ṽj+1(B
′)2))

+O((‖V �
j ‖j +L2(d−2)‖K�

j ‖)(‖V ∅

j ‖j + ‖K∅

j ‖j ))
= δV �

j (B)δV �
j (B ′)+O((‖V �

j ‖j +L2(d−2)‖K�
j ‖)(‖V ∅

j ‖j + ‖K∅

j ‖j )), (5.65)

since σ 2
a = σ 2

b = σ̄ 2
b = 0. The factor L4d is a convenient common bound. �

The next lemma replaces Lemma 3.15 on the observable components.

Lemma 5.12 For any U ∈ Cj+1, if Kab
j (Y )= 0 for all Y ∈ Sj and all j < jab , then

∑

X∈Sj :X̄=U

∥∥∥ECj+1

[
θ(1− Loc�

X)K�
j (X)

]∥∥∥
Tj+1(�j+1)

=O(L−( d−2
2 ∧1))‖K�‖j . (5.66)

Proof The proof is the same as that of Lemma 3.15 except for the following ob-
servation. The sum over X ∈ Sj that contributes a factor O(Ld) in the proof of
Lemma 3.15 only contributes O(1) on the observable components because for these
only the small sets containing a or b contribute. Thus the bound for Loc� from Propo-
sition 5.6, which lacks a factor L−d compared to the bound for Loc∅, produces the
same final bound. �

Proof of Theorem 5.8 The proof is analogous to that of Theorem 3.13, and we proceed
in a similar manner, by beginning with the coupling constants and then an estimate of
π�Lj+1(U), where Lj+1(U) is defined by the formula (3.72) but with the extended
coordinates introduced in Sect. 5.5.

For the coupling constants, i.e., the analogue of Sect. 3.8.1, the bound (3.69) gets
replaced by (5.43) which gives ‖Q�(B)‖Tj+1(�j+1) � O(Ld−2‖K�

j ‖), and we also

have ‖u�
j+1‖j+1 + ‖V �

j+1‖j+1 � O(‖V �
j ‖ +Ld−2‖K�

j ‖j ) by (5.45)–(5.46).

Note that the terms of Lj+1(U) are of the form
∑

F e−Vj+1(U\X)+uj |X|F . We will
use that

π�(e
−Vj+1(U\X)+uj |X|F)

= (π�e
−Vj+1(U\X)+uj |X|)π∅F + π�(e

−Vj+1(U\X)+uj |X|π�F ). (5.67)

We first explain how to estimate the sum arising from the first term, which only
contributes to the second term in the estimate. The estimation of the terms π∅F

is exactly as in Sect. 3.8. Estimating π�e
−Vj+1(U\X)+uj |X|, and the resultant sum
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over F , requires a replacement of Lemma 3.18. For this it suffices to note that
‖π�e

−Vj+1(U\X)+uj+1|X|‖Tj+1(�j+1) � (‖V �
j ‖j + L2(d−2)‖K�

j ‖j )2|Bj (X)|. This esti-
mate follows by the product property, (5.45)–(5.46), and arguing as in the proof of
Lemma 3.18. Hence this term is bounded by O(‖V �

j ‖j +L2(d−2)‖K�
j ‖j )(‖K∅

j ‖j +
Aν(‖K∅

j ‖2
j + ‖V ∅

j ‖2
j )).

Next we explain how to estimate e−Vj+1(U\X)+uj |X|π�F . The prefactor is at most
2|Bj (X)|, i.e., the analogue of Lemma 3.18 applies when V ∅, u∅ and K∅ are replaced
by V , u and K if ε is small enough, and it suffices to estimate π�F .

Consider the small set contributions to Lj+1(U), i.e., the analogue of Sect. 3.8.3.
As stated previously, Lemma 3.15 is replaced with Lemma 5.12 whereas Lem-
mas 5.11 and 5.10 replace Lemmas 3.16 and 3.17. In detail, in the analogue of (3.78)
we now also include quadratic terms in δI , i.e., we replace (3.78) by

π�ECj+1

⎡

⎣θKj (B)+ δI (B)+ 1

2

∑

B ′ �=B,B ′⊂B̄

δI (B)δI (B ′)− θJ (B,B)

⎤

⎦

= π�ECj+1

[
θ(1− LocB)Kj (B)

]

+ π�ECj+1

⎡

⎣δI (B)+ 1

2

∑

B ′ �=B,B ′⊂B̄

δI (B)δI (B ′)+ θQ(B)

⎤

⎦ , (5.68)

with the corresponding analogue of (3.77) then being (for X ∈ Sj \Bj )

π�ECj+1

[
θ(1− LocX)Kj (X)

]

+ π�ECj+1

⎡

⎣(δI )X − 1

2

∑

B ′ �=B,B ′⊂B̄

δI (B)δI (B ′)1B∪B ′=X

⎤

⎦ . (5.69)

Let us note that since B ∪ B ′ is not necessarily connected (so in that case not a
small set), along with the third term in (5.69), there is a corresponding correction
for polymers in the large set sum (3.95): the terms inside the sum are replaced by
e−Vj+1(U\X)+uj+1|X| multiplied by

π�ECj+1

[
θKj (X)

]
1X∈Cj \Sj

+ π�ECj+1

⎡

⎣(δI )X − 1

2

∑

B ′ �=B,B ′⊂B̄

δI (B)δI (B ′)1B∪B ′=X

⎤

⎦1X∈Pj \Sj
. (5.70)

Now Lemma 5.12 bounds the sum over X of the (1 − LocX) terms in (5.68)
and (5.69). Lemma 5.11 bounds the second term on the right-hand side of (5.68).
Finally, (5.50) of Lemma 5.10 bounds the second term in (5.69) by O(‖V ∅

j ‖j +
‖K∅

j ‖j )(‖Vj‖j + L2(d−2)‖Kj‖j ), after making use of the cancellation between
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(δI )X and δI (B)δI (B ′) when X = B ∪B ′ and B ′ ⊂ B̄ . Indeed, note that for all other
X at least one B ∈ Bj (X) does not contain a or b. Putting these bounds together (as
in the proof of Theorem 3.13) then gives that the small set contribution to π�Lj+1(U)

is O(L−( d−2
2 ∧1)‖K�

j ‖j )+O(‖V ∅

j ‖j + ‖K∅

j ‖j )(‖Vj‖j +L2(d−2)‖Kj‖j ).
To bound the large set term (5.70) and the non-linear contributions, we will use

the principle that for Fi ∈ V ,

π�

k∏

i=1

Fi =
∑

i

F �
i

∏

l �=i

F
∅

l +
∑

i �=k

F �
i F �

k

∏

l �=i,k

F
∅

l (5.71)

as the product of any three elements of V� is zero. The bound on the sum over

π�ECj+1

[
θKj (X)

]
1X∈Cj \Sj

(5.72)

proceeds exactly as in Sect. 3.8.4, bearing in mind (5.71) and (5.28). The resulting
estimate is O(A−η‖K�

j ‖j ). For the second term in (5.70), observe that if |Bj (X)| = 2

and X̄ ∈ Bj+1, the bound is identical to that of the same term in (5.69) above. The re-
maining possibilities are that either |Bj (X)|� 3 or |Bj (X)| = 2 but with constituent
j -blocks which are in distinct (j + 1)-blocks. In the former case, by applying (5.71),
(5.50) of Lemma 5.10 and Lemma 3.17 and then proceeding as in Sect. 3.8.4, we
obtain

A(|Bj+1(U)|−2d )+

×

∥∥∥∥∥∥∥
π�

∑

X∈Pj \Sj :X̄=U,|Bj (X)|�3

e−Vj+1(U\X)+uj+1|X|ECj+1

[
(δI )X

]
∥∥∥∥∥∥∥

Tj+1(�j+1)

� O(‖Vj‖j + ‖Kj‖j )(‖V ∅

j ‖j + ‖K∅

j ‖j ). (5.73)

The remaining case is |Bj+1(U)| = 2 and |Bj (X)| = 2 where U = X̄. Then the
δI (B)δI (B ′)1B∪B ′=X cancellation is absent, but π�ECj+1(δI )X itself satisfies the de-
sired bound by Lemma 5.10. Indeed, either a and b are in the same (j + 1) block or
they are not. If they are, we use (5.50) with n= 1, and if not, this follows from (5.52)
since a and b being in distinct (j + 1)-blocks of U implies that |a − b|∞ � 1

2Lj+1

since a is positioned in the center of all of its blocks. The bound

∥∥∥∥∥∥∥
π�

∑

X∈Pj \Sj :X̄=U,|Bj (X)|=2

e−Vj+1(U\X)+uj+1|X|ECj+1

[
(δI )X

]
∥∥∥∥∥∥∥

Tj+1(�j+1)

� O(L6d(‖Vj‖j + ‖Kj‖j )(‖V ∅

j ‖j + ‖Kj‖j )) (5.74)

follows as there are at most L2d summands.
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All together, after possibly increasing A, we obtain that the large set contribution
to Lj+1(U) is

O(A−η‖K�
j ‖j )+O(Aν(‖V �

j ‖j + ‖K�
j ‖j )(‖V ∅

j ‖j + ‖Kj‖j )). (5.75)

The non-linear contribution does not require any changes as the bound from
Sect. 3.8.5 already gives (after possibly increasing A) AνO(‖Kj‖j (‖Vj‖j +
‖Kj‖j )). �

5.7 Flow of observable coupling constants

With Theorem 5.8 in place, the evolution of the observable coupling constants in
u� + V � is the same as the free one from Sect. 5.2 up to the addition of remainder
terms from the K coordinate. To avoid carrying an unimportant factor of L2(d−2)

through equations, recall that we write OL(·) to indicate bounds with constants pos-
sibly depending on L (but we reemphasise that implicit constants are always inde-
pendent of the scale j ).

Lemma 5.13 Suppose j < N , x ∈ {a, b}, and that (5.40) holds. If j < jab , further
suppose that Kab

j (X)= 0 for X ∈ Sj . In Case (1),

λx,j+1 = λx,j +OL(�−1
x,j �

−1
j ‖Kx

j ‖j ), (5.76)

qj+1 = qj + λa,j λb,jCj+1(a, b)+rjCj+1(0,0)+OL(�−1
ab,j‖Kab

j ‖j 1j�jab
),

(5.77)

rj+1 = rj +OL(�−1
ab,j �

−2
j ‖Kab

j ‖j 1j�jab
), (5.78)

and in Case (2),

λx,j+1 = λx,j +OL(�−1
x,j �

−2
j ‖Kx

j ‖j ), (5.79)

γx,j+1 = γx,j + λx,jCj+1(x, x)+OL(�−1
x,j‖Kx

j ‖j ), (5.80)

qj+1 = qj + ηjCj+1(a, b)− λa,j λb,jCj+1(a, b)2 + rjCj+1(0,0)

+OL(�−1
ab,j‖Kab

j ‖j 1j�jab
), (5.81)

ηj+1 = ηj − 2λa,j λb,jCj+1(a, b), (5.82)

rj+1 = rj +OL(�−1
ab,j �

−2
j ‖Kab

j ‖j 1j�jab
). (5.83)

Moreover, for j + 1 < N , all coupling constants are independent of N .

Note that there is no error term in the equation for η, as the corresponding nonlocal
field monomials ψ̄aψb and ψ̄bψa are not contained in the image of Loc.

Proof For j < N , the main contribution in (5.40) is identical to that in Lemma 5.3.
The indicator functions 1j�jab

in the error terms are due to the assumption Kab
j (X)=
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0 for j < jab and X ∈ Sj . The bounds for the error terms follow from the definition
of the norms as in obtaining (4.10). Finally, that the couplings are independent of N

is a consequence of the consistency of the renormalisation group map, i.e., Proposi-
tion 3.12 (applied to the renormalisation group map extended by observables). �

The next lemma shows that if we maintain control of ‖K�
k‖k up to scale j then we

control the coupling constants in V � on scale j .

Lemma 5.14 Assume that ‖K�
k‖k � Mλ0b0L

−κk for k < j and that (5.40) holds for
k < j . Then, in Case (1) if q0 = r0 = 0 and λ0 > 0,

λj = λ0 +OL(Mλ0b0) (5.84)

rj =OL(Mλ0b0|a − b|−κ)1j�jab
(5.85)

and, in Case (2), if q0 = r0 = γx,0 = η0 = 0 and λ0 > 0,

λj = λ0 +OL(Mλ0b0) (5.86)

ηj =OL(λ2
0|a − b|−(d−2))1j�jab

(5.87)

rj =OL(Mλ0b0|a − b|−(d−2)−κ )1j�jab
, (5.88)

where λj = λx,j for either x = a or x = b. In both Cases (1) and (2),

‖V �
j ‖j � λ0 +OL(λ2

0)+OL(Mλ0b0). (5.89)

Proof The bounds on the coupling constants in (5.84)–(5.88) follow from Lem-
ma 5.13; the hypothesis regarding Kj(X)= 0 for j < jab and X ∈ Sj holds as Def-
inition 5.7 implies that for an iteration (Vj ,Kj ) of the renormalisation group map,
the N ab components of Vj (B) and Kj(X) with X ∈ Sj can only be nonzero for
j > jab since we have started the flow with r0 = 0 in Case (1), and q0 = η0 = r0 = 0
in Case (2). What remains is to analyse the recurrences to establish (5.89).

For λx,j , since �−1
x,j �

−p
j = 1 in Case (p), using (5.76), respectively (5.79),

λx,j = λ0 +
j−1∑

k=0

OL(‖K�
k‖k)= λ0 +

j−1∑

k=0

OL(Mλ0b0L
−κk)= λ0 +OL(Mλ0b0).

(5.90)
The bounds on rj follow from the fact that all contributions are 0 for scales j < jab

if r0 = 0. For example, in Case (2), using (5.83),

|rj | = λ0b0OL(M

j−1∑

k=jab

�−1
ab,j �

−2
j L−κj )

= λ0b0�
2
jab

OL(M

j−1∑

k=jab

L−κj )=OL(Mλ0b0|a − b|−(d−2)−κ). (5.91)
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Case (1) is similar, except no factor �jab
arises (see (5.25)). The bound on ηj in

Case (2) follows from the preceding analysis of λx,j , the fact that ηj = 0 for j <

jab if η0 = 0 since Cj has finite range (Cj(a, b) = 0 if |a − b|∞ � 1
2Lj ), and that

Cj+1(a, b) � OL(L−(d−2)j ):

|ηj | =OL(λ2
0

j−1∑

k=jab

L−(d−2)k)=OL(λ2
0|a − b|−(d−2)). (5.92)

For the bound on the norm of ‖V �
j ‖j recall that the q and γ terms have been taken

out of V �. Thus in Case (1),

‖V �
j (B)‖� |λj | + |rj |�ab,j �

2
j � |λj | + |rj | = |λj | +OL(Mλ0b0). (5.93)

Similarly, in Case (2), using that �2
j �ab,j = �−2

j∧jab
=OL(|a − b|d−2) for j � jab ,

‖V �
j (B)‖� |λj | + |ηj |�2

j �ab,j 1j�jab
+ |rj |�ab,j �

2
j 1j�jab

� |λj | + |ηj ||a − b|d−21j�jab
+ |rj ||a − b|d−21j�jab

� |λj | +OL(λ2
0)1j�jab

+OL(Mλ0b0|a − b|−κ)1j�jab

= |λj | +OL(λ2
0)+OL(Mb0λ0). �

We now analyse the observable flow from initial conditions which extend the
bulk initial conditions of Theorem 3.24, and verify the assumption on K� made in
Lemma 5.14 along this flow. As already remarked at the beginning of Sect. 5.5, the
renormalisation group maps with observables are upper triangular, so that the observ-
able components of the maps do not affect the bulk flow. Thus from now on, the bulk
components (V

∅

j ,K
∅

j )j�N are identified with the trajectory given by Theorem 3.24
and we may use the decay rates from that theorem as inputs in obtaining estimates on
the remaining components. In particular, there is an α > 0 such that

‖V ∅

j ‖j =OL(b0L
−αj ), ‖K∅

j ‖j =OL(b0L
−αj ). (5.94)

Using this as input, we iterate the observable flow (5.40)–(5.41), with initial condition
λa,0 = λb,0 = λ0 small enough and all other observable coupling constants equal to
0.

Proposition 5.15 Assume that the bulk renormalisation group flow (V
∅

j ,K
∅

j ) obeys

‖V ∅

j ‖j + ‖K∅

j ‖j =OL(b0L
−αj ) (5.95)

for some α > 0. Then there is κ > 0 such that for λa,0 = λb,0 = λ0 > 0 and b0 > 0
sufficiently small and all other observable coupling constants initially 0,

‖V �
j ‖j � OL(λ0), ‖K�

j ‖j � OL(λ0b0L
−κj ). (5.96)
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Proof We may assume λ0 < 1, and that κ is less than α and the exponents of L and
A in (5.41). The proof is by induction. The inductive assumption is that ‖K�

k‖k �
Mb0λ0L

−κk for all k � j , for some M =M(L) chosen large enough below. Clearly,
this holds for j = 0. Lemma 5.14 then shows that ‖V �

k ‖k � OL(1)λ0+OL(1)Mλ0b0

for all k � j + 1. We now apply Theorem 5.8 to control K�
j+1. Since A is chosen as

function of L, the second term on the right-hand side of (5.41) is

O(Aν)(‖V ∅

j ‖j + ‖Kj‖j )(‖Vj‖j + ‖Kj‖j )
� OL(1)(b0L

−αj + ‖K�
j ‖j )(b0L

−αj + λ0 +Mλ0b0)

� OL(1)b0λ0L
−αj + 1

4
L−κ‖K�

j ‖j , (5.97)

as long as b0 � λ0 and Mb0 + λ0 is sufficiently small (depending on L). As A > L,
and using our second assumption on κ , we obtain from (5.41) that

‖K�
j+1‖j+1 � 1

2
L−κ‖K�

j ‖j +OL(1)b0λ0L
−αj

� (
1

2
M +OL(1))b0λ0L

−κ(j+1) � Mb0λ0L
−κ(j+1) (5.98)

provided that M is sufficiently large and b0 is sufficiently small (depending only on
L). Hence if λ0 and b0 are small enough we have advanced the induction, completing
the proof. �

6 Computation of pointwise correlation functions

In this section we use the results of Sect. 5 to prove the following estimates for the
pointwise correlation functions 〈ψ̄aψb〉, 〈ψ̄aψa〉, and 〈ψ̄aψaψ̄bψb〉. Recall (2.27)
and (2.25), i.e.,

WN(x)=WN,m2(x)= (−�+m2)−1(0, x)− tN

|�N | , 0 < tN = 1

m2
−O(L2N).

(6.1)
Thus WN(x) is essentially the torus Green function (−� + m2)−1(0, x) with the
zero mode subtracted and tN is essentially m−2 when L2N � m−2 and negligible
otherwise.

Proposition 6.1 For b0 sufficiently small and m2 � 0, there exists continuous func-
tions

λ= λ(b0,m
2)= 1+OL(b0), γ = γ (b0,m

2)= (−�Z
d+m2)−1(0,0)+OL(b0),

(6.2)
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such that if V
∅

0 = V c
0 (m2, b0) is as in Theorem 3.24, V �

0 is as in Proposition 5.15,
and ũc

N,N = ũc
N,N (b0,m

2) is as in Proposition 4.1, then

〈ψ̄aψa〉 = γ + λtN |�N |−1 +OL(b0L
−(d−2+κ)N )+OL(b0L

−κN(m2|�N |)−1)

1+ ũN,N

.

(6.3)

Proposition 6.2 Under the same assumptions as in Proposition 6.1,

〈ψ̄aψb〉 =WN(a − b)+ tN |�N |−1

1+ ũN,N

+OL(b0|a − b|−(d−2+κ))+ OL(b0|a − b|−κ(m2|�N |)−1)

1+ ũN,N

(6.4)

〈ψ̄aψaψ̄bψb〉 = −λ2WN(a − b)2 + γ 2 + −2λ2WN(a − b)+ 2λγ

1+ ũN,N

tN |�N |−1

+OL(b0|a − b|−2(d−2)−κ )+OL(b0L
−(d−2+κ)N )

+ (OL(b0L
−κN)+OL(b0|a − b|−(d−2+κ)))

(m2|�N |)−1

1+ ũN,N

.

(6.5)

Throughout this section, we assume that the renormalisation group flow
(Vj ,Kj )j�N is given as in Corollary 3.26 (bulk) and Proposition 5.15 (observables).

6.1 Integration of the zero mode

As in the analysis of the susceptibility in Sect. 4, we treat the final integration over
the zero mode explicitly. Again we will only require the restriction to constant ψ , ψ̄

(as discussed below (4.3)) of

ECθZ0 = EtNQN
θZN = e−u

∅

N |�N |Z̃N,N , (6.6)

where the last equation defines Z̃N,N . We write Z̃N,N = Z̃
∅

N,N + Z̃�
N,N for its de-

composition into bulk and observable parts (see (5.23)). The bulk term was already
computed in Proposition 4.1. The observable term Z̃�

N,N is computed by the next
lemma. In the lemma we only give explicit formulas for the terms that will be used
in the proofs of Propositions 6.1 and 6.2.

Lemma 6.3 Restricted to constant ψ , ψ̄ , in Case (1),

Z̃�
N,N = σaψ̄Z̃

σaψ̄
N,N + σ̄bψZ̃

σbψ
N,N + σaσ̄bZ̃

σ̄bσa

N,N + σaσ̄bψψ̄Z̃
σ̄bσaψψ̄
N,N (6.7)

where

Z̃
σaψ̄
N,N = λa,N +OL(�−1

x,N�−1
N ‖K�

N‖N) (6.8)
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Z̃
σ̄bψ
N,N = λb,N +OL(�−1

x,N�−1
N ‖K�

N‖N) (6.9)

Z̃
σ̄bσa

N,N = qN(1+ ũN,N )+ λa,Nλb,N tN |�N |−1−rN tN |�N |−1

+OL(m−2|�N |−1�−2
N �−1

ab,N‖K�
N‖N). (6.10)

In Case (2),

Z̃�
N,N = σaZ̃

σa

N,N + σaψ̄ψZ̃
σaψ̄ψ
N,N + σbZ̃

σb

N,N + σbψ̄ψZ̃
σbψ̄ψ
N,N

+ σaσbZ̃
σaσb

N,N + σaσbψψ̄Z̃
σaσbψψ̄
N,N (6.11)

where, setting λ̃x,N,N = λx,N +OL(�−1
x,N�−2

N ‖K�
N‖N),

Z̃
σx

N,N = γx,N (1+ ũN,N )+ λ̃x,N,N tN |�N |−1 +OL(�−1
x,N‖K�

N‖N). (6.12)

Z̃
σaσb

N,N = (qN + γa,Nγb,N )(1+ ũN,N )+ (ηN − rN + λ̃a,N,Nγb,N

+ λ̃b,N,Nγa,N )tN |�N |−1

+OL((|γa,N | + |γb,N |)�−1
x,N + �−1

ab,N

+m−2|�N |−1�−2
N �−1

ab,N )‖K�
N‖N. (6.13)

The error bounds above reveal the tension in the explicit choices of �−1
x,j and �−1

ab,j .

To obtain effective error estimates, we want �−1
x,N and �−1

ab,N to be as small as possible.
On the other hand, to control the iterative estimates of Theorem 5.8 over the entire
trajectory, i.e., to prove Proposition 5.15, we needed that �x,j and �ab,j were not too
large. In particular, either of the more naive choices �ab,j = �−4

j and �ab,j = �−4
jab

in
Case (2) would have lead to difficulties, either in terms of forcing us to track addi-
tional terms in the flow and in terms of controlling norms inductively, or by leading
to error bounds that are not strong enough to capture the zero mode sufficiently ac-
curately.

Proof Throughout the proof, we restrict to constant ψ , ψ̄ . Since
(
e+u

∅

N (�)ZN

)� =
(
e−u�

N (�)(e−VN (�) +KN(�))
)�

= (e−u�
N (�) − 1)(e−V

∅

N (�) +K
∅

N (�))

+ e−u�
N (�)(e−VN(�) +KN(�))�, (6.14)

by applying EtNQN
θ we obtain

Z̃�
N,N = (e−u�

N (�) − 1)(1+ ũN,N − |�N |ãN,Nψψ̄)︸ ︷︷ ︸
A

+ e−u�
N (�)

EtNQN

[
θ(e−VN(�) +KN(�))�

]

︸ ︷︷ ︸
B

. (6.15)
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In obtaining A we used (4.4) which gives EtNQN
[θ(e−V

∅

N (�) + K
∅

N (�))] = 1 +
ũN,N − |�N |ãN,Nψψ̄ . Since each term in V

∅

N (�) contains a factor ψψ̄ and each
term in V �

N(�) either ψ or ψ̄ , we have V
∅

N (�)V �
N(�)= 0. Thus

B = e−u�
N (�)

EtNQN

[
θ(−V �

N(�)+ 1

2
V �

N(�)2 +K�
N(�))

]
. (6.16)

Case (1). Since σ 2
a = σ̄ 2

b = 0,

e−u�
N (�) − 1=−u�

N(�)= σaσ̄bqN, (6.17)

we get

A= σaσ̄bqN(1+ ũN,N − |�N |ãN,Nψψ̄) (6.18)

B = σaψ̄(λa,N + k
σaψ̄
N )+ψσ̄b(λb,N + k

σ̄bψ
N )

+ σaσ̄bEtNQN

[
θψ̄ψ(λa,Nλb,N − rN + k

σaσ̄bψ̄ψ
N )

]
. (6.19)

The constants k#
N are given in terms of derivatives of KN(�) and bounded analo-

gously as in (4.10). For example, k
σaψ̄
N =OL(�−1

a,N�−1
N ‖K�

N‖N), and similarly for the

other k#
N terms, the rule being that we have a factor �−1

x,N if there is a superscript σa

or σ̄b but not both, a factor �−1
ab,N for σaσ̄b and a factor �−1

N for each superscript ψ or

ψ̄ . These bounds follow from the definition of the Tj (�j ) norm.
Since EtNQN

θψψ̄ =−tN |�N |−1+ψψ̄ the claim follows by collecting terms and
using (3.7).

Case (2). Using again that σ 2
a = σ 2

b = 0, but now taking in account that u�(�) has
additional terms compared to Case (1),

e−u�
N (�) − 1=−u�

N(�)+ 1

2
u�

N(�)2 = σaσb(qN + γa,Nγb,N )+ σaγa,N + σbγb,N ,

(6.20)
and therefore

A= (σaσb(qN +γa,Nγb,N )+σaγa,N +σbγb,N )(1+ ũN,N −|�N |ãN,Nψψ̄). (6.21)

Since in Case (2) each term in V �
N(�) contains a factor of ψψ̄ , we have V �

N(�)2 = 0
and thus

B = (1− u�
N(�))EtNQN

[
θ(−V �

N(�)+K�
N(�))

]
. (6.22)

Therefore

B = σak
σa

N + σbk
σb

N + σaσb(γa,Nk
σb

N + γb,Nk
σa

N + k
σaσb

N )

+EtNQN

[
θ(ψ̄ψ(σaλ̃a,N + σbλ̃b,N )+ σaσbψ̄ψ(ηN − rN
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+ γa,N λ̃b,N + γb,N λ̃a,N + kσaσbψ̄ψ))
]

(6.23)

where we have set λ̃x,N = λx,N + k
σxψ̄ψ
N . Taking the expectation and collecting all

terms gives

Z̃
σaσb

N,N = (qN + γa,Nγb,N )(1+ ũN,N )

+ (ηN − rN + λ̃a,Nγb,N + λ̃b,Nγa,N + kσaσbψ̄ψ )tN |�N |−1

+ γa,Nk
σb

N + γb,Nk
σa

N + k
σaσb

N (6.24)

Z̃
σa

N,N = γa,N (1+ ũN,N )+ λ̃a,N tN |�N |−1 + k
σa

N . (6.25)

The bounds on the constants k#
N are analogous to those in Case (1). �

6.2 Analysis of one-point functions

We now analyse the observable flow given by Lemma 5.13 to derive the asymptotics
of the correlation functions. Note that the coupling constants λx,j and γx,j can pos-
sibly depend on x = a, b as the contributions from K can depend on the relative
position of the points in the division of �N into blocks. The following lemma shows
that in the limit j →∞ they become independent of x; an analogous argument was
used in [14, Lemma 4.6].

Lemma 6.4 Under the hypotheses of Proposition 6.1 there are λ
(p)∞ = λ0+OL(λ0b0)

and γ∞ =OL(λ0), all continuous in m2 � 0 and b0 small, such that for x ∈ {a, b},

λ
(p)
x,j = λ

(p)∞ +OL(λ0b0L
−κj ), γx,j = γ∞ +OL(λ0b0L

−(d−2+κ)j ). (6.26)

In Case (1), λ
(1)∞ = λ0. In Case (2), λ

(2)∞ = λ0 +OL(λ0b0) and γ
(2)∞ = λ

(2)∞ (−�Z
d +

m2)−1(0,0)+OL(λ0b0), and with the abbreviations λ= λ(2) and γ = γ (2),

〈ψ̄aψa〉 = γ∞
λ0
+

λ∞
λ0

tN |�N |−1 +OL(b0L
−(d−2+κ)N )+OL(b0L

−κN(m2|�N |)−1)

1+ ũN,N

.

(6.27)

Proof We will typically drop the superscript (p). In both cases, we have already seen
that

λx,j = λ0 +
j−1∑

k=0

OL(‖K�
k‖k)= λ0 +

j−1∑

k=0

OL(λ0b0L
−κk). (6.28)

Since the K�
k are independent of N for k < N (by Proposition 3.12 for the extended

renormalisation group map, see Sect. 5.5), the limit λx,∞ makes sense, exists, and
|λx,j − λx,∞| =OL(λ0b0L

−κj ). Similarly, in Case (2), by Lemma 5.13 and �−1
x,j =
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�2
j =OL(L−(d−2)j ),

γx,j =
j−1∑

k=0

[
λx,kCk+1(x, x)+OL(L−(d−2)k‖K�

k‖k)
]
. (6.29)

In particular, by the above estimate for |λx,j − λx,∞|, we have

γx,∞ = λx,∞
∞∑

k=0

Ck+1(0,0)+OL(λ0b0)= λx,∞(−�Z
d +m2)−1(0,0)+OL(λ0b0).

(6.30)
The continuity claims follow from the continuity of the covariances Cj in m2 � 0, of
the renormalisation group coordinates Kj , and that both λ∞ and γ∞ are uniformly
convergent sums of terms continuous in b0 and m2 � 0.

To show that λ
(1)
x,∞ = λ0 in Case (1), which is in particular independent of x, we

argue as in the proof of [14, Lemma 4.6]. On the one hand, Lemma 6.3 implies as
N →∞ with m2 > 0 fixed,

∂ψ̄∂σa Z̃N,N |0 = λa,N +OL(�−1
N �−1

x,N‖K�
N‖N)= λa,N +OL(‖K�

N‖N)−−−−→
N→∞ λa,∞,

(6.31)
where |0 denotes projection onto the degree 0 part, i.e., ψ = ψ̄ = σ = σ̄ = 0, and we
have dropped the superscript (1) from λa,j . On the other hand, we claim

∂ψ̄∂σa Z̃N,N |0 = λ0m
2(1+ ũN,N )

∑

x∈�N

〈ψ̄0ψx〉 = λ0

(
1+ ũN,N − ãN,N

m2

)
. (6.32)

Indeed, the first equality in (6.32) follows analogously to [14, (4.51)–(4.53)]: let
�(ρ, ρ̄) be as in (4.12), except that Z0 now includes the observable terms σa and
σ̄b and we write ρ and ρ̄ for the constant external field to distinguish them from σa

and σ̄b . Then as in (4.15),

−
∑

x∈�N

〈ψx〉σa,σ̄b
= ∂ρ̄�(ρ, ρ̄)|ρ=ρ̄=0 =m−2

∂ψ̄ Z̃N,N |ψ=ψ̄=0

Z̃N,N |ψ=ψ̄=0

, (6.33)

and 〈·〉σa,σ̄b
denotes the expectation that still depends on the source fields σa and σ̄b.

Differentiating with respect to σa and setting σ̄b = 0 gives

λ0

∑

x∈�N

〈ψ̄aψx〉 = −m−2
∂σa ∂ψ̄ Z̃N,N |0

Z̃N,N |0
=m−2

∂ψ̄∂σa Z̃N,N |0
1+ ũN,N

, (6.34)

which is the first equality of (6.32) upon rearranging. The second equality in (6.32)
follows from Proposition 4.2.

The right-hand side of (6.32) converges to λ0 in the limit N →∞ with m2 > 0
fixed since ãN,N = aN − k2

N/|�N | = OL(L−2N‖VN‖N)+OL(L−2N‖KN‖N)→ 0
and ũN,N = k0

N + ãN,N tN =O(‖KN‖N)+ ãN,N tN → 0 when m2 > 0 is fixed. Since
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the left-hand sides of (6.31)–(6.32) are equal, we conclude that λa,∞ = λ0 when
m2 > 0. By continuity this identity then extends to m2 = 0.

In Case (2), to show (6.27), we use (6.12), that Proposition 5.15 implies ‖K�
N‖N =

OL(λ0b0L
−κN), and �−1

x,N�−2
N = 1 and �−1

x,N = �2
N =OL(L−(d−2)N ) to obtain

Z̃
σa

N,N

1+ ũN,N

= γa,N

+ λa,∞tN |�N |−1 +OL(λ0b0L
−(d−2+κ)N )+OL(λ0b0L

−κN(m2|�N |)−1)

1+ ũN,N

.

(6.35)

Since

λ0〈ψ̄aψa〉 = ∂σa Z̃
N,N |0

Z̃N,N |0
= Z̃

σa

N,N

1+ ũN,N

, (6.36)

this gives (6.27). In particular, by the translation invariance of 〈ψ̄aψa〉, taking N →
∞ with m2 > 0 fixed implies γa,∞ is independent of a. Similarly, taking m2 ↓ 0
first and then N →∞ we see that λa,∞ is independent of a. Indeed, using (4.4), as
N →∞,

λ0〈ψ̄aψa〉 ∼ γa,∞ + λa,∞ lim
m2↓0

tN |�N |−1

ũN,N

∼ γa,∞ + λa,∞
1

|�N |ãN,N

, (6.37)

where 〈ψ̄aψa〉 and all scale-dependent coupling constants are evaluated at m2 = 0.
Thus λa,∞ = limN→∞ |�N |ãN,N (λ0〈ψ̄aψa〉−γa,∞) and the right-hand side is inde-
pendent of a. �

Proof of Proposition 6.1 Taking λ0 > 0 small enough, the proposition follows imme-
diately from Lemma 6.4 with λ= λ

(2)∞ /λ0 and γ = γ
(2)∞ /λ0. �

6.3 Analysis of two-point functions

Next we derive estimates for the two-point functions.

Lemma 6.5 Under the hypotheses of Proposition 6.1,

〈ψ̄aψb〉 =WN(a − b)+ tN |�N |−1

1+ ũN,N

+OL(
b0

λ0
|a − b|−(d−2+κ))+OL(

b0

λ0
|a − b|−κ )

(m2|�N |)−1

1+ ũN,N

, (6.38)

and, setting λ∞ = λ
(2)∞ and γ∞ = γ

(2)∞ as in Lemma 6.4,

〈ψ̄aψaψ̄bψb〉 = −λ2∞
λ2

0

WN(a − b)2 + γ 2∞
λ2

0

+ −2λ2∞WN(a − b)+ 2λ∞γ∞
λ2

0(1+ ũN,N )
tN |�N |−1
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+OL(
b0

λ0
|a − b|−2(d−2)−κ )+OL(

b0

λ0
L−(d−2+κ)N )

+ (OL(
b0

λ0
|a − b|−(d−2+κ))+OL(

b0

λ0
L−κN))

(m2|�N |)−1

1+ ũN,N

.

(6.39)

Proof The proofs of (6.38) and (6.39) corresponding to Cases (1) and (2) are again
analogous.

Case (1). By Lemma 5.14 (whose hypotheses are verified by Proposition 5.15) and
Lemma 6.4,

λx,j = λ∞ +OL(λ0b0L
−κ )= λ0 +OL(λ0b0L

−κ ),

rj =OL(λ0b0|a − b|−κ )1j�jab
.

(6.40)

Using that �−1
ab,j‖Kab

j ‖j � OL(λ0b0L
−(d−2+κ)j )1j�jab

and |Cj+1(a, b)| �
Cj+1(0,0) � OL(L−(d−2)j ) it then follows from Lemma 5.13 that

qN =
N−1∑

j=jab−1

[
λa,j λb,jCj+1(a, b)+ rjCj+1(0,0)+OL(λ0b0L

−(d−2+κ)j )
]

= λ2
0

N−1∑

j=1

Cj (a, b)+OL(λ0b0|a − b|−(d−2)−κ )

= λ2
0WN(a − b)+OL(λ0b0|a − b|−(d−2)−κ ), (6.41)

where we have used (6.40), |a − b| � L, that Cj (a, b) = 0 for j < jab , and that
WN(x − y) = C1(x, y) + · · · + CN(x, y). By (6.10), using that �−1

ab,N�−2
N = 1 and

again (6.40), therefore

Z̃
σ̄bσa

N,N

1+ ũN,N

= λ2
0WN(a − b)+OL(λ0b0|a − b|−(d−2)−κ)

+ λ2
0tN |�N |−1 +OL(λ0b0|a − b|−κm−2|�N |−1)

1+ ũN,N

. (6.42)

Since 〈ψ̄aψb〉 = Z̃
σ̄bσa

N,N /(λ2
0(1 + ũN,N )) and |λ0| � 1, the claim for the two-point

function follows.
Case (2). Again, the analogue of (6.40) holds:

λx,j = λ∞ +OL(b0λ0L
−κj ), rj =OL(b0λ0|a − b|−(d−2+κ))1j�jab

. (6.43)

The first estimate is by Lemma 6.4, the second by Lemma 5.14. Since Ck(a, b)= 0
for k < jab and |Ck+1(a, b)|� OL(L−(d−2)k), then by Lemma 5.13 and as |a− b|�
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L,

ηj =−2
j−1∑

k=jab−1

λa,kλb,kCk+1(a, b)

=−2λ2∞
j∑

k=1

Ck(a, b)+OL(b0λ0|a − b|−(d−2)−κ ). (6.44)

Note that

N−1∑

k=jab−1

|rk|Ck+1(0,0) � OL(b0λ0|a − b|−(d−2+κ))
∑

k�jab

L−(d−2)j

� OL(b0λ0|a − b|−2(d−2)−κ ). (6.45)

As a result, again by Lemma 5.13, these bounds together then give

qN =
∑

k�N

[ηk−1Ck(a, b)− λ2∞Ck(a, b)2] +OL(b0λ0|a − b|−2(d−2)−κ )

=−λ2∞
∑

k�N

[2
∑

l<k

Cl(a, b)Ck(a, b)+Ck(a, b)2] +OL(b0λ0|a − b|−2(d−2)−κ )

=−λ2∞

⎛

⎝
∑

k�N

Ck(a, b)

⎞

⎠
2

+OL(b0λ0|a − b|−2(d−2)−κ ).

=−λ2∞WN(a − b)2 +OL(b0λ0|a − b|−2(d−2)−κ ). (6.46)

We finally substitute these estimates into (6.13). Using also that �−1
ab,N�−2

N = �2
jab
=

OL(|a − b|−(d−2)), that �−1
x,N�−2

N =OL(1), that γx,N = γ∞ +OL(b0λ0L
−(d−2+κ)N )

by (6.26), and ‖K�
N‖N � OL(b0λ0L

−κ ), we obtain

Z̃
σaσb

N,N

1+ ũN,N

=−λ2∞WN(a − b)2 + γ 2∞ +OL(b0λ0|a − b|−2(d−2)−κ )

+OL(b0λ0L
−(d−2+κ)N )

+ −2λ2∞WN(a − b)+ 2λ∞γ∞
1+ ũN,N

tN |�N |−1

+ OL(b0λ0L
−κNm−2|�N |−1)+OL(b0λ0|a − b|−(d−2+κ)m−2|�N |−1)

1+ ũN,N

(6.47)

which gives (6.39) since 〈ψ̄aψaψ̄bψb〉 = Z̃
σaσb

N,N /(λ2
0(1+ ũN,N )). �



Percolation transition for random forests in d � 3

Proof of Proposition 6.2 The proposition follows immediately from Lemma 6.5 with
the same λ and γ as in Proposition 6.1. �

7 Proof of Theorems 2.1 and 2.3

Proof of Theorems 2.1 and 2.3 By summation by parts on the whole torus �N , we
have

y0(∇ψ,∇ψ̄)+ z0

2

(
(−�ψ, ψ̄)+ (ψ,−�ψ̄)

)
= (y0 + z0)(∇ψ,∇ψ̄). (7.1)

Given m2 � 0 and b0 small, we choose V c
0 (b0,m

2) as in Theorem 3.24. This defines
the functions sc

0 = yc
0 + zc

0 and ac
0 in (2.5) with the required regularity properties.

The claims for the correlation functions and the partition function then follow from
Propositions 4.1–4.2 and 6.1–6.2. The continuity of uc

N follows from the continuity
of V c

0 and the continuity of the renormalisation group maps.
For Theorem 2.1, note that the statements simplify by the assumption m2 � L−2N .

Indeed, using that (m2|�N |)−1 � L−(d−2)N and |aN |� OL(b0L
−(2+κ)N ), by Propo-

sition 4.1, we have that |ãN,N |� OL(b0L
−(2+κ)N ) and |ũN,N |� OL(b0L

−κN). �

Appendix A: Random forests and the H
0|2 model

A.1 Proof of Proposition 1.4

For any graph G = (�,E) with edge weights (βxy) and vertex weights (hx), the
partition function appearing in (1.1) can be generalised to

Zβ,h =
∑

F∈F

∏

xy∈F

βxy

∏

T ∈F

(1+
∑

x∈T

hx), (A.1)

where F is the set of forest subgraphs of G. Recall from the discussion above (1.3)
that expanding the product over T in (A.1) can be interpreted as choosing, for each
T , either (i) a root vertex x ∈ T with weight hx or (ii) leaving T unrooted. This
interpretation will be used in Lemma A.4.

By [20, Theorem 2.1] (which follows [37]),

Zβ,h =
∫ ∏

x∈�

∂ηx ∂ξx

1

zx

e
∑

xy βxy(ux ·uy+1)−∑x hx(zx−1)
. (A.2)

Moreover, by [20, Corollary 2.2], if h= 0 then

Pβ,0[x↔ y] = −〈u0 ·ux〉β,0 =−〈z0zx〉β,0 = 〈ξxηy〉β,0 = 1−〈ξxηxξyηy〉β,0. (A.3)

Proposition 1.4 follows easily from this. For convenience, we restate the proposition
as follows. In the statement and throughout this appendix, inequalities like β � 0 are
to be interpreted pointwise, i.e., βxy � 0 for all edges xy.



R. Bauerschmidt et al.

Proposition A.1 For any finite graph G, any β � 0 and h � 0,

Pβ,h[0↔ g] = 〈z0〉β,h, (A.4)

Pβ,h[0↔ x,0 � g] = 〈ξ0ηx〉β,h, (A.5)

Pβ,h[0↔ x] + Pβ,h[0 � x,0↔ g, x↔ g] = −〈u0 · ux〉β,h, (A.6)

and the normalising constants in (1.1) and (1.13) are equal. In particular,

Pβ,0[0↔ x] = −〈u0 · ux〉β,0 =−〈z0zx〉β,0 = 〈ξ0ηx〉β,0 = 1−〈ξ0η0ξxηx〉β,0. (A.7)

Proof of Proposition A.1 For notational ease, we write the proof for constant h. The
equality of the normalising constants is a special case of (A.2). To see (A.4), we
use that (z0 − 1)2 = 0 so that z0 = 1 − (1 − z0) = e−(1−z0). As a result 〈z0〉β,h =
Zβ,h−10/Zβ,h, and (A.1) gives

〈z0〉β,h = Eβ,h

h|T0|
1+ h|T0| = Pβ,h[0↔ g]. (A.8)

Similarly, 〈z0zx〉 = Zβ,h−10−1x /Zβ,h and thus (A.1) shows that

〈z0zx〉β,h = Eβ,h

−1+ h|T0|
1+ h|T0| 10↔x +Eβ,h

h|T0|
1+ h|T0|

h|Tx |
1+ h|Tx |10�x

= Pβ,h[0↔ x] − 2Pβ,h[0↔ x,0 � g] + Pβ,h[0 � x,0↔ g, x↔ g].
(A.9)

To see (A.6), we note that the left-hand side is the connection probability in the
extended graph Gg. From (A.3) with βxy = β for x, y ∈ � and βxg = h for x ∈ �

we thus obtain the claim:

−〈u0 · ux〉β,h = Pβ,h[0↔ x] + Pβ,h[0 � x,0↔ g, x↔ g]. (A.10)

To see (A.5), we combine (A.9) and (A.10) to get

2〈ξ0ηx〉β,h =−〈u0 · ux〉β,h − 〈z0zx〉β,h = 2Pβ,h[0↔ x,0 � g]. (A.11)

Finally, (A.7) is (A.3). This completes the proof. �

The extended graph Gg allows z-observables to be interpreted in terms of edges
connecting vertices in the base graph G to g. To state this, we denote by {xg} the event
the edge between x and g is present. The next lemma will be used in Appendix A.3.

Proposition A.2

h0〈z0 − 1〉β,h = Pβ,h[0g] (A.12)

h0hx〈z0 − 1; zx − 1〉β,h = Pβ,h[0g, xg] − Pβ,h[0g]Pβ,h[xg] (A.13)

Proof As discussed above, after expanding the product in (A.1) the external fields hx

can be viewed as edge weights for edges from x to g. With this in mind the formulas
follow by differentiating (A.2). �
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A.2 High-temperature phase and positive external field

Proposition A.3 If β < pc(d)/(1− pc(d)), then θd(β)= 0. Moreover, there is a c =
c(β) > 0 such that P�N

β,0 [0↔ x]� e−c|x|.

Proof In finite volume, Holley’s inequality implies the stochastic domination P
�N

β,h '
P

�N
p,r , where the latter measure is Bernoulli bond percolation on the extended graph

Gg with p = β/(1+ β) and r = h/(1+ h), see [20, Appendix A]. In particular,

P
�N

β,h[0↔ g]� P
�N
p,r [0↔ g]. (A.14)

Since each edge to the ghost is chosen independently with probability r , this latter
quantity is

P
�N
p,r [0↔ g] =

|�N |∑

n=1

P
�N
p,r [|C0| = n](1− (1− r)n) � rE�N

p,r |C0| (A.15)

since 1 − (1 − r)n � rn for 0 � r � 1. Here C0 is the cluster of the origin on the
torus without the ghost site, so E

�N
p,r |C0| = E

�N

p,0 |C0|. Now suppose β is such that
p < pc(d). Then the right-hand side is finite and uniformly bounded in N . Hence

θd(β)= lim
h→0

lim
N→∞P

�N

β,h[0↔ g]� lim
r→0

r sup
N

E
�N

p,0 |C0| = 0. (A.16)

The second claim follows from stochastic domination, as when p < pc(d) bond per-
colation has exponentially decaying connection probabilities [56]. �

Lemma A.4 Let h > 0 and suppose that for all x, hx = h. Then there are c,C > 0
depending on d , β , h such that

P
�N

β,h[0↔ x,0g]� Ce−c|x|, P
�N

β,h[0↔ x,0 � g]� Ce−c|x|. (A.17)

Proof We begin with the inequality on the left of (A.17). Define F(0↔ x) to be the
set of forests in which both 0 is connected to x and T0 is rooted at 0, and F the set
of all forests. In this argument we treat F as being a set of (possibly) rooted forests,
i.e., we identify edges to g with roots. Without loss of generality we may assume
x · e1 � α|x| for a fixed α > 0. Note that if F ∈ F(0↔ x) there is a unique path γF

from 0 to x in F , and there are at least α|x| edges of the form {u,u+ e1} in γF .
We define a map S : F(0↔ x)→ 2F by, for F ∈F(0↔ x),

1. choosing a subset {ui, vi} of the edges {{u,v} ∈ γF | v = u+ e1}, and
2. removing each {ui, vi} and rooting the tree containing vi at vi .

Thus S(F ) is the set of forests that results from all possible choices in the first step.
The second step does yield an element of 2F since T0 is rooted at 0, so it cannot be
the case that the tree containing vi is already rooted (connected to g).

The map S is injective, meaning that given F̄ ∈⋃F∈F(0↔x) S(F ) there is a unique

F such that F̄ ∈ S(F ). Indeed, given F̄ ∈ S(F ), F can be reconstructed as follows.
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In F̄ , either the tree containing x contains 0, or else it is rooted at a unique vertex v′
and it is not connected to u′ = v′ − e1. Set F̄ ′ = F̄ ∪ {u′, v′}. The previous sentence
applies to F̄ ′ as well, and continuing until a connection to 0 is formed we recover
F . This reconstruction was independent of F , and hence if F̄1 = F̄2, F̄i ∈ S(Fi), we
have F1 = F2.

Let w(F) = hβF
∏

T �=T0
(1+ h|V (T )|). Then for F̄ ∈ S(F ), w(F̄ ) = w(F)( h

β
)k

if F̄ had k edges removed. Hence if the connection from 0 to x in F has k edges of
the form {u,v}, v = u+ e1,

∑

F̄∈S(F )

w(F̄ )= (1+ h

β
)kw(F ). (A.18)

Let Fk(x)⊂F(0↔ x) be the set of forests where the connection from 0 to x contains
k edges of the form {u,v}, v = u+ e1. We have the lower bound

Z
�N

β,h =
∑

F∈F
βF
∏

T ∈F

(1+ h|V (T )|) �
∑

k�0

∑

F∈Fk(x)

∑

F̄∈S(F )

w(F̄ ) (A.19)

since S is injective and all of the summands are non-negative. Hence we obtain, using
(A.18),

P
�N

β,h[0↔ x,0g]�
∑

k�α|x|
∑

F∈Fk(x) w(F )
∑

k�0
∑

F∈Fk(x)

∑
F̄∈S(F ) w(F̄ )

=
∑

k�α|x|
∑

F∈Fk(x)(1+ h
β
)−k
∑

F̄∈S(F ) w(F̄ )
∑

k�0
∑

F∈Fk(x)

∑
F̄∈S(F ) w(F̄ )

� (1+ h

β
)−α|x|. (A.20)

A similar argument applies when 0 � g; this condition is used in the second step
defining S to ensure the trees containing the vertices vi are not already connected to
g. In this case the weight w(F) does not have the factor h, but the remainder of the
argument is identical. �

Proposition A.5 Let h > 0 and suppose that for all x, hx = h. Then there are c,C > 0
depending on d , β , h such that

P
�N

β,h[0↔ x]� Ce−c|x|. (A.21)

Proof Since

P
�N

β,h[0↔ x] = P
�N

β,h[0↔ x,0↔ g] + P
�N

β,h[0↔ x,0 � g], (A.22)

it is enough to estimate the first term, as the second is covered by Lemma A.4. Note

P
�N

β,h[0↔ x,0↔ g] =
∑

y

P
�N

β,h[10↔x10↔y1yg] =
∑

y

P
�N

β,h[10↔x10↔y10g]. (A.23)
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where the first equality follows from the fact that the only one vertex per component
may connect to g, and the second follows from exchangeability of the choice of root.
Examining the rightmost expression, there are most cd |x|d summands in which |y|�
|x|; for these terms we drop the condition 0↔ y. For the rest we drop 0↔ x. This
gives, by Lemma A.4,

P
�N

β,h[0↔ x,0↔ g]� C|x|de−c|x| +
∑

|y|>|x|
Ce−c|y| � Ce−c|x|, (A.24)

where c, C are changing from location to location but depend on d , β , h only. �

A.3 Infinite volume limit

We now discuss weak limits PZ
d

β obtained by (i) first taking a (possibly subsequential)

infinite-volume weak limit PZ
d

β,h = limN P
�N

β,h and (ii) subsequently taking a (possibly

subsequential) limit PZ
d

β = limh↓0 P
Z

d

β,h. We do not explicitly indicate the convergent
subsequence chosen as what follows applies to any fixed choice. Define

θd,N (β,h)= P
�N

β,h[0↔ g] = 1− h−1
P

�N

β,h[0g] (A.25)

where the second equality is due to (A.12). Since this last display only involves cylin-
der events,

lim
N→∞ θd,N (β,h)= 1− h−1

P
Z

d

β,h[0g] = θd(β,h), (A.26)

where the last equality defines θd(β,h).

Proposition A.6 Assume limh↓0 θd(β,h)= θd(β) exists. Then

P
Z

d

β [|T0| =∞] = θd(β). (A.27)

Proof Write Pβ,h = P
Z

d

β,h. We claim that

Pβ,h[0g] =
∑

n�1

Pβ,h[|T0| = n] h

1+ nh
, (A.28)

and hence, since θd(β,h)= 1− h−1
Pβ,h[0g],

θd(β,h)= 1−
∑

n�1

Pβ,h[|T0| = n] 1

1+ nh
. (A.29)

Granting the claim, by dominated convergence we obtain

Pβ,0[|T0|<∞]=
∑

n�1

Pβ,0[|T0| = n] = 1− θd(β), (A.30)



R. Bauerschmidt et al.

as desired. To prove the claim, rewrite it as

Pβ,h[|T0| =∞,0g] = lim
r→∞Pβ,h[|T0|� r,0g] = 0. (A.31)

The probabilities inside the limit are probabilities of cylinder events, and hence are
limits of finite volume probabilities. For a fixed r the probability is at most h/(1+rh)

in finite volume, which vanishes as r →∞. �

Appendix B: Finite range decomposition

In this appendix, we give the precise references for the construction of the finite
range decomposition (3.1). The general method we use was introduced in [12], and
presented in the special case we use in [18, Chap. 3] and we will use this reference.
For t > 0, first recall the polynomials Pt from [18, Chap. 3] (these polynomials are
called W ∗

t in [12]). These are polynomials of degree bounded by t satisfying

1

λ
=
∫ ∞

0
t2Pt (λ)

dt

t
, 0 � Pt(u) � Os(1+ t2u)−s (B.1)

for any s > 0 and u ∈ [0,2]. Our decomposition (3.1) is defined by

C1(x, y)= 1

(2d +m2)|�N |
∑

k∈�∗N

eik·(x−y)

∫ 1
2 L

0
t2Pt(

λ(k)+m2

2d +m2
)
dt

t
(B.2)

Cj (x, y)= 1

(2d +m2)|�N |
∑

k∈�∗N

eik·(x−y)

∫ 1
2 Lj

1
2 Lj−1

t2Pt (
λ(k)+m2

2d +m2 )
dt

t
(B.3)

CN,N(x, y)= 1

(2d +m2)|�N |
∑

k∈�∗N

eik·(x−y)

∫ ∞
1
2 LN

t2Pt (
λ(k)+m2

2d +m2
)
dt

t
, (B.4)

where λ(k)= 4
∑d

j=1 sin2(kj /2) and �∗N ⊂ [−π,π)d is the dual torus. The estimates
for C1, . . . ,CN−1 are straightforward from these Fourier representations and can be
found in [18, Chap. 3]. We remark that in [18, Sect. 3.4], the torus covariances are
defined by periodisation of the finite range covariances on Z

d ; by Poisson summation
this is equivalent to the above definition.

The decomposition of CN,N in (3.6) is defined by removing the zero mode from
CN,N :

CN(x, y)= 1

(2d +m2)|�N |
∑

k∈�∗N :k �=0

eik·(x−y)

∫ ∞
1
2 LN

t2Pt(
λ(k)+m2

2d +m2 )
dt

t
(B.5)

tN = 1

2d +m2

∫ ∞
1
2 LN

t2Pt (
m2

2d +m2
)
dt

t
, (B.6)
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from which (3.6) is immediate. For CN estimates follows as in [18, Chap. 3]:

|CN(x, y)|� 1

|�N |
∑

k∈�∗N :k �=0

(∫ ∞
1
2 LN

t2Pt (
λ(k)+m2

2d +m2
)
dt

t

)

� 1

|�N |
∑

k∈�∗N :k �=0

(∫ ∞
1
2 LN

t2t−2s |k|−2s dt

t

)

� L2N

|�N |
∑

k∈�∗N :k �=0

L−2sN |k|−2s

� L−(d−2)N

∫ ∞

1
r−2s+d−1dr � L−(d−2)N (B.7)

and analogously for the discrete gradients. Finally, by (B.1),

tN = 1

(2d +m2)

∫ ∞
1
2 LN

t2Pt (
m2

2d +m2
)
dt

t

= 1

m2
− 1

(2d +m2)

∫ 1
2 LN

0
t2Pt(

m2

2d +m2
)
dt

t
= 1

m2
−O(L2N). (B.8)
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