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Abstract
The totally nonnegative flag variety was introduced by Lusztig. It has enriched com-
binatorial, geometric, and Lie-theoretic structures. In this paper, we introduce a (new)
J -total positivity on the full flag variety of an arbitrary Kac-Moody group, general-
izing the (ordinary) total positivity.

We show that the J -totally nonnegative flag variety has a cellular decomposi-
tion into totally positive J -Richardson varieties. Moreover, each totally positive J -
Richardson variety admits a favorable decomposition, called a product structure.
Combined with the generalized Poincare conjecture, we prove that the closure of
each totally positive J -Richardson variety is a regular CW complex homeomorphic
to a closed ball. Moreover, the J -total positivity on the full flag provides a model for
the (ordinary) totally nonnegative partial flag variety. As a consequence, we prove
that the closure of each (ordinary) totally positive Richardson variety is a regular
CW complex homeomorphic to a closed ball, confirming conjectures of Galashin,
Karp and Lam in (Adv. Math. 351:614–620, 2019). We also show that the link of
the totally nonnegative part of U− for any Kac-Moody group forms a regular CW
complex. This generalizes the result of Hersh (Invent. Math. 197(1):57–114, 2014)
for reductive groups.
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1 Introduction

1.1 Totally nonnegative flag varieties of reductive groups

The theory of total positivity on the reductive groups G and their partial flag varieties
PK was introduced by Lusztig in the seminal work [25]. The totally nonnegative
partial flag variety PK,�0 is a “remarkable polyhedral subspace” (cf. [25]). It has
many nice combinatorial, geometric, and Lie-theoretic properties. And it has been
used in many other areas, such as cluster algebras [9], the Grassmann polytopes [22],
the physics of scattering amplitudes [1].

We give a quick review of PK,�0. Let G be a connected reductive group, split
over R and B± = T U± be the Borel and opposite Borel subgroups of G. The full
flag variety B = G/B+ admits the decompositions into Schubert cells and opposite
Schubert cells, both indexed by the Weyl group W of G. The intersection of a Schu-
bert cell B+wB+/B+ with an opposite Schubert cell B−vB+/B+ is called an (open)
Richardson variety, and is denoted by Bv,w . The variety Bv,w is nonempty if and only
if v � w, where � is the Bruhat order on W .

Let I be the set of simple roots in G. Let P +
K ⊃ B+ be the standard parabolic

subgroup associated to a subset K of I . For the partial flag PK = G/P +
K , we have

the decomposition into the projected Richardson varieties PK = ⊔
α∈QK

PK,α . The
definition and the closure relation of the projected Richardson varieties are more
complicated and we skip the details in the introduction.

Let U−
�0 be the totally nonnegative part of U−. The totally nonnegative part PK,�0

of the partial flag variety PK is by definition, the closure of U−
�0P

+
K /P +

K in PK . In the
case where PK is the Grassmannian, PK,�0 is the totally nonnegative Grassmannian
[35].

The totally positive projected Richardson variety PK,α,>0 is, by definition, the in-
tersection of the totally nonnegative partial flag PK,�0 with the projected Richardson
variety PK,α . We then have the stratification

PK,�0 =
⊔

α∈QK

PK,α,>0.

We have many remarkable properties on the totally positive projected Richardson
varieties.
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(1) PK,�0 admits a natural monoid action of G�0 and a natural duality (see [23]);
(2) P�0 admits a representation-theoretic interpretation via canonical basis (see [23]

and [24]);
(3) PK,α,>0 is a cell and is a connected component of PK,α(R) (see [38]);
(4) The closure of PK,α,>0 is a union of PK,α′,>0 for some α′ (see [39]);
(5) The cell decomposition PK,α,>0 = ⊔

α′ PK,α′,>0 is a regular CW complex.

The last property is called the regularity theorem of PK,�0. In particular, the clo-
sure PK,α,>0 is homeomorphic to a closed ball. It was conjectured by Postnikov for
totally nonnegative Grassmannian and by Williams [44] for totally nonnegative par-
tial flag varieties of split real reductive groups. Important progress has been made in
[11, 13, 36, 40, 41]. It was finally established by Galashin, Karp and Lam [12].

1.2 Totally nonnegative Kac-Moody flag varieties

The theory of total positivity on the reductive groups and their flag varieties have been
generalized to arbitrary Kac-Moody groups by Lusztig in a series of papers [27–30]
and [31], and by us in [2]. For the full flag variety of an arbitrary Kac-Moody group,
we proved in [2] that the totally nonnegative flag variety B�0 has a representation-
theoretic interpretation, is a union of totally positive Richardson varieties, and each
totally positive Richardson variety is a cell.

However, the closure relations among the cells and the geometric structure of these
closures were not established. For reductive groups, there is a natural duality coming
from B+ ↔ B−, which plays a significant role in establishing geometric properties
of the flag varieties. Such duality does not exist for Kac-Moody groups, which leads
to extra difficulty in the study of totally nonnegative flag varieties for the general
Kac-Moody groups than the reductive groups. We shall overcome the obstacles and
establish results in the general setting of J -total positivity using the “product struc-
ture”.

1.3 J -Total positivity

Unless otherwise stated, in the rest of this paper we assume that G is a Kac-Moody
group, split over R. We fix a subset J of I . Let JB+ ⊂ P +

J be the Borel subgroup
opposite to B+ and JB− ⊂ P −

J be the Borel subgroup opposite to B−. The JB+-
orbits on B = G/B+ are called the J -Schubert cells and JB−-orbits on B = G/B+
are called the opposite J -Schubert cells, respectively. For v,w ∈ W , the open J -
Richardson variety is defined to be

JBv,w = JB+wB+/B+ ⋂
JB−vB+/B+.

It is known that JBv,w �= ∅ if and only if v J�w, where J� is the J -twisted Bruhat
order.

Our motivation to study the J -Richardson varieties comes from the partial flag
varieties. The projected Richardson varieties in a partial flag variety PK and their
geometric structures come from the projection map B →PK . Roughly speaking, the
projection map B → PK folds the Richardson varieties in a rather complicated way,
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which makes the projected Richardson varieties rather complicated to study. In [3]
we introduced an “atlas model” PK ��� B̃ of the partial flag variety and regarded the
projected Richardson varieties in PK as certain J -Richardson varieties in the full flag
variety B̃ of another (larger) Kac-Moody group.

However, the “atlas model” PK ��� B̃ is not compatible with the total positivity on
PK and the ordinary total positivity B̃. This should not be a surprise, as the ordinary
total positivity on B̃ is suitable for the decomposition into the (ordinary) Richardson
varieties, not the J -Richardson varieties. To provide a “model” for the total positivity
on PK , we introduce the J -total positivity. The J -total positivity on the flag variety
is “compatible” with the stratification by J -Richardson varieties.

It is worth mentioning that when J = ∅, the J -Schubert (resp. opposite J -
Schubert) varieties are just the Schubert (resp. opposite Schubert) varieties; the J -
total positivity coincides with the ordinary total positivity. Therefore, our main re-
sults apply to the setting of the ordinary total positivity. If the Weyl group WJ is
finite, then the J -total positivity can be obtained from the ordinary total positivity by
multiplying ẇJ on the left, where wJ is the longest element of WJ . In general, the
J -total positivity is quite different from the ordinary total positivity.

1.4 The main results on the J -total positivity

We set

J U−
�0 = {h1πJ (h2)

−1h2;h1 ∈ U−
J,�0, h2 ∈ U−

�0}.

Here U−
J is the unipotent radical of the opposite Borel subgroup in the Levi subgroup

LJ of G and πJ is the projection map from the opposite parabolic subgroup P −
J to

its Levi subgroup LJ . We define the J -totally nonnegative flag variety

JB�0 = J U−
�0 · B+ ⊂ B.

For any w1
J�w2, we set JBw1,w2,>0 = JB�0

⋂
JBw1,w2 . We call JBw1,w2,>0 the

totally positive J -Richardson variety.1 Note that the definition of J U−
�0 is a mixture

of the totally positive and totally negative parts U−
�0 of U−. The J -total positivity is

more difficult to study than the ordinary total positivity on B. Some major differences
between the J -total positivity and the ordinary total positivity are

• the totally nonnegative flag B�0 admits a natural action of the totally nonnegative
monoid G�0, while the J -totally nonnegative flag JB�0 only admits a natural
action of totally nonnegative submonoid LJ,�0;

• the totally nonnegative flag B�0 has a nice representation-theoretic interpretation
via Lusztig’s canonical basis. In contrast, the positivity property of the canonical
basis is not preserved for the J -total positivity.

1This should be called J -totally positive J -Richardson variety to be precise. But since we never consider
the interaction between the ordinary total positivity and J -Richardson varieties, this should not cause any
confusion.
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It is worth mentioning that the symmetry (of G�0), the representation-theoretic
interpretation and the duality B+ ↔ B− play a crucial role in the previous study of
the totally nonnegative flag B�0 of reductive groups. However, none of these features
are available for the J -totally nonnegative flag variety of a general Kac-Moody group.
Thus we need to develop a new strategy to study the J -total positivity.

Our starting point is the open covering B = ⋃
w∈W wU−B+/B+ and the isomor-

phisms

Jcw : wU−B+/B+ ∼= JB+wB+/B+ × JB−wB+/B+.

The idea of such isomorphism dates back to Kazhdan and Lusztig [17], see also [18].
Our first main result on J -total positivity is the following. Part (2) is new even for

the ordinary total positivity for the full flag variety of reductive groups.

Theorem A (Proposition 5.9, Theorem 5.10) Let w1
J�w3

J�w2. Then
(1) JBw1,w2,>0 ⊂ w3U

−B+/B+.
(2) The map ιw3 induces an isomorphism

JBw1,w2,>0 ∼= JBw1,w3,>0 × JBw3,w2,>0.

We call the isomorphism in part (2) of Theorem A the product structure of
JBw1,w2,>0. If we fix w3, but let w1 and w2 vary, then we obtain an isomorphism

⊔

w1
J�w3

J�w2

JBw1,w2,>0 ∼=
⊔

w1
J�w3

JBw1,w3,>0 ×
⊔

w3
J�w2

JBw3,w2,>0. (�)

We call it the product structure of
⊔

w1
J�w3

J�w2
JBw1,w2,>0. It allows us to un-

derstand JBw1,w2,>0 and its closure inductively. We can translate a geometric/topo-
logical question of calculating the closure to an algebraic question of calculating the
image under the map J cw . As consequences of the product structure (�) we obtain

Theorem B (Theorem 5.10) Let w1
J�w2. Then

(1) JBw1,w2,>0 is a cell and is a connected component of JBw1,w2(R).
(2) The closure of JBw1,w2,>0 is

⊔
w1

J�w′
1

J�w′
2

J�w2
JBw′

1,w
′
2,>0.

Taking J = ∅, Theorem B generalizes the works of Rietsch in [38, 39] from re-
ductive groups to Kac-Moody groups.

We also prove that

Theorem C (Proposition 8.1) The Birkhoff-Bruhat atlas of [3] sends a totally positive
cell PK,α,>0 isomorphically to a totally positive cell J -Richardson variety JB̃w1,w2,>0

for certain J and w1,w2 ∈ W̃ .

Note that the partial flag variety PK,�0 does not have an obvious product structure
as in Theorem A. This is reflected combinatorially on the lack of symmetry on the
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face poset of PK,�0. Theorem C allows us to study (inductively) the complicated to-
tally positive projected Richardson varieties on PK using the product structure com-
ing from totally positive J -Richardson varieties on B̃. This is a key ingredient in our
proof of the regularity theorem for the totally positive projected Richardson varieties
on PK , which we will discuss in the next subsection.

The J -total positivity for the full flag variety of any Kac-Moody group will also
be applied to the study of the total positivity in many other spaces, such as the double
flag varieties, the Bott-Samelson varieties, the double Bruhat cells and the wonderful
compactifications. This will be done in future works.

1.5 Regularity theorem

We establish the regularity theorem for the links of the identity in the totally positive
cells in U−, the (ordinary) totally positive cells in the partial flag varieties, and the
totally positive J -Richardson varieties in the full flag varieties.

Theorem D (Theorem 5.3, Theorem 5.7, Theorem 5.10, Theorem 5.11) All the fol-
lowing three spaces are regular CW complexes homeomorphic to closed balls:

(1) the link of the identity in U−
w,>0, for any w ∈ W ;

(2) the totally nonnegative projected Richardson variety PK,α,>0;
(3) the totally nonnegative J -Richardson variety JBw1,w2,>0.

For reductive groups, the regularity of the link was first established by Hersh in
[15]; the regularity of PK,α,>0 was established by Galashin, Karp and Lam in [12].
The generalization of regularity theorems in [12, 15] for Kac-Moody groups was
conjectured by Galashin, Karp and Lam in [12, conjecture 10.2]. Theorem D (1) &
(2) proves the conjectures, and part (3) is a new regularity result.

To prove regularity theorems, we follow [12] for the use of the generalized
Poincaré conjecture [10, 42] and [34] as well as some general results on the poset
topology. One then needs to show that each space Y above is a topological manifold
with boundary Y − Y . In the case where Y = PK,α,>0 for a reductive group, [12]
proved this result by constructing the Fomin-Shapiro atlas. Such construction relies
on the affine model [12, §7] and a detailed study of the admissible functions [12,
§5 & §6]. Another crucial fact is that the maps involved in the construction are the
restrictions of smooth maps. Such construction of the Fomin-Shapiro atlas does not
work for the ordinary total positivity for the Kac-Moody groups of infinite types nor
the J -total positivity.

Instead, we use the product structure to study (inductively) the open neighborhood
of a point in each space Y in Theorem D. For the J -Richardson varieties, the product
structure (�) is established in Theorem A. The product structure of the links in the
totally positive cells in U− is inherited from the product structure of the (ordinary)
total positivity on the full flag variety, which is also established in Theorem A.

As to the partial flag varieties, we do not have a obvious product structure. How-
ever, by Theorem C, the “atlas model” PK ��� B̃ in [2] translates the local structure
of the totally nonnegative projected Richardson varieties in PK homeomorphically
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to the local structure of a J -Richardson variety in B̃. And thus we may use the prod-
uct structure of the J -total positivity to understand the local structures of the totally
positive projected Richardson varieties and establish the desired regularity theorem.

2 Preliminaries

Throughout this paper, unless stated otherwise, for any ind-scheme X over R, we
shall simply denote by X its set of C-valued points, and denote by X(R) its set of R-
valued points. For any topological subspace Y of X(R), we denote by Y the closure
with respect to the Hausdorff topology.

2.1 Minimal Kac-Moody groups

Let I be a finite set and A = (aij )i,j∈I be a symmetrizable generalized Cartan matrix
in the sense of [16, §1.1]. A Kac-Moody root datum associated to A is a sextuple
D = (I,A,X,Y, (αi)i∈I , (α

∨
i )i∈I ), where X is a free Z-module of finite rank with Z-

dual Y , such that the elements αi of X and α∨
i of Y satisfy 〈α∨

j , αi〉 = aij for i, j ∈ I .
The split minimal Kac-Moody group G over R associated to the Kac-Moody root
datum D is the split group over R generated by the split torus T associated to Y and
the root subgroup U±αi

for i ∈ I , subject to the Tits relations [43]. Let U+ ⊂ G (resp.
U− ⊂ G) be the subgroup generated by Uαi

(resp. U−αi
) for i ∈ I . Let B± ⊂ G be

the Borel subgroup generated by T and U±, respectively.
For any K ⊂ I , let LK be the subgroup of G generated by T and U±αi

for i ∈ K .
Let P +

K be the standard parabolic subgroup of G generated by B+ and U−αi
for

i ∈ K and P −
K be the opposite parabolic subgroup of G generated by B− and Uαi

for i ∈ K . Let UP±
K

be the unipotent radical of P ±
K . We have the Levi decomposition

P ±
K = LK �UP±

K
.

For each i ∈ I , we fix isomorphisms xi : R → Uαi
and yi : R → U−αi

such that
the map

(
1 a

0 1

)

�−→ xi(a),

(
b 0
0 b−1

)

�−→ α∨
i (a),

(
1 0
c 1

)

�−→ yi(c)

defines a homomorphism SL2 → G.

2.2 Weyl groups

Let W be the Weyl group of G. It is a Coxeter group with the set of generators {si}i∈I .
Let � be the length function on W and � be the Bruhat order on W . We have natural
actions of W on both X and Y .

For any J ⊂ I , let WJ be the subgroup of W generated by sj for j ∈ J . This is
the Weyl group of the parabolic subgroup P +

J of G. Let WJ be the set of minimal-
length coset representatives of W/WJ and J W be the set of minimal-length coset
representatives of WJ \W . The multiplication gives a natural bijection WJ × J W ∼=
W . For any w ∈ W , let wJ be the unique element in WJ and J w be the unique element
in J W with w = wJ

J w.
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For any i ∈ I , we set ṡi = xi(1)yi(−1)xi(1) ∈ G(R). Let w ∈ W . By [32, Proposi-
tion 7.57], for any reduced expression w = si1si2 · · · sin of w, the element ṡi1 ṡi2 · · · ṡin
of G is independent of the choice of the reduced expression. We denote this element
by ẇ.

2.3 The flag varieties

Let B = G/B+ be the thin (full) flag variety of G (see [20]). For any w ∈ W ,
we set B̊w = B+ẇB+/B+ and B̊w = B−ẇB+/B+. We denote by Bw and Bw

the Zariski closure of B̊w and B̊w in B, respectively. For v,w ∈ W , let B̊v,w =
B̊w

⋂
B̊v . This is an (open) Richardson variety of B. It is known that B̊v,w �= ∅

if and only if v � w. In this case, dim B̊v,w = �(w) − �(v). We have the decom-
position B = ⊔

v�w B̊v,w . Moreover, for any v � w, the Zariski closure of B̊v,w is

Bw

⋂
Bv = ⊔

v�v′�w′�w B̊v′,w′ .

2.4 Regular CW complexes

Let X be a Hausdorff space. We call a finite disjoint union X = ⊔
α∈Q Xα a regular

CW complex if it satisfies the following two properties.

(1) For each α ∈ Q, there exists a homeomorphism from a closed ball to Xα mapping
the interior of the ball to Xα .

(2) For each α, there exists Q′ ⊂ Q, such that Xα = ⊔
β∈Q′ Xβ .

The face poset of X is the poset (Q,�), where β � α if and only if Xβ ⊂ Xα .
We refer to [3, §4] and the references therein for the definitions of graded, thin,

and shellable posets. We have the following result (see [5]).

Theorem 2.1 Suppose that X is a regular CW complex with face poset Q. If
Q

⊔{0̂, 1̂} (adjoining a minimum 0̂ and a maximum 1̂) is graded, thin, and shellable,
then X is homeomorphic to a sphere of dimension rank(Q) − 1.

2.5 The Poincare conjecture

Recall that an n-dimension topological manifold with boundary is a Hausdorff space
X such that every point x ∈ X has an open neighborhood homeomorphic to either
R

n, or R�0 × R
n−1 mapping x to a point in {0} × R

n−1. In the latter case, we say
that x is on ∂X, the boundary of X.

The following theorem can be derived from the generalized poincare conjecture
and Brown’s collar theorem. We refer to [12, §3.2] for details and history.

Theorem 2.2 Let X be a compact n-dimensional topological manifold with boundary,
such that ∂X is homeomorphic to an (n − 1)-dimensional sphere and X − ∂X is
homeomorphic to an n-dimensional open ball. Then X is homeomorphic to an n-
dimensional closed ball Dn.
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3 J -Richardson varieties

3.1 The partial order J� on W

Following [4] and [3, §2.3 & Proposition 4.6], we define the J -twisted length J � and
the J -twisted Bruhat order J� on W as follows. For w ∈ W ,

J �(w) = �(J w) − �(wJ ).

For w,w′ ∈ W , w′ J�w if there exists u ∈ WJ with wJ � w′
J u−1, uJ w′ � J w. This

is a special case of the twisted Bruhat order considered in [7]. We say w′ J<w if
w′ J�w and w′ �= w. It follows from [7, Proposition 1.7] that the poset (W, J� )

is graded. By [7, Proposition 1.1], if v J�w, then any maximal chain is of length
J �(w) − J �(v).

We define the poset

JQ = {(v,w) ∈ W × W |v J�w}, where (v′,w′) J� (v,w), if v J�v′ J�w′ J�w.

We also define a poset JQ̂ = JQ
⊔{0̂}, where 0̂ is the new minimal element.

Proposition 3.1 (1) The poset (W, J� ) graded, thin and shellable. In particular, any
convex interval of W is graded, thin and shellable.

(2) The poset (JQ̂, J�) is graded, thin and shellable. In particular, any convex inter-
val of JQ̂ is graded, thin and shellable.

Proof It follows from [7, Proposition 1.7 & 2.5 & 3.9] that the poset (W, J� ) is
graded, thin and EL-shellable.

We next equip W × W with the partial order J� such that (v1,w1) � (v2,w2) if
v1

J�v2 and w2
J�w1. It follows as a special case of (1) that (W ×W,J�) is graded,

thin and EL-shellable. Note that poset J Q is a closed interval in (W × W,�). Thus
the poset J Q is graded, thin, and shellable.

It is easy to see that (JQ̂, J�) is graded and thin. The EL-shellability of JQ̂ can be
proved similar to [44] (see also [3, §4]). �

3.2 The J -Richardson varieties

We follow [3, §2.3] to introduce the J -Richardson varieties. Let J ⊂ I . Let B±
J =

LJ

⋂
B± and U±

J = LJ

⋂
U±. Set

JB+ = B−
J �UP+

J
, JB− = B+

J �UP−
J

.

We set J U+ = U−
J UP+

J
and J U− = U+

J UP−
J

. Then J U± is the unipotent radical

of JB±. For v,w ∈ W , we define, respectively, the J -Schubert cell, the opposite J -
Schubert cell and the open J -Richardson variety by

JB̊w = JB+ẇB+/B+, JB̊v = JB−v̇B+/B+, JB̊v,w = JB̊w

⋂
JB̊v.
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By [3, Proposition 2.4], JB̊v,w �= ∅ if and only if v J�w. We have the decomposi-
tion B = ⊔

v J�w
JB̊v,w . By [4, Theorem 4], the Zariski closure of JB̊v,w , denoted by

JBv,w , is contained in JBw

⋂
JBv = ⊔

v J�v′ J�w′ J�w
JB̊v′,w′ . We will show later in

Proposition 7.4 that JBv,w equals JBw

⋂
JBv .

If J = ∅, then v J�w if and only if v � w. In this case, JB̊v,w = Bv,w . If J = I ,
then v J�w if and only if w � v. In this case, JB̊v,w = Bw,v .

3.3 Some isomorphisms on B

For any r ∈ W , we have isomorphisms

(ṙU−ṙ−1
⋂

J U+) × (ṙU−ṙ−1
⋂

J U−) −→ ṙU−ṙ−1, (g1, g2) �−→ g1g2;
(ṙU−ṙ−1

⋂
J U−) × (ṙU−ṙ−1

⋂
J U+) −→ ṙU−ṙ−1, (h1, h2) �−→ h1h2.

We define morphisms of ind-varieties

Jσr,− : ṙU−ṙ−1 → ṙU−ṙ−1
⋂

J U−, g1g2 �−→ g2,

Jσr,+ : ṙU−ṙ−1 → ṙU−ṙ−1
⋂

J U+, h1h2 �−→ h2.

We have the following isomorphism as a special case of [18, Lemma 2.2]:

Jσr = (Jσr,+, Jσr,−) : ṙU−ṙ−1 ∼−→ (ṙU−ṙ−1
⋂

J U+) × (ṙU−ṙ−1
⋂

J U−). (3.1)

By (3.1), for any r ∈ W , the map gṙB+/B+ �→
(

Jσr,+(g)ṙ · B+/B+, Jσr,−(g)ṙ ·
B+/B+

)
for g ∈ ṙU−ṙ−1 defines an isomorphism

Jcr = (Jcr,+, Jcr,−) : ṙU−B+/B+ ∼−→ JB̊r × JB̊r . (3.2)

The map Jcr sends JB̊v,w

⋂
(ṙB−B+/B+) to JB̊v,r × JB̊r,w for any v J�w. The

isomorphism in (3.2) restricts to an isomorphism

JB̊v,w

⋂
(ṙB−B+/B+)

∼−→ JB̊v,r × JB̊r,w. (3.3)

This also shows that
(a) JB̊v,w

⋂
(ṙB−B+/B+) �= ∅ if and only if v J� r J�w.

3.4 Some general results

Note that the map Jcr in (3.2) is defined over R.

Lemma 3.2 Let v J�uJ�w. Let Y ⊂ JB̊v,w(R) with u̇B+/B+ ∈ Y . Then

(1) for any v � v′ � u, we have Y
⋂

JB̊v′,u = Jcu,+(Y
⋂

(u̇B−B+/B+))
⋂

JB̊v′,u;
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(2) for any u� w′ � w, we have Y
⋂

JB̊u,w′ = Jcu,−(Y
⋂

(u̇B−B+/B+))
⋂

JB̊u,w′ .

Remark 3.3 Similar results hold if the Hausdorff closure is replaced by the Zariski
closure.

Proof Set Y ′ = Y
⋂

(u̇B−B+/B+). Then Y
⋂

(u̇B−B+/B+) = Y ′ ⋂(u̇B−B+/B+).
We have the following isomorphism via restriction

Y ′ ⋂ u̇B−B+/B+ ∼= Jcu,+(Y ′) × Jcu,−(Y ′).

Since u̇B+/B+ ∈ Y
⋂

(u̇B−B+/B+) ⊂ Y ′, we must have u̇B+/B+ ∈ Jcu,+(Y ′)
and u̇B+/B+ ∈ Jcu,−(Y ′). Since the isomorphism is stratified, we have

Y ′ ⋂ JB̊v′,u ∼= (Jcu,+(Y ′)
⋂

JB̊v′,u) × u̇B+/B+ ∼= Jcu,+(Y ′)
⋂

JB̊v′,u.

The composition is actually the identity map. Now part (1) follows. Part (2) is proved
in the same way. �

Lemma 3.4 Let v J�uJ�w and Y be a connected component of JB̊v,w(R). If Y ⊂
u̇B−B+/B+, then

(1) u̇B+/B+ ∈ Y ;
(2) Y

⋂
JB̊v,u = Jcu,+(Y ) is a connected component of JB̊v,u(R);

(3) Y
⋂

JB̊u,w = Jcu,−(Y ) is a connected component of JB̊u,w(R).

Proof Let μ be a dominant regular coweight. Then for any g ∈ U−, we have
limt→0 μ(t)gμ(t)−1 = 1. Set μ′ = u(μ). Thus limt→0 μ′(t)u̇gB+/B+ = u̇B+/B+
for any g ∈ U−. Since Y is a connected component of JB̊v,w(R), it is stable under the
action of μ′(R>0). This shows that u̇B+/B+ ∈ Y . Part (1) is proved.

Thanks to (3.3), we see that Jcu,+(Y ) is a connected component in JB̊v,u(R).
Therefore Jcu,+(Y ) is closed in JB̊v,u and thus equals to Jcu,+(Y )

⋂
JB̊v,u. Hence

by Lemma 3.2, we have Jcu,+(Y ) = Y
⋂

JB̊v,u = Jcu,+(Y )
⋂

JB̊v,u. We proved part
(2). Part (3) can be proved similarly. �

Now we prove the main result of this section.

Theorem 3.5 Let Yv,w be a connected component of JB̊v,w(R). We define

Yv′,w′ = Yv,w

⋂
JB̊v′,w′ , for any v J�v′ J�w′ J�w.

Assume that for any v J�v′ J�uJ�w′ J�w, we have Yv′,w′ ⊂ u̇B−B+/B+. Then
the map Jcu restricts to an isomorphism

Jcu : Yv′,w′ ∼= Yv′,u × Yu,w′ .
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Remark 3.6 We refer to the isomorphism above as a product structure. It is also worth
pointing out that the assumption Yv′,w′ ⊂ u̇B−B+/B+ is a very strong condition and
most of the connected components of JB̊v,w(R) do not satisfy this assumption. For
example, in type G2, B̊1,w0(R) has 11 connected components (see [37]) and only 4
of them satisfy this assumption.

Proof The proof consists of the following steps

(i) for any v J�uJ�w, we have Jcu : Yv,w
∼= Yv,u × Yu,w;

(ii) for any v J�v′ J�uJ�w, we have Jcu : Yv′,w ∼= Yv′,u × Yu,w;
(iii) for any v J�uJ�w′ J�w, we have Jcu : Yv,w′ ∼= Yv,u × Yu,w′ ;
(iv) for any v J�v′ J�uJ�w′ J�w, we have Jcu : Yv′,w′ ∼= Yv′,u × Yu,w′ .

Thanks to Lemma 3.4 (at u), we see

Yu,w = Jcu,−(Yv,w) and Yv,u = Jcu,+(Yv,u), for any v J�uJ�w.

Part (i) follows. We also see that Yu,w and Yv,u are connected components of
JB̊u,w(R) and JB̊v,u(R), respectively.

Let u = v′ in part (i). Applying Lemma 3.4 (at w′) to Yv′,w , we obtain that

Yv′,w
⋂

JB̊v′,w′ = Jcw′,+(Yv′,w).

We finally apply Lemma 3.2 (at v′) to obtain that

Yv′,w′ = Yv,w

⋂
JB̊v′,w′ = Jcv′,−(Yv,w)

⋂
JB̊v′,w′ = Yv′,w

⋂
JB̊v′,w′

= Jcw′,+(Yv′,w) = Jcw′,+(Jcv′,−(Yv,w)).

One may prove similarly that Yv′,w′ = Jcv′,−(Jcw′,+(Yv,w)), Yw′,w =
Jcw′,−(Jcv′,−(Yv,w)) and Yv,v′ = Jcv′,+(Jcw′,+(Yv,w)).

Now part (ii) and (iii) follow. We also see that Yv′,w′ is a connected component of
JB̊v′,w′(R).

Let v′ J�v′′ J�w′′ J�w. Thanks to Lemma 3.2, we have

Yv′,w
⋂

JB̊v′′,w′′ = Jcv′′,−(Yv′,w)
⋂

JB̊v′′,w′′ = Yv′′,w
⋂

JB̊v′′,w′′

= Jcw′′,+(Yv′′,w) = Jcw′′,+(Jcv′′,−(Yv,w))

= Yv′′,w′′ .

Now we see that Yv′,w satisfies the same assumptions as Yv,w , hence (i), (ii), (iii)
apply to the new space Yv′,w . Now part (iii) for the space Yv′,w is the same as part
(iv) for the original space Yv,w . In particular, we have

Yv′,w′
⋂

JB̊v′′,w′′ = Yv′′,w′′ . (3.4)

We hence finish the proof. �
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Let us draw some consequences from Theorem 3.5 and its proof.

Corollary 3.7 Retain the assumptions in Theorem 3.5.

(1) For any v J�v′ J�w′ J�w, the subspace Yv′,w′ is a connected component in
JB̊v′,w′(R).

(2) For any v J�v′ J�w′ J�w, we have

Yv′,w′ =
⊔

v′ J�v′′ J�w′′ J�w′
Yv′′,w′′ .

(3) We have Yv′,w′ ∼= R
J �(w′)−J �(v′)
>0 .

Proof (1) has been establish in the proof of Theorem 3.5. By §3.2 and (3.4), we have

Yv′,w′ =
⊔

v′ J�v′′ J�w′′ J�w′
(Yv′,w′

⋂
JB̊v′′,w′′) =

⊔

v′ J�v′′ J�w′′ J�w′
Yv′′,w′′ .

Part (2) is proved.
We show (3). It follows from [4, Theorem 5 & Corollary 6] that

JB̊v′,w′(R) ∼= R
×, if v′ J�w′ and J �(w′) − J �(v′) = 1.

In this case, by part (1) we have Yv′,w′ ∼= R>0. Recall §3.1 that the poset (W, J� ) is
graded. Now the general case follows from Theorem 3.5 by induction on J �(w′) −
J �(v′). �

4 A regular CW complex

The main result of this section is the following theorem.

Theorem 4.1 We fix v J�w. Let Yv,w be a connected component of JB̊v,w(R). We
define

Yv′,w′ = Yv,w

⋂
JB̊v′,w′(R) for any v J�v′ J�w′ J�w.

Assume that for any v J�v′ J�uJ�w′ J�w, we have Yv′,w′ ⊂ u̇B−B+/B+. Then
Yv,w = ⊔

(v′,w′) Yv′,w′ is a regular CW complex homeomorphic to a closed ball of

dimension J �(w) − J �(v).

4.1 Links

Links can be defined for arbitrary Whitney stratified spaces; see [15, Definition 4.25].
We shall not consider this abstract definition here, but follow [8, Theorem 1.2] and
[12, §3.1] instead.



H. Bao, X. He

We denote by X++ the set of dominant regular weights of G. For λ ∈ X++, we
denote by V λ the highest weight simple G-module over C with highest weight λ. Let
ηλ be a highest weight vector. We denote by V λ(R) the R-subspace of V λ spanned
by the canonical basis.

For any v′ ∈ W with (v′,w) ∈ JQ, we consider the embedding

JB̊v′
(R)

(v̇′)−1·−−−−−−→ U−B+/B+ ∼= U− u �−→u·ηλ−−−−−→ V λ. (4.1)

The image of JB̊v′
(R)

⋂
JBv,w lies in a finite-dimensional subspace Lv′ ⊂ V λ(R);

cf. [4, Theorem 5]. We identify JB̊v′
(R) with the image. We equip Lv′

with the
standard Euclidean norm with respect to the canonical basis. We define the links2

Lk?(Yv,w) (via the embedding above) by

Lkv′,w′(Yv,w) = Yv′,w′
⋂

{||x|| = 1|x ∈ Lv′ }, for any w′ such that v′ J<w′ J�w,

Lkv′(Yv,w) =
⊔

v′ J<w′ J�w

Lkv′,w′(Yv,w) = Yv,w

⋂
{||x|| = 1|x ∈ Lv′ }.

We simply write Lk? = Lk?(Yv,w) if there is no confusing.
For any dominant regular coweight μ, we consider the natural R×-action on B(R)

via the coweight v′(μ). Note that the action is compatible with the R
×-action on

V λ(R) via the dominant regular coweight μ through the embedding (4.1). We shall
abuse notations and denote both actions by ϑμ.

It is clear JB̊v′,w′(R) is stable under the action of ϑμ and any connected component
of JB̊v′,w′(R) is stable under the action of R>0. This defines a contractive flow on the
space Lv′

in the sense of [12, Definition 2.2], since μ is dominant regular.
The following results are proved in [12, Lemma 3.4 & Proposition 3.5].
(a) For any x ∈ Yv,w

⋂
JB̊v′

(R) such that x /∈ Yv′,v′ = v̇′B+/B+, there is a unique
t1(x) ∈ R>0 such that ϑμ(t1(x))x ∈ Lkv′ . Moreover, the map x → t1(x) is continu-
ous.

(b) We have a stratified isomorphism Yv,w

⋂
JB̊v′

(R) ∼= Cone(Lkv′) such that
Yv′,v′ maps to the cone point and Yv′,w′ ∼= Lkv′,w′ ×R>0, x �→ (ϑμ(t1(x))x,1/t1(x))

for w′ �= v′. Here for any topological space A, the cone over A is defined by
Cone(A) = (A ×R�0)/(A × {0}).

We denote by Dn the closed ball of dimension n. Note that Cone(Dn) ∼= R
n ×

R�0.

Proposition 4.2 For any v′ J< uJ�w, we have stratified isomorphisms

Lkv′
⋂

u̇U−B+/B+ =
⊔

uJ�w′ J�w

Lkv′,w′

∼= Lkv′,u × (Y
⋂

JB̊u(R)) ∼= Lkv′,u × Cone(Lku).

2In fact, the definition of links is independent of the choice of λ ∈ X++ up to a stratified homeomorphism.
We do not use this fact in this paper.
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Proof We write ϑ for ϑμ. Recall the assumption that Yv′,w′ ⊂ u̇U−B+/B+ for
v′ J�uJ�w′. Hence Lkv′

⋂
u̇U−B+/B+ = ⊔

uJ�w′ J�w Lkv′,w′ . The last isomor-
phism follows from §4.1 (b). We construct the second isomorphism.

We first define a morphism α as the following composition

Lkv′,u × (Yv,w

⋂
JB̊u(R)) ↪→ Yv′,u × (Yv,w

⋂
JB̊u(R))

Jc−1
u−−→

⊔

uJ�w′ J�w

Yv′,w′
π−→

⊔

uJ�w′ J�w

Lkv′,w′ .

Here the second map comes from Theorem 3.5. We next construct the inverse. We
then define a morphism β as follows

⊔

uJ�w′ J�w

Lkv′,w′ ↪→
⊔

uJ�w′ J�w

Yv′,w′

Jcu−→ Yv′,u × (Yv,w

⋂
JB̊u(R))

φ−→ Lkv′,u × (Yv,w

⋂
JB̊u(R)),

where φ(x, y) = (ϑ(t1(x))x,ϑ(t1(x))y). We claim α and β give the desired isomor-
phism. The compatibility with the stratification is clear. We show that they are inverse
to each other.

We first show β ◦ α = id. Let (x, y) ∈ Lkv′,u × (Yv,w

⋂
JB̊u(R)). Then let z =

Jc−1
u ((x, y)). Then α(x, y) = π(z) = ϑ(t1(z))z. Since Jcu is R>0-equivariant, we

have Jcu(ϑ(t1(z))z) = (ϑ(t1(z))x,ϑ(t1(z))y). By the uniqueness in §4.1 (a), we have
ϑ(t1(ϑ(t1(z))x))x = x ∈ Lkv′,u, hence t1(ϑ(t1(z))x) = t1(z)

−1. Therefore we have
φ(ϑ(t1(z))x,ϑ(t1(z))y) = β(z) = (x, y).

We next show α ◦ β = id. Let z ∈ ⊔
uJ�w′ J�wLkv′,w′ and (x, y) = Jcu(z).

Then β(z) = (ϑ(t1(x))x,ϑ(t1(x))y). Then since Jcu is T -equivariant, we ob-
tain Jc−1

u (β(z)) = ϑ(t1(x))z. Then by the uniqueness in §4.1 (a), we must have
π(ϑ(t1(x))z) = z, that is α ◦ β(z) = z.

We finish the proof. �

Corollary 4.3 Let v′ J< w′. We have Lkv′,w′ ∼= R
J �(w′)−J �(v′)−1
>0 .

Proof Thanks to §4.1 (b) and Proposition 4.2, it suffices to show Lkv′,w′ is a point
when J �(w′)− J �(v′) = 1. The latter statement follows from Theorem 3.5 and direct
computation. �

Proposition 4.4 For v J�v′ J<w, Lkv′ = ⊔
v′ J<w′ J�w Lkv′,w′ is a regular CW com-

plex homeomorphic to a closed ball of dimension J �(w) − J �(v′) − 1.

Proof We prove by induction on J �(w) − J �(v′). When J �(w) − J �(v′) = 1,
Lkv′ is a point by Corollary 4.3. In the induction process, we shall consider
Lk?(Yv,w′) for w′ J�w as well. Note that Lkv′(Yv,w′) is a subspace of Lkv′(Yv,w)

and Lkv′,w′′(Yv,w′) = Lkv′,w′′(Yv,w) for v′J< w′′ J�w′.
We first show
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(a) Lkv′ is a topological manifold with boundary ∂Lkv′ = ⊔
v′J<w′J<w Lkv′,w′ .

We have Lkv′,w = Lkv′
⋂

ẇU−B+/B+ ∼= R
J �(w)−J �(v′)−1
>0 . Now for any u with

v′ J<uJ<w, we apply the stratified isomorphism in Proposition 4.2. We have

Lkv′
⋂

u̇U−B+/B+ =
⊔

uJ�w′ J�w

Lkv′,w′ ∼= Lkv′,u × Cone(Lku)

∼= R
J �(u)−J �(v′)−1
>0 × Cone(D

J �(w)−J �(u)−1)

∼= R
J �(w)−J �(v′)−2
>0 ×R�0.

Here Lku
∼= D

J �(w)−J �(u)−1 is obtained via the induction hypothesis since J �(w) −
J �(u) < J �(w) − J �(v′). This shows that Lkv′ is a topological manifold with bound-
ary and Lkv′,u lies on the boundary for u �= w′. This proves (a).

We next prove
(b) ∂Lkv′ = ⊔

v′J<w′J<w Lkv′,w′ is a regular CW complex homeomorphic to a
sphere of dimension J �(w) − J �(v′) − 2.

By induction hypothesis Lkv′(Yv,w′) is a regular CW complex homeomorphic to
a closed ball of dimension J �(w) − J �(v′) − 1, for any v′ J<w′ J<w. Therefore
∂Lkv′ is a regular CW complex with the face poset ({w′|v′ J<w′ J<w}, J� ). It is
clear after adding a new minimal 0̂ and 1̂, the poset is {w′|v′ J�w′ J�w}, which
is graded, thin, and shellable by Proposition 3.1. Hence by Theorem 2.1, ∂Lkv′ is
homeomorphic to a sphere of dimension J �(w) − J �(v′) − 2. This proves (b).

The statement now follows from (a), (b) and Theorem 2.2. �

4.2 Proof of Theorem 4.1

Set Y = Yv,w . The outline of the proof is similar to the proof of Proposition 4.4. We
prove by induction on J �(w) − J �(v). The base case J �(w) − J �(v) = 0 is trivial,
since Yv,v = v̇B+/B+ is a single point.

We first show that
(a) Y is a topological manifold with boundary

∂Y =
⊔

v J�v′ J�w′ J�w,(v,w)�=(v′,w′)
Yv′,w′ .

The proof of the claim is divided into several cases depending on (v′,w′).

(i) It follows from Corollary 3.7 that Yv,w
∼= R

J �(w)−J �(v)
>0 is the open cell.

(ii) We consider the case (v′,w′) = (v, v). By Proposition 4.4 and §4.1 (b), we have

Y
⋂

v̇B−B+/B+ = Y
⋂

JB̊v ∼= Cone(D
J �(w)−J �(v)−1),

Yv,v �−→ cone point.

This shows that Yv,v lies on the boundary.
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(iii) We consider the case (v′,w′) = (w,w). Similar to (ii), we can establish (via a
variation of Proposition 4.4 and §4.1 (b))

Y
⋂

ẇB−B+/B+ = Y
⋂

JB̊w
∼= Cone(D

J �(w)−J �(v)−1),

Yw,w �−→ cone point.

This shows that Yw,w lies on the boundary.
(iv) We next consider the case when v′ �= v. We further assume v′ �= w, otherwise we

are done by (iii). We apply the stratified isomorphism in Theorem 3.5 to obtain

Y
⋂

v̇′B−B+/B+ =
⊔

v J�v′′ J�v′ J�w′′ J�w

Yv′′,w′′

∼=
⊔

v J�v′′ J�v′
Yv′′,v′ ×

⊔

v′ J�w′′ J�w

Yv′,w′′

Now induction applies to the spaces Yv′′,v′ and Yv′,w′′ . In particular, they are both
topological manifolds with the expected boundaries. Therefore

Y
⋂

v̇′B−B+/B+ ∼= Cone(D
J �(v′)−J �(v)−1) × Cone(D

J �(w)−J �(v′)−1)

∼= (R
J �(v′)−J �(v)−1
>0 ×R�0) × (R

J �(w)−J �(v′)−1
>0 ×R�0)

∼= R
J �(w)−J �(v)−1
>0 ×R�0

with Yv′,w′ lying on the boundary.
(v) The final case w′ �= w is similar to (iv).

Now we finish the proof of (a).
We next show that
(b) ∂Y is a regular CW complex homeomorphic to a sphere of dimension J �(w)−

J �(v) − 1.
It follows by the induction hypothesis that Yv′,w′ is a regular CW complex

homeomorphic to a closed ball of dimension J �(w′) − J �(v′) if v J�v′ J�w′ J�w

and (v,w) �= (v′,w′). Hence ∂Y is a regular CW complex with the face poset
{(v′,w′)|(v′,w′) J� (v,w), (v′,w′) �= (v,w)} ⊂ JQ. By adding a new maximal el-
ement and a new minimal element we obtain the new poset {(v′,w′) ∈ JQ|(v′,w′) J�
(v,w)}⊔{0̂} ⊂ JQ̂. Thanks to Proposition 3.1, this is graded, thin and shellable. By
Theorem 2.1, ∂Y is a regular CW complex homeomorphic to a sphere of dimension
J �(w) − J �(v) − 1. This finishes the proof of (b).

The statement now follows from (a), (b) and Theorem 2.2.

5 Main results

We collect the main results of this paper. We shall first prove the main results on
the ordinary totally nonnegative flag variety B�0 in §5.1. In §5.2 and §5.3, we will
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prove the main results on the totally nonnegative partial flag variety and the J -totally
nonnegative flag variety, respectively. The proofs rely on Proposition 5.6 and Propo-
sition 5.9 (both marked with ♣) respectively, which will be established in §6 to
§8.

5.1 Ordinary total positivity

5.1.1 Totally nonnegative part of G

We follow [23] and [27]. The generalization to Kac-Moody groups is straightforward.
Let U+

�0 be the submonoid of G generated by xi(a) for i ∈ I and a ∈ R>0 and U−
�0

be the submonoid of G generated by yi(a) for i ∈ I and a ∈ R>0. Let T>0 be the
identity component of T (R). Let G�0 be the submonoid of G generated by U±

�0 and

T>0. By [27, §2.5], G�0 = U+
�0T>0U

−
�0 = U−

�0T>0U
+
�0.

Let w ∈ W and w = si1si2 · · · sin be a reduced expression of w. Set

U+
w,>0 = {xi1(a1)xi2(a2) · · ·xin(an)|a1, a2, . . . , an ∈ R>0};

U−
w,>0 = {yi1(a1)yi2(a2) · · ·yin(an)|a1, a2, . . . , an ∈R>0}.

By [27, Lemma 2.3 (b)], U±
w,>0 is independent of the choice of reduced expres-

sion of w. Moreover, by [27, §2.5 (d) & (e)], we have U±
�0 = ⊔

w∈W U±
w,>0. Let

U±
w,�0 = U±

w,>0 be the closure of U±
w,>0. Then U±

w,�0 = ⊔
w′�w U±

w′,>0 by [23,
Proposition 4.2].

5.1.2 Totally nonnegative flag varieties

Let B�0 = U−
�0 · B+ be the closure of U−

�0 · B+ in B with respect to the Hausdorff
topology. For any v �w, let

Bv,w,>0 = B̊v,w

⋂
B�0.

Hence B�0 = ⊔
v�w Bv,w,>0.

Let w = si1si2 · · · sin be a reduced expression of w ∈ W . A subexpression of w
is ti1 ti2 · · · tin , where tij = 1 or sij for any j . For any v � w, there exists a unique
positive subexpression v+ = ti1 ti2 · · · tin for v in w in the sense of [33, Lemma 3.5].
Following [33, Definition 5.1], we set

Gv+,w,>0 = {g1g2 · · ·gn|gj = ṡij , if tij = 1; and gj ∈ yij (R>0), if tij = sij }.

Note that the obvious map R
�(w)−�(v)
>0 → Gv+,w,>0 is a homeomorphism.

By [33, Theorem 11.3] for reductive groups and [2, Theorem 4.10] for Kac-Moody
groups, we have the following parametrization result.

(a) Let v � w. For any reduced expression w of w, the map g �→ g · B+ gives a
homeomorphism

Gv+,w,>0 ∼= Bv,w,>0. (5.1)
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In particular, Bv,w,>0 ∼= R
�(w)−�(v)
>0 is a topological cell.

We recall the monoid actions ∗, ◦l and ◦r of W in [2, §5]. We have si ∗ w =
max{w, siw}, si ◦l w = min{w, siw}, and w ◦r si = min{w,wsi} for any simple re-
flection si .

Lemma 5.1 Let v � r � w in W . We have

Bv,w,>0 ⊂ ṙB−B+/B+.

Proof We argue by induction on �(w). Let w′ = si1w with the reduced expression
w′ = si2 · · · sin . Set v′ = si1 ◦l v and r ′ = si1 ◦l r . It follows from [14, Lemma 2] that
v′ � r ′ � w′. We divide the computation into several cases.

• If r � si1r or r ′ = r , then v � r � si1w. In this case g1 ∈ yi1(R>0) and ṙ−1g1ṙ ∈
U−(R). Hence ṙ−1Gv+,w,>0 ⊂ U−(R)ṙ−1Gv+,w′,>0.

• If r � si1r and g1 = ṡi1 , then v′ = si1v. Therefore ṙ−1Gv+,w,>0 = (ṙ ′)−1Gv′+,w′,>0.
• Assume r � si1r and g1 ∈ yi1(R>0). Then Gv+,w,>0 = yi1(R>0)Gv+,w′,>0. For

any a ∈ R>0, we have ṡ−1
i1

yi1(a) = α∨
i1
(a−1)yi1(−a)xi1(a

−1). Then we have

xi1(a
−1)Gv+,w′,>0 ⊂ Gv′+,w′,>0B

+ by [2, Proposition 5.2]. Therefore

ṙ−1Gv+,w,>0 ⊂ B−(ṙ ′)−1Gv′+,w′,>0B
+.

The statement then follows from inductive hypothesis on w′. �

5.1.3 Main results on B�0

We apply results in Theorem 3.5 and Theorem 4.1 for the case J = ∅ to prove the
main result for B�0.

Proposition 5.2 Let v,w ∈ W with v � w. Then

(1) Bv,w,>0 is a connected component of B̊v,w(R).
(2) We have Bv,w,�0 = Bv,w,>0 = ⊔

v�v′�w′�w Bv′,w′,>0.

Proof We first consider the v = 1 case. We have a commutative diagram

U−
w,>0

∼=

U− ⋂
B+ẇB+

∼=

B1,w,>0 B̊1,w.

By [26, §6.3], U−
w,>0 is a connected component of U−(R)

⋂
B+ẇB+. Thus B1,w,>0

is a connected component of B̊1,w(R).
Let v1 � w1 � w. By Lemma 5.1, B1,w,>0

⋂
B̊v1,w1 ⊂ Bv1,w1,>0 ⊂ u̇U−B+/B+

for any u ∈ W with v1 � u � w1. Hence the assumption in Theorem 3.5 is satis-
fied for Y1,w = B1,w,>0. By Corollary 3.7, B1,w,>0

⋂
B̊v1,w1 ⊂ Bv1,w1,>0 is a con-

nected component of B̊v1,w1(R). By (5.1), Bv1,w1,>0 is connected. Hence Bv1,w1,>0 =
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B1,w,>0
⋂

B̊v1,w1 and it is a connected component of B̊v1,w1(R). Moreover, part
(2) for v = 1 now follows from Theorem 3.5, Theorem 4.1 and Corollary 3.7 for
Y1,w = B1,w,>0.

Now we consider the general case. We have already proved that Yv,w = Bv,w,>0 is
a connected component of B̊v,w(R). By Lemma 5.1 and Corollary 3.7, for v1,w1 ∈ W

with v � v1 � w1 � w, Bv,w,>0
⋂

B̊v1,w1 ⊂ Bv1,w1,>0 is a connected component of
B̊v1,w1(R). Hence Bv,w,>0

⋂
B̊v1,w1 = Bv1,w1,>0. Now part (2) for arbitrary v ∈ W

follows from Theorem 3.5, Corollary 3.7 for Yv,w = Bv,w,>0. �

We have verified the assumption in Theorem 3.5 for Yv,w = Bv,w,>0. The follow-
ing theorem follows from Theorem 3.5, Theorem 4.1, Corollary 3.7, and Proposi-
tion 4.4 for Yv,w = Bv,w,>0.

Theorem 5.3 Let v,w ∈ W with v � w.

(1) For any u ∈ W with v � u �w, the map cu restricts to an isomorphism

cu : Bv,w,>0 ∼= Bv,u,>0 ×Bu,w,>0.

(2) Bv,w,�0 is a regular CW complex homeomorphic to a closed ball of dimension
�(w) − �(v).

Remark 5.4 Part (2) of Theorem 5.3 proves [12, Conjecture 10.2 (2)].

5.2 Totally nonnegative partial flag varieties

5.2.1 Partial flag varieties

Let K ⊂ I and PK = G/P +
K be the partial flag variety. Let QK = {(v,w) ∈ W ×

WK |v � w}. Define the partial order � on QK by (v′,w′) � (v,w) if there exists
u ∈ WK with v � v′u� w′u � w. For any (v,w) ∈ QK , set

P̊K,(v,w) = prK(B̊v,w) and PK,(v,w) = prK(Bv,w),

where prK : B → PK is the projection map. Then PK,(v,w) is the (Zariski) closure of
P̊K,(v,w) in PK . We call P̊K,(v,w) an open projected Richardson variety and PK,(v,w)

a closed projected Richardson variety. Note that prK : B̊v,w → P̊K,(v,w) is an iso-
morphism for (v,w) ∈ QK .

By [19, Proposition 3.6], we have

PK =
⊔

(v,w)∈QK

P̊K,(v,w) and PK,(v,w) =
⊔

(v′,w′)∈QK,(v′,w′)�(v,w)

P̊K,(v′,w′).

(5.2)
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5.2.2 Total positivity on PK

Let PK,�0 = U−
�0P

+
K /P +

K be the closure of U−
�0P

+
K /P +

K in PK with respect to the
Hausdorff topology. It is easy to see that PK,�0 = prK(B�0). For (v,w) ∈ QK , we
further define PK,(v,w),>0 = PK,�0

⋂
P̊K,(v,w).

Proposition 5.5 Let (v,w) ∈ QK . Then we have

(1) The map prK restricts to an isomorphism Bv,w,>0 ∼= PK,(v,w),>0;
(2) PK,(v,w),>0 = ⊔

(v′,w′)�(v,w) in QK
PK,(v′,w′),>0;

(3) PK,(v,w),>0 is a connected component of P̊K,(v,w)(R);
(4)

{
PK,(v,w),>0 ⊂ ṙU−P +

K /P +
K , if (r, r) � (v,w) ∈ QK ;

PK,(v,w),>0
⋂

ṙU−P +
K /P +

K = ∅, otherwise.

Proof Let v′,w′ ∈ W with v′ � w′. We write w′ = (w′)K w′
K with (w′)K ∈ WK

and w′
K ∈ WK . Set v′

1 = (w′
K)−1 ◦r v′. Then v′

1 � (w′)K . Set v′
2 = (v′

1)
−1v′. We

fix a reduced expression (w′)K of (w′)K and a reduced expression w′
K of w′

K . Then
(w′)Kw′

K is a reduced expression of w′. Let (v′
1)+ be the positive subexpression of

v′
1 in (w′)K and (v′

2)+ be the positive subexpression of v′
2 in w′

K. It is easy to see that
(v′

1)+(v′
2)+ is the positive subexpression of v′ in (w′)Kw′

K. By definition,

prK(Bv′,w′,>0) = prK(G(v′
1)+(v′

2)+,(w′)Kw′
K,>0 · B+) = prK(G(v′

1)+,(w′)K,>0 · B+)

= prK(Bv′
1,(w

′)K ,>0) ⊂ PK,(v′
1,(w

′)K).

In particular,

prK(B�0) =
⋃

v′�w′ in W

prK(Bv′,w′,>0) =
⋃

v′�w′ in W

prK(Bv′
1,(w

′)K ,>0).

Since (v′
1, (w

′)K) ∈ QK , we have prK(B�0) = ⋃
(v′,w′)∈QK

prK(B(v′,w′),>0). For
any (v′,w′) ∈ QK , prK(B(v′,w′),>0) ⊂ PK,(v′,w′). Thus the union

⋃

(v′,w′)∈QK

prK(B(v′,w′),>0)

is a disjoint union and prK(B(v′,w′),>0) = PK,(v′,w′),>0 for any (v′,w′) ∈ QK .
Thus we have PK,(v,w),>0 = prK(Bv,w,>0). Note that prK restricts to B̊w is an

isomorphism to its image. Thus prK : Bv,w,>0 ∼= PK,(v,w),>0. Part (1) is proved.
We have

PK,(v,w),>0 = prK(Bv,w,>0) =
⊔

v�v′′�w′′�w

prK(Bv′′,w′′,>0).

Let (v′,w′) ∈ QK with (v′,w′) � (v,w). Then there exists u ∈ WK such that
v � v′u � w′u � w. Let u′ � u with v′ ∗ u = v′u′. Then v � v′u � v′ ∗ u = v′u′ �
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w′u′ � w′u � w. We have prK(Bv′u′,w′u′,>0) = prK(Bv′,w′,>0) = PK,(v′,w′),>0.
Thus PK,(v′,w′),>0 ⊂ PK,(v,w),>0.

On the other hand, for any v′ � w′ in W with v � v′ � w′ � w, we have v � v′ =
v′

1v
′
2 � (w′)Kv′

2 � (w′)Kw′
K = w′ � w, where v′

1 and v′
2 are defined above. Thus

(v′
1, (w

′)K) � (v,w) and prK(Bv′,w′,>0) = Pv′
1,(w

′)K ,>0. Part (2) is proved.
Finally part (3) and part (4) follow from §3.3(a), Proposition 5.2 (1) and

Lemma 5.1. �

5.2.3 Main results on PK,�0

We collect the main results on PK,�0 in this subsection. The proof relies on the
following result, which will be proved in §8.6.

Proposition 5.6 (♣) Let (v,w) ∈ QK . Then PK,(v,w),>0 is a topological manifold
with boundary ∂PK,(v,w),>0 = ⊔

(v′,w′)<(v,w)∈QK
PK,(v′,w′),>0.

Now we prove the main result.

Theorem 5.7 Let (v,w) ∈ QK . Then PK,(v,w),>0 = ⊔
(v′,w′)�(v,w) in QK

PK,(v′,w′),>0
is a regular CW complex homeomorphic to a closed ball of dimension �(w) − �(v).

Remark 5.8 This proves [12, Conjecture 10.2 (3)].

Proof The proof is similar to the proof of Theorem 4.1. We prove by induction on
�(w) − �(v). The base case when �(w) − �(v) = 0 is trivial.

It follows by induction that PK,(v′,w′),>0 is a regular CW complex home-
omorphic to a closed ball of dimension �(w′) − �(v′) for any (v′,w′) ∈ QK

with �(w′) − �(v′) < �(w) − �(v). Therefore by Proposition 5.6, ∂PK,(v,w),>0 =⊔
(s,t)<(v,w)∈QK

PK,(s,t),>0 is a regular CW complex. Its face poset is {(v′,w′)|(v′,
w′) < (v,w)} ⊂ QK . By adding the maximal element (v,w) and the minimal ele-
ment {0̂}, we obtain the new poset {(v′,w′)|(v′,w′) � (v,w)}⊔{0̂} ⊂ QK

⊔{0̂}.
By [3, Theorem 4.1], this poset is graded, thin, and shellable. By Theorem 2.1,

∂PK,(v,w),>0 is a regular CW complex homeomorphic to a sphere of dimension
�(w)− �(v)− 1. By Proposition 5.6 and (5.1), PK,(v,w),>0 is a topological cell. Now
the theorem follows from Theorem 2.2. �

5.3 J -Total positivity

5.3.1 The totally nonpositive part B�0

Let ι : G → G be the unique group automorphism that is identity on T and maps xi(a)

to xi(−a) and yi(a) to yi(−a) for any i ∈ I , a ∈ R. Let U−
�0 = (U−

�0)
−1 = ι(U−

�0)

be the submonoid of U− generated by yi(a) for i ∈ I and a ∈ R<0. Since B+ is
stable under ι, we denote the induced automorphism on B by ι as well.

Similar to the definition of B�0, let B�0 be the closure of U−
�0B

+/B+ with re-

spect to the Hausdorff topology. For any v � w, we set Bv,w,<0 = B�0
⋂

B̊v,w . It is
clear that we have isomorphisms ι : B�0 ∼= B�0, and ι : Bv,w,>0 ∼= Bv,w,>0.
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We fix a reduced expression w. Let v+ be the unique positive subexpression for v

in w. We define Gv+,w,<0 in the similar way as Gv+,w,>0 in §5.1.1, but using yi(R<0)

instead of yi(R>0) and ṡ−1
i instead of ṡi . It is clear that ι(Gv+,w,<0) = Gv+,w,>0 and

Gv+,w,<0B
+/B+ = Bv,w,<0.

5.3.2 J -Totally nonnegative flag varieties

Let J ⊂ I . Let U−
J,�0 be the submonoid of U− generated by yi(a) for i ∈ J

and a ∈ R>0. Since U−
�0 = ⊔

w∈W U−
w,>0 and U−

J,�0 = ⊔
w∈WJ

U−
w,>0, we have

U−
J,�0 = U−

�0

⋂
LJ . Moreover, let πJ : P −

J → LJ be the projection map. Then we

have πJ (U−
�0) = U−

J,�0 and πJ (U−
�0)

−1 = U−
J,�0. Set

J U−
�0 = {h1πJ (h2)

−1h2|h1 ∈ U−
J,�0, h2 ∈ U−

�0}.

If J = I , then J U−
�0 = U−

�0. If J = ∅, then J U−
�0 = U−

�0.

For v ∈ WJ and w ∈ J W , we set

J U−
v,w,>0 = {h1πJ (h2)

−1h2|h1 ∈ U−
v,>0, h2 ∈ U−

w,<0}.

Then J U−
v,w,>0

∼= U−
v,>0 × U−

w,<0
∼= R

�(v)+�(w)
>0 is a cell and

J U−
�0 =

⊔

v∈WJ ,w∈J W

J U−
v,w,>0.

One may also see that each cell J U−
v,w,>0 is locally closed in U− and thus J U−

�0 is

a constructible subset of U−. It is worth pointing out that J U−
�0, in general, is not

closed in U−.
We define the J -totally nonnegative flag variety JB�0 to be the closure of

J U−
�0B

+/B+ in B with respect to the Hausdorff topology. Note that if v1 � v2,

w1 � w2, then J U−
v1,w1,>0 is contained in the Hausdorff closure of J U−

v2,w2,>0. Thus

JB�0 =
⋃

v∈WJ ,w∈J W

J U−
v,w,>0B

+/B+.

For w1
J�w2, let JBw1,w2,>0 = JB̊w1,w2

⋂
JB�0. We call JBw1,w2,>0 the totally

positive J -Richardson variety. Then JB�0 = ⊔
w1

J�w2
JBw1,w2,>0.

If J = ∅, then JB�0 = B�0 and JBw1,w2,>0 = Bw1,w2,<0. If J = I , then JB�0 =
B�0 and JBw1,w2,>0 = Bw2,w1,>0.

5.3.3 Main results on JB�0

We collect the main results on JB�0 in this subsection. The proof relies on the fol-
lowing result, which will be proved in §8.5.

Proposition 5.9 (♣) Let v J�w in W . We have
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(1) JBv,w,�0 = JBv,w,>0 = ⊔
v�v′�w′�w

JBv′,w′,>0.

(2) JBv,w,>0 is a connected component of JB̊v,w(R).
(3) For any u ∈ W with v J�uJ�w, we have JBv,w,>0 ⊂ u̇U− · B+.

Combining Proposition 5.9 with Theorem 3.5 and Theorem 4.1, we have the main
result for the J -total positivity.

Theorem 5.10 Let v J�w. Then

(1) For any u ∈ W with v J�uJ�w, the map J cu restricts to an isomorphism

J cu : JBv,w,>0 ∼= JBv,u,>0 × JBu,w,>0.

(2) JBv,w,�0 is a regular CW complex homeomorphic to a closed ball of dimension
J �(w) − J �(v).

5.4 Links

In this subsection, we consider the link of the identity in subspaces of U−. The cases
we consider here can be regarded as the special cases of the links of some totally
positive (ordinary, J -, projected) Richardson varieties in the previous subsections.

5.4.1 The unipotent radical of B−

Let λ ∈ X++ and w ∈ W . We consider the embedding U− u �→u·ηλ−−−−→ V λ. We identify
U−(R) with its image. The image of U−(R)

⋂
B+ẇB+ is contained in a finite di-

mensional subspace L ⊂ V λ(R). We equip L with the standard Euclidean norm. For
any 1 < w′ � w, we define

Lk(U−
w′,>0) = U−

w′,>0

⋂
{||x|| = 1|x ∈ L}.

Let Lk(U−
w,>0) = U−

w,>0

⋂{||x|| = 1|x ∈ L}. Since the U−
w,>0 = ⊔

w′�w U−
w′,>0,

we have Lk(U−
w,>0) = ⊔

1<w′�w Lk(U−
w′,>0).

Theorem 5.11 Lk(U−
w,>0) = ⊔

1<w′�w Lk(U−
w′,>0) is a regular CW complex home-

omorphic to a closed ball of dimension �(w) − 1.

Remark 5.12 This proves [12, Conjecture 10.2 (1)], and generalizes the main result
in [15].

Proof We have a stratified isomorphism Lk(U−
w′,>0)

∼= Lk1(B1,w′,>0) as defined
in §4.1. We have verified the assumptions in Theorem 4.1 for Y1,w = B1,w,>0 in
Lemma 5.1 and Proposition 5.2. Hence the theorem follows by Proposition 4.4. �
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5.4.2 The unipotent radical of P −
K

Let K ⊂ I . We consider the map

prK : U− −→ U−/U−
K

∼= UP−
K

, g �−→ gπK(g)−1.

Then prK(U−
w,>0) = prK(U−

wK,>0
), for any w ∈ W . We define

Lk(prK(U−
w,>0)) = prK(U−

w,>0)
⋂

{||x|| = 1|x ∈ L}.

We have Lk(prK(U−
w,>0))

∼= Lk1(PK,(1,wK),>0), where Lk1(PK,(1,wK),>0) can be
defined entirely similarly to §4.1 using a singular dominant weight λ. Therefore,
via the compatibility in Proposition 8.1, we actually have a stratified isomorphism

Lk(prK(U−
w,>0))

∼= Lk1(PK,(1,wK),>0). Note that

prK(U−
w,>0) �

⊔

w′∈WK,w′�w

prK(U−
w′,>0).

The remaining strata of prK(U−
w,>0) corresponds to PK,(v,w′),>0 for v ∈ WJ , w′ ∈

WK with w′v � wK .
Thanks to the atlas map in §7.3, Proposition 4.4 and Theorem 5.10, we conclude

that
(a) Lk(prK(U−

w,>0)) (with the stratification arising arising from QK ) is a regular
CW complex homeomorphic to a closed ball of dimension �(w) − 1.

5.4.3 Links in J -total positivity

Let J ⊂ I and λ ∈ X++. Let v ∈ WJ and w ∈ J W . By [4, Theorem 5], the image

of U−(R)
⋂

JB−v̇B+ ⋂
JB+ẇB+ under the embedding U− u �→u·ηλ−−−−→ V λ lies in a

finite-dimensional subspace L ⊂ V λ(R).
We define

Lk(J U−
v,w,>0) = J U−

v,w,>0

⋂
{||x|| = 1|x ∈ L}.

We have Lk(J U−
v,w,>0)

∼= Lk1(JBv,w,>0). Note that

J U−
v,w,>0 �

⊔

v′�v,w′�w

J U−
v′,w′,>0.

The remaining pieces of J U−
v′,w′,>0 correspond to certain J -Richardson varieties aris-

ing from the twisted Bruhat order J� .
Thanks to Proposition 4.4 and Theorem 5.10, we conclude that

(a) Lk(J U−
v,w,>0) (with the stratification arising from J� ) is a regular CW com-

plex homeomorphic to a closed ball of dimension �(vw) − 1.
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6 J -Total positivity on B

6.1 The main result

The main purpose of this section is to give an explicit description of JBu,w,>0 in the
special case where w ∈ J W .

Let w ∈ J W . Note that uJ�w if and only if J u� w. We fix a reduced expression
w. Let Ju+ be the unique positive subexpression for J u in w. Set

J Gu,w,>0 = {h1πJ (h2
J u̇−1)−1h2|h1 ∈ U−

uJ ,>0, h2 ∈ GJu+,w,<0}
∼= U−

uJ ,>0 × GJu+,w,<0.

Note that J Gu,w,>0 · B+/B+ is connected and J Gu,w,>0 · B+/B+ ⊂ JB̊u,w . Now
we state the main result of this section.

Proposition 6.1 Let w ∈ J W and u ∈ W with uJ�w. Then
(1) J Gu,w,>0 · B+/B+ is a connected component of JB̊u,w(R).
(2) For any w′ ∈ W with uJ�w′ J�w, we have JBu,w′,>0 = JBu,w,>0

⋂
JB̊u,w′ .

(3) Let w be a reduced expression of w. Then the following map is an isomorphism:

J Gu,w,>0 −→ JBu,w,>0, g �−→ g · B+/B+.

This proposition proves a special case of Proposition 5.9. We outline our strategy
of the proof. Part (1) follows from §6.2.1. Part (2) follows from Corollary 6.6. We
remark that §3.4 plays a crucial role in the proof. Finally, Part (3) is proved in §6.5.

6.2 Connected components

Recall that JB+ = U−
J � T UP+

J
and B− = U−

J � T UP−
J

. Let p+,J : JB+ → U−
J be

the projection map. For any w ∈ J W , we define

φw,J : JB+ẇ · B+/B+ −→ B+ẇ · B+/B+,

bẇ · B+/B+ �−→ p+,J (b)−1bẇ · B+/B+.

We have the isomorphism JB+ẇ · B+/B+ ∼−→ U−
J × (B+ẇ · B+/B+). For any u ∈

J W , we define

ψu,J : B−u̇ · B+/B+ −→ JB−u̇ · B+/B+,

bu̇ · B+/B+ �−→ πJ (b)−1bu̇ · B+/B+.

It is easy to see that the maps φw,J and ψu,J are well-defined. In the special case
where u,w ∈ J W with uJ�w, φw,J : JB̊u,w → B̊u,w is inverse to ψu,J : B̊u,w →
JB̊u,w and hence we have an isomorphism JB̊u,w

∼= B̊u,w .
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Lemma 6.2 Let w ∈ W and h1,n, h2,n ∈ U−
w,�0 be two sequences such that

limn→∞ h1,nh2,n exists. Then we have convergent subsequences {h1,n′ } and {h2,n′ }.

Remark 6.3 Note that all limits are in U−
�0, provided they exist.

Proof We first illustrate the case where h1,n = yi(an) for some i ∈ I and an ∈R�0. It
suffices to prove {an} is bounded above. Consider the group morphism ri : U− → R

mapping yi(a) to a, and yj (b) to 0 for j �= i. Then it is clear if {an} is unbounded,
then ri(h1,nh2,n) � an would diverge.

Now we consider the general case. Let w = si1 · · · sik be reduced. Then we
may write h1,n as yi1(a1,n) · · ·yik (ak,n), where i1, . . . , ik ∈ I and a1,n, . . . , ak,n ∈
R�0. Set h′

1,n = yi1(a1,n) and h′
2,n = yi2(a2,n) · · ·yik (ak,n)h2,n. By assumption,

limn→∞ h′
1,nh

′
2,n = limn→∞ h1,nh2,n exists. Then there exists convergent subse-

qunces {a1,n′
1
} and {h′

2,n′
1
}. Applying the same argument to h′

2,n′
1
, we conclude that

there exists convergent subsequences {a2,n′ }, . . . , {ak,n′ } and {h2,n′ }. By definition,
the sequence h1,n′ = yi1(a1,n′) · · ·yik (ak,n′) also converges. �

6.2.1 Proof of Proposition 6.1 (1)

Let

π : U+
J u̇J U−

P−
J

J u̇ · B+/B+ = JB̊u → B̊uJ
= U+u̇J · B+/B+

be the projection map. We show that
(a) J Gu,w,>0 · B+/B+ = {z ∈ JB̊u,w|φw,J (z) ∈ BJ u,w,<0,π(z) ∈ B1,uJ ,>0}.
For any z ∈ J Gu,w,>0 · B+/B+, φw,J (z) ∈ BJ u,w,<0 and π(z) ∈ B1,uJ ,>0. Now

let z ∈ JB̊u,w with φw,J (z) ∈ BJ u,w,<0 and π(z) ∈ B1,uJ ,>0. Since φw,J (z) ∈
BJ u,w,<0, we have z = hgB+/B+ for some h ∈ U−

J and g ∈ GJ u,w,<0. Then π(z) =
hπJ (gJ u̇−1)B+/B+ ∈ B1,uJ ,>0. Since hπJ (gJ u̇−1) ∈ U−

J , we have hπJ (gJ u̇−1) ∈
U−

uJ ,>0. This shows that z ∈ J Gu,w,>0. (a) is proved.
We then show that
(b) J Gu,w,>0 · B+/B+ is open in JB̊u,w(R).

The image of JB̊u,w under the isomorphism JB+ẇ · B+/B+ ∼−→ U−
J × (B+ẇ ·

B+/B+) is in U−
J × (B+ẇ · B+/B+ ⋂

U−
J · JB̊u), hence in U−

J × (B+ẇ ·
B+/B+ ⋂

P −
J

J u̇ · B̊). Note that U−
J × B̊J u,w is open in U−

J × (B+ẇ · B+/B+ ⋂

P −
J

J u̇ · B̊) and U−
J (R) ×BJ u,w,<0 is open in U−

J (R) × B̊J u,w(R). Similarly we see
that B1,uJ ,>0 is open in U+(R)u̇J · B+/B+. (b) is proved.

Finally we show that
(c) J Gu,w,>0 · B+/B+ is closed in JB̊u,w(R).
Let z ∈ J Gu,w,>0 · B+/B+ ⋂

JB̊u,w . We assume z = limn→∞ h1,nh2,nh3,nB
+/

B+, where h1,n ∈ U−
uJ ,>0, h3,n ∈ GJ u,w,<0 and h2,n = πJ (h3,n

J u̇−1)−1 ∈ U−
J,�0.

Thanks to the isomorphism JB+ẇ · B+/B+ ∼−→ U−
J × (B+ẇ · B+/B+),

limn→∞ h1,nh2,n and limn→∞ h3,nB
+/B+ exist. Moreover, limn→∞ h3,nB

+/B+ ∈
B�0

⋂
B̊w

⋂
P −

J
J u̇B+/B+. Thus limn→∞ h3,nB

+/B+ = hB+/B+ for some h ∈
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Gv J u,w,<0 with v ∈ WJ . Thanks to Lemma 6.2, we can find convergent subsequences
of h1,n and h2,n. Without loss of generality, we can assume both limn→∞ h1,n and
limn→∞ h2,n exist and hence converge in U−

J,�0.

Hence limn→∞ h2,nh3,nB
+/B+ exists and is in U−

P−
J

J u̇B+/B+ ⋂
P −

J u̇B+/B+.

Since J u ∈ J W , U−
P−

J

J u̇B+/B+ is closed in P −
J u̇B+/B+. So limn→∞ h2,nh3,nB

+/

B+ ∈ U−
P−

J

J u̇B+/B+. This shows that v = 1 and limn→∞ h2,n = πJ (hJ u̇−1)−1. Fi-

nally note that

π(z) = lim
n−→∞π(h1,nh2,nh3,nB

+/B+)

= lim
n−→∞h1,nB

+/B+ ∈ U−
J,�0B

+/B+ ⋂
U+u̇J · B+/B+.

We have limn→∞ h1,n ∈ U−
uJ ,>0. We conclude that z ∈ J Gu,w,>0 · B+/B+.

6.3 Inside open subspaces

We have the following simple equalities on the product of xi with yi for i ∈ I . Let
a, b, c > 0 and i �= j in I . Then

xi(a)yj (±b) = yj (±b)xi(a),

xi(a)yi(b + c) = yi(
b + c

a(b + c) + 1
)α∨

i (a(b + c) + 1)

× xi(
a

a(b + c) + 1
), (6.1)

xi(
a

a(b + c) + 1
)yi(−c) = yi(

−c(a(b + c) + 1)

ab + 1
)α∨

i (
a(b) + 1

a(b + c) + 1
)

× xi(
a

ab + 1
).

By direct calculation using the equalities (6.1), we have for any i ∈ I , a > 0 and
g1 ∈ U−

w,<0, xi(a)πJ (g)−1g ∈ πJ (g2)
−1g2B

+ for some g2 ∈ U−
w,<0. Thus

(a) Let w ∈ W . Then for any g ∈ U−
w,<0 and b ∈ B+

�0, bπJ (g)−1g ∈
πJ (g′)−1g′tU+ for some g′ ∈ U−

w,<0 and t ∈ T>0.
We also have some results on the product of totally nonnegative part of U± with

certain Weyl group elements. Let w,w1,w2 ∈ W be such that w1w2 = w and �(w1)+
�(w2) = �(w) and h ∈ U−

w,>0, b ∈ U+
w−1,>0

. By [12, Lemma 5.6] and its proof, we
have

ẇ−1h ∈ (U− ⋂
ẇ−1U+ẇ)U+

w−1,>0
T>0;

ẇ1
−1h ∈ (U− ⋂

ẇ1
−1U+ẇ1)U

−
w2,>0U

+
w−1

1 ,>0
T>0; (6.2)

ẇb ∈ (U+ ⋂
ẇU−ẇ−1)U−

w,>0T>0;
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ẇ2b ∈ (U+ ⋂
ẇ2U

−ẇ2)U
+
w−1

1 ,>0
U−

w2,>0T>0.

More generally, we have
(b) if w1 � w, then ẇ1

−1h ∈ U−U+
w−1

1 ,>0
T>0.

Lemma 6.4 Let v ∈ WJ , w ∈ J W and u ∈ W with v J�uJ�w. Then we have

J U−
v,w,>0 ⊂ u̇U−B+.

Proof Since v J�uJ�w, we have uJ � v and J u� w. Let h ∈ U−
v,>0 and g ∈ U−

w,<0.

We have u̇−1
J h = h1b1t1 for some h1 ∈ U−

J , b1 ∈ U+
J,�0 and t1 ∈ T>0. By §6.3 (a),

b1t1πJ (g)−1g ∈ πJ (g1)
−1g1B

+ for some g1 ∈ U−
w,<0.

Via a variation of §6.3 (b) (for g1 ∈ U−
�0), we have J u̇−1g1 ∈ U−B+. Thus

u̇−1hπJ (g)−1g = J u̇−1h1b1t1πJ (g)−1g ∈ J u̇−1πJ (g1)
−1g1B

+ ⊂ U−B+.

This finishes the proof. �

Lemma 6.5 Let u ∈ W and w ∈ J W with uJ�w. Let v ∈ WJ with uJ � v. Then

Jcu,−(J U−
v,w,>0 · B+/B+) = JBu,w,>0.

In particular, J U−
v,w,>0 · B+/B+ = JBv,w,>0.

Proof For x ∈ WJ and y ∈ J W with x J�y, we simply write JB̊′
x,y,>0 for J U−

x,y,>0 ·
B+/B+. Recall that JBu,w,>0 = ⋃

v′∈WJ ,w′∈J W (JB̊′
v′,w′,>0

⋂
JB̊u,w). By Lemma 3.4

and Lemma 6.4 we have

Jcu,−(JB̊′
v,w,>0) = JB̊′

v,w,>0

⋂
JB̊u,w ⊂ JBu,w,>0.

In particular, Jcu,−(JB̊′
v,w,>0) is a connected component of JB̊u,w(R). Note that for

any v′ ∈ WJ , w′ ∈ J W , we can always find v′′ ∈ WJ , w′′ ∈ J W such that v′ � v′′,
w′ � w′′, uJ � v′′, uJ�w′′. In particular, JB̊′

v′,w′,>0 ⊂ JB̊′
v′′,w′′,>0. Without loss of

generality, we can further assume v � v′′ and w � w′′. Let us fix such v′′ and w′′.
Then it remains to show:

(a) JB̊′
v′′,w′′,>0

⋂
JB̊u,w = JB̊′

v′′,w,>0

⋂
JB̊u,w;

(b) JB̊′
v′′,w,>0

⋂
JB̊u,w = JB̊′

v,w,>0

⋂
JB̊u,w .

Note that JB̊′
v′′,w′′,>0 ⊂ ẇU−B+/B+ and JB̊′

v′′,w,>0 ⊂ u̇U−B+/B+. By Lemma 3.4

and Lemma 6.4, we have JB̊′
v′′,w′′,>0

⋂
JB̊v′′,w = Jcw,+(JB̊′

v′′,w′′,>0). Since w � w′′,
we have JB̊′

v′′,w,>0 ⊂ JB̊′
v′′,w′′,>0

⋂
JB̊v′′,w . Since both sides are connected compo-

nents of JB̊v′′,w(R), we must have JB̊′
v′′,w,>0 = Jcw,+(JB̊′

v′′,w′′,>0) = JB̊′
v′′,w′′,>0

⋂

JB̊v′′,w . Now (a) follows by Lemma 3.2.
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We then obtain JB̊′
v′′,w′′,>0

⋂
JB̊u,w = JB̊′

v′′,w,>0

⋂
JB̊u,w = Jcu,−(JB̊′

v′′,w,>0).

Since v � v′′, we obtain that JB̊′
v,w,>0

⋂
JB̊u,w ⊂ JB̊′

v′′,w,>0

⋂
JB̊u,w . Since both

sides are connected components of JB̊u,w(R), we have

JB̊′
v′′,w′′,>0

⋂
JB̊u,w = Jcu,−(JB̊′

v′′,w,>0) = Jcu,−(JB̊′
v,w,>0).

This finishes the proof. �

Combining Lemma 6.5 with Lemmas 3.2 & 3.4, we have the following conse-
quences.

Corollary 6.6 Let u ∈ W and w ∈ J W with uJ�w. Then
(1) JBu,w,>0 = JBv,w,>0

⋂
JB̊u,w is a connected component in JB̊u,w(R).

(2) For any w′ ∈ W with uJ�w′ J�w, JBu,w′,>0 = JBu,w,>0
⋂

JB̊u,w′ .

We remark that Proposition 6.1 (2) follows now.

6.4 Positivity

Lemma 6.7 Let u,w ∈ J W with uJ�w. Then the isomorphism φw,J : JB̊u,w
∼= B̊u,w

restricts to an isomorphism JBu,w,>0 ∼= Bu,w,<0. Moreover, J Gu,w,>0 · B+/B+ =
JBu,w,>0.

Proof We first prove the statement for u = 1, that is, JB1,w,>0 ∼= B1,w,<0. Let
h ∈ U−

1,w,<0. Then hB+/B+ = gẇB+/B+ for some g ∈ U+. Since w ∈ J W , we may

further assume that g ∈ UP+
J

. By definition, πJ (h)−1g ∈ JB+ and p+,J (πJ (h)−1g) =
πJ (h)−1. Thus

φw,J (πJ (h)−1hB+/B+) = φw,J (πJ (h)−1gẇB+/B+)

= gẇB+/B+ = hB+/B+ ∈ B1,w,<0.

On the other hand, ψ1,J (hB+/B+) = πJ (h)−1hB+/B+ ∈ J U−
1,w,>0 · B+/B+. This

finishes the proof.
Now we consider the general case. Since Bu,w,<0 ⊂ B1,w,<0 and JBu,w,>0 ⊂

JB1,w,>0, we have φ−1
w,J (Bu,w,<0) ⊂ JBu,w,>0. Thanks to Corollary 6.6, JBu,w,>0

is a connected component of JB̊u,w(R). Thanks to Theorem 5.3, Bu,w,>0 is a con-
nected component of B̊u,w(R). Since isomorphism sends connected components to
connected components, we must have φ−1

w,J (Bu,w,<0) = JBu,w,>0. �

6.5 Proof of Proposition 6.1 (3)

By Lemma 6.7, J GJ u,w,>0 · B+/B+ = JBJ u,w,>0. Since JB�0 is stable under the
action of U−

J,�0, we have

J Gu,w,>0 · B+/B+ = U−
uJ ,>0

J GJ u,w,>0 · B+/B+ ⊂ JB�0

⋂
JBu,w = JBu,w,>0.
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Both sides are connected components of JB̊u,w(R) by Proposition 6.1 (1) and Corol-
lary 6.6. Thus J Gu,w,>0 · B+/B+ = JBu,w,>0.

On the other hand, J Gu,w,>0 · B+/B+ ⊂ U−
J B+ẇB+/B+. Since w ∈ J W , we

have an isomorprhism i : U−
J B+ẇB+/B+ ∼= U−

J × B+ẇB+/B+. By definition, for
h1 ∈ U−

uJ ,>0 and h2 ∈ GJ u,w,<0,

i(h1πJ (h2
J u̇−1)−1h2 · B+/B+) = (h1πJ (h2

J u̇−1), h2 · B+/B+).

Thus we may recover h1 and h2 from h1πJ (h2
J u̇−1)−1h2 ·B+/B+. This finishes the

proof.

7 Basic J -Richardson varieties

7.1 Motivation

The totally nonnegative partial flag variety PK,�0 has a cellular decomposition and
each cell admits an explicit parametrization. However, PK,�0 does not have an obvi-
ous product structure. We instead consider the Birkhoff-Bruhat atlas on PK in §7.3,
and translate the total positivity on PK to the J -total positivity on the full flag variety
of a larger Kac-Moody group. We then consider the product structure on the larger
full flag variety and its compactibility with the J -total positivity.

In this section, we will introduce the basic J -Richardson varieties. This family of
special J -Richardson varieties serves as models for both the projected Richardson
varieties and the J -Richardson varieties. We will establish such connections in this
section. Finally, in the last section, we will show that the totally positive part of the
basic J -Richardson varieties are compatible with both the totally positive projective
Richardson varieties and the general totally positive J -Richardson varieties. Such
compatibility will allow us to bring together the information we have obtained on
the totally positive projective Richardson varieties and the general totally positive
J -Richardson varieties and finish the proof of our main results.

7.2 The larger Kac-Moody group

Let G′ be a Kac-Moody group associated to the Kac-Moody root datum (I ′,A′,X′,
Y ′, . . .). Let K ′ ⊂ I ′. Following [3, §3], we associate a new Kac-Moody group G̃′ of
adjoint type to G′. The Dynkin diagram of G̃′ is obtained by glueing two copies of
the Dynkin diagram of G′ along the subdiagram K ′.

We denote by Ĩ ′ the set of simple roots of G̃′. We denote by (I ′)� and (I ′)� the
two copies of I ′. The elements in (I ′)� (resp. (I ′)�) are denoted by i� (resp. i�) for
i ∈ I ′. Then Ĩ ′ = (I ′)�

⋃
(I ′)� with (I ′)�

⋂
(I ′)� = {k� = k�|k ∈ K ′}.

Let W ′ be the Weyl group of G′ and W̃ ′ be the Weyl group of G̃′. We have natural
identifications W ′ → W̃ ′

(I ′)� , w �→ w� and W ′ → W̃ ′
(I ′)� , w �→ w�. For w ∈ W ′

K ′ ,

w� = w�. Similarly, we have natural maps G′ → L̃(I ′)� , g �→ g� and G′ → L̃(I ′)� ,
g �→ g�. For g ∈ LK ′ , g� = g�.
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Let B̃′ be the flag variety of G̃′. Let QK ′ = {(v,w) ∈ W ′ × (W ′)K ′ |v � w}. Define

ν̃ : QK ′ −→ W̃ ′, (v,w) �−→ (w)�(v−1)�.

By [3, Proposition 4.2 (1)], ν̃ is compatible with the partial order � on QK ′ and the
partial order (I ′)�� on W̃ ′.

Definition 7.1 A J -Richardson variety JB̊v,w is called basic (with respect to G′) if

it is of the form I ′� ˚̃B′
ν̃(α),ν̃(β)

for some triple (K ′, α,β), where K ′ is a subset of the
simple roots in G′ and α � β in QK ′ .

7.3 The Birkhoff-Bruhat atlas on PK

The technical definition of basic J -Richardson varieties arises from the Birkhoff-
Bruhat atlas introduced in [3], which relates the projected Richardson varieties for G

with the J -Richardson varieties for G̃.
Let r ∈ WK . The isomorphism σr : ṙU−ṙ−1 → (ṙU−ṙ−1 ⋂

U+) × (ṙU−ṙ−1 ⋂

U−) in (3.1) is compatible with Levi decompositions. The restriction of σr gives the
isomorphism ṙUP−

K
ṙ−1 → (ṙUP−

K
ṙ−1 ⋂

U+) × (ṙUP−
K

ṙ−1 ⋂
U−). We define

fr : ṙU−P +
K −→ G̃, gṙp �−→ (σr,+(g)ṙ)�((gṙ)�)−1 for g ∈ ṙUP−

K
ṙ−1,p ∈ P +

K .

The map fr factors through ṙB−P +
K /P +

K ⊂ PK and induces a morphism

c̃r : ṙB−P +
K /P +

K −→ B̃.

Let (v,w) ∈ QK and r ∈ WK with (r, r) � (v,w) in QK . By [3, Theorem 3.2]3

we have the following commutative diagram

P̊K,(v,w)

⋂
ṙU−P +

K /P +
K

c̃r

∼=
I � ˚̃Bν̃(r,r),ν̃(v,w)

ṙB−P +
K /P +

K

c̃r
I �B̃.

In other words, c̃r gives an isomorphism from the stratified space

ṙB−P +
K /P +

K =
⊔

(v,w)∈QK ;(r,r)�(v,w)

(
P̊K,(v,w)

⋂
ṙU−P +

K /P +
K

)

into its image in I �B̃ stratified by the I �-Richardson varieties.

3In loc.cit, we use (σr,+(g)ṙ)�(σr,−(g)ṙ�)−1 instead. However, it differs from f (gṙ) by multiplying by
an element in (U+)� on the right, so the induced maps to B̃ coincide.
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7.4 Basic J -Richardson varieties in B♠

Our next goal is to show any J -Richardson variety for the Kac-Moody group G can
be realized as a basic one with respect to a different Kac-Moody group.

Set I ! = I
⊔{0}. The generalized Cartan matrix A! = (a!

i,j )i,j∈I ! is defined by

• for i, j ∈ I , a!
i,j = ai,j ;

• for i ∈ I , a!
i,0 = a!

0,i = −2;

• a!
0,0 = 2.

Let W ! be the Weyl group associated to (I !,A!). Then we have the natural iden-
tification W = W !

I . Moreover, for any i ∈ I , s0si is of infinite order in W ! and
s0x ∈ I (W !) for all x ∈ W . Now for the triple (I !,A!, J ), we construct a triple
(Ĩ !, Ã! , I !� ) following the construction in §7.2. Here Ĩ ! is obtained by glueing two
copies of I ! along the subset J ⊂ I (⊂ I !).

We write I♠ = Ĩ ! and A♠ = Ã! . Let G♠ be the minimal Kac-Moody group of
adjoint type associated to (I♠,A♠). Let W♠ be the Weyl group associated to G♠ and
B♠ be the flag variety of G♠.

Proposition 7.2 Let x ∈ W . For any g ∈ G, define i♠x (gB+) = g�(ṡ0ẋ)�(B♠)+. Then
for any v J�w, we have the following commutative diagram

Remark 7.3 (1) In other words, i♠x gives an isomorphism from the stratified space

B = ⊔
v J�w

JB̊v,w into its image in B♠ stratified by the I !�-Richardson varieties.

(2) Note that v�(s0x)� = v
�
J (J v s0x)� and (J v s0x)� ∈ I !�

W♠. Thus by definition,

if vJ ,wJ � x−1, then I !�B̊♠
v�(s0x)�,w�(s0x)�

is a basic J -Richardson variety.

Proof Set ♦ = ♠ − {0�}. Let B♦ be the flag variety of L
♠
♦. We have

I !�B̊♠
v�(s0x)�,w�(s0x)�

⊂ (P
♠
♦ )−(ṡ0ẋ)�(B♠)+/(B♠)+

⋂
(P

♠
♦ )+(ṡ0ẋ)�(B♠)+/(B♠)+

= L
♠
♦(ṡ0ẋ)�(B♠)+/(B♠)+.
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The map g �→ g(ṡ0ẋ)�(B♠)+ for g ∈ L
♠
♦ induces the following Cartesian diagram

I !�B̊♦
v�,w�

∼=
I !�B̊♠

v�(s0x)�,w�(s0x)�

L
♠
♦/(L

♠
♦

⋂
(B♠)+)

∼=
L

♠
♦(ṡ0ẋ)�(B♠)+/(B♠)+.

Moreover I !�B̊♦
v�,w� ⊂ I !�

(B♦)−(P
♦
I � )

+/(B♦)+
⋂

I !�
(B♦)+(P

♦
I � )

+/(B♦)+ =
(P

♦
I � )

+/(B♦)+. The isomoprhism B → (P
♦
I � )

+/(B♦)+, gB+ �→ g�(B♦)+ induces

an isomorphism JB̊v,w
∼= I !�B̊♦

v�,w� . The proposition is proved. �

7.5 Some consequences on the J -Richardson varieties

We combine the results on the projected Richardson varieties and the J -Richardson
varieties to prove the following result.

Proposition 7.4 Let v J�w. Then
(1) the J -Richardson variety JB̊v,w is irreducible of dimension J �(w) − J �(v).
(2) the Zariski closure JBv,w of JB̊v,w equals

JBw

⋂
JBv =

⊔

v J�v′ J�w′ J�w

JB̊v′,w′ .

Remark 7.5 In the case of reductive groups, one may deduce both statements for
(ordinary) Richardson varieties easily from the transversal intersections of B+-orbits
and B−-orbits on B. In the case of Kac-Moody groups, both statements for (ordinary)
Richardson varieties are established recently in [21]. Our proof for J -Richardson
varieties is based on [21].

Proof (1) Set Q!
J = {(a, b) ∈ W ! × (W !)J |a � b}. Let ν! : Q!

J → W♠ be the map
sending (a, b) to a�(b−1)�. Let x ∈ W with vJ ,wJ � x−1. Then we have

(1,1) � (vJ , x−1s0(
J v)−1) � (wJ , x−1s0(

J w)−1).

Moreover, ν!(vJ , x−1s0(
J v)−1) = v�(s0x)� and ν!(wJ , x−1s0(

J w)−1) = w�(s0x)�.
Thus

1 (I !)�� v�(s0x)� (I !)�� w�(s0x)�. (7.1)

By [21, Proposition 6.6], B̊!
wJ ,x−1s0(

J w)−1 is irreducible of dimension

�(x−1s0(
J w)−1) − �(wJ ) = �(x) + 1 + J �(w).
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We have P̊ !
J,(wJ ,x−1s0(

J w)−1)
∼= B̊!

wJ ,x−1s0(
J w)−1 . Since (1,1) � (wJ ,

x−1s0(
J w)−1), we have P̊ !

J,(wJ ,x−1s0(
J w)−1)

⋂
(U !)−(P !

J )+/(P !
J )+ �= ∅. By §7.3,

I !�B̊♠
1,w�(s0x)�

∼= P̊ !
J,(wJ ,x−1s0(

J w)−1)

⋂
(U !)−(P !

J )+/(P !
J )+

is also irreducible of dimension �(x) + 1 + J �(w). Similarly, I !�B̊♠
1,v�(s0x)�

is irre-

ducible of dimension �(x) + 1 + J �(v).

By (7.1) and §3.3 (a), I !�B̊♠
1,w�(s0x)�

⋂
v̇�(ṡ0ẋ)�(U♠)−(B♠)+/(B♠)+ �= ∅ and we

have

I !�B̊♠
1,w�(s0x)�

⋂
v̇�(ṡ0ẋ)�(U♠)−(B♠)+/(B♠)+ ∼= I !�B̊♠

1,v�(s0x)�
× I !�B̊♠

v�(s0x)�,w�(s0x)�
.

Since I !�B̊♠
1,v�(s0x)�

is irreducible of dimension �(x) + 1 + J �(v), we have

I !�B̊♠
v�(s0x)�,w�(s0x)�

is irreducible of dimension J �(w) − J �(v). Now part (1) follows
from Proposition 7.2.

(2) We have JBv,w ⊂ JBw

⋂
JBv . By [4, Theorem 4],

JBw

⋂
JBv =

⊔

v J�v′ J�w′ J�w

JB̊v′,w′ .

Let u ∈ W with v J�uJ�w. Set Y = JB̊v,w

⋂
(u̇B−B+/B+). By §3.3 (a), Y �= ∅.

Let z ∈ Y . Then T · z ⊂ JB̊v,w

⋂
(u̇B−B+/B+). By the proof of Lemma 3.4, the

closure of T · z contains u̇B+/B+. Therefore, u̇B+/B+ is contained in the Zariski
closure of Y . We may apply Lemma 3.2 and the Remark 3.3 to the Zariski closure
of Y . By (3.3) and the Remark 3.3, JB̊v,u = J cu,+(Y ) and JB̊u,w = J cu,−(Y ) are
contained in the Zariski closure of Y , and hence in JBv,w .

Now let v′,w′ ∈ W with v J�v′ J�w′ J�w. If v′ �= v, then we have JB̊v′,w ⊂
JBu,w and JB̊v′,w′ ⊂ JBv′,w . So JB̊v′,w′ ⊂ JBu,w . If v′ = v, then we have JB̊v,w′ ⊂
JBv,w . Part (2) is proved. �

Corollary 7.6 Let v J�w. Then JBv,w,>0 is Zariski dense in JB̊v,w .

Proof We denote by dimR(·) the R-dimension of a real semi-algebraic variety (see
[6, §2.8]). We remark that all spaces considered here are semi-algebraic.

By Proposition 6.1 (3), we have a semi-algebraic homeomorphism JBv,J w,>0
∼=

R
J �(J w)−J �(v)
>0 . Therefore the Zariski closure of JBv,J w,>0 in JB̊v,J w is irreducible

and of dimension J �(J w) − J �(v). Thus by Proposition 7.4 (1), JBv,J w,>0 is Zariski

dense in JB̊v,J w .
By definition, v J�w J� J w. By §3.3 (a), JBv,J w,>0

⋂
ẇU−B+/B+ �= ∅.

Set X = JBv,J w,>0
⋂

ẇU−B+/B+. By (3.2), we have X ∼= J cw,+(X) ×
J cw,−(X). By Lemma 3.2, J cw,+(X) = X

⋂
JB̊v,w ⊂ JBv,w,>0 and J cw,−(X) =
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X
⋂

JB̊w,J w ⊂ JBw,J w,>0. In particular, dimR(J cw,−(X)) � J �(J w) − J �(w). So

dimR(JBv,w,>0) � dimR(J cw,+(X))

= dimR(X) − dimR(J cw,−(X))) � J �(w) − J �(v).

By Proposition 7.4 (1), dimR(JBv,w,>0) = dimR(J cw,+(X)) = J �(w)− J �(v) and
JBv,w,>0 is Zariski dense in JB̊v,w . �

8 Final part of the proofs

8.1 Compatibility of total positivities

In this subsection we show the compatibility among the total positivity on the pro-
jected Richardson varieties, the J -total positivity on the basic J -Richardson varieties,
and the J -total positivity on arbitrary J -Richardson varieties.

Proposition 8.1 Let (v,w) ∈ QK and r ∈ WK with (r, r) � (v,w) in QK . Then the

isomorphism c̃r : P̊K,(v,w)

⋂
ṙU−P +

K /P +
K

∼= I � ˚̃Bν̃(r,r),ν̃(v,w) restricts to an isomor-
phism

c̃r :PK,(v,w),>0 → I �B̃ν̃(r,r),ν̃(v,w),>0.

Proof We claim it suffices to prove the statement for (1,w′) with sufficiently large
w′.

Note that for any (v,w) ∈ QK , there exists (1,w′) with (v,w) � (1,w′). By
Proposition 5.5 (2), PK,(1,w′),>0

⋂
P̊K,(v,w) = PK,(v,w),>0. By Proposition 6.1 (2),

I �B̃ν̃(r,r),ν̃(1,w′),>0

⋂
I � ˚̃Bν̃(r,r),ν̃(v,w) = I �B̃ν̃(r,r),ν̃(v,w),>0.

Suppose that the statement holds for (1,w′). Then the statement for (v,w) follows
from the following commutative diagram.

PK,(1,w′),>0

∼=

PK,(1,w′),>0

∼=

PK,(1,w′),>0
⋂

P̊K,(v,w)

∼=

I �B̃ν̃(r,r),ν̃(1,w′),>0
I �B̃ν̃(r,r),ν̃(1,w′),>0

I �B̃ν̃(r,r),ν̃(1,w′),>0
⋂

I � ˚̃Bν̃(r,r),ν̃(v,w).

The statement for (1,w) with sufficiently large w is proved by direct computation.
Note that for any w ∈ W , U−

w,>0P
+
K = U−

wK,>0
P +

K ⊂ ṙU−P +
K by Lemma 5.1. For

computational purposes, we can further relax the condition and consider the image
of U−

w,>0 ⊂ ṙU−P +
K under the map fr for sufficiently large elements in W instead in

WK . Let w ∈ W be such that �(r−1w) = �(w) − �(r). We write u = r−1w. The rest
of the proof consists of direct computation of the map fr .
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Let h ∈ U−
w,>0. By (6.2), we have

ṙ−1h ∈ (U− ⋂
ṙ−1U+ṙ)h1b1 for some h1 ∈ U−

u−1,>0
and b1 ∈ B+

�0. (8.1)

We also have

h1b1 = b2h2, for some h2 ∈ U−
u−1,>0

, b2 ∈ B+
�0. (8.2)

Set g = hb−1
1 πK(h1)

−1ṙ−1. Since r ∈ WK , we have U− ⋂
ṙ−1U+ṙ ⊂ UP−

K
and thus

g ∈ ṙUP−
K

ṙ−1. We have (gṙ)−1 ∈ πK(h1)b1h
−1U+ = πK(h1)h

−1
1 ṙ−1U+.

By Theorem 5.3 (1), σr,+(g)ṙ ∈ h3B
+ for some h3 ∈ U−

r,>0. Since h1b1 = b2h2,

we have πJ (h1)b1 = b2πJ (h2). Then σr,+(g)ṙ ∈ U−gṙ = U−hb−1
1 πK(h1)

−1 =
U−b−1

2 . Thus σr,+(g)ṙ = h3b
−1
2 . We have

h1πK(b1) = b4h4 for some h4 ∈ U−
u−1,>0

and b4 ∈ B+
K,�0. (8.3)

Then πK(h1)πK(b1) = πK(b2)πK(h2) = πK(b4)πK(h4). So πK(h2) = πK(h4) and

πK(b2)
−1πK(h1)h

−1
1 = πK(h4)πK(b1)

−1h−1
1 ∈ πK(h4)h

−1
4 b−1

4 .

Now we have

(σr,+(g)ṙ)�(ṙ−1σr,−(g)−1)�Ũ+ =(h3b
−1
2 )�(πK(h1)h

−1
1 ṙ−1)�Ũ+

=h
�
3(πK(b2)

−1πK(h1)h
−1
1 ṙ−1)�Ũ+

=h
�
3(πK(h4)h

−1
4 b−1

4 ṙ−1)�Ũ+. (8.4)

Hence c̃r (h · P +
K /P +

K ) = h
�
3(πK(h4)h

−1
4 ṙ−1)�B̃+ ∈ I �

Gν̃(r,r),ν̃(1,w),>0 · B̃+.
By Proposition 5.5 (3), PK,(v,w),>0 is a connected component of P̊K,(v,w)(R)

⋂

ṙU−P +
K /P +

K . By Proposition 6.1, I �
Gν̃(r,r),ν̃(1,w),>0 · B̃+/B̃+ = I � ˚̃Bν̃(r,r),ν̃(1,w),>0 is

a connected component of I � ˚̃Bν̃(r,r),ν̃(v,w)(R).
Since the isomorphism c̃r sends the connected components of P̊K,(v,w)(R)

⋂

ṙU−(R)P +
K /P +

K to the connected components of I � ˚̃Bν̃(r,r),ν̃(v,w)(R), we have

c̃r (PK,(v,w),>0) = I �B̃ν̃(r,r),ν̃(v,w),>0. �

Proposition 8.2 Let v J�w and x ∈ W . Then the isomorphism i♠x : JB̊v,w
∼=

I !�B̊♠
v�(s0x)�,w�(s0x)�

restricts to an isomorphism

i♠x : JBv,w,>0 ∼= I !�B♠
v�(s0x)�,w�(s0x)�,>0

.

Proof We first consider the case where w ∈ J W . Fix a reduced expression w of w. Fix
a reduced expression of s0x of s0x. Then w�s�

0x� is a reduced expression of w�(s0x)�.
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In particular, we have

(J Gv,w,>0)
�ṡ

�
0ẋ

� = I !�
G

v�(s0x)�,w�s�0x�,>0.

Now the statement follows from Proposition 6.1 (3).
We then consider the general case. Set v′ = v�(s0x)�, w′ = w�(s0x)� and J w′ =

(J w)�(s0x)�. By Proposition 6.1 (2), we have JBv,J w,>0
⋂

JB̊v,w = JBv,w,>0 and

I !�B♠
v′,J w′,>0

⋂
I !�B̊♠

v′,w′ = I !�B♠
v′,w′,>0. Now the statement follows from the following

commutative diagram:

JBv,J w,>0

∼=

JBv,J w,>0
⋂

JB̊v,w

∼=

JB̊v,w

∼=

I !�B♠
v′,J w′,>0

⋂
Im(i♠x ) I !�B♠

v′,J w′,>0

⋂
I !�B̊♠

v′,w′ I !�B̊♠
v′,w′ . �

8.2 Matrix coefficients and admissible functions

8.2.1 Admissible functions

Recall [27, §1.2] that a function f : Rm
>0 × R

n
>0 → R�0 is called admissible if f =

f ′/f ′′, where f ′, f ′′ ∈ Z�0[t1, . . . , tm, t ′1, . . . , t ′n] with f ′′ �= 0. Note that
(a) the value of an admissible function is either always 0 or never 0.
The following result proved in [12, Lemma 5.9] is useful to prove admissibility.
(b) Suppose that f : Rm

>0 × R
n
�0 → R�0 is continuous and the restriction f :

R
m
>0 × R

n
>0 → R�0 is an admissible function. Then the restriction f : Rm

>0 → R�0

is also admissible.
Let v � w and w be a reduced expression of w. Then we have an isomor-

phism R
�(w)−�(v)
>0 → Gv+,w,>0. Let v′ � w′ and w′ be a reduced expression of w′.

We call a map Gv+,w,>0 → Gv′+,w′,>0 admissible if the composition R
�(w)−�(v)
>0 →

Gv+,w,>0 → Gv′+,w′,>0 → R
�(w′)−�(v′)
>0 → R>0 is admissible, where the last map

is the projection to any coordinate. Thanks to [2, §6A], admissibility is indepen-
dent of the choice of reduced expressions. We define the admissibility for maps
Gv+,w,>0 → T>0 in the same way.

Let w ∈ J W and w be a reduced expression of w. Let v ∈ W with J v � w and let
vJ be a reduced expression of vJ . A map J Gv,w,>0 → R�0 is called admissible if its
composition with the map

β : RJ �(w)−J �(v) −→ U−
vJ,>0 × GJ v,w,>0

(id,ι)−−−→ U−
vJ,>0 × GJ v,w,<0 −→ J Gv,w,>0

is admissible. It follows from the previous discussion that the admissibility of a map
J Gv,w,>0 →R�0 is independent of the reduced expressions of w and vJ .
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8.2.2 Matrix coefficients

We keep the notation in §4.1. For λ ∈ X++, we consider the matrix coefficient

�λ : G −→ C

mapping any g ∈ G to the coefficient of gηλ in ηλ. We denote by {0,∗} = C/C× the
set-theoretical quotient. The composition �λ : G → C → {0,∗} factors through B,
which we still denote by �λ. For any u ∈ W , we further define �λ,u : B → {0,∗},
gB+/B+ �→ �λ(u̇

−1gB+/B+). Note that the image is independent of the choice of
the representative of u in G. We then have gB+/B+ ∈ u̇U−B+/B+ if and only if
�λ,u(gB+/B+) = {∗}.

Our next goal is to show that JBv,w,>0 ⊂ u̇U−B+/B+ for v J�uJ�w. Our
strategy is as follows. By Corollary 7.6, JBv,w,>0 is Zariski dense in JB̊v,w . By
§3.3 (a), JB̊v,w

⋂
u̇U−B+/B+ �= ∅. Thus JBv,w,>0

⋂
u̇U−B+/B+ �= ∅. In other

words, ∗ is contained in �λ,u(gB+/B+). We shall then construct an admissible map
α :Rn

>0 → R�0 so that the following diagram commutes

R
J �(w)−J �(v)
>0

α

β
JBv,w,>0

�λ,u

R�0 {0,∗}.

By §8.2.1 (a), �λ,u : JBv,w,>0 → {0,∗} is constant. So �λ,u(gB+/B+) = {∗} and
JBv,w,>0 ⊂ u̇U−B+/B+.

8.3 Some admissible functions

In this subsection, we consider some admissible functions arising from the group G.

Lemma 8.3 Let v � w. Define fv,+ : U−
w,>0 → U−

v,>0 by cv,+(gB+/B+) =
fv,+(g)B+/B+ for any g ∈ U−

w,>0. Then fv,+ is admissible.

Proof Let h ∈ U−
w,>0. By (6.2), we have v̇−1h ∈ U−gt for some g ∈ U+

v−1,>0
and

t ∈ T>0. By (6.2) again, we have v̇g = g1h1t1 for some g1 ∈ U+ ⋂
v̇U−v̇−1, h1 ∈

U−
v,>0 and t1 ∈ T>0. Hence ht−1t−1

1 h−1
1 g−1

1 = ht−1g−1v̇−1 ∈ v̇U−v̇−1. So t = t−1
1

and g−1
1 = σv,+(ht−1g−1v̇−1). Hence we conclude that

cv,+(hB+/B+) = σv,+(ht−1g−1v̇−1)v̇B+/B+ = g−1
1 v̇B+/B+

= h1t1g
−1B+/B+ = h1B

+/B+.

Thus fv,+(h) = h1. It is clear from the construction that h �→ g �→ h1 is admissible.
�
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Lemma 8.4 Let w1,w2 ∈ J W and v1, v2 ∈ WJ with w1 � w2 and v1 � v2. Fix a
reduced expression w2 of w2. Then J Gv2w1,w2,>0 ⊂ ẇ−1

1 v̇−1
1 U−B+/B+ and we have

the following commutative diagram

U−
v2,>0 × Gw1,w2,<0

∼=

(fv1,+,id)

J Gv2w1,w2,>0

∼=
JBv2w1,w2,>0

J cv1w1,−

U−
v1,>0 × Gw1,w2,<0

∼=
J Gv1w1,w2,>0

∼=
JBv1w1,w2,>0.

Proof Let g ∈ U−
v2,>0 and h ∈ Gw1,w2,<0. By Lemma 8.3, fv1,+(g) ∈ U−

v1,>0.

By definition, fv1,+(g) ∈ (v̇1U
−
J v̇−1

1

⋂
U−

J )g. Set p = gπJ (hẇ−1
1 )−1hB+/B+ ∈

JBv2w1,w2,>0 and p′ = cv1,+(g)πJ (hẇ−1
1 )−1hB+/B+ ∈ JBv1w1,w2,>0. Then

p ∈ (v̇1U
−
J v̇−1

1

⋂
U−

J )p′ ⊂ (v̇1U
−
J v̇−1

1 )JB̊v1w1,w2

⊂ (v̇1U
−
J v̇−1

1 ) JB−v̇1ẇ1B
+/B+ ⊂ (v̇1U

−
J v̇−1

1 )v̇1ẇ1U
−B+/B+

⊂ v̇1U
−
J ẇ1U

−B+/B+ ⊂ v̇1ẇ1U
−B+/B+.

Hence J cv1w1,−(p) is defined.
By definition, J cv1w1,−(p) is the unique element in

JB̊v1w1,w2

⋂
(v̇1ẇ1U

−(v̇1ẇ1)
−1

⋂
JB+)p.

Note that v̇1U
−
J v̇−1

1 ⊂ v̇1ẇ1U
−(v̇1ẇ1)

−1. Thus

v̇1U
−
J v̇−1

1

⋂
U−

J ⊂ v̇1ẇ1U
−(v̇1ẇ1)

−1
⋂

JB+

and J cv1w1,−(p) = p′. �

8.4 Further admissible functions related with G̃

In this section, we consider admissible functions arising from the group G̃ that are
related with the morphism c̃r in §7.3.

For w̃ ∈ W̃ , we define

f̃w̃ : ˙̃wŨ−B̃+ → G̃, g̃ ˙̃wb̃ �−→ I �

σẇ,−(g̃) for g̃ ∈ ˙̃wŨ− ˙̃w−1 and b̃ ∈ B̃+.

For (s, r) ∈ QK , we define the map

f(s,r) = f̃ν̃(s,r) ◦ fr :
(
ṙU−P +

K

)⋂
f −1

r

( ˙̃ν(s, r)Ũ−B̃+)
→ G̃.

Here the map fr is defined in §7.3. Note that f(r,r) = fr , since fr

(
ṙU−P +

K

)
⊂

˙̃ν(r, r)Ũ−B̃+.
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Lemma 8.5 Let r ∈ WK and w ∈ W with �(r−1w) = �(w) − �(r). Then the map

U−
u,>0 × U−

w,>0 −→ R, (g,h) �−→ �λ(ṫ
�(u̇�)−1gf(s,r)(h))

is admissible for any (u, t) ∈ QK .

Remark 8.6 By Proposition 5.5 and Lemma 8.4, U−
w,>0 ⊂ (ṙU−P +

K )
⋂

f −1
r ( ˙̃ν(s, r) ×

Ũ−B̃+). So the map f(s,r) is defined on U−
w,>0.

Proof By the proof of Proposition 8.1 (in particular (8.4)), we have

fr(h) ∈ h
�
3(πK(h4)h

−1
4 b−1

4 ṙ−1)�Ũ+ = h
�
3(πK(h4)h

−1
4 z4ṙ

−1)�Ũ+

for some h3 ∈ U−
r,>0, h4 ∈ U−

r−1w,>0
and b4 ∈ B+

K,�0. Here z4 ∈ T>0 with b−1
4 ∈

z4U
+
K . Moreover, by (8.1)–(8.4) in the proof of Proposition 8.1, all maps h �→ h3,

h �→ h4, h �→ z4 are admissible. By Lemma 8.4, f(s,r)(h) ∈ (cs,+(h3))
�(πK(h4) ×

h−1
4 z4ṙ

−1)�Ũ+. By Lemma 8.3, the map h3 �→ fs,+(h3) is admissible. By (6.2),
we have u̇−1(g fs,+(h3)) ∈ U−c for some c1 ∈ B�0. By §6.3 (a), we have
c�(πK(h4)h

−1
4 z4ṙ

−1)�Ũ+ = (πK(h5)h
−1
5 z5ṙ

−1)�Ũ+ for some h5 ∈ U−
u−1,>0

and
z5 ∈ T>0.

Moreover, the maps (g, fs,+(h3)) �→ c, (c,h4) �→ h5 and (c,h4, z4) → z5 are all
admissible. Since t ∈ WK , we have t� ∈ W̃ I�

. Thus

ṫ �(u̇�)−1 g�(cs,+(h3))
�(πK(h4)h

−1
4 z4ṙ

−1)�Ũ+ ∈ Ũ− ṫ �(h
�
5)

−1z
�
5(ṙ

�)−1Ũ+.

So

�λ(ṫ
�(u̇�)−1gf(s,r)(h)) = �λ(ṫ

�(h
�
5)

−1z
�
5(ṙ

�)−1) = �λ(ι(ṫ
�(h

�
5)

−1z
�
5(ṙ

�)−1))

= �λ(ι(ṫ
�)ι((h

�
5)

−1)z
�
5ι((ṙ

�)−1)).

Note that h5 �→ ι(h−1
5 ) is admissible, ι(ṫ ) = ẋ−1 for x = t−1 ∈ W and ι(ṙ−1) = ẏ for

y = r−1 ∈ W . By [12, Proposition 5.13], the map (h5, z5) �→ �λ(ι(ṫ
�)ι((h

�
5)

−1) ×
z
�
5ι((ṙ

�)−1)) is admissible. The lemma follows now. �

Lemma 8.7 Let (s, r) ∈ QK and w ∈ W with r � w. Then the map

U−
w,>0 −→ R, h �−→ �λ(ṫ

�(u̇�)−1f(s,r)(h))

is admissible for any (u, t) ∈ QK .

Proof We simply write � for �λ(ṫ
�(u̇�)−1 · −). Let w1 ∈ W with �(r−1w1) =

�(w1) − �(r) and w � w1. We fix reduced expressions of u and w1 (and thus the
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positive subexpression for w). The statement is proved using the following commu-
tative diagram.

R
�(u)
>0 ×R

�(w1)
>0 R

�(u)
�0 × (R

�(w1)−�(w)
�0 ×R

�(w)
>0 ) R

�(w)
>0

U−
u,>0 × U−

w1,>0

�◦m◦(id,f(s,r))

(
⊔

1�u′�u U−
u′,>0) × (

⊔
w�w′�w1

U−
w′,>0) U−

w,>0

�◦f(s,r)

R

Now let us explain how the maps are defined. Let u = si1 · · · sin be the re-

duced expression we fixed in the beginning. The map R
�(u)
�0 → U− is defined by

(a1, . . . , an) �→ yi1(a1) · · ·yin(an). It is easy to see that the image is
⊔

1�u′�u U−
u′,>0.

By a similar argument to [23, Proposition 4.2],
⊔

1�u′�u U−
u′,>0 is a closed subspace

of G. Similarly, we have a continuous map R
�(w1)
�0 → ⊔

1�w′�w1
U−

w′,>0. If we fur-
ther require that all the coordinates associated to the positive subexpression of w are
positive, then we obtain a continuous map R

�(w1)−�(w)
�0 × R

�(w)
>0 → G and the image

of this map is the locally closed subspace
⊔

w�w′�w1
U−

w′,>0 of G.

Note that for any w′ ∈ W with w � w′, we have r � w′. Thus U−
w′,>0 ⊂ ṙU−P +

K .
Therefore we have a continuous map

R
�(u)
�0 × (R

�(w1)−�(w)
�0 ×R

�(w)
>0 )

−→ (
⊔

1�u′�u

U−
u′,>0) × (

⊔

w�w′�w1

U−
w′,>0)

�◦m◦(id,f(s,r))−−−−−−−−−→R.

By Lemma 8.5, the restriction to R
�(u)
>0 × R

�(w1)
>0 is admissible. Hence by §8.2.1

(b), the map � ◦ f(s,r) : U−
w,>0 → R is admissible. �

Lemma 8.8 Let r ∈ WK and v,w ∈ W with v � r � w. We fix a reduced expression
w of w. Then the map

Gv+,w,>0 −→ R, h �−→ �λ(ṫ
�(u̇�)−1f(r,r)(h))

is admissible for any (u, t) ∈ QK .

Remark 8.9 By Proposition 5.5 that Gv+,w,>0 ⊂ ṙU−P +
K , so f(r,r)(Gv+,w,>0) is de-

fined. However, we have not proved Gv+,w,>0 ⊂
(
ṙU−P +

K

)⋂
f −1

r

( ˙̃ν(s, r)Ũ−B̃+
)

yet and thus we can not apply the general map f(s,r) to Gv+,w,>0. The general case
will be handled after Lemma 8.8 and Corollary 8.10 are established.
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Proof We simply write � for �λ(ṫ
�(u̇�)−1 · −). By [2, Proposition 6.2],

U+
v−1,>0

Bv,w,>0 = B1,w,>0 and the induced map U+
v−1,>0

× Gv+,w,>0 → U−
w,>0 is

admissible. By Lemma 8.7, the map

U+
v−1,>0

× Gv+,w,>0 −→ U−
w,>0

�−→ R

is admissible. Moreover, for any v′ � v, U+
(v′)−1,>0

Bv,w,>0 = B(v′)−1◦l v,w,>0 and

(v′)−1 ◦l v � v � r . Thus U+
(v′)−1,>0

Gv+,w,>0 ⊂ ṙU−P +
K . Therefore the continuous

map R
�(u)
�0 × Gv+,w,>0 → (

⊔
1�v′�v U−

(v′)−1,>0
) × Gv+,w,>0

m−→ G has image inside

ṙU−P +
K . Thus we have a continuous map R

�(u)
�0 × Gv+,w,>0 →R.

Now the statement follows from the following commutative diagram using the
similar proof of Lemma 8.7:

R
�(v)
>0 ×R

�(w)−�(v)
>0 R

�(v)
�0 ×R

�(w)−�(v)
>0 R

�(w)−�(v)
>0

U+
v−1,>0

× Gv+,w,>0

�◦f(r,r)◦m

(
⊔

1�v′�v U+
(v′)−1,>0

) × Gv+,w,>0 Gv+,w,>0

�◦f(r,r)

R .

�

Corollary 8.10 Let (r, r) � (s, r) � (v,w) ∈ QK . We have

1. I � ˚̃Bν̃(r,r),ν̃(v,w),>0 ⊂ ˙̃ν(s, r)Ũ−B̃+/B̃+;

2. Gv+,w,>0 ⊂
(
ṙU−P +

K

)⋂
f −1

r

( ˙̃ν(s, r)Ũ−B̃+
)

.

Proof We have a commutative diagram

Gv+,w,>0 PK,(v,w),>0
I � ˚̃Bν̃(r,r),ν̃(v,w),>0

�λ,ν̃(s,r)

R {0,∗}.

By Lemma 8.8, the map Gv+,w,>0 → R, h �→ �λ(ṙ
�(ṡ�)−1f(r,r)(h)) is admis-

sible. Hence the composition Gv+,w,>0 → {0,∗} is constant. By Proposition 8.1,
all maps in the first row of the commutative diagram are surjective. Then the

map �λ,ν̃(s,r) : I � ˚̃Bν̃(r,r),ν̃(v,w),>0 → {0,∗} is constant. Hence by §8.2 (a), we have
I � ˚̃Bν̃(r,r),ν̃(v,w),>0 ⊂ ν̇(s, r)Ũ−B̃+/B̃+. Now the statements follow from §8.2.2. �
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The following lemma can be proved entirely similarly to Lemma 8.8, thanks to
Corollary 8.10.

Lemma 8.11 Let (r, r) � (s, r) � (v,w) ∈ QK . Fix a reduced expression w of w.
Then the map

Gv+,w,>0 −→R, h �−→ �λ(ṫ
�(u̇�)−1f(s,r)(h))

is admissible for any (u, t) ∈ QK .

8.5 Proof of Proposition 5.9

A special case of part (1) has already been proved in Corollary 6.6. The general case
follows by Theorem 3.5 and Corollary 3.7 once we have verified the assumptions in
Theorem 3.5, that is, Proposition 5.9 part (2) & (3).

By Proposition 8.2, it suffices to prove part (2) & (3) for basic J -Richardson vari-
eties. Namely,

(a) for (s, r) � (v,w) in QK , I �Bν(s,r),ν(v,w),>0 is a connected component of
I �B̊ν(s,r),ν(v,w)(R);

(b) for (s, r) � (u, t) � (v,w) in QK , I �Bν(s,r),ν(v,w),>0 ⊂ ˙̃ν(u, t)Ũ−B̃+/B̃+.
We first show (a). The case where s = r follows from Proposition 5.5 (3) and

Proposition 8.1. The rest follows from Lemma 3.4 (3) thanks to Corollary 8.10. We
now show part (b). We have a commutative diagram

Gv+,w,>0 PK,(v,w),>0
I � ˚̃Bν̃(r,r),ν̃(v,w),>0

I � ˚̃Bν̃(s,r),ν̃(v,w),>0

�λ,ν̃(u,t)

R {0,∗}.

By Lemma 8.11, the map Gv+,w,>0 →R, h �→ �λ(ṫ
�(u̇�)−1f(s,r)(h)), is admissi-

ble. So the map Gv+,w,>0 → {0,∗} is constant.
By (5.1) and Proposition 5.5 (1), the map Gv+,w,>0 → PK,(v,w),>0 is surjec-

tive. By Proposition 8.1, the map PK,(v,w),>0 → I � ˚̃Bν̃(r,r),ν̃(v,w),>0 is surjective. By

part (a) and Lemma 3.4, the map I � ˚̃Bν̃(r,r),ν̃(v,w),>0 → I � ˚̃Bν̃(s,r),ν̃(v,w),>0 is surjective.

Hence the map �λ,ν̃(u,t) : I � ˚̃Bν̃(s,r),ν̃(v,w),>0 → {0,∗} is constant. By §8.2.2, we have
I � ˚̃Bν̃(s,r),ν̃(v,w),>0 ⊂ ˙̃ν(u, t)Ũ−B̃+/B̃+.

8.6 Proof of Proposition 5.6

For any r ∈ WK with (r, r) � (v,w), we set

Yr = PK,(v,w),>0

⋂
ṙU−P +

K /P +
K .
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By Proposition 5.5 (4), PK,(v′,w′),>0 ⊂ ṙU−P +
K /P +

K for any (r, r) � (v′,w′) �
(v,w). Recall that the embedding c̃r in §7.3 is stratified. Then by Proposition 8.1,
the embedding c̃r maps PK,(v′,w′),>0 to I �B̃ν̃(r,r),ν̃(v′,w′),>0.

Note that Theorem 5.10 has been fully established now. It follows that
I �B̃ν̃(r,r),ν̃(v,w),>0 is a topological manifold with boundary

∂
(

I �B̃ν̃(r,r),ν̃(v,w),>0

)
=

⊔

ν̃(r,r)I
��w̃1

I��w̃2
I��ν̃(v,w),

(w̃1,w̃2)�=(ν̃(r,r),ν̃(v,w))

I � ˚̃Bw̃1,w̃2,>0.

Hence the boundary of the Hausdorff closure of I �B̃ν̃(r,r),ν̃(v,w),>0 in I � ˚̃Bν̃(r,r) is

⊔

ν̃(r,r)I
��w̃1

I�
<ν̃(v,w)

I � ˚̃Bν̃(r,r),w̃1,>0.

By [3, Proposition 4.2 (1) & (3)], the map ν̃ gives a bijection

({(u, t) ∈ QK ; (r, r) � (u, t) � (v,w)},�)

←→ {w̃ ∈ W̃ ; ν̃(r, r) I �� w̃ I �� ν̃(v,w), I ��).

Hence Yr is a topological manifold with boundary

∂Yr =
⊔

(v′,w′)∈QK ;(r,r)�(v′,w′)ň(v,w)

PK,(v′,w′),>0.

By Proposition 5.5 (4), PK,(v,w),>0 = ⋃
r∈WK ;(r,r)�(v,w) Yr is an open covering.

In particular, PK,(v,w),>0 is a topological manifold with boundary

⋃

r∈WK ;(r,r)�(v,w)

Yr =
⊔

(v′,w′)∈QK ;(v′,w′)�(v,w) and (r,r)�(v′,w′) for some r∈WK

PK,(v′,w′),>0.

By definition, (w′,w′) � (v′,w′) for any (v′,w′) ∈ QK . In other words, there always
exists r ∈ WK with (r, r) � (v′,w′). This finishes the proof.
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