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Abstract
A heterodimensional cycle is an invariant set of a dynamical system consisting of
two hyperbolic periodic orbits with different dimensions of their unstable manifolds
and a pair of orbits that connect them. For systems which are at least C2, we show
that bifurcations of a coindex-1 heterodimensional cycle within a generic 2-parameter
family create robust heterodimensional dynamics, i.e., a pair of non-trivial hyperbolic
basic sets with different numbers of positive Lyapunov exponents, such that the un-
stable manifold of each of the sets intersects the stable manifold of the second set
and these intersections persist for an open set of parameter values. We also give a
solution to the so-called local stabilization problem of coindex-1 heterodimensional
cycles in any regularity class r = 2, . . . ,∞,ω. The results are based on the obser-
vation that arithmetic properties of moduli of topological conjugacy of systems with
heterodimensional cycles determine the emergence of Bonatti-Díaz blenders.
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1 Introduction

In this paper, we solve the Cr -persistence problem for heterodimensional cycles of
coindex 1 in any regularity class r = 2, . . . ,∞,ω. The result gives a heterodimen-
sional counterpart to the Newhouse theorem on the Cr -persistence of non-transverse
equidimensional cycles (homoclinic tangencies) [49]. It implies the ubiquity of het-
erodimensional dynamics, which is, in our opinion, one of the most basic properties
of non-hyperbolic multi-dimensional dynamical systems with chaotic behavior.

For uniformly hyperbolic systems, all orbits within the same chain-recurrent class
have the same number of positive Lyapunov exponents and the same number of neg-
ative ones. However, chaotic dynamics are often not hyperbolic, and then one can
expect that orbits with different numbers of positive Lyapunov exponents coexist and
are, in a sense, inseparable from each other. The first example of such sort was given
by Abraham and Smale in [1]. As an example of the non-density of hyperbolicity
in the space of dynamical systems, they described an open region in the space of
C1-diffeomorphisms where each diffeomorphism has hyperbolic periodic orbits with
different dimensions of unstable manifolds within the same transitive set. More ex-
amples followed, see e.g. [21, 22, 26, 36, 45, 61, 62], with a general construction for
robust heterodimensionality developed by Bonatti and Díaz in [13, 14].
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We study both the discrete-time and continuous-time cases (our approach allows
for a simultaneous consideration of both cases, as explained in Sect. 2). Unless other-
wise stated, by a dynamical system, we always mean a diffeomorphism of a manifold
of dimension 3 or higher,1 or a flow on a manifold of dimension 4 or higher. We use

Definition 1.1 (Heterodimensional dynamics) Let a dynamical system f have two
compact, transitive, and uniformly hyperbolic invariant sets �1 and �2. Let ind(�)

(the index of a transitive hyperbolic set �) denote the dimension of the unstable man-
ifold of any of its orbits.2 We say that f has heterodimensional dynamics involving
�1 and �2 if

• ind(�1) �= ind(�2); and
• the unstable sets Wu(�1) and Wu(�2) intersect the stable sets Ws(�2) and, re-

spectively, Ws(�1).

The difference |ind(�1) − ind(�2)| is called the coindex of the heterodimensional
dynamics.

Often, the term “heterodimensional cycle” is used for what we call the heterodi-
mensional dynamics [14, 18]. We, however, reserve the term for the most basic case,
where �1 and �2 are trivial.

Definition 1.2 (Heterodimensional cycles) A heterodimensional cycle is a closed in-
variant set consisting of four orbits: two hyperbolic periodic orbits L1 and L2, with
ind(L1) �= ind(L2), and two heteroclinic orbits, one from Ws(L1) ∩ Wu(L2) and
the other from Wu(L1) ∩ Ws(L2).

See Fig. 1 for an illustration. Most of this paper is focused on bifurcations in this
particular case. This does not lead to a loss in generality, because whenever we have
heterodimensional dynamics, a heterodimensional cycle with periodic orbits can be
created by a Cr -small perturbation (see discussion above Corollary A).

Due to the difference between the dimensions of the unstable manifolds, some
heterodimensional intersections can be fragile. Indeed, consider a diffeomorphism of
a d-dimensional manifold with a heterodimensional cycle involving periodic orbits
L1 and L2. Let dimWu(L1) = d1 and dimWs(L2) = d −d2, with d1 < d2. The space
spanned by the tangents to Wu(L1) and Ws(L2) at any of their intersection points
has dimension less than the dimension d of the full space. This means that every
particular heteroclinic intersection of Wu(L1) and Ws(L2) is non-transverse and, by
Kupka-Smale theorem, can be removed by an arbitrarily small perturbation.

However, the situation changes when we have heterodimensional dynamics in-
volving two non-trivial hyperbolic sets �1 and �2. For example, when ind(�2) >

ind(�1), it may happen that when a non-transverse intersection of Wu(�1) with

1Heterodimensional cycles can also be defined for endomorphisms on two-dimensional manifolds, see e.g.
[10].
2When a hyperbolic set is transitive, i.e., when some of its orbits is dense in it, all of its orbits have unstable
manifolds of the same dimension.
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Fig. 1 A heterodimensional cycle involving two hyperbolic fixed points O1 and O2 (black dots) of a
three-dimensional diffeomorphism. The cycle consists of the two fixed points, a fragile heteroclinic orbit
�0 (blue dots) in the non-transverse intersection of the one-dimensional invariant manifolds, and a ro-
bust heteroclinic orbit �1 (red dots) in the transverse intersection (green curves) of the two-dimensional
manifolds. See Sect. 2 for details (Color figure online)

Ws(�2) at the points of some orbits is destroyed, a new one arises. In this case the
heterodimensional dynamics are called robust.

Recall that basic (i.e., compact, transitive, and locally maximal) hyperbolic invari-
ant sets continue uniquely when the dynamical system varies continuously (in the C1

topology).

Definition 1.3 (Robust heterodimensional dynamics) We say that a system exhibits
C1-robust heterodimensional dynamics if it has heterodimensional dynamics involv-
ing two hyperbolic basic sets �1 and �2, where at least one of them is non-trivial,
and there exists a C1-neighborhood U of the original dynamical system such that
every system from U has heterodimensional dynamics involving the hyperbolic con-
tinuations of �1 and �2.

This was the case in the original Abraham-Smale example and in the other exam-
ples we mentioned. Moreover, Bonatti and Díaz proved in [14] that any diffeomor-
phism with a heterodimensional cycle of coindex 1 can be arbitrarily well approxi-
mated, in the C1 topology, by a diffeomorphism with C1-robust heterodimensional
dynamics. The result gave a nice topological characterization of the set of systems
with heterodimensional dynamics of coindex 1: this set is the C1-closure of its C1-
interior. However, the perturbation techniques used in [14] (in an essential way) can
only be valid in the C1 topology. As a result, the C1-small perturbations proposed in
[14] are large in Cr for any r > 1.

This leads to the question whether the Bonatti-Díaz result survives in higher regu-
larity.3 In this paper, we close the question with a positive answer.

3That the C1 bifurcation theory of heterodimensional cycles cannot be straightforwardly translated to
the Cr -case is illustrated by the result of [5, 6] which shows that the dynamics created by C2-small or
C3-small perturbations of partially-hyperbolic heterodimensional cycles of coindex 1 can be very much
different from what can be achieved by C1-small perturbations. The reason is that the dynamics in the
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Theorem A Any dynamical system of class Cr (r = 1, . . . ,∞,ω) having a heterodi-
mensional cycle of coindex 1 can be Cr -approximated by a system which has C1-
robust heterodimensional dynamics.

Remark 1.4 A partial case of Theorem A can be derived from the result in [24]
about renormalization near heterodimensional cycles of three-dimensional diffeo-
morphisms with two saddle-foci (see also [25]). For two-dimensional endomor-
phisms under the partial hyperbolicity condition, the result of Theorem A is Theorem
B in [10].

It is well-known that every point in a transitive, uniformly hyperbolic set � is a
limit point of hyperbolic periodic points (with the same dimension of the unstable
manifolds equal to ind(�)), and the Cr -closure of invariant manifolds of these peri-
odic points contains the stable and unstable sets of �, see e.g. [39, Theorem 6.4.15].
Hence, whenever we have heterodimensional dynamics involving two such sets, we
can always obtain, by an arbitrarily small perturbation, a heterodimensional cycle
associated with some hyperbolic periodic orbits. Thus, Theorem A implies

Corollary A Any dynamical system of class Cr (r = 1, . . . ,∞,ω) having heterodi-
mensional dynamics of coindex 1 can be Cr -approximated by a system which has
C1-robust heterodimensional dynamics.

We stress that the results hold true, in particular, in the real-analytic case (r = ω):
given a real-analytic dynamical system on a real-analytic manifold we consider any
complex neighborhood M of this manifold such that the system admits a holomor-
phic extension on M; then the Cω-topology in Theorem A and Corollary A is the
topology of uniform convergence on compacta in M.

In fact, we obtain Theorem A from its “constructive version”, Theorem B below.
Namely, to obtain the result of Theorem A, one proceeds as follows. First, bring a
given heterodimensional cycle into a general position (so that it satisfies the non-
degeneracy conditions defined in Sects. 2.2 and 2.3) – this can be done by an arbi-
trarily small Cr -perturbation of any heterodimensional cycle. Then, we embed our
system f into a finite-parameter family of perturbations fε with at least 2 parame-
ters. We formulate certain explicit conditions in Sect. 2.4 which define an open and
dense set in the space of Cr -families fε such that f0 = f . An arbitrary family from
this set is called a proper unfolding of f .

Theorem B Let f be of class Cr (r = 2, . . . ,∞,ω) and have a non-degenerate het-
erodimensional cycle of coindex 1, and let fε be a proper unfolding of f . Then,
arbitrarily close to ε = 0 in the space of parameters there exist open regions where
fε has C1-robust heterodimensional dynamics.

central direction are restricted by the signs of the second derivative and the Schwarzian derivative of the
one-dimensional transition map; this signature can be changed by C1-small perturbations but not by C3-
small perturbations.
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Remark 1.5 As the family fε is of class Cr , small ε correspond to Cr -small perturba-
tions of f . Thus, this theorem implies Theorem A indeed. It should be stressed, how-
ever, that a result similar to Theorem B does not necessarily hold for one-parameter
families, see Theorem 6.

Remark 1.6 The proof of Theorem B (and all remaining results in this paper) makes
use of the existence of certain C2 coordinate transformations (local partial lineariza-
tion, see Sect. 2.3). We do not know, therefore, if these results hold for C1 systems
(except for Theorem C, whose C1-analogue is proven in [18]). Thus, when dealing
with systems of class C1, in order to derive Theorem A and Corollary A from Theo-
rem B, one can first perturb the system to make it C2 and only then apply Theorem B.

The non-degeneracy/propriety conditions of Theorem B are explicit, and check-
ing them requires only a finite amount of computations with a finite number of pe-
riodic and heteroclinic orbits. Thus, Theorem B provides a universal tool for detect-
ing and demonstrating the robust coindex-1 heterodimensional dynamics in multi-
dimensional systems. This theorem can be used for showing that robust heterodi-
mensional dynamics exist in specific restrictive settings, for example for polynomial
perturbations, perturbations which keep various sorts of symmetry, etc.., and can be
directly applied to dynamical systems coming from scientific applications, which
usually have a form of finite-parameter families of differential equations or maps.

1.1 Stabilization of heterodimensional cycles

The hyperbolic basic sets involved in the robust heterodimensional dynamics de-
scribed in Theorem B are not necessarily homoclinically related4 to the continua-
tions of the periodic orbits from the original heterodimensional cycle. This means
that even though parameter values corresponding to the existence of heterodimen-
sional cycles are dense in the open regions of robust heterodimensional dynamics
given by Theorem B, it may happen that these heterodimensional cycles do not con-
tain the continuations of the periodic orbits of the original cycle.

To address this question, we employ the following adaptation of a definition from
[15, 18]. Recall that a heterodimensional cycle in our terminology refers to an in-
variant set consisting of only four orbits (two periodic and two connecting ones), see
Definition 1.2.

Definition 1.7 (Stabilization of heterodimensional cycles) Let a dynamical system f

of class Cr have a heterodimensional cycle involving two hyperbolic periodic orbits
L1 and L2. The cycle is called Cr -stabilizable if arbitrarily close, in Cr , to f there
exists a dynamical system g, which exhibits C1-robust heterodimensional dynamics
involving non-trivial hyperbolic basic sets �1 and �2 that contain the continuations
of L1 and L2, respectively.

4Two hyperbolic basic sets of the same index are homoclinically related if their stable and unstable mani-
folds have transverse intersections.
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Fig. 2 Three cases of a heterodimensional cycle with two hyperbolic fixed points of a three-dimensional
diffeomorphism. The central multipliers – corresponding to the weakest contraction rate at the left fixed
point and the weakest expansion rate at the right fixed point – are both real in the saddle case (a), one real
and one complex in the saddle-focus case (b), and both complex in the double-focus case (c)

In particular, since the stable and unstable manifolds of Lj are dense in the stable
and, respectively, unstable sets of the basic set �j , j = 1,2, it follows that systems
with heterodimensional cycles involving the continuations of L1 and L2 accumulate
on g in the Cr -topology (and, more generally, on any Cr -system which is sufficiently
close to g in C1).

Definition 1.8 (Local stabilization of heterodimensional cycles) A heterodimen-
sional cycle is locally Cr -stabilizable, if, given any neighborhood U of the cycle,
the Cr -close to f system g of Definition 1.7 can be chosen such that the sets the
sets �1,2 and the corresponding new heterodimensional cycles involving the contin-
uations of L1 and L2 all lie in U .

Bonatti and Díaz constructed in [15] an example of diffeomorphisms with het-
erodimensional cycles which cannot be C1-stabilized (hence they cannot be Cr -
stabilized). This work motivated the paper [18] by Bonatti, Díaz and Kiriki, showing
that all heterodimensional cycles except for the so-called twisted ones (this class con-
tains the cycles from the example in [15]) can be locally C1-stabilized. In the above
definitions, we require a higher regularity of the stabilizing perturbations. We solve
the question of local Cr -stabilization in Theorem C below.

We distinguish three main cases of heterodimensional cycles, as depicted in Fig. 2:
saddle, saddle-focus, and double-focus, depending on whether the central multipliers
are real or not (see Sect. 2.1 for the precise definition). We show that in the saddle-
focus and double-focus cases, the robust heterodimensional dynamics given by The-
orem B are always associated with hyperbolic basic sets which are homoclinically
related to the continuations of the periodic orbits in the original heterodimensional
cycle, see Theorem 7. However, in the saddle case, whether this homoclinic relation
holds or not, this depends on whether the heterodimensional cycle is of type I or type
II, as described in Sect. 2.5. Thus, we have

Theorem C Given any r = 2, . . . ,∞,ω, a non-degenerate heterodimensional cycle
of coindex 1 in the saddle-focus and double-focus cases is locally Cr -stabilizable. In
the saddle case, the cycle is locally Cr -stabilizable if and only if it is not of type I.

Up to technical details, the type-I cycles correspond to twisted cycles from [18].
So, this theorem is the high regularity counterpart of the main result of [18]. Similarly
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to [18], the type-I cycles become Cr -stabilizable (though not locally) when at least
one of the periodic orbits in the cycle has a transverse homoclinic, see Corollary 3.

1.2 Heterodimensionality vs. equidimensionality

In the simplest setting, a cycle is an invariant set which consists of a cyclically or-
dered finite collection of periodic orbits and orbits that connect them (heteroclinic
orbits), such that for each periodic orbit in the cycle there is exactly one heteroclinic
orbit that tends to this periodic orbit in backward time and to the next periodic orbit
in forward time. If all periodic orbits in the cycle have the same dimension of the
unstable manifold and the same dimension of the stable manifold, the cycle is called
equidimensional, and it is heterodimensional otherwise, see [52].

In this paper we consider the simplest case of heterodimensional cycles: coindex-
1, and with 2 periodic orbits. The simplest case of an equidimensional cycle has just
one periodic orbit and one homoclinic (the orbit of an intersection of the stable and
unstable manifolds of the periodic orbit).

For a uniformly hyperbolic system, any cycle is equidimensional and the connect-
ing orbits correspond to transverse intersections of the stable and unstable manifolds.
Therefore, heterodimensional cycles and equidimensional cycles with non-transverse
intersections (homoclinic or heteroclinic tangencies) are two obvious obstructions to
the hyperbolicity.

A non-trivial fact is that both heterodimensional cycles and non-transverse equidi-
mensional cycles can be robust. Thus, any hope that uniformly hyperbolic systems
could be dense in the space of dynamical systems was destroyed with the above
mentioned example by Abraham and Smale [1] of a C1-open region in the space of
4-dimensional diffeomorphisms where diffeomorphisms with heterodimensional cy-
cles are dense and the example by Newhouse [49] of a C2-open region in the space of
2-dimensional diffeomorphisms where diffeomorphisms with non-transverse equidi-
mensional cycles are dense.

Newhouse built a theory of thickness of hyperbolic sets (for two-dimensional C2-
diffeomorphisms) and introduced a concept of a wild hyperbolic set: a non-trivial
hyperbolic basic set whose stable and unstable sets have a tangency, for the system
itself and for every C2-close system. Essentially, if a hyperbolic set is “thick enough”
and its stable and unstable sets have a tangency, then the tangency is, typically, C2-
robust, i.e., the hyperbolic set is wild. Based on this theory, Newhouse proved in [51]
the C2-persistence of homoclinic tangencies: for any generic one-parameter family of
Cr surface diffeomorphisms (r � 2) which unfolds a quadratic homoclinic tangency
or an equidimensional cycle with a quadratic heteroclinic tangency, there exist open
intervals of parameter values for which a wild hyperbolic set exists and parameter
values corresponding to quadratic homoclinic tangencies are dense in these intervals
(a generalization to multi-dimensional systems was done in [31, 55, 56]).

Although many examples of robust heterodimensional cycles appeared after the
Abraham-Smale construction, a heterodimensional analogue of the Newhouse theory
was missing until the discovery of blender by Bonatti and Díaz [13, 14]. A blender is
a hyperbolic basic set whose projection along strong-stable or strong-unstable direc-
tions contains an open set, see Sect. 1.4 and Appendix for the precise definition. This
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“openness in projection” property make the heterodimensional dynamics that involve
a blender robust. Thus, blenders play the same role in the creation of robust heterodi-
mensional dynamics as Newhouse thick horseshoes do for persistent homoclinic tan-
gencies. In particular, finding a blender near a perturbed heterodimensional cycle is
the essence of the Bonatti-Díaz C1-persistence result [14] and our Cr -persistence
results (Theorems A and B).

Note that Newhouse “thick horseshoe” construction of the robust non-transverse
intersections of stable and unstable manifolds is different from the Abraham-Smale
construction and the later Bonatti-Díaz blender construction – in particular, the homo-
clinic tangencies in the Newhouse construction are C2-persistent, but not necessarily
C1-persistent.5 Indeed, Ures [68] discovered that for C1 surface diffeomorphisms,
the thickness of a horseshoe loses continuous dependence on the system, which is a
crucial condition for the Newhouse construction; and later Moreira [47] built a more
general theory and proved the non-existence of persistent homoclinic tangencies for
C1 surface diffeomorphisms. However, there are several examples of C1-persistent
homoclinic tangencies in higher dimensions, see [4, 15, 44, 63], which use blenders,
or their variants, as supporting structures.

It is important to mention that there is a strong link between the homoclinic tan-
gencies and the “heterodimensionality”. The simplest manifestation of this is that
bifurcations of homoclinic tangencies can lead to the birth of coexisting sinks and
saddles [27, 28]. Moreover, Newhouse showed in [50, 51] that a wild hyperbolic
set of a generic area-contracting surface diffeomorphism is in the closure of the set
of sinks, i.e., the periodic orbits with different indices (here – saddles and sinks) are
generically inseparable from each other. Without the contraction of areas, one has co-
existing sets of sinks, saddles, and sources [32], and, in the multi-dimensional case,
coexisting saddles of different indices [34, 56]. In [44], we use the results of the
present paper to give conditions under which the saddles of different indices that are
born out of a homoclinic tangency get involved into the C1-robust heterodimensional
dynamics, as in Definition 1.3.

1.3 Applications of Theorem B

A commonly shared conjecture is that any Cr -diffeomorphism is either uniformly
hyperbolic (i.e., every chain-recurrent class is uniformly hyperbolic) or it is arbitrarily
close in Cr to a diffeomorphism with wild hyperbolic sets (persistent homoclinic
tangencies) or with robust heterodimensional dynamics, or both, see [12, 54] (for
flows, one should also add a possibility of robust “Lorenz-like” dynamics [3, 38,
46]). Irrespective of whether this conjecture is true or not, it is an empirical fact that
homoclinic tangencies easily appear in many non-hyperbolic systems; we expect the
same should be true for heterodimensional cycles.

In support of such claim, we have shown in a series of papers [40, 42–44] that
heterodimensional cycles emerge due to several types of homoclinic bifurcations. In
fact, in the spirit of [37, 64, 65], one can conjecture that coindex-1 heterodimensional

5We have also learnt that Crovisier and Gourmelon obtained results on the C1+ε-persistence of homoclinic
tangencies, in a work under preparation.
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cycles can appear, with very few exceptions, in any homoclinic/heteroclinic bifurca-
tion whose effective dimension allows it, i.e., when the dynamics of the map under
consideration are not reduced to a two-dimensional invariant manifold and the map
is not sectionally-dissipative (i.e., not area-contracting).6

We believe this conjecture is true, so Theorem B allows for establishing the pres-
ence of robust heterodimensional dynamics whenever a non-hyperbolic chaotic be-
havior with more than one positive Lyapunov exponent (the “hyperchaos” in the ter-
minology of [57]) is observed. In particular, it was also shown in [40, 42, 43] that
the coindex-1 heterodimensional cycles can be a part of a pseudohyperbolic chain-
transitive attractor which appears in systems with Shilnikov loops [35, 59, 66] or after
a periodic perturbation of the Lorenz attractor [67]. It, thus, follows from Theorems
A and B that the attractor in such systems remains heterodimensional for an open set
of parameter values.

An important feature of robust heterodimensional dynamics is the robust presence
of orbits with a zero Lyapunov exponent. In particular, the result of [23] implies, for
parametric families described by our Theorem B, the existence of open regions of
parameter values where a generic system has an ergodic invariant measure with at
least one zero Lyapunov exponent, i.e., the dynamics for such parameter values are
manifestly non-hyperbolic.

For a dense set of parameter values from such regions the system has a non-
hyperbolic periodic orbit. Bifurcations of such periodic orbits depend on the coef-
ficients of the nonlinear terms of the Taylor expansion of the first-return map re-
stricted to a center manifold. The degeneracy in the nonlinear terms increases com-
plexity of the bifurcations. It follows from [5, 6] that once the so-called “sign con-
ditions” are imposed on a heterodimensional cycle, the regions of robust heterodi-
mensional dynamics given by Theorem A contain a Cr -dense set of systems having
infinitely degenerate (flat) non-hyperbolic periodic orbits. This fact also leads to the
C∞-genericity (for systems from these regions) of a superexponential growth of the
number of periodic orbits and the so-called Cr -universal dynamics, see [5, 6].

1.4 Blenders

As we mentioned, the main object responsible for the robustness of heterodimen-
sional dynamics is a particular type of a hyperbolic set, a blender, introduced by
Bonatti and Díaz in [13]. It can be defined in many ways [7, 11, 16, 17, 19, 48]. For
instance, the “operational definition” as in [17, Definition 6.11] can be rephrased as
follows. Let f be a dynamical system on a smooth manifold M with dim(M) � 3 if
f is a diffeomorphism, or with dim(M)� 4 if f is a flow.

Definition 1.9 (Blenders) A basic hyperbolic set � of f is called a center-stable (cs)
blender if there exists a C1-open set Dss of dss -dimensional discs (embedded copies
of Rdss

) with dss strictly less than the dimension of the stable manifolds of the orbits

6To have a heterodimensional cycle, we need saddles with different dimensions of unstable manifolds, and
these conditions are obviously necessary. The conjecture is that they should also be sufficient for the birth
of a heterodimensional cycle in most situations.
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of �), such that for every system g which is C1-close to f , for the hyperbolic con-
tinuation �g of the basic set �, the set Wu(�g) intersects every element from Dss ; a
center-unstable (cu) blender is a cs-blender for the dynamical system obtained from
f by the time-reversal.

It is immediate from this definition that the existence of heterodimensional dynam-
ics involving a blender is, essentially, a reformulation of the existence of the robust
heterodimensional dynamics. Namely, for a system having two hyperbolic sets �1,2
where ind(�2) > ind(�1) and �1 is a cs-blender, if there exists a transverse in-
tersection of Wu(�2) with Ws(�1), and Ws(�2) contains a disc from Dss defined
as in the previous section (so there is an intersection of Wu(�1) with this piece of
Ws(�2)), then the system exhibits C1-robust heterodimensional dynamics: the inter-
section of Wu(�2) with Ws(�1) survives small perturbations of the system because
of the transversality, and the non-transverse intersection of Wu(�1) with Ws(�2)

survives simply by the definition of the blender, as Ws(�2) varies continuously as
the system varies.

It should be noted that the blenders obtained in this paper have additional dy-
namical properties (partial hyperbolicity, the existence of a special Markov partition)
which are not included in Definition 1.9. This additional structure is important for the
actual construction of blenders and it is also crutial in applications, for example for
proving the C1-persistence of a certain type of homoclinic tangencies [16, 44]. We
describe such blenders in Definition A.1, and call them standard. A standard blender
is a version of the blender-horseshoe defined in [16]. The main difference is that the
latter has a Markov partition of exactly two elements, whereas we take the Markov
partition with a large number of elements, like in [17, Sect. 6.2]. Since Definition 1.9
suffices for discussing the persistence problem of heterodimensional cycles, the main
goal of this paper, we do not make a digress to define standard blenders here. Instead,
we detail the construction in the Appendix, see Definition A.1. In Proposition A.4,
we prove that the blenders we construct in this paper are indeed standard blenders.

The central result (Theorem D below) of the current paper is that we identify a
class of heterodimensional cycles for which standard blenders exist in an arbitrarily
small neighborhood of the cycle. In other words, any such cycle is a limit of an infinite
sequence of standard blenders. We infer Theorem B from this result by showing that
a proper unfolding of a non-degenerate heterodimensional cycle creates heterodimen-
sional cycles of the “blender-producing” class described in Theorem D, thus proving
creation of blenders by a generic perturbation of an arbitrary heterodimensional cycle
of coindex 1.

We always enumerate the periodic orbits L1,2 in the heterodimensional cycle such
that ind(L1) < ind(L2), so the intersection Wu(L1) with Ws(L2) is fragile, whereas
the intersection Wu(L2) ∩ Ws(L1) is transverse. By a multiplier of a periodic orbit,
we mean an eigenvalue of the derivative matrix of the return map at the corresponding
fixed point, see Sect. 2.1. The central multipliers λ1,1 and γ2,1 are the nearest to the
unit circle among those multipliers of L1 whose absolute value is smaller than 1 and,
respectively, the nearest to the unit circle among those multipliers of L2 whose abso-
lute value is greater than 1. Recall that we distinguish three cases of non-degenerate
heterodimensional cycles of coindex 1: saddle, saddle-focus, and double-focus, de-
pending on whether λ1,1 and γ2,1 are real or not (in the saddle-focus case, we assume
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that λ1,1 is complex and γ1,1 is real, with no loss of generality). In the saddle case
(both λ1,1 and γ2,1 are real) we also have cycles of type I and type II (see Sect. 2.5).
It is well-known [53, 69] that the values of

θ = − ln |λ1,1|
ln |γ2,1|

and of

ω1 = Arg(λ1,1), ω2 = Arg(γ2,1)

(when λ1,1 or γ2,1 are complex) are moduli, i.e., invariants of topological equivalence,
for systems with heterodimensional cycle.

Theorem D Let f be of class Cr (r = 2, . . . ,∞,ω) and have a non-degenerate het-
erodimensional cycle of coindex-1, and let U be any neighborhood of the cycle.

• In the saddle case, if the cycle is of type I and θ is irrational, then a standard
blender exists in U .

• In the saddle-focus case when θ , 1
2π

ω1 and 1 are rationally independent, and in

the double-focus case when θ , 1
2π

ω1, 1
2π

θω2 and 1 are rationally independent,
the system has simultaneously a standard cs-blender and a standard cu-blender in
U . The blenders have different indices and their stable and unstable sets intersect
C1-robustly.

The result is the summary of Theorems 1 and 7 of Sect. 2. It should be stressed that
Theorem D is a non-perturbative result; this is the major difference with other works,
where heterodimensional cycles are unfolded to obtain blenders, see [10, 14, 24].
Note that by Theorem 6 of Sect. 2, no blenders exist in a sufficiently small neighbor-
hood of the hetrodimensional cycle in the saddle case when θ is rational; in the case
of complex central multipliers a similar result can also be derived [41]. Therefore,
we conclude that when the values of the moduli change, new blenders are ceaselessly
produced by the heterodimensional cycle. One can see here a parallel to Gonchenko’s
theory of a homoclinic tangency, which relates dynamics near a homoclinic tangency
– the structure of hyperbolic sets, the existence of infinitely many sinks – to arithmetic
properties of moduli of topological and �-conjugacy [29, 30].

The technique we use to establish the blender is based on the approximation of the
first-return map near a heterodimensional cycle by an iterated function system (IFS)
which is composed of a collection of affine maps of an interval, see formula (4.23).
This is similar to the approach used in many other works, see e.g. [7, 11, 16, 17, 48].
Note also that since the maps in our IFS are nearly affine, we can expect that the
parablenders, introduced by Berger, can be implemented in our case too, cf. [8–10].

Throughout the rest of the paper, by heterodimensional cycles/dynamics we al-
ways mean those of coindex 1, and the blenders we find/construct are always standard
blenders as defined in the Appendix (see Proposition A.4). In Sect. 2, we give precise
definitions of the notions used in the paper, introduce non-degeneracy conditions for
heterodimensional cycles, define the proper unfolding families, and give a complete
formulation of the results. We start the proofs for the saddle case in Sect. 3, where a
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computation for the first-return maps is carried out, and we prove the partial hyper-
bolicity of these maps. After that, we find blenders near type-I cycles in Sect. 4. Next,
in Sect. 5, we investigate the bifurcations of heterodimensional cycles in the saddle
case and construct robust heterodimensional dynamics using the previously obtained
blenders. Finally, we deal with the saddle-focus and double-focus cases in Sect. 6.

2 Robust heterodimensional dynamics in finite-parameter families

In this section, we give a precise formulation of the results, which, in particular, imply
Theorems B, C and D. We consider the discrete and continuous-time cases. For both
cases we define local maps and transition maps near the heterodimensional cycle (see
Sects. 2.1 and 2.2). After that the proofs are solely based on the analysis of these
maps and hence hold for both cases simultaneously.

We start with a more precise description of a heterodimensional cycle. Let f

be a Cr -diffeomorphism of a d-dimensional manifold or a Cr -flow of a (d + 1)-
dimensional manifold, where d � 3 and r = 2, . . . ,∞,ω. Let f have a heterodimen-
sional cycle � of coindex 1 associated with two hyperbolic periodic orbits L1 and
L2 with dimWu(L2) = dimWu(L1) + 1. Along with the orbits L1 and L2, the het-
erodimensional cycle � consists of two heteroclinic orbits �0 ∈ Wu(L1) ∩ Ws(L2)

and �1 ∈ Wu(L2)∩Ws(L1). Due to the difference in the dimensions of Wu(L1) and
Wu(L2), the intersection Wu(L1) ∩ Ws(L2) is non-transverse and can be removed
by a small perturbation. We call the orbit �0 a fragile heteroclinic orbit. On the other
hand, the intersection Ws(L1) ∩ Wu(L2) at the points of the orbit �1 is assumed to
be transverse and it gives a smooth one-parameter family of heteroclinic orbits. We
call them robust heteroclinic orbits. See Fig. 1 for an illustration.

The two orbits �0 and �1 will be required to satisfy certain non-degeneracy con-
ditions, introduced in Sects. 2.2 and 2.3. Our goal is to show how C1-robust heterodi-
mensional dynamics emerge in a small neighborhood of the cycle � after Cr -small
perturbations. The mechanisms for that depend on the type of the heterodimensional
cycle, as described in detail below.

2.1 Local maps near periodic orbits

In the discrete-time case, f is a diffeomorphism. Let O1 and O2 be some points of
the orbits L1 and L2. We take a small neighborhood U0j of the point Oj , j = 1,2,
and consider the first-return map Fj in this neighborhood: Fj = f τj where τj is the
period of Oj (see Fig. 3).

In the continuous-time case, the system f is a flow generated by some smooth
vector field. In this case we take some points O1 ∈ L1 and O2 ∈ L2 and let U0j

(j = 1,2) be small d-dimensional (i.e., of codimension 1) cross-sections transverse
at Oj to the vector field of f . Let Fj be the first-return map (the Poincaré map) to
the cross-section U0j (see Fig. 3).

In both cases Oj is a hyperbolic fixed point of Fj : Fj (Oj ) = Oj . The multipliers
of Oj are defined as the eigenvalues of the derivative of Fj at Oj . The hyperbolicity
means that no multipliers are equal to 1 in the absolute value; we assume that dj < d
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Fig. 3 The local maps near O1 in the discrete-time case (a) and the continuous-time case (b)

multipliers of Oj lie outside the unit circle and (d − dj ) multipliers lie inside. By our
“coindex-1 assumption” dimWu(L2) = dimWu(L1) + 1, we have

d2 = d1 + 1.

We denote the multipliers of Oj , j = 1,2, as λj,d−dj
, . . . , λj,1, γj,1, . . . , γj,dj

and
order them as follows:

|λj,d−dj
| � · · ·� |λj,2| � |λj,1| < 1 < |γj,1| � |γj,2|� · · ·� |γj,dj

|. (2.1)

We call the largest in the absolute value multipliers inside the unit circle center-stable
multipliers and those nearest to the unit circle from the outside are called the center-
unstable multipliers. The rest of the multipliers λ and γ are called strong-stable and,
respectively, strong-unstable.

It is important whether the center-stable multipliers of O1 and center-unstable
multipliers of O2 are real or complex.7 Note that by adding an arbitrarily small per-
turbation, if necessary, we can always bring the multipliers into a general position.
In our situation, this means that we can assume that O1 has only one center-stable
multiplier λ1,1 which is real and simple, or a pair of simple complex conjugate center-
stable multipliers λ1,1 = λ∗

1,2; we also can assume that O2 has either only one center-
unstable multiplier γ2,1 which is real and simple, or a pair of simple complex conju-
gate center-unstable multipliers γ2,1 = γ ∗

2,2.
Accordingly, we distinguish three main cases.

• Saddle case: here λ1,1 and γ2,1 are real and simple, i.e., we have |λ1,2| < |λ1,1| and
|γ2,1| < |γ2,2|.

• Saddle-focus case: here either

λ1,1 = λ∗
1,2 = λeiω, ω ∈ (0,π), and γ2,1 is real,

where λ > |λ1,3| and |γ2,1| < |γ2,2|, or

γ2,1 = γ ∗
2,2 = γ eiω, ω ∈ (0,π), and λ1,1 is real,

7It is well-known that the dynamics are quite different in these cases: for real multipliers, one has par-
tially hyperbolic dynamics with one-dimensional center typically, while nonreal multipliers mean higher-
dimensional dynamics, e.g. can lead to the emergence of homoclinic tangencies, see e.g. [26].
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where 0 < γ < |γ2,3| and |λ1,2| < |λ1,1|. Note that the second option is reduced
to the first one by the inversion of time. Therefore, we assume below that in the
saddle-focus case λ1,1 is complex and γ2,1 is real.

• Double-focus case: here

λ1,1 = λ∗
1,2 = λeiω1, ω1 ∈ (0,π), and γ2,1 = γ ∗

2,2 = γ eiω2, ω2 ∈ (0,π),

where λ > |λ1,3|, 0 < γ < |γ2,3|.
Below, we denote λ1,1 and γ2,1 by λ and γ if they are real. Let dcs denote the

number of the center-stable multipliers of O1 and dcu be the number of the center-
unstable multipliers of O2. We have dcs = dcu = 1 in the saddle case, dcs = 2, dcu = 1
in the saddle-focus case, and dcs = dcu = 2 in the double-focus case.

Recall (see e.g. [34, 60]) that the first-return map F1 near the point O1 has a
d1-dimensional local unstable manifold Wu

loc(O1) which is tangent at O1 to the
eigenspace corresponding to the multipliers γ1,1, . . . , γ1,d1 and (d − d1)-dimensional
local stable manifold Ws

loc(O1) which is tangent at O1 to the eigenspace corre-
sponding to the multipliers λ1,1, . . . , λ1,d−d1 . In Ws

loc(O1) there is a (d − d1 −
dcs)-dimensional strong-stable Cr -smooth invariant manifold Wss

loc(O1) which is
tangent at O1 to the eigenspace corresponding to the strong-stable multipliers
{λ1,d−d1 , . . . , λ1,d−d1−dcs }. This manifold is a leaf of the strong-stable Cr -smooth
foliation F ss of Ws

loc(O1). There also exists a (d1 + dcs)-dimensional extended-
unstable invariant manifold WuE

loc (O1) corresponding to the center-stable multipliers
and the multipliers γ1,1, . . . , γ1,d1 . Such manifold is not unique but all of them contain
Wu

loc(O1) and are tangent to each other at the points of Wu
loc(O1) (see Fig. 4).

Similarly, the first-return map F2 near the point O2 has a d2-dimensional lo-
cal unstable manifold Wu

loc(O2) and (d − d2)-dimensional local stable manifold
Ws

loc(O2). In Wu
loc(O2) there is a (d2 − dcu)-dimensional strong-unstable invari-

ant manifold Wuu
loc(O2) which is tangent at O1 to the eigenspace corresponding to

the strong-unstable multipliers {γ2,dcu+1, . . . , γ2,d2}. This manifold is a leaf of the
strong-unstable Cr -smooth foliation Fuu of Wu

loc(O2). There also exists a (d − d2 +
dcu)-dimensional extended-stable invariant manifold WsE

loc (O2) corresponding to the
center-unstable multipliers and the multipliers λ2,1, . . . , λ2,d−d2 . Any two such man-
ifolds contain Ws

loc(O2) and are tangent to each other at the points of Ws
loc(O2).

2.2 Transition maps and geometric non-degeneracy conditions

For each of the heteroclinic orbits �0 and �1, a transition map between neighbor-
hoods of O1 and O2 is defined, as follows.

Consider, first, the case of discrete time, i.e., let f , be a diffeomorphism. Take
four points M+

1 ∈ �1 ∩ Ws
loc(O1), M−

1 ∈ �0 ∩ Wu
loc(O1), M+

2 ∈ �0 ∩ Ws
loc(O2), and

M−
2 ∈ �1 ∩ Wu

loc(O2). Note that M−
2 and M+

1 belong to the same robust heteroclinic
orbit �1 and M−

1 and M+
2 belong to the same fragile heteroclinic orbit �0. Thus, there

exist positive integers n1 and n2 such that f n1(M−
1 ) = M+

2 and f n2(M−
2 ) = M+

1 . We
define the transition maps from a small neighborhood of M−

1 to a small neighborhood
of M+

2 and from a small neighborhood of M−
2 to a small neighborhood of M+

1 as,
respectively, F12 = f n1 and F21 = f n2 (see Fig. 4).
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Fig. 4 A heterodimensional cycle of coindex 1 satisfying conditions C1 - C3, which consists of two pe-
riodic orbits containing O1 and O2, a fragile heteroclinic orbit containing M−

1 and M+
2 , and a robust

heteroclinic orbit containing M−
2 and M+

1 . Here ss is a strong-stable leaf through M+
1 , uu is a strong-

unstable leaf through M−
2 , 1 = Ws

loc
(O1) ∩ F21(Wu

loc
(O2)) and 2 = F−1

21 1

In the continuous-time case, when f is a flow, we take the points M+
1 ∈ �1 ∩

Ws
loc(O1) and M−

1 ∈ �0 ∩ Wu
loc(O1) on the cross-section U01 and the points M+

2 ∈
�0 ∩Ws

loc(O2) and M−
2 ∈ �1 ∩Wu

loc(O2) on the cross-section U02. Then the transition
map F12 is defined as the map by the orbits of the flow which start in the cross-section
U01 near M−

1 and hit the cross-section U02 near the point M+
2 , and the transition map

F21 is defined as the map by the orbits of the flow which start in the cross-section
U02 near M−

2 and hit the cross-section U01 near the point M+
1 . By the definition,

F12(M
−
1 ) = M+

2 and F21(M
−
2 ) = M+

1 .
We can now precisely describe the non-degeneracy conditions which we impose

on the heterodimensional cycle �.

C1. Simplicity of the fragile heteroclinic: F−1
12 (WsE

loc (O2)) intersects Wu
loc(O1) trans-

versely at the point M−
1 , and F12(W

uE
loc (O1)) intersects Ws

loc(O2) transversely
at M+

2 ;
C2. Simplicity of the robust heteroclinic: the leaf of Fuu at the point M−

2 is not
tangent to F−1

21 (Ws
loc(O1)) and the leaf of F ss at the point M+

1 is not tangent to
F21(W

u
loc(O2)); and

C3. �1 ∩ (Wss(O1) ∪ Wuu(O2)) = ∅, i.e., M+
1 /∈ Wss(O1) and M−

2 /∈ Wuu(O2).

Figure 4 provides an illustration of these conditions. Note that condition C1 does
not depend on the choice of WuE

loc (O1) and WsE
loc (O2), as any two extended sta-

ble/unstable manifolds are tangent to each other at the points of the stable or, re-
spectively, unstable manifold, see the discussion in the end of Sect. 2.1. Moreover,
the corresponding requirement in C1 is automatically satisfied if O2 has no non-
center stable multipliers or O1 has no non-center unstable multipliers, that is, in
the case where O2 has a pair of complex conjugate center-unstable multipliers and
dimWu(O2) = d2 = 2, or O1 has a pair of complex conjugate center-stable multipli-
ers and Ws(O1) = d−d1 = 2. Similarly, the corresponding requirements of condition
C2 hold automatically in these cases.
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The manifolds involved in these conditions depend continuously (as C1-mani-
folds) on f in the Cr -topology. This implies that conditions C2 and C3 are Cr -open,
and condition C1 is Cr -open in the class of systems with the heterodimensional cycle.
It is also quite standard that one can always achieve the fulfillment of C1 and C2 by
adding an arbitrarily Cr -small perturbation to f (in the smooth case one adds a local
perturbation to f ; in the analytic case one uses the scheme described in [20, 33]). In
the case where condition C3 is not fulfilled, we do not need to perturb the system:
for the same system f we can always find, close to �1, another robust heteroclinic
orbit which satisfies C3. To see this, note that condition C2 ensures that the line
1 = Ws

loc(O1)∩F21(W
u
loc(O2)) (corresponding to robust heteroclinics, see Fig. 4) is

not tangent to Wss(O1) ∪ F21(W
uu
loc(O2)), so we can always shift the position of the

point M+
1 on this line and hence the position of M−

2 = F−1
21 (M+

1 ).

2.3 Local partial linearization and the fourth non-degeneracy condition

There is one last non-degeneracy condition, which is different for the saddle case
and the other cases. To state it precisely, let us introduce Cr -coordinates (x, y, z) ∈
R

dcs ×R
d1 ×R

d−d1−dcs in U01 such that the local stable and unstable manifolds get
straightened near O1:

Ws
loc(O1) = {y = 0}, Wu

loc(O1) = {x = 0, z = 0},

and the extended-unstable manifold WuE
loc (O1) is tangent to {z = 0} when x = 0,

z = 0 (see Sect. 3). Moreover, the leaves of the foliation F ss are also straightened
and are given by {x = const, y = 0}. In particular, we have

Wss
loc(O1) = {x = 0, y = 0}.

We also introduce Cr -coordinates (u, v,w) ∈ R
dcu ×R

d−d2 ×R
d2−dcu in U02 such

that the local stable and unstable manifolds are straightened near O2:

Ws
loc(O2) = {u = 0,w = 0}, Wu

loc(O2) = {v = 0},

the extended-sable manifold WsE
loc (O2) is tangent to {w = 0} when u = 0, v = 0, and

the leaves of the foliation Fuu are also straightened and given by {u = const, v = 0}.
We have

Wuu
loc(O2) = {u = 0, v = 0}.

We restrict the choice of the coordinates by a further requirement (which can al-
ways be fulfilled, see e.g. [34]) that the first-return maps F1 and F2 act linearly on
center-stable and, respectively, center-unstable coordinates. Namely, if we restrict
these maps on Ws

loc(O1) = {y = 0} and, respectively, Wu
loc(O2) = {v = 0} and use

the notation F1|Ws
loc(O1) : (x, z) 	→ (x̄, z̄) and F2|Wu

loc(O2) : (u,w) 	→ (ū, w̄), then we
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have

Saddle case: x̄ = λx and ū = γ u;

Saddle-focus
case:

x̄ = λ

(
cosω sinω

− sinω cosω

)
x and ū = γ u;

Double-focus
case:

x̄ = λ

(
cosω1 sinω1

− sinω1 cosω1

)
x and ū = γ

(
cosω2 sinω2

− sinω2 cosω2

)
u.

(2.2)

We denote, in these coordinates, M+
1 = (x+,0, z+) and M−

2 = (u−,0,w−) (so con-
dition C3 reads x+ �= 0 and u− �= 0).

Recall that F21 takes a point with coordinates (u, v,w) to a point with coordinates
(x, y, z), where x and u are the center-stable and center-unstable coordinates near
the points O1 and O2, respectively. By condition C2, the line 1 is not tangent to the
foliation F ss and the line 2 = F−1

21 1 is not tangent to the foliation Fuu. In the saddle
case this means that these curves are transverse to these foliations (see Fig. 4), so they
are parametrized by the coordinates x (the line 1) and u (the line 2). Therefore, as
F21|2 acts as a diffeomorphism 2 → 1, we have

b = ∂x

∂u

∣∣∣∣
M−

2

�= 0. (2.3)

C4.1 (saddle case). The quantity α := bu−/x+ satisfies

|α| �= 1. (2.4)

Note that in the saddle case conditions C1 and C2 are equivalent (see [64]) to
the requirement that the heteroclinic cycle � is a partially hyperbolic set with the 1-
dimensional central direction field which includes the center-stable eigenvector at O1
and the center-unstable eigenvector at O2. As we show, α determines the behavior
in the central direction: the first-return maps near � are contracting in the central
direction when |α| < 1 and expanding when |α| > 1 (see Lemma 3.1). Note that α

is an invariant of smooth coordinate transformations which keep the foliations F ss

and Fuu locally straightened and keep the action of the local maps F1 and F2 in the
central direction linear, as in (2.2). Indeed, any such transformation is linear in the
central directions in a small neighborhoods U01 and U02 of the points O1 and O2,
i.e., the coordinates x and u are only multiplied to some constants cx and cu. As a
result, the coefficient b is replaced by bcx/cu, and x+ and u− are replaced by cxx

+
and cuu

−, so α remains unchanged. Similarly, the invariant α does not depend on the
choice of the points M+

1 and M−
2 on the given heteroclinic orbit �1.

In the saddle-focus and double-focus cases, the partial hyperbolicity is not as-
sumed, and no condition similar to C4.1 is needed. However, we need another condi-
tion:

C4.2 (saddle-focus and double-focus cases). When the center-stable multipliers λ1,1
and λ1,2 are complex and x ∈ R

2, the x-vector component of the tangent to 1 at
the point M1+ is not parallel to the vector x+ (see Fig. 5). When the center-unstable
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Fig. 5 An illustration of
condition C4.2. The vector
(x+

1 , x+
2 ) is not parallel to the

x-vector component (the dashed
line) of the tangent to 1

multipliers γ2,1 and γ2,2 are complex and u ∈ R
2, the u-vector component of the

tangent to 2 at the point M−
2 is not parallel to the vector u+.

Like in condition C4.1, coordinate transformations that keep the action of the lo-
cal maps F1 and F2 in x and u linear are also linear in x and u, respectively. This
immediately implies that condition C4.2 is invariant with respect to the choice of
the linearizing coordinates. It also does not depend on the choice of the points M+

1
and M−

2 .
The heterodimensional cycles satisfying conditions C1-C4.1,2 will be further

called non-degenerate.

2.4 Finite-parameter unfoldings

The perturbations we use to prove Theorem A are done within finite-parameter fam-
ilies fε which we assume to be of class Cr (r = 2, . . . ,∞,ω) jointly with respect to
coordinates and parameters ε.

Let f0 = f ; for any sufficiently small ε the hyperbolic points O1 and O2 exist and
depend smoothly on ε. The corresponding multipliers also depend smoothly (Cr−1)
on ε. We define

θ(ε) = − ln |λ|
ln |γ | . (2.5)

In the saddle-focus and double-focus cases, an important role is also played by the
frequencies ω(ε) and, respectively, ω1,2(ε). The values of θ as well as ω1,2 are moduli
of topological conjugacy of diffeomorphisms with non-degenerate heterodimensional
cycles (see [53, 69]).

The local stable and unstable manifolds of O1,2, as well as their images by the
transition maps F12 and F21, also depend smoothly on ε. The fragile heteroclinic
�0 is not, in general, preserved when ε changes. To determine whether the fragile
heteroclinic disappears or not, one introduces a splitting parameter μ, a continuous
functional such that for any system g from a small Cr -neighborhood of f the ab-
solute value of μ(g) equals to the distance between Ws

loc(O2) and F12(W
u
loc(O1));

the fragile heteroclinic persists for those g for which μ(g) = 0. The codimension-1
manifold μ = 0 separates the neighborhood of the system f into two connected com-
ponents; we define μ such that it changes sign when going from one component to
the other.
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A one-parameter family fε is called a generic one-parameter unfolding of f if
μ(fε) depends on ε smoothly and dμ

dε
�= 0. This means that we can make μ(fε) = ε

by a smooth change of parameters.
We also need to consider families depending on two or more parameters, i.e.,

ε = (ε1, ε2, . . . ). We call the family fε a proper unfolding, if dμ
dε

�= 0 (so the set
μ(ε) = 0 forms a smooth codimension-1 manifold H0 in the space of parameters ε)
and, the following conditions hold for the subfamily corresponding to ε ∈H0:

• in the saddle case, dθ
dε

�= 0, where the derivative is taken over ε ∈ H0 (this implies
that we can make a smooth change of parameters in the family fε such that μ(ε) =
ε1 and θ(ε) = ε2);

• in the saddle-focus case, the condition is that the functions θ(ε) and 1
2π

ω(ε) and 1
are linearly independent in a neighborhood of ε = 0 on H0;

• in the double-focus case, the condition is the linear independence of θ(ε), 1
2π

ω1(ε),
1

2π
ω2(ε)θ(ε) and 1 in a neighborhood of ε = 0 on H0.8

Note that the linear independence conditions for the saddle-focus and double-focus
case are only used to ensure that the corresponding quantities can be made rationally
independent by an arbitrarily small change of ε. However, we formulate the propriety
conditions in this way in order to make the class of proper families open.

With the above definitions, the formulation of our main result, Theorem B as given
in Sect. 1, is now complete. The proof goes differently in different cases: for the
saddle case the theorem follows from the results described in Sects. 2.5 and 2.6, and
in the saddle-focus and double focus case it follows from the results of Sect. 2.7.

2.5 Three types of heterodimensional cycles in the saddle case

In the saddle case, the proof of Theorem B is most involved: not because of techni-
calities, but because the dynamics emerging at perturbations of the non-degenerate
heterodimensional cycles depend, in the saddle case, very essentially on the type of
the cycle. According to that, we introduce three types of the heterodimensional cycles
in the saddle case, as follows.

First, note (by counting dimensions) that in the saddle case condition C1 implies
that the intersection of F−1

12 (WsE
loc (O2)) and WuE

loc (O1) is a smooth curve, which
we denote as 0 (see Fig. 6). At ε = 0, this curve goes through the point M−

1 and
its image F12(

0) goes through the point M+
2 . The tangent space TM−

1
0 lies in

TM−
1
WuE(O1) = {z = 0} and, by C1, TM−

1
0 �⊂ TM−

1
Wu

loc(O1) = {x = 0, z = 0},
which implies that TM−

1
0 has a non-zero projection to the x-axis. Thus, the curve

0 is parametrized by the coordinate x. Similarly, the curve F12(
0) is parametrized

8Note that if this condition holds, it also holds for the system obtained after a time reversal. Indeed, this
operation interchanges O1 and O2, and hence the propriety condition for the resulting system becomes
the linear independence of θ−1(ε), 1

2π
ω2(ε), 1

2π
ω1(ε)θ−1(ε) and 1, which is equivalent to the linear

independence of θ(ε), 1
2π

ω1(ε), 1
2π

ω2(ε)θ(ε) and 1.
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Fig. 6 Condition C1 in straightened coordinates

by coordinate u. The restriction of F12 to 0 is a diffeomorphism, so

a = du

dx

∣∣∣∣
M−

1

�= 0. (2.6)

We say that a heterodimensional cycle � in the saddle case is of

• type I,9 if there exist points M+
1 (x+,0, z+) ∈ �1 ∩ U01 and M−

2 (u−,0,w−) ∈
�1 ∩ U02 such that ax+u− > 0;

• type II, if there exist points M+
1 (x+,0, z+) ∈ �1 ∩U01 and M−

2 (u−,0,w−) ∈ �1 ∩
U02 such that ax+u− < 0;

• type III, if there exist points M+
1 ∈ �1 ∩ U01 and M−

2 ∈ �1 ∩ U02 for which
ax+u− > 0 and another pair of points M+

1 ∈ �1 ∩ U01 and M−
2 ∈ �1 ∩ U02 for

which ax+u− < 0.

The cycle of type III is, by definition, a cycle which is simultaneously of type I
and type II. Like in condition C4.1, one shows that the sign of ax+u− is indepen-
dent of the choice of coordinates which keep the action of the local maps F1 in the
neighborhood U01 of O1 and F2 in the neighborhood U02 of O2 linear in the central
coordinates x and u. Thus, the above definition is coordinate-independent.

Notice that a is determined by a pair of points M−
1 and M+

2 on the fragile hetero-
clinic �0, while x+ and u− are coordinates of points on the robust heteroclinic �1.
By (2.2) (the saddle case), if the central multipliers λ and γ are positive, the local
maps F1 and F2 multiply x+ and u− to positive factors, so the sign of ax+u− is
independent of the choice of the points M+

1 and M−
2 on �1 in this case. Similarly, it

does not depend on the choice of the points M−
1 and M+

2 on �0. On the other hand,
if at least one of the central multipliers is negative, the sign of x+u− changes when
one replaces the pair (M+

1 ,M−
2 ) by the points (F1(M

+
1 ),M−

2 ) or (M+
1 ,F−1

2 (M−
2 ))

on the same orbit. Thus, a non-degenerate heterodimensional cycle has either type I
or type II, and not type III, if and only if both central multipliers are positive, and it
has type III if and only if at least one of the central multipliers is negative.

9Type-I and type-II cycles correspond to twisted, and, respectively, non-twisted cycles in [18]. Strictly
speaking, our definition is somewhat more general, as the notion of twisted and untwisted cycles was
introduced in [18] only in the case when the local maps and transition maps satisfy certain additional
restrictions.



D. Li, D. Turaev

2.6 Main results for the saddle case

The key observation in our proof of Theorem B in the saddle case and the fundamental
reason behind the emergence of robust heterodimensional dynamics is given by the
following result proven in Sect. 4.

Theorem 1 In the saddle case, in any neighborhood of a non-degenerate heterodi-
mensional cycle � of type I (including type III) for which the value of θ = − ln |λ|

ln |γ | is
irrational, there exists a standard blender, center-stable with index d1 if |α| < 1 or
center-unstable with index d2 if |α| > 1.

The result holds true for systems f of class at least C2. The blender is not the
one constructed in [14] by means of a C1-small but not C2-small perturbation of f .
We do not perturb f , but give explicit conditions for the existence of the blender.
Moreover, the (at least) C2 regularity is important for the proof, and it is not clear
whether Theorem 1 holds when f is only C1. Namely, it is a priori possible that
there could exist C1 systems for which a neighborhood of a heterodimensional cycle
of type I does not contain a blender even when θ is irrational.

Next theorem tells us when the blender of Theorem 1 is activated, implying that
it gets involved in robust heterodimensional dynamics. Recall that by definition the
blender exists for any system C1-close to f .

Theorem 2 Let � be a non-degenerate type-I cycle and let θ be irrational. Consider a
sufficiently small Cr -neighborhood V of f such that the blender given by Theorem 1
persists for any system g ∈ V . Let μ be the splitting functional.

• In the case |α| < 1, there exist constants C1 < C2 such that for all sufficiently large
m ∈ N any system g ∈ V which satisfies μγ m ∈ [C1,C2] has C1-robust heterodi-
mensional dynamics involving the index-d1 cs-blender �cs of Theorem 1 and a
non-trivial, index-d2 hyperbolic basic set containing O2.

• In the case |α| > 1, there exist constants C1 < C2 such that for all sufficiently large
k ∈ N any system g ∈ V which satisfies μλ−k ∈ [C1,C2] has C1-robust heterodi-
mensional dynamics involving the index-d2 cu-blender �cu of Theorem 1 and a
non-trivial, index-d1 hyperbolic basic set containing O1.

The theorem is proven in Sect. 5 (see Proposition 5.2); Theorems 3 – 5 below
are proven there as well. Note that the cases |α| < 1 and |α| > 1 are reduced to
each other by the reversion of time and the interchange of the points O1 and O2.
Theorem 2 immediately implies Theorem B in the case of type-I cycles. Indeed, in
a proper unfolding of f we can, by an arbitrarily small increment, make θ irrational
while keeping μ = 0, and then put μ to an interval corresponding to the C1-robust
heterodimensional dynamics.

We also show (see Proposition 5.2) that there exist intervals of μ for which the
blender �cs is homoclinically related to O1 if |α| < 1, and the blender �cu is ho-
moclinically related to O2 if |α| > 1. Recall that a hyperbolic point is homoclinically
related to a hyperbolic basic set of the same index if their stable and unstable mani-
folds intersect transversely. If the blender is homoclinically related to a saddle O1 or
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O2 and is, simultaneously, involved in robust heterodimensional dynamics with the
other saddle, this would give robust heterodimensional dynamics involving both these
saddles. However, the following result shows that if the central multipliers λ and γ

are both positive, this does not happen within a small neighborhood of the cycle �

under consideration.
Let f have a non-degenerate heterodimensional cycle � of type I (we do not insist

now that θ is irrational). Let λ > 0 and γ > 0, i.e., � is not type-III. Let U be a small
neighborhood of �.

Theorem 3 One can choose the sign of the splitting functional μ such that for every
system g from a small Cr -neighborhood of f

• in the case |α| < 1, for μ(g) > 0, the set of all points whose orbits lie entirely in
U consists of a hyperbolic set � of index d1 (this set includes the cs-blender of
Theorem 1 and the orbit L1 of O1), the orbit L2 of the periodic point O2, and
heteroclinic orbits corresponding to the transverse intersection of Wu(L2) with
Ws(�), so there are no heterodimensional dynamics in U ; for μ(g) � 0, no orbit
in Wu(L1) stays entirely in U , except for L1 itself and, at μ(g) = 0, the fragile
heteroclinic �0, so L1 cannot be a part of any heterodimensional cycle in U when
μ(g) < 0;

• in the case |α| > 1, for μ(g) < 0, the set of all points whose orbits lie entirely in
U consists of a hyperbolic set � of index d2 (this set includes the cu-blender of
Theorem 1 and the orbit L2 of O2), the orbit L1 of the periodic point O1, and
heteroclinic orbits corresponding to the transverse intersection of Ws(L1) with
Wu(�), so there are no heterodimensional dynamics in U ; for μ(g) � 0, no orbit
in Ws(L2) stays entirely in U , except for L2 itself and, at μ(g) = 0, the fragile
heteroclinic �0, so L2 cannot be a part of any heterodimensional cycle in U when
μ(g) > 0.

This situation changes if the type-I cycle is accompanied by a type-II cycle in the
following sense.

Definition 2.1 (Tied cycles) We say that two non-degenerate heterodimensional cy-
cles associated with O1 and O2 are tied if they share the same fragile heteroclinic,
and the robust heteroclinic orbits �1 and �̃1 belonging to the corresponding cycles
� and �̃ intersect the same leaf of the foliation F ss or the same leaf of the foliation
Fuu. Specifically, there exists a pair of points M+

1 = (x+,0, z+) ∈ �1 ∩ Ws
loc(O1)

and M̃+
1 = (x̃+,0, z̃+) ∈ �̃1 ∩ Ws

loc(O1) such that x+ = x̃+ or a pair of points
M−

2 = (u−,0,w−) ∈ �1 ∩ Wu
loc(O2) and M̃−

2 = (ũ−,0, w̃−) ∈ �̃1 ∩ Wu
loc(O2) such

that u− = ũ−.

See Fig. 7 for an illustration of tied cycles. The existence of tied cycles is a Cr -
open property in the set of systems for which the fragile heteroclinic is preserved.
Indeed, if for a system f we have two points M+

1 ∈ �1 and M̃+
1 ∈ �̃1 lying in a

common leaf lss of the foliation F ss , then there are curves 1 and ̃1 containing these
points, which correspond to the transverse intersection of Wu(O2) and Ws

loc(O1)
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Fig. 7 A pair of tied cycles intersecting the same strong-stable leaf

and which, by condition C2, are transverse to the leaf lss of F ss . The transversality
implies that a Cr -small perturbation of f does not destroy this double intersection in
lss . The same is true if we have a double intersection with a leaf of Fuu.

Theorem 4 Let a Cr (r � 2) system f have a non-degenerate type-I cycle � tied
with a non-degenerate type-II cycle �̃. Assume that θ is irrational. Then, for any
generic one-parameter unfolding fμ there exists a converging to μ = 0 sequence
of intervals Ij such that fμ at μ ∈ Ij has C1-robust heterodimensional dynamics
involving the blender given by Theorem 1 and a non-trivial hyperbolic basic set; of
these two hyperbolic sets, the one with index d1 is homoclinically related to O1(μ)

and the one with index d2 is homoclinically related to O2(μ).

Observe that a type-III cycle is, by definition, a cycle of type I and II, and, obvi-
ously, it is tied with itself. Hence, applying the above theorem, we obtain

Corollary 1 Let � be a non-degenerate cycle with real central multipliers λ and γ , at
least one of which is negative. If θ = − ln |λ|

ln |γ | is irrational, then for any generic one-
parameter unfolding fμ there exist converging to zero intervals of μ corresponding
to C1-robust heterodimensional dynamics involving non-trivial hyperbolic basic sets,
one of which contains O1(μ) and the other contains O2(μ).

Remark 2.2 Tied cycles also occur when O1 or O2 have a transverse homoclinic. For
example, let us have a non-degenerate heterodimensional cycle � with a fragile het-
eroclinic �0 and a robust heteroclinic �1. Assume the central multipliers are real,
and let M ′ ∈ Wu

loc(O2) be a point of transverse intersection of the stable and unstable
manifolds of O2. If we take a small piece of Wu

loc(O2) around M ′, its forward im-
ages converge to the entire unstable manifold of O2. Therefore, some of them must
intersect transversely the strong-stable leaf of the point M1+ ∈ �1 ∩ Ws

loc(O1) (as this
leaf intersects Wu(O2) transversely at the point M1+ by condition C2), see Fig. 8. The
orbit of the intersection point is a robust heteroclinic �̃1, and the corresponding cycle
�̃ is tied with �. By construction, the orbit �̃1 has a point M̃ in Wu

loc(O2) close to
the homoclinic point M ′. Therefore, its u-coordinate is close to the u-coordinate u′
of M ′. Therefore, if u−u′ < 0, i.e., the homoclinic point M ′ and the point M−

2 of �1

lie in Wu
loc(O2) on opposite sides from Wuu

loc(O2), then the tied cycles � and �̃ have
different types, and Theorem 4 is applicable.
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Fig. 8 Creation of a new cycle that is tied with the original one by the strong-stable leaf ss passing
through M+

1 (Color figure online)

Theorem B for type-II cycles is inferred from Theorem 4 by means of the follow-
ing result.

Theorem 5 Let f have a non-degenerate type-II cycle � with irrational θ . For any
generic one-parameter unfolding fμ there exists a sequence μj → 0 such that fμ at
μ = μj has a pair of tied heterodimensional cycles �j,I and �j,II of type I and type
II, which are associated

• with O1(μ) and an index-d2 saddle O ′
2(μ) which is homoclinically related to

O2(μ) if |α| < 1; or
• with O2(μ) and an index-d1 saddle O ′

1(μ) which is homoclinically related to
O1(μ) if |α| > 1.

In order to apply Theorem 4 to the tied cycles �j,I and �j,II obtained in Theo-
rem 5, we extend fμ to a proper, at least two-parameter unfolding fε . In Sect. 5.4,
we make the following observation: when r � 3, the same family fε gives a proper
unfolding for the cycles �j,I and �j,II , see Lemma 5.4 and equation (5.31). Since fε

is proper for the cycles �j,I and �j,II , one can always find the values of ε for which
the value of θ for these cycles is irrational. Hence, applying Theorem 4, we obtain
the result of Theorem B when fε is at least C3.

In the C2-case, the reduction of Theorem B (for type-II cycles) to Theorem 5
requires a revision of Theorem 4, as described in Remark 5.6. The difficulty is that we
use, for every parameter value, the coordinates which linearize the action of the local
maps F1 and F2 in the central direction. It is known that in the C2-case the linearizing
coordinate transformation is, in general, not smooth with respect to parameters, so
our technique does not allow to compute derivatives with respect to ε which enter
the definition of a proper unfolding. Instead, we use continuity arguments to show
in the C2-case that, still, for the tied cycles �j,I and �j,II the value of θ can be
made irrational and the splitting parameter for these cycles can be pushed, by a small
change of ε, inside the open regions described by Remark 5.6 – analogues of intervals
Ij described by Theorem 4.

Altogether, we prove in Sect. 5.4 Theorem B for type-II cycles in the following
form.

Corollary 2 Let � be a non-degenerate type-II cycle, and let fε be a proper, at least
two-parameter unfolding. Arbitrarily close to ε = 0 there exist open regions in the
parameter space for which the corresponding system fε has C1-robust heterodimen-
sional dynamics involving a standard blender and a non-trivial hyperbolic basic set;
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one of these sets is homoclinically related to O1 and the other is homoclinically re-
lated to O2.

As we see, the emergence of heterodimensional dynamics depends strongly on the
arithmetic properties of θ , the modulus of topological equivalence. The following
result shows that, in the saddle case, we have a clear dichotomy: for irrational θ

we have highly non-trivial dynamics and bifurcations in any neighborhood of the
heterodimensional cycle �, and for rational θ the dynamics in a small neighborhood
of � are quite simple, in general.

Theorem 6 Let a Cr (r � 2) system f have a non-degenerate heterodimensional
cycle �, and let the central multipliers be real, |λ| < 1 and |γ | > 1. Let θ = − ln |λ|

ln |γ |
be rational, i.e., |γ | = |λ|− p

q for some coprime integers p > 0, q > 0. Suppose the
following conditions are fulfilled:

|ab| �= |γ | s
q for s ∈ Z, (2.7)

∣∣∣∣ u−

ax+

∣∣∣∣ /∈ cl

{
|γ | s

q
1 − λl

1 − γ −n

}
s∈Z,l∈N,n∈N

. (2.8)

Let U be a sufficiently small neighborhood of � and let N be the set of all orbits that
lie entirely in U . Then, at μ = 0, the set N is the union of L1, L2, �0, and the orbits
of transverse intersection of Wu(L2) with Ws(L1) near �1.

For any generic one-parameter unfolding fμ, for any small μ �= 0, either

• N is comprised by L2, an index-d1 uniformly-hyperbolic compact set �1 contain-
ing L1, and transverse heteroclinic connections between Wu(L2) and Ws(�1),
while no heteroclinic connection between Wu(�1) and Ws(L2) exists, or

• N is comprised by L1, an index-d2 uniformly-hyperbolic compact set �2 contain-
ing L2, and transverse heteroclinic connections between Wu(�2) and Ws(L1),
while no heteroclinic connection between Wu(L1) and Ws(�2) exists.

The proof of this theorem is given in Sect. 5.5. Notice that, for fixed values of λ and
γ , conditions (2.7) and (2.8) are fulfilled for all ab and ax+/u− except for a count-
able, nowhere dense set of values. Thus, the simplicity of dynamics at rational θ is
indeed quite generic. It also follows from this theorem and Theorem 1 that whenever
we have a heterodimensional cycle � of type I, if we change θ without destroying �,
the blender that forms at irrational θ ’s immediately departs from �, so that for each
rational θ a sufficiently small “blender-free” neighborhood of � emerges.

2.7 The case of nonreal central multipliers

In the remaining saddle-focus and double-focus cases, we obtain Theorem B from

Theorem 7 Let a Cr (r � 2) system f have a heterodimensional cycle � and let
central multipliers be λ1,1 = λ∗

1,2 = λeiω and real γ2,1 = γ (the saddle-focus case)

or λ1,1 = λ∗
1,2 = λeiω1 and γ2,1 = γ ∗

2,2 = γ eiω2 (the double-focus case). Assume,
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in the saddle-focus case, that the numbers θ = − lnλ
ln |γ | ,

1
2π

ω and 1 are rationally

independent. In the double-focus case, assume that θ , 1
2π

ω1, 1
2π

θω2, and 1 are ra-
tionally independent. Then, in any neighborhood of �, the system f has C1-robust
heterodimensional dynamics associated with a standard cs-blender and a standard
cu-blender.

Moreover, in the double-focus case, the point O1 is homoclinically related to the
cs-blender and the point O2 is homoclinically related to the cu-blender, and the same
holds true for any Cr -close system g. In the saddle-focus case, the point O2 is, for
the system f and for any Cr -close system g, homoclinically related to the cu-blender,
and there exist intervals Ij converging to μ = 0 such that if μ(g) ∈ Ij , then the point
O1 is homoclinically related to the cs-blender.

Remark 2.3 By the reversion of time, we deduce a similar result for the case where
γ2,1 = γ ∗

2,2 = γ eiω and λ1,1 = λ is real. Namely, we obtain that the point O1 is ho-
moclinically related to a cs-blender for the system f and for any Cr -close system g,
and that there exist intervals Ij converging to μ = 0 such that if μ(g) ∈ Ij , then the
point O2 is homoclinically related to the cu-blender.

This theorem is proved in Sect. 6. In particular, the coexistence of a cs-blender and
a cu-blender for the non-perturbed system f is obtained in Propositions 6.2 and 6.7.
Since in a proper unfolding of f the rational independence conditions of Theorem 7
are achieved by arbitrarily small changes of parameters, the claim of Theorem B
follows immediately.

2.8 Local stabilization of heterodimensional cycles

Corollary 1, Corollary 2, and Theorem 7 immediately imply that if the heterodimen-
sional cycle is not type-I, then it is locally Cr -stabilized as claimed in Theorem C (in
the C1 case, this result is obtained in [18], but certain perturbations essential for their
construction are large in the C2-topology). On the other hand, Theorem 3 shows that
any type-I heterodimensional cycle cannot be locally Cr -stabilized, concluding The-
orem C. A similar result on the impossibility of the local C1-stabilization for type-I
cycles can be inferred from [15].

If we replace at least one of the periodic orbits in the heterodimensional cycle by
a non-trivial, transitive, compact hyperbolic set �, then even if all periodic orbits in
� have central multipliers real and positive, one can, in the generic situation, find a
periodic orbit in � such that its homoclinic points accumulate to it from both sides in
the central direction. Then, by Remark 2.2 and Theorem 4 we obtain

Corollary 3 If at least one of the periodic orbits in a heterodimensional cycle belongs
to a non-trivial, transitive, compact hyperbolic set, then the cycle is Cr -stabilizable
for any r = 2, . . . ,∞,ω

3 First-return maps in the saddle case

Recall that we consider the behavior in a small neighborhood of the heterodimen-
sional cycle �. We take periodic points O1 and O2 in � and consider, if f is a
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discrete dynamical system, small neighborhoods U01 and U02 of O1 and O2. If f is a
flow, then U01 and U02 are small codimension-1 cross-section to the flow through the
points O1 and O2. In both cases, the local maps F1 and F2 act on U01 and U02, which
are defined by the orbits of the system f near the orbits L1 and L2 of the points O1

and O2. We take a pair of points M−
1 ∈ U01 and M+

2 ∈ U02 on the fragile heteroclinic
�0 and a pair of points M−

2 ∈ U02 and M+
1 ∈ U01 on the robust heteroclinic �1. The

orbits near the fragile heteroclinic define the transition map F12 from a small neigh-
borhood of M−

1 in U01 to a small neighborhood of M+
2 in U02, and the orbits near the

robust heteroclinic define the transition map F21 from a small neighborhood of M−
2

in U02 to a small neighborhood of M+
1 in U01.

Our immediate goal is to study the first-return maps near the heterodimensional
cycle. Such map is a composition Tk,m := F21 ◦ Fm

2 ◦ F12 ◦ Fk
1 , which takes points

from a small neighborhood M+
1 in U01 back to a vicinity of M+

1 . Here, k and m are
sufficiently large positive integers such that Fk

1 takes points from a small neighbor-
hood of M+

1 in U01 to a small neighborhood of M−
1 in U01 and Fm

2 takes points from
a small neighborhood of M+

2 in U02 to a small neighborhood of M−
2 in U02.

First, we use results in [34] to obtain formulas for the iterations Fk
1 and Fm

2 . The
formulas are written in the so-called “cross-form”, see (3.5) and (3.7). Next, we use
the transversality conditions C1 and C2 and write the transition maps F12 and F21 also
in the cross-form, see (3.10) and (3.13). Then, combining the cross-form formulas
for these four maps, we obtain a formula for the map Tk,m in some rescaled variables
and show that it is indeed a return map to U01 for suitable values of k and m, see
(3.26). Finally, we conclude this section by proving the partial hyperbolicity of Tk,m

in Lemma 3.1.

3.1 Local maps

First, we discuss necessary estimates for Fk
1 and Fm

2 . By [34, Lemmas 5 and 6], one
can choose local coordinates (x, y, z) ∈R×R

d1 ×R
d−d1−1 in U01 such that O1 is at

the origin and the map F1 takes the form

x̄ = λx + g1(x, y, z),

ȳ = P1y + g2(x, y, z),

z̄ = P2z + g3(x, y, z),

(3.1)

where λ = λ1,1, and the eigenvalues of the matrices P1 and P2 are γ1,1, γ1,2, . . . , γ1,d1

and λ1,2 . . . λ1,d−d1 , respectively (see (2.1)). The functions g1,2,3 vanish along with
their first derivatives at the origin and satisfy the identities

g1,3(0, y,0) = 0, g2(x,0, z) = 0, g1(x,0, z) = 0,
∂g1,3

∂x
(0, y,0) = 0,

(3.2)
for all sufficiently small x, y, and z. As discussed in Sect. 2, the first two identities
in (3.2) imply that the local manifolds Ws

loc(O1) and Wu
loc(O1) are straightened and

given by the equations {y = 0} and {x = 0, z = 0}, respectively. The third identity
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shows that the strong-stable foliation F ss (which enters condition C2) is straightened,
its leaves are given by equations {x = const, y = 0}, and the map F1 restricted to
Ws

loc(O1) is linear in x. The forth identity implies that the extended unstable manifold
WuE

loc (O1) (which is in condition C1) is tangent to z = 0 at the points of Wu
loc(O1).

Similarly, we introduce coordinates (u, v,w) ∈ R × R
d−d1−1 × R

d1 in U02 with
O2 at the origin such that F2 takes the form

ū = γ u + ĝ1(u, v,w),

v̄ = Q1v + ĝ2(u, v,w),

w̄ = Q2w + ĝ3(u, v,w),

(3.3)

where γ = γ2,1, and the eigenvalues of the matrices Q1 and Q2 are λ2,2, λ2,2, . . . ,

λ2,d−d1−1 and γ2,2, . . . , γ2,d1+1, respectively (see (2.1)). The functions ĝ1,2,3 vanish
along with their first derivatives at the origin and satisfy

ĝ1,3(0, v,0) = 0, ĝ2(u,0,w) = 0, ĝ1(u,0,w) = 0,
∂ĝ1,3

∂u
(0, v,0) = 0,

(3.4)
for all sufficiently small u, v and w.

It is shown in [34] (see remarks after Lemma 6 there), that the transformations
that bring F1 to form (3.1) and F2 to form (3.3) are of class Cr , so we do not loose
regularity when using these coordinates. Moreover, these coordinate transformations
depend uniformly-continuously on the system f . When we consider parametric fam-
ilies fε , and f is analytic or C∞ with respect to coordinates and parameters, the
coordinate transformations are also analytic or C∞ with respect to ε. In the case of
finite smoothness r , we loose, in general, two derivatives with respect to ε. Namely,
the second derivative of the transformation is Cr−2-smooth with respect to both the
coordinates and parameters. Therefore, the matrices P1,2 and Q1,2 in (3.1) and (3.3)
are Cr−2-functions of ε, and the functions g1,2,3 and ĝ1,2,3, as well as their deriva-
tives with respect to (x, y, z) or (u, v,w) up to order 2, are Cr−2-functions of the
coordinates and ε. If r � 3, this gives us at least 1 continuous derivative with respect
to ε. In the C2 case, we can only assume continuity of P1,2, Q1,2 with respect to ε,
the same goes for g1,2,3, ĝ1,2,3, and their derivatives with respect to the coordinates.
The eigenvalues λ and γ do not depend on coordinate transformations; as they are
the eigenvalues of the first derivative of F1 or F2 (at O1 and, respectively, O2), they
are at least C1 with respect to ε in any case.

Take any point (x, y, z) in U01 and let (x̃, ỹ, z̃) = Fk
1 (x, y, z). It is known (see e.g.

[2, 58]) that the value of (x̃, y, z̃) is uniquely defined by (x, ỹ, z) for all k � 0. By [34,
Lemma 7], when identities (3.2) are fulfilled, the relation between the coordinates can
be written as

x̃ = λkx + p1(x, ỹ, z),

y = p2(x, ỹ, z), z̃ = p3(x, ỹ, z),
(3.5)

where

‖p1,3‖C1 = o(λk), ‖p2‖C1 = o(γ̂ −k), (3.6)
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for some constant γ̂ ∈ (1, |γ1,1|). These estimates are uniform for all systems C2-
close to f ; when we consider parametric families fε , the functions p1,2,3 depend on
ε uniformly-continuously, along with their first derivatives with respect to (x, ỹ, z).
In the case r � 3, we have the same o(λk) and o(γ̂ −k) estimates for the derivatives
of p1,2 and, respectively, p3 with respect to parameters ε, see [34, Lemma 7] for a
detailed discussion.

Likewise, for any (u, v,w) ∈ U02 we have (ũ, ṽ, w̃) = Fm
2 (u, v,w) if and only if

u = γ −mũ + q1(ũ, v, w̃),

ṽ = q2(ũ, v, w̃), w = q3(ũ, v, w̃),
(3.7)

where

‖q1,3‖C1 = o(γ −m), ‖q2‖C1 = o(λ̂m), (3.8)

for some constant λ̂ ∈ (|λ2,1|,1); the functions q1,2,3 depend uniformly-continuously
on the system f , and the estimates (3.8) hold uniformly for all systems C2-close to f .
When r � 3, estimates (3.8) also hold for the derivatives with respect to parameters
ε.

3.2 Transition maps

Next, we consider the transition maps F12 and F21. We use the following notation for
the coordinates of the points M±

1,2:

M+
1 = (x+,0, z+), M−

1 = (0, y−,0), M+
2 = (0, v+,0), M−

2 = (u−,0,w−).

We can write the Taylor expansion of the transition map F12 : (x̃, ỹ, z̃) 	→ (u, v,w)

near M−
1 as

u = a′
1 + a′

11x̃ + a′
12(ỹ − y−) + a′

13z̃ + O(x̃2 + (ỹ − y−)2 + z̃2),

v − v+ = a′
2 + a′

21x̃ + a′
22(ỹ − y−) + a′

23z̃ + O(x̃2 + (ỹ − y−)2 + z̃2),

w = a′
3 + a′

31x̃ + a′
32(ỹ − y−) + a′

33z̃ + O(x̃2 + (ỹ − y−)2 + z̃2),

(3.9)

where a′
i and a′

ij (i, j = 1,2,3) are some constants. Since F12(M
−
1 ) = M+

2 for the
system f , it follows that a′

1,2,3 vanish, but when we perturb f , these coefficients can
become non-zero (though small).

Recall that WsE
loc (O2) is tangent at M+

2 to w = 0 and Wu
loc(O1) is given by

(x̃ = 0, z̃ = 0). Thus, the transversality condition C1 writes as the uniqueness of the
(trivial) solution to the system

u = a′
12(ỹ − y−), v − v+ = a′

22(ỹ − y−), 0 = a′
32(ỹ − y−),

i.e., a′
32 is invertible. It follows that ỹ − y− can be expressed, from the last equation

of (3.9), as a smooth function of (w, x̃, z̃), so the map F12 can be written in the
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cross-form as

u = μ̂ + ax̃ + a12w + a13z̃ + O(x̃2 + w2 + z̃2),

v − v̂+ = a21x̃ + a22w + a23z̃ + O(x̃2 + w2 + z̃2),

ỹ − ŷ− = a31x̃ + a32w + a33z̃ + O(x̃2 + w2 + z̃2),

(3.10)

where the coefficients v̂+, ŷ−, μ̂, a, and aij change uniformly-continuously when the
system f is perturbed, and for the original system f , we have v̂+ = v+, ŷ− = y−, and
μ̂ = 0. Since it does not cause ambiguity, in further references to (3.10) we use v+
and y− instead of v̂+ and ŷ−. Note that the coefficient a �= 0 is exactly the derivative
defined in (2.6).

Since Wu
loc(O1) is given by {(x̃ = 0, z̃ = 0)} and Ws

loc(O2) is given by {(u =
0,w = 0)}, a fragile heteroclinic corresponding to the intersection of F12(W

u
loc(O1))

and Ws
loc(O2) persists for a perturbation of f if and only if μ̂ = 0. More precisely,

μ̂ is the u-coordinate of the point of the intersection of F12(W
u
loc(O1)) with {w = 0}.

This intersection is transverse by condition C1, from which one infers that the ratio of
|μ̂| to the distance between F12(W

u
loc(O1)) and Ws

loc(O2) tends (uniformly in some
C2-neighborhood of f ) to a finite non-zero limit value when μ̂ → 0. Recall that
we defined the splitting parameter μ(f ), whose absolute value equal the distance
between F12(W

u
loc(O1)) and Ws

loc(O2) and which enters Theorems 2 – 6. By scaling
the variable u, we can always obtain

lim
μ→0

μ̂

μ(f )
= 1, or μ̂ = μ + o(μ). (3.11)

If r � 3, then when we consider parametric families fε , the coefficients of (3.10) are
at least C1 with respect to ε. When the family is generic or proper, μ = μ(fε) is one
of the parameters, and we have (for r � 3)

∂μ̂

∂μ

∣∣∣∣
μ=0

= 1.

It follows that in this case we can make a smooth change of parameters such that
μ̂ = μ.

The Taylor expansion of the other transition map F21 : (ũ, ṽ, w̃) 	→ (x, y, z),
which is defined for (ũ, ṽ, w̃) near M−

2 = (u−,0,w−) and takes values (x, y, z) near
M+

1 = (x+,0, z+), is given by

x − x+ =b′
11(ũ − u−) + b′

12ṽ + b′
13(w̃ − w−) + O((ũ − u−)2 + ṽ2 + (w̃ − w−)2),

y =b′
21(ũ − u−) + b′

22ṽ + b′
23(w̃ − w−) + O((ũ − u−)2 + ṽ2 + (w̃ − w−)2),

z − z+ =b′
31(ũ − u−) + b′

32ṽ + b′
33(w̃ − w−) + O((ũ − u−)2 + ṽ2 + (w̄ − w−)2),

(3.12)
where b′

ij are some constants. Arguing as for the map F12 above, one can use the as-

sumption that F−1
21 (Ws

loc(O1)) �Fuu �= ∅ from condition C2 to deduce that detb′
23 �=
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0 (note that the leaf of the foliation Fuu through M−
2 is given by (ũ = u−, ṽ = 0) and

Ws
loc(O1) is given by {y = 0} here). Consequently, F21 can be written in the following

cross-form:

x − x+ = b(ũ − u−) + b12ṽ + b13y + O((ũ − u−)2 + ṽ2 + y2),

w̃ − w− = b21(ũ − u−) + b22ṽ + b23y + O((ũ − u−)2 + ṽ2 + y2),

z − z+ = b31(ũ − u−) + b32ṽ + b33y + O((ũ − u−)2 + ṽ2 + y2),

(3.13)

where b is the derivative defined by (2.3). All the coefficients in (3.13) change
uniformly-continuously when the system f is perturbed; if r � 3, then they are at
least C1 with respect to the perturbation parameters ε. Note that since b �= 0, we can
express ũ − u− as a function of (x − x+, ṽ, y) and rewrite (3.13) as

ũ − u− = b−1(x − x+ − b13y) + O(‖ṽ‖ + (x − x+)2 + y2),

w̃ − w− = O(|x − x+| + ‖ṽ‖ + ‖y‖),
z − z+ = b31b

−1(x − x+ − b13y) + b33y + O(‖ṽ‖ + (x − x+)2 + y2).

(3.14)

3.3 First-return maps and cone field lemma

We can now find a formula for the first-return map Tk,m = F21 ◦ Fm
2 ◦ F12 ◦ Fk

1 .
Combining (3.5) and (3.10), we obtain a formula for the map F12 ◦ Fk

1 . Namely, by
substituting the last equation of (3.10) (ỹ as a function of x̃, w, and z̃) into the first
and the last equations of (3.5), we can express x̃ and z̃ as functions of (x, z,w):

x̃ = λkx + o(λk), z̃ = o(λk).

After that, we substitute these formulas into the rest equations in (3.5) and (3.10), and
find that there exist smooth functions

h̃1(x, z,w) = O(‖w‖) + o(λk), h̃2(x, z,w) = o(γ̂ −k),

h̃3(x, z,w) = O(‖w‖ + |λ|k),

such that, for sufficiently large k, a point (x, y, z) from a small neighborhood of M+
1

is taken by the map F12 ◦ Fk
1 to a point (u, v,w) in a small neighborhood of M+

2 if
and only if

u = μ̂ + aλkx + h̃1(x, z,w)

y = h̃2(x, z,w), v − v+ = h̃3(x, z,w).
(3.15)

Similarly, combining (3.7) and (3.14) yields that there exist smooth functions

ĥ0i (x − x+, ȳ) = O((x − x+)2 + y2) (i = 1,2),

ĥ1,3(x, v, y) = o(γ −m), ĥ2(x, v, y) = o(λ̂m),
(3.16)
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such that, for sufficiently large m, a point (u, v,w) from a small neighborhood of
M+

2 is taken by the map F21 ◦Fm
2 to a point (x, y, z) in a small neighborhood of M+

1
if and only if

u = γ −m(u− + b−1(x − x+ − b13y + ĥ01(x − x+, y))) + ĥ1(x, v, y),

z − z+ = b31b
−1(x − x+ − b13y) + b33y + ĥ02(x − x+, y) + ĥ2(x, v, y),

w = ĥ3(x, v, y).

(3.17)

Let us now consider the first-return map Tk,m = F21 ◦Fm
2 ◦F12 ◦Fk

1 for sufficiently
large positive integers k and m that takes a point (x, y, z) from a small neighborhood
of M+

1 to its image (x̄, ȳ, z̄). To obtain a formula for this map, we replace (x, y, z)

in (3.17) by (x̄, ȳ, z̄) and combine it with (3.15). More specifically, from the system
comprised by the last equations of (3.15) (for v) and (3.17) (for w) we can express
v and w as smooth functions of (x, x̄, z, ȳ). By substituting these functions into the
rest of the equations (3.15) and (3.17), we find that there exist functions

h1(x, x̄, z, ȳ) = o(λk) + o(γ −m), h2(x, x̄, z, ȳ) = o(λ̂m),

h3(x, x̄, z, ȳ) = o(γ̂ −k),

such that Tk,m(x, y, z) = (x̄, ȳ, z̄) if and only if

x̄ − x+ = bγ mμ̂ − bu− + abλkγ mx + b13ȳ − ĥ01(x̄ − x+, ȳ)

+ γ mh1(x, x̄, z, ȳ),

z̄ − z+ = b31b
−1(x − x+ − b13ȳ) + b33ȳ + ĥ02(x̄ − x+, ȳ)

+ h2(x, x̄, z, ȳ),

y = h3(x, x̄, z, ȳ).

(3.18)

After the coordinate transformation

X = x − x+ − b13y, Y = y,

Z = z − z+ − b31b
−1(x − x+ − b13y) − b33y − ĥ02(x − x+, y)

(3.19)

the map Tk,m assumes the form

X̄ = bγ mμ̂ + abλkγ mx+ − bu− + abλkγ mX + φ̂0(X̄, Ȳ )

+ γ mφ̂1(X, X̄, Ȳ ,Z),

Y = φ̂2(X, X̄, Ȳ ,Z), Z̄ = φ̂3(X, X̄, Ȳ ,Z),

(3.20)

where

φ̂0 = O(X̄2 + Ȳ 2), (3.21)
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i.e., φ̂0 vanishes at (X̄, Ȳ ) = 0 along with the first derivatives, and

‖φ̂1‖C1 = o(λk) + o(γ −m), ‖φ̂2‖C1 = o(γ̂ −k), ‖φ̂3‖C1 = o(λ̂m). (3.22)

By construction, these estimates are uniform for all systems C2-close to f , and when
the system is at least C3-smooth, the same estimates are also true for the first deriva-
tives with respect to parameters ε. We note also that in the coordinates (3.19) we have
the local stable manifold of O1 and the image of the local unstable manifold of O2

straightened:

Ws
loc(O1) : {Y = 0} and F21(W

u
loc(O2)) : {Z = 0} (3.23)

(one can see this from that the equation for F21(W
u
loc(O2)) in the (x, y, z) coordinates

can be obtained by taking the limit m → ∞ in (3.17)).
We stress that the first-return map must take points from a small neighborhood

of M+
1 in U01 to a small neighborhood of M+

1 , which corresponds to small values
of (X,Y,Z) and (X̄, Ȳ , Z̄). We further denote this neighborhood where we want the
first-return maps to be defined by

� = [−δ, δ] × [−δ, δ]d1 × [−δ, δ]d−d1−1. (3.24)

For (X, Ȳ ,Z) ∈ �, we can assure that Y and Z̄ are small in (3.20) by taking k and
m sufficiently large. However, to have X̄ small (i.e. X̄ = O(δ)) one needs some addi-
tional restriction on possible values of k and m.

In the next section we will consider the first-return maps near the unperturbed
cycles �, which corresponds to μ = μ̂ = 0 in (3.20) (see (3.11)). In this case, the
O(δ) smallness of both X̄ and X in the first equation of (3.20) implies that the map
Tk,m at μ = 0 acts from � to an O(δ)-neighborhood of M+

1 in U01 only when there
is a certain balance between k and m, namely

abλkγ m = α + O(δ), (3.25)

where α = bu−/x+ �= 0 is the quantity introduced in condition (2.4).
Thus, λkγ m must be uniformly bounded in this case, and hence φ̂1 = o(γ −m)

in (3.22). Consequently, the derivative of the right-hand side of the first equation
of (3.20) with respect to X̄ is of order O(δ) + o(1)k,m→∞, so X̄ can be expressed
as a function of (X, Ȳ ,Z). Therefore, for sufficiently large k, m such that (3.25) is
satisfied, formula (3.20) for Tk,m at μ = 0 implies that for a point (X,Y,Z) ∈ � we
have (X̄, Ȳ , Z̄) = Tk,m(X,Y,Z) if and only if the points are related by the cross-map
T ×

k,m : (X, Ȳ ,Z) 	→ (X̄, Y, Z̄) given by

X̄ = abλkγ mx+ − bu− + abλkγ mX + φ1(X, Ȳ ,Z),

= abλkγ mx+ − bu− + (α + O(δ))X + φ1(X, Ȳ ,Z),

Y = φ2(X, Ȳ ,Z), Z̄ = φ3(X, Ȳ ,Z),

(3.26)
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where

φ1 = O(δ2) + o(1)k,m→∞,
∂φ1

∂(X, Ȳ ,Z)
= O(δ) + o(1)k,m→∞,

‖φ2‖C1 = o(γ̂ −k), ‖φ3‖C1 = o(λ̂m).

(3.27)

The following result characterizes the action of the derivative DTk,m of the maps
Tk,m at μ = 0. We will further use the notation (�X,�Y,�Z) for vectors in the
tangent space to �.

Lemma 3.1 Let μ = 0. Given any positive K < 1, for all sufficiently small δ and large
(k,m) satisfying (3.25), the cone fields on �

Ccu = {(�X,�Y,�Z) : ‖�Z‖� K(|�X| + ‖�Y‖)}, (3.28)

Cuu = {(�X,�Y,�Z) : max{|�X|,‖�Z‖}� K‖�Y‖}, (3.29)

are forward-invariant in the sense that if a point M ∈ � has its image M̄ = Tk,m(M)

in �, then the cone at M is mapped into the cone at M̄ by DTk,m; and the cone fields

Ccs = {(�X,�Y,�Z) : ‖�Y‖ � K(|�X| + ‖�Z‖)}, (3.30)

Css = {(�X,�Y,�Z) : max{|�X|,‖�Y‖}� K‖�Z‖}, (3.31)

are backward-invariant in the sense that if a point M̄ ∈ � has its preimage M =
T −1

k,m(M̄) in �, then the cone at M̄ is mapped into the cone at M by DT −1
k,m. Moreover,

vectors in Cuu and, if |α| > 1, also in Ccu are expanded by DTk,m; vectors in Css and,
if |α| < 1, also in Ccs are contracted by DTk,m.

Proof Let us establish the backward invariance of Css and Ccs . Take M̄ = (X̄, Ȳ , Z̄) ∈
� such that T −1

k,m(M̄) = M ∈ � for some (k,m). Take a vector (�X̄,�Ȳ ,�Z̄) in the

tangent space at the point M̄ . Let (�X,�Y,�Z) = DT −1
k,m(�X̄,�Ȳ ,�Z̄).

It follows from (3.26) and (3.27) that

�X̄ = (α + O(δ) + o(1)k,m→∞)�X + (O(δ) + o(1)k,m→∞)�Ȳ

+ (O(δ) + o(1)k,m→∞)�Z,

�Y = o(γ̂ −k)�X + o(γ̂ −k)�Ȳ + o(γ̂ −k)�Z,

�Z̄ = o(λ̂m)�X + o(λ̂m)�Ȳ + o(λ̂m)�Z.

(3.32)

Thus, there exists a constant C such that if k and m are large enough, then

(|α| − Cδ)|�X| � |�X̄| + Cδ‖�Ȳ‖ + Cδ‖�Z‖, (3.33)

|�X̄| � (|α| + Cδ)|�X| + Cδ‖�Ȳ‖ + Cδ‖�Z‖, (3.34)

‖�Y‖ = o(γ̂ −k)(|�X| + ‖�Ȳ‖ + ‖�Z‖), (3.35)

‖�Z̄‖ = o(λ̂m)(|�X| + ‖�Ȳ‖ + ‖�Z‖). (3.36)
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Let (�X̄,�Ȳ ,�Z̄) ∈ Css . Since K < 1, we have

max{|�X̄|,‖�Ȳ‖}� ‖�Z̄‖.
Now, it follows from (3.36) that

‖�Z̄‖ = o(λ̂m)(|�X| + ‖�Z‖) (3.37)

and, hence,

|�X̄| + ‖�Ȳ‖ = o(λ̂m)(|�X| + ‖�Z‖).
We substitute these estimates into (3.33) and (3.35) and obtain

|�X| = O(δ)‖�Z‖ and ‖�Y‖ = o(γ̂ −k)‖�Z‖,
i.e., for any fixed choice of the constant K , if k and m are large enough and δ is small
enough, the vector (�X,�Y,�Z) lies in Css at the point M , as required. Equation
(3.37) implies the contraction in Css if m is large enough.

Similar arguments are applied when (�X̄,�Ȳ ,�Z̄) ∈ Ccs . Here, we have

‖�Ȳ‖ � |�X̄| + ‖�Z̄‖.
Substituting this into (3.34) and (3.36) gives

|�X̄| � (|α| + O(δ))|�X| + O(δ)‖�Z‖,
‖�Z̄‖ = o(λ̂m)(|�X| + ‖�Z‖), (3.38)

for sufficiently small δ and sufficiently large m, and, hence,

‖�Ȳ‖ � (|α| + 1)|�X| + ‖�Z‖.
We substitute the last estimate into (3.35) and obtain

‖�Y‖ = o(γ̂ −k)(|�X| + ‖�Z‖),
i.e., for any fixed choice of the constant K , if k is large enough, the vector
(�X,�Y,�Z) lies in Ccs at the point M , as required. Equation (3.38) implies the
contraction in Ccs if |α| < 1 and m is large enough and δ is small enough.

The proof of the forward invariance of Cuu and Ccu is done in the same way, as
everything is symmetric here with respect to the change of Tk,m to T −1

k,m. �

4 Blenders near type-I heterodimensional cycles. Proof of Theorem 1

In this section we obtain a detailed description of the blenders that may appear near
a type-I heterodimensional cycle, which is summarized in Propositions 4.4 and 4.5
below. These two propositions together imply Theorem 1. Throughout this section,
we do not perturb the system f in this theorem, i.e., the fragile heteroclinic is not split,
so μ̂ = 0 in (3.15). We consider non-degenerate type-I cycles, which means that |α| =
|bu−/x+| �= 1 and ax+u− > 0 in (3.20). We also assume that θ = − ln |λ|/ ln |γ | is
irrational.
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4.1 Blenders with activating pairs

Definition 4.1 (Proper crossing) Consider a cube Q = {(x1, . . . , xd) | xi ∈ Ii} ⊂ R
d ,

where Ii are closed intervals in R. A k-dimensional disc S is said to cross Q if the
intersection S ∩ Q is given by (xik+1, . . . , xid ) = s(xi1 , . . . , xik ), where (i1, . . . , id ) is
some permutation of (1, . . . , d), and s is a smooth function defined on Ii1 × · · ·× Iik .
It crosses Q properly with respect to a cone field C defined on Q if the tangent spaces
of S ∩ Q lie in C.

For example, a disc S crossing � properly with respect to Css in Lemma 3.1 is the
graph of some smooth function (X,Y ) = s(Z), which is defined on [−δ, δ]d−d1−1

and whose tangent spaces lie in Css .
For an invariant cone field C, denote by dim(C) the largest possible dimension of

a linear subspace of the tangent space that can be contained in C (at each point where
C is defined).

Definition 4.2 (Activating pair) A pair (Q,C) consisting of a cube and a cone field
is called an activating pair for a cs-blender � if dim(C) = dimWs(�) − 1 and if
any disc S crossing Q properly with respect to C intersects Wu(�). Similarly, a pair
(Q,C) is an activating pair for a cu-blender � if dim(C) = dimWu(�) − 1 and any
disc S crossing Q properly with respect to C intersects Ws(�). The cube Q is called
an activating domain.

Remark 4.3 Every disc crossing Q properly with respect to C belongs to the set Dss of
Definition 1.9 in the case of a cs-blender, or to the set Duu in the case of a cu-blender.
Thus, the activating pair specifies the position of robust non-transverse intersections.
The cone field C is the field Css (for the cs-blender) or Cuu (for the cu-blender) from
the definition of the standard blender in the Appendix.

Note that any disc C1-close to S in the above definition is also a properly crossing
disc, and hence intersects the invariant manifold of the blender. In particular, if � is
a cs-blender and S is a piece of the stable manifold Ws(�′) of some hyperbolic basic
set �′, then we obtain robust non-transverse intersection of Wu(�) with Ws(�′).
If at the same time we have Ws(�) � Wu(�′) �= ∅, then robust heterodimensional
dynamics emerge. Similar arguments hold in the case of a cu-blender.

Recall that � defined in (3.24) is a cube around the robust heteroclinic point M+
1 .

Proposition 4.4 Let � be a non-degenerate cycle of type I, with irrational θ . If
|α| < 1, then there exists arbitrarily close to � an index-d1 cs-blender �cs with an
activating pair (�′,Css), where �′ is a subcube of � with the center at M+

1 , and

Css = {(�X,�Y,�Z) : max(|�X|,‖�Y‖) <
q|α|

4
‖�Z‖}. (4.1)

When |α| > 1, one immediately gets a cu-blender of index d1 + 1 by applying the
above proposition due to the system obtained by the time reversal. However, the cor-
responding activating domain would lie near O2 but not O1 (the time-reversal also
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interchanges O1 and O2). This would not match with the generalization, Proposi-
tion 4.12, which is the main tool used for showing the existence of blenders in the
saddle-focus and double-focus cases. So, we prove the following propoasition about
the cu-blender with an activating domain �′ near O1 as in the case |α| < 1.

Proposition 4.5 Let � be a non-degenerate cycle of type I, with irrational θ . If |α| >
1, then there exists, arbitrarily close to �, an index-(d1 + 1) cu-blender �cu with an
activating pair (�′,Cuu), where �′ is a subcube of � with the center at M+

1 , and

Cuu = {(�X,�Y,�Z) : max{|�X|,‖�Z‖}� q|α|−1

4
‖�Y‖}. (4.2)

Below, in the proof of these propositions, we establish the existence of blenders
in the sense of the “operational” Definition 1.9. However, the construction is explicit,
and the obtained blenders are standard in the sense of Definition A.1, as we show in
Proposition prop:stanble.

4.2 Finding cs-blenders when |α| < 1. Proof of Proposition 4.4

Recall that the cube � defined in (3.24) is the region for which we consider the first-
return maps Tk,m. We start with finding hyperbolic sets for the collection of the return
maps in �, which can be candidates for blenders. Consider the set of pairs (k,m) of
sufficiently large integers:

PN = {(k,m) : k > N,m > N and |abλkγ mx+ − bu−|� 2

3
(1 − |α|)δ}. (4.3)

Note that this set is non-empty for any N and δ > 0: because θ = − ln |λ|/ ln |γ | is
irrational, the set λkγ m is dense among positive reals, hence, since abx+ and bu−
have the same sign by the assumption of the theorem (we consider the cycles of type
I), abλkγ mx+ can be made as close as we want to bu− for arbitrarily large k and m.

By construction, the estimate (3.25) is satisfied for every (k,m) ∈ PN . Therefore,
for every such (k,m) the relation between the coordinates (X,Y,Z) ∈ � of a point
in the domain of definition of the first-return map Tk,m and the coordinates (X̄, Ȳ , Z̄)

of its image by Tk,m is given by (3.26).
Let us denote by T ×

k,m : (X, Ȳ ,Z) 	→ (X̄, Y, Z̄) the cross-map (3.26). Since |α| <

1, comparing (4.3) with the X-equation in (3.26), one sees that for every (k,m) ∈PN ,
with N sufficiently large and δ sufficiently small, we have X̄ ∈ [−δ, δ]. On the other
hand, it is obvious that (Y, Z̄)-coordinates lie in [−δ, δ]d−1 for all sufficiently large k

and m, due to the strong contraction given by (3.26). Thus, for any (k,m) ∈ PN with
sufficiently large N and m, the cross-map T ×

k,m satisfies

T ×
k,m(�) ⊂ �.

It also follows from |α| < 1 and (3.26) that the cross-map is contracting on �, i.e.,

∥∥∥∥ ∂(X̄, Y, Z̄)

∂(X, Ȳ ,Z)

∥∥∥∥ < 1.
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By Shilnikov lemma on the fixed point in a direct product of metric spaces (Theo-
rem 6.2 in [58]), these two facts immediately imply

Lemma 4.6 For any sequence {(ks,ms)}s∈Z of pairs (k,m) from PN , there exists a
unique sequence of points {Ms = (Xs,Ys,Zs)}s∈Z in � such that Ms+1 = Tks,ms Ms

for every s ∈ Z.

Proof By definition of the cross-map, a sequence of points {Ms = (Xs,Ys,Zs)} in �

satisfies

Ms+1 = Tks,ms Ms (4.4)

if and only if

(Xs+1, Ys,Zs+1) = T ×
ks ,ms

(Xs,Ys+1,Zs).

Thus, the sought sequence {(Xs,Ys,Zs)}s∈Z is a fixed point of the map {(Xs,Ys,

Zs)}s∈Z 	→ {(X̃s, Ỹs , Z̃s)}s∈Z (acting on the space of sequences of points in �) which
is defined by the rule

(X̃s+1, Ỹs , Z̃s+1) = T ×
ks ,ms

(Xs,Ys+1,Zs).

Obviously, this map is a contraction (because each of the maps T ×
ks ,ms

is a contraction
on �), so the fixed point indeed exists and is unique. �

We call the sequence {(ks,ms)}s∈Z the coding of the point M0. Lemma 4.6 es-
tablishes the existence of an invariant set � whose intersection with � is in one-to-
one correspondence with the set of all codings formed from the pairs (k,m) ∈ PN .
Namely, a point M0 lies in � ∩ � if and only if there is a coding {(ks,ms) ∈ PN }s∈Z
such that the points defined by

Ms =
{

Tks−1,ms−1 ◦ · · · ◦ Tk0,m0M0 for s > 0

T −1
k−s ,m−s

◦ · · · ◦ T −1
k−1,m−1

M0 for s < 0

all lie in �. The set � is the union of the orbits of all such points M0 ∈ � by the
system f .

We are interested in a certain closed subset �J ⊂ � which corresponds to the
set of codings with pairs (k,m) taken from some finite subset J ⊂ PN (so the dy-
namics on �J correspond to the full shift with this finite set of symbols). It follows
from Lemma 3.1 that this set is a locally maximal, transitive hyperbolic set and, also,
partially-hyperbolic with a 1-dimensional central (weakly-hyperbolic) direction. In
summary, we have

Lemma 4.7 Let |α| < 1 and J be any finite subset of PN . Then, there exists a hyper-
bolic basic set �J of index d1 near the heterodimensional cycle � such that it is in
one-to-one correspondence with the set of codings {(ks,ms) ∈ J }s∈Z.
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Remark 4.8 The intersection �J ∩� is located in a finite union of “horizontal strips”
in �. Indeed, one sees from (3.26) that the domains of Tk,m with (k,m) ∈ PN are
given by the strips:

σk,m = {(X,Y,Z) | X ∈ [−δ, δ], Y ∈ φ2(X, [−δ, δ]d1 ,Z),Z ∈ [−δ, δ]d−d1−1}.
(4.5)

Since φ2 = o(γ̂ −k), these strips accumulate on {Y = 0} and strips corresponding to
different (k,m) are disjoint. By construction, we have

�J ∩ � ⊂
⋃

(k,m)∈J
σk,m =: �J . (4.6)

Every point whose backward orbit stays in �J lies in Wu(�J ), and every point
whose forward orbit stays in �J lies in Ws(�J ). This property holds for any C1-
close system since the hyperbolic set persists under C1-small perturbations.

Remark 4.9 For every point M ∈ �J , we can define its local stable manifold as a
connected piece of Ws(�J ) ∩ � through M , and the local unstable manifold as a
connected piece of Wu(�J ) ∩ � through M . If M ∈ σk,m, then Ws

loc(M) ⊂ σk,m.
Moreover, since the tangent to Ws

loc(M) at any point lies in the stable cone Ccs ,
it follows that Ws

loc(M) is a “horizontal disc” of the form Y = ξ s
M(X,Z), where

the smooth function ξ s
M is defined for all X ∈ [−δ, δ], Z ∈ [−δ, δ]d−d1−1. Similarly,

Wu
loc(M) is a “vertical disc” of the form (X,Z) = ξu

M(Y ), where ξu
M is defined for

all Y ∈ [−δ, δ]d1 . In particular, it follows from (3.23) that for each M there exist
transverse intersections

Wu
loc(M) ∩ Ws

loc(O1) �= ∅ and Ws
loc(M) ∩ F21(W

u
loc(O2)) �= ∅.

Now let us find a subset J such that the corresponding hyperbolic set �J is a
cs-blender. We will define a cube �′ ⊂ � and take discs which cross �′ properly
with respect to the cone field Css (see Definition 4.1) given by Lemma 3.1 (with an
appropriate K in its definition to be determined). We will show that any such disc
S intersects the unstable manifold Wu(�J ) (and this property persists at C1-small
perturbations of the system).

Recall that by Remark 4.8, any point whose entire backward orbit by Tk,m stays
in �J belongs to Wu(�J ). Therefore, we will have the desired property that S ∩
Wu(�J ) �= ∅ by showing below that any disc S crossing �′ properly with respect to
Css contains a points whose entire backward orbit stays in �J .

Take any positive q < (1 − |α|)/2, and define

δ′ = qδ. (4.7)

Lemma 4.10 There exists a finite subset Jδ′ ⊂ PN such that, if a (d − d1 − 1)-
dimensional disc S crosses

�′ := � ∩ {−δ′ � X � δ′} (4.8)
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Fig. 9 The blue regions depict
intersections �′ ∩ Tk,m(�′)
with (k,m) ∈ Jδ′ . For any disc
(or curve in this three
dimensional figure) crossing �′
properly, it must intersect at
least one of the three blue
regions. Hence its preimage
contains a piece crossing �′
(Color figure online)

properly with respect to the cone field Css defined in (4.1), then one can find a pair
(k,m) ∈ Jδ′ such that the preimage T −1

k,m(S) contains a disc crossing �′ properly
with respect to Css .

The proof of the lemma is postponed until the end of this section. See Fig. 9 for
an illustration. The lemma shows that given any properly crossing disc S, there is a
sequence of discs defined by Si+1 = T −1

ki ,mi
(Si)∩�′ with S0 := S and some sequence

(ki,mi) ∈ Jδ′ . By construction, this gives a sequence of nested closed sets

Ŝi := Tk0,m0 ◦ · · · ◦ Tki−1,mi−1(Si) ⊂ S.

The intersection of all Ŝi contains a point M whose backward orbit stays in
�Jδ′ defined by (4.6) (in fact, this point is unique due to the contraction in Z-
directions.) Hence, we have M ∈ Wu(�Jδ′ ), where �Jδ′ is the hyperbolic set given
by Lemma 4.7 associated with the set Jδ′ . Obviously, Lemma 4.10 holds for any C1-
close system for the same set Jδ′ . Therefore, we obtain a cs-blender of Definition 1.9.

Since the cone field Css is backward-invariant by Lemma 3.1, the preimage of any
disc proper with respect to Css is still proper. Hence, in order to prove Lemma 4.10
we only need to show that any properly crossing disc has a preimage which crosses
�′. The key procedure in controlling the preimage of the disc S is to show that
the X-coordinates of its points always lie in the domain σk,m of some return map
Tk,m (the so-called “covering property”, as described in the definition of a standard
blender in the Appendix, see more discussion in [7, 17, 48]). This amounts to prove
the Lemma 4.11, which we formulate below.

Denote the length of an interval E by |E|, and the affine part of the X-equation in
(3.26) by

Rk,m(X) := abλkγ mx+ − bu− + abλkγ mX. (4.9)

Recall that δ is the size of the domain of the return maps Tk,m as in (4.5), and δ′ is
the size of the smaller cube �′ ⊂ �, which depends on δ as given by (4.7).

Lemma 4.11 Let |α| < 1. There exists, for all sufficiently large N and sufficiently
small δ, a finite subset Jδ′ = {(kj ,mj )}nj=1 ⊂ PN such that the intervals Ej :=
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Rkj ,mj
([−δ′, δ′]) satisfy

n⋃
j=1

int (Ej ) ⊃ [−δ′, δ′] (4.10)

and

|Ej ∩ Ej+1| > δ′|α|
2

, j = 1, . . . n − 1. (4.11)

Proof One notes that since θ is irrational, the set of numbers kθ − m where k

and m are even positive integers is dense in R. Thus, given any ρ ∈ R, we can
find a sequence {(ki(ρ),mi(ρ))}i∈N of pairs of positive even integers such that
ki(ρ),mi(ρ) → ∞ and

ki(ρ)θ − mi(ρ) → − ln

(
bu− + δρ

abx+

)
ln−1 |γ |

as i → ∞ (the logarithm is defined for small δ since ax+u− > 0 and b �= 0 by our
assumptions). Since ki and mi are even, we have |λ|ki = λki and |γ |mi = γ mi even
when λ or γ are negative, so we obtain that

1

δ
(abλki(ρ)γ mi(ρ)x+ − bu−) → ρ (4.12)

as i → ∞. It follows from (4.3) that for any

ρ ∈
(

−2

3
(1 − |α|), 2

3
(1 − |α|)

)
=: Ihyp, (4.13)

we have

PN(ρ) := {(ki(ρ),mi(ρ)) : ki(ρ),mi(ρ) > N} ⊂ PN. (4.14)

In what follows we construct Jδ′ by taking pairs (k,m) from PN(ρ) for a finite set
of values of ρ.

Recall α = bu−/x+. Note from (4.9) and (4.12) that, for any (ki(ρ),mi(ρ)) ∈
PN(ρ), we have

Rki(ρ),mi(ρ)(X) = ρδ +
(

α + ρδ

x+

)
X + o(1)i→∞.

Consequently, the end points of Eki(ρ),mi(ρ) = Rki(ρ),mi(ρ)([−δ′, δ]) are

ai(ρ) = ρδ − δ′
(

α + ρδ

x+

)
+ o(1)i→∞ and

bi(ρ) = ρδ + δ′
(

α + ρδ

x+

)
+ o(1)i→∞.
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The length of each Eki(ρ),mi(ρ) satisfies

|Eki(ρ),mi(ρ)| = |bi − ai | = 2δ′
∣∣∣∣α + ρδ

x+

∣∣∣∣ + o(1)i→∞ > δ′|α| (4.15)

for all sufficiently large i and sufficiently small δ.
We can now construct the desired set Jδ′ of pairs. Assume α > 0 for certainty. The

case of negative α is completely parallel.
Let n be the smallest integer not less than 4/|α| + 1. Take

ρj = −δ′

δ
+ (j − 1)2δ′

(n − 1)δ
j = 1, . . . , n.

The length of the intersections between two consecutive intervals Eki(ρj ),mi(ρj ) and
Eki(ρj+1),mi(ρj+1) are computed as

bi(ρj ) − ai(ρj+1) = (ρj − ρj+1)δ + δ′
(

2α + (ρj + ρj+1)δ

x+

)
+ o(1)i→∞

= − 2δ′

n − 1
+ δ′(2α + O(δ′)) + ci,

where ci = o(1)i→∞. Let us fix a large i = i∗ such that for all j = 1, . . . , n − 1 and
for all sufficiently small δ (hence sufficiently small δ′ by (4.7)), the last two terms
in the above equation satisfy δ′(2α + O(δ′)) + ci∗ > δ′α. By the choice of n, this
implies

bi∗(ρj ) − ai∗(ρj+1) >
δ′α
2

.

Since by construction one has −δ′ ∈ int (Eki∗ (ρ1),mi∗ (ρ1)) and −δ′ ∈
int (Eki∗ (ρn),mi∗ (ρn)), it follows that Jδ′ = {(kj ,mj ) := (ki∗(ρj ),mi∗(ρj ))}nj=1. �

Proof of Lemma 4.10 As we explained before Lemma 4.11, it suffices to show that
for any proper disc S there exists a pair (k,m) ∈ Jδ′ such that T −1

k,m(S) crosses �′.
As S crosses �′, it is a graph of a smooth function s = (sX, sY ) : [−δ, δ]d−d1−1 →
[−δ′, δ′] × [−δ, δ]d1 . We need to find some (k,m) ∈ Jδ′ such that, for any Z ∈
[−δ, δ]d−d1−1, there exist X ∈ [−δ′, δ′], Y ∈ [−δ, δ]d1 and Z̄ ∈ [−δ, δ]d−d1−1 which
satisfy (X,Y,Z) = T −1

k,m(sX(Z̄), sY (Z̄), Z̄). By formulas (3.26) and (4.9), this is
equivalent to solving the system of equations

sX(Z̄) = Rk,m(X) + φ1(X, sY (Z̄),Z), (4.16)

Y = φ2(X, sY (Z̄),Z), (4.17)

Z̄ = φ3(X, sY (Z̄),Z). (4.18)

According to the estimates (3.27), Y lies in [−δ, δ]d1 for all sufficiently large k as
required; also, Z̄ can be expressed from the last equation as a function of (X,Z):

Z̄ = φ̃3(X,Z)
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where ‖φ̃3‖C1 = o(λ̂m). Hence, to solve the above system it suffices to find X ∈
[−δ′, δ′] satisfying

Rk,m(X) − sX(φ̃3(X,Z)) + φ̃1(X,Z) = 0, (4.19)

where

φ̃1(X,Z) = φ1(X, sY (φ̃3(X,Z)),Z) = O(δ2) + o(1)k,m→∞. (4.20)

We claim that one can choose (k,m) ∈ Jδ′ such that for any fixed Z ∈ [−δ, δ]d−d1−1,
the left-hand side of (4.19) takes both positive and negative values when X runs over
[−δ′, δ′]. The lemma then follows by the intermediate value theorem.

Let us prove this claim. On one hand, the proper crossing with respect to Css means
that the range of sX lies in [−δ′, δ′], and, according to (4.1), the total change of sX is
bounded by

max
Z1,Z2∈[−δ,δ]d−d1−1

{|sX(Z1) − sX(Z2)|} <
δ′|α|

4
.

Since φ̃3([−δ′, δ′],Z) ⊂ [−δ, δ]d−d1−1 for large m, we obtain that sX(φ̃3([−δ′, δ′],
Z)) lies in some interval in [−δ′, δ′] of length less than δ′|α|/4.

On the other hand, Lemma 4.11 shows that the interiors of the intervals
Rk,m([−δ′, δ′]) with (k,m) ∈ Jδ′ cover the interval [−δ′, δ′] with overlaps larger than
δ′|α|/2. It follows that there exist pairs (k,m) ∈ Jδ′ with arbitrarily large k, m such
that the δ′|α|/8-neighbourhood of sX(φ̃3([−δ′, δ′],Z)) lies in int (Rk,m([−δ′, δ′]))
for all Z ∈ [−δ, δ]d−d1−1. Thus, the difference Rk,m(X) − sX(φ̃3(X,Z)) changes
its sign when X runs the interval [−δ′, δ′]. In fact, there exists C > 0 such that
Rk,m − sX runs from Cδ′ to −Cδ′. Therefore, by (4.20), the claim is proved when δ

is sufficiently small and k, m are sufficiently large. �

The preceding lemma gives us a cs-blender of index d1 with an activating pair
(�′,Css), and this blender can be taken arbitrarily close to the heterodimensional
cycle by taking N of PN sufficiently large. Proposition 4.4 follows immediately.

4.3 Finding cu-blenders when |α| > 1. Proof of Proposition 4.5

As mentioned before, instead of using the symmetry of the problem to obtain cu-
blenders in the |α| > 1 case, we make computations directly for the maps T −1

k,m in
order to get an activating pair with the same activating domain �′ defined in (4.8).

Proof of Proposition 4.5 Inverting the first equation in (3.26), we obtain the following
formula for the map T −1

k,m:

X = (α−1 + O(δ))X̄ + (aλkγ m)−1u− − x+ + ψ1(X̄, Ȳ ,Z),

Y = ψ2(X̄, Ȳ ,Z),

Z̄ = ψ3(X̄, Ȳ ,Z),

(4.21)
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where

ψ1 = O(δ2) + o(1)k,m→∞,
∂ψ1

∂(X, Ȳ ,Z)
= O(δ) + o(1)k,m→∞,

‖ψ2‖C1 = o(γ̂ −k), ‖ψ3‖C1 = o(λ̂m).

(4.22)

Observe that this formula has the same form as (3.26), with the replacement of α by
α−1 and the term (abλkγ mx+ − bu−) by the term ((aλkγ m)−1u− − x+). So, since
|α−1| < 1, we obtain the result by repeating the same arguments we used for the case
|α| < 1 – we only need to replace the cone field Css by Cuu, as we work with the
inverse map T −1

k,m. �

4.4 A criterion for the existence of blenders

Note that in proving Propositions 4.4 and 4.5, we did not use the full strength of the
estimates in (3.27). We essentially used the fact that the functions φ along with their
first derivatives go to 0 as δ → 0 and k,m → ∞. Additionally, we used the fact that
φ1 = o(δ) (hence φ̃1 = o(δ) in (4.20)) in the last line in the proof of Lemma 4.10.
With the above observation, we finish this section by the following summary which
is used later for the saddle-focus and double-focus cases.

Take small δ > 0 and let � = [−δ, δ] × [−δ, δ]dY × [−δ, δ]dZ be a cube in R
d for

some dY , dZ ∈ N satisfying 1 + dY + dZ = d . Let {Tn}∞n=1 be a sequence of maps
whose domains of definition σn lie in � and which satisfy

σi ∩ σj = ∅ and Ti(σi) ∩ Tj (σj ) ∩ � = ∅, i �= j.

Consider the map T : ⋃
n σn → R

d defined by T (X,Y,Z) = Tn(X,Y,Z) if (X,

Y,Z) ∈ σn.

Proposition 4.12 Suppose for every n and every (X,Y,Z) ∈ � we have (X̄, Ȳ , Z̄) =
Tn(X,Y,Z) ∈ � if and only if

X̄ = AnX + Bn + φ1(X, Ȳ ,Z;n),

Y = φ2(X, Ȳ ,Z;n),

Z̄ = φ3(X, Ȳ ,Z;n),

(4.23)

where the coefficients An and Bn and the functions φ defined on � may depend
on δ. Let ‖φ2,3‖C1 = o(1)δ→0 + o(1)n→∞, whereas φ1 = o(δ) + o(1)n→∞ and the
derivative of φ1 is o(1)δ→0 + o(1)n→∞.

Assume that there exists a neighborhood � of zero independent of δ such that the
set {Bn(δ)} is dense in � for each fixed small δ. Assume also that the set {An(δ)}
stays bounded away from 0, ±1, and ±∞ for all sufficiently small δ. Then, there
exists q ∈ (0,1) such that, for all sufficiently small δ, the map T in the cube �′ =
[−qδ, qδ] × [−δ, δ]dY × [−δ, δ]dZ ⊂ � has

• a cs-blender of index dY if |An| < 1 for all n, or
• a cu-blender of index (dY + 1) if |An| > 1 for all n.
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The blender has an activating pair (�′,C), where C is a field of cones around Z-
coordinates if the blender is center-stable, or around Y -coordinates if it is center-
unstable. The cone field C can be chosen independent of δ.

Note that in this paper, the maps Tn are the first-return maps Tk,m. So, they are ei-
ther iterations of a diffeomorphism or flow maps, depending on whether the system is
discrete-time or continuous-time. The original system has a blender equal to the orbit
of the blender of T . Like it is shown in Appendix for the blender of Proposition 4.4,
the blenders of Proposition 4.12 are standard in the sense of Definition A.1.

5 Local stabilization of heterodimensional cycles in the saddle case

In this section we prove Theorems 2–5 and Corollary 2. We conduct the proofs only
for the |α| < 1 case – the |α| > 1 case is dealt with by using the symmetry argument
(i.e., by considering the system obtained by the reversion of time) except for Theo-
rem 2, where Proposition 4.5 is additionally used. Depending on the situations, we
embed f into one- or two-parameter families that generically and properly unfold
the heterodimensional cycle of f . In the remaining part of this paper, we denote the
continuations of hyperbolic objects (e.g. O1,2 and �cs ) after a small perturbation by
the same letters and omit the term ‘continuation’.

5.1 Unfolding type-I cycles. Proof of Theorem 2

Recall that δ′ is the size of the subcube �′ ⊂ � and it is related to the size δ of � via
(4.7). Let us define two sequences of intervals

Iu
m =

(
γ −mu− − 1

2
|b−1γ −m|δ′, γ −mu− + 1

2
|b−1γ −m|δ′

)
, (5.1)

and

I s
k =

(
−aλkx+ − 1

2
|aλk|δ′,−aλkx+ + 1

2
|aλk|δ′

)
. (5.2)

The goal of this section is to prove the following general result for all saddle het-
erodimensional cycles, which not only implies Theorem 2 but also will be used in the
proof of Theorem 4 in Sect. 5.3.

Proposition 5.1 Let the system f have a non-degenerate saddle heterodimensional
cycle (of type I or II).

• Suppose f has an index-d1 cs-blender �cs with the activating pair (�′,Css) de-
fined in (4.8) and (4.1). Moreover, let the properties described in Remark 4.9 hold
for �cs , namely, Ws

loc(�
cs) intersects transversely any vertical disc that crosses

� properly with respect to Cuu, and Wu
loc(�

cs) intersects transversely Ws(O1).
Then,
– when μ̂ ∈ Iu

m, the index-d1 saddle O1 is homoclinically related to �cs , and
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– when μ̂ ∈ I s
k , there exist robust heterodimensional dynamics involving �cs and

a non-trivial hyperbolic basic set containing O2.
• Suppose f has an index-d2 cu-blender �cu with the activating pair (�′,Cuu),

where Cuu is defined in (4.2). Moreover, let Wu
loc(�

cu) intersect transversely any
horizontal disc that crosses � properly with respect to Css , and Ws

loc(�
cu) inter-

sect transversely Wu(O2). Then,
– when μ̂ ∈ I s

k , the saddle O2 is homoclinically related to �cu, and
– when μ̂ ∈ Iu

m, there exist robust heterodimensional dynamics involving �cu and
a non-trivial hyperbolic basic set containing O1.

For type-I cycles, Propositions 4.4 and 4.5 guarantee the existence of a cs-blender
�cs when |α| < 1, and a cu-blender �cu when |α| > 1. Thus, Proposition 5.1 gives

Proposition 5.2 Let the cycle � have type I and let θ be irrational.

• Let |α| < 1. Then the blender �cs has the same index as O1 and, when μ̂ ∈ Iu
m, the

saddle O1 is homoclinically related to �cs . If μ̂ ∈ I s
k , then there exists a persis-

tent non-transverse heteroclinic connection between Wu(�cs) and Ws(O2) and a
transverse heteroclinic intersection of Wu(O2) and Ws(�cs), i.e., there exist ro-
bust heterodimensional dynamics involving �cs and a non-trivial hyperbolic basic
set containing O2.

• Let |α| > 1. Then the blender �cu has the same index as O2 and, when μ̂ ∈ I s
k , the

saddle O2 is homoclinically related to �cu. If μ̂ ∈ Iu
m, then there exists a persis-

tent non-transverse heteroclinic connection between Wu(O1) and Ws(�cu) and a
transverse heteroclinic intersection of Wu(�cu) and Ws(O1), i.e., there exist ro-
bust heterodimensional dynamics involving �cu and a non-trivial hyperbolic basic
set containing O1.

This implies Theorem 2 as follows.

Proof of Theorem 2 Recall that μ̂ ∼ μ by (3.11), and all coefficients in formulas (5.1)
and (5.2) for the intervals Iu

m and I s
k depend continuously on the system. Thus, there

exists κ > 0 such that for any system g in a small neighborhood of f , we have μ̂ ∈ Iu
m

if

μ(g)γ (g)m ∈ [u−
0 − 1

2
b−1

0 δ′ + κ,u−
0 + 1

2
b−1

0 δ′ − κ]

and μ̂ ∈ Iu
m if

μ(g)λ(g)k ∈ [−a0x
+
0 − 1

2
a0δ

′ + κ,−a0x
+
0 + 1

2
a0δ

′ − κ],

where a0, b0, x+
0 , and u−

0 are the values of the corresponding coefficients for f . So,
Proposition 5.2 implies Theorem 2 immediately. �

Let us now prove Proposition 5.1. The first step is to investigate the iterations of
Wu

loc(O1) and Ws
loc(O2). Whether their iterates intersect the region ‘reserved’ for the

emergence of blenders is crucial for the stabilization of heterodimensional cycles.
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Lemma 5.3 For all sufficiently large k and m, and all sufficiently small δ (and hence
small δ′ by (4.7)), the follow results hold:

• When μ̂ ∈ Iu
m, the image Su

m := F21 ◦ F2 ◦ F12(W
u
1 ) of

Wu
1 := Wu

loc(O1) ∩ {‖y − y−‖ � δ}
is a ‘vertical’ disc of the form (X,Z) = s(Y ) for some smooth function s. The disc
Su

m crosses the cube �′ (defined in (4.8)) properly with respect to the cone field
Cuu defined in (4.2). In particular, Su

m intersects Ws
loc(O1) : {Y = 0} transversely,

i.e., O1 has a transverse homoclinic orbit when μ̂ ∈ Iu
m, and hence is contained in

a non-trivial hyperbolic basic set.
• When μ̂ ∈ I s

k , the preimage Ss
k := F−k

1 ◦ F−1
12 (Ws

2 ) of

Ws
2 := Ws

loc(O2) ∩ {‖v − v+‖� δ}
is a ‘horizontal’ disc of the form (X,Y ) = s(Z) for some smooth function s. The
disc Ss

k crosses �′ properly with respect to the cone field Css defined in (4.1). In
particular, Ss

k intersects F21(W
u
loc(O2)) : {Z = 0} transversely (see (3.23)), i.e.,

O2 has a transverse homoclinic orbit when μ̂ ∈ I s
k , and hence is contained in a

non-trivial hyperbolic basic set.

Proof (The first statement.) By formulas (3.10) and (3.17), for any (0, y,0) ∈ Wu
1 , we

have F21 ◦ Fm
2 ◦ F12(0, y,0) = (x̄, ȳ, z̄) if and only if

x̄ − x+ = bγ mμ̂ − bu− + b13ȳ + O((bγ mμ̂ − bu−)2 + ȳ2) + o(1)m→∞,

z̄ − z+ = b̂31γ
mμ̂ − b31u

− + b33ȳ + O((bγ mμ̂ − bu−)2 + ȳ2) + o(1)m→∞,

which after the coordinate transformation (3.19) recasts as

X̄ = bγ mμ̂ − bu− + O((bγ mμ̂ − bu−)2 + Ȳ 2) + o(1)m→∞,

Z̄ = O((bγ mμ̂ − bu−)2 + Ȳ 2) + o(1)m→∞.
(5.3)

By (5.1) we have

|bγ mμ̂ − bu−| < δ′

2
,

which for ‖Ȳ‖ � δ implies

|X̄| < δ′

2
+ O(δ2) + o(1)m→∞ < δ′ and ‖Z̄‖ = O(δ2) + o(1)m→∞ < δ.

This means that Su
m crosses �′. One also finds from (5.3) that

∂(X̄, Z̄)

∂Ȳ
= O(δ) + o(1)m→∞,
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which can be made sufficiently small so that the tangent spaces of Su
m ∩ � lie in Cuu.

So, the crossing is also proper with respect to Cuu. This completes the proof of the
first statement.

(The second statement.) According to (3.10), the preimage F−1
12 (Ws

2 ) is given by

x̃ = −a−1μ̂ − a13a
−1
11 z̃ + O(z̃2 + μ̂2),

ỹ = y− − a31a
−1μ̂ + (a33 − a13a31a

−1)z̃ + O(z̃2 + μ̂2),

By (3.5), we find in coordinates (3.19) the disc F−k
1 ◦ F−1

12 (Ws
2 ) ∩ � as

X = −a−1λ−k(μ̂ + O(μ̂2)) − x+ + o(1)k→∞,

Y = o(γ̂ −k),
(5.4)

where o(·) and O(·) terms are functions of (μ̂,Z), and the first derivatives satisfy

∂(X,Y )

∂Z
= o(1)k→∞. (5.5)

This disc crosses �′ if |X| < δ′ and ‖Y‖ < δ. One readily finds from (5.4) that
this happens when k is sufficiently large and

| − a−1λ−kμ̂ − x+| < δ′

2
,

which gives the intervals (5.2). By (5.5), the crossing is proper with respect to Css for
large k. �

Proof of Proposition 5.1 We only prove for the cs-blender �cs . In the case of the cu-
blender, the arguments are completely analogous. By assumption, the local stable

Fig. 10 For a cs-blender �cs satisfying the properties in Remark 4.9, there exist positive μ̂ values such
that some forward iterate of Wu

loc
(O1) intersects Ws(�cs) while the backward iterates of Ws

loc
(O2) leave

the neighborhood of the cycle. Here the green planes in �′ represent the local stable manifolds of points
in the blender �cs (Color figure online)
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Fig. 11 For a cs-blender �cs satisfying the properties in Remark 4.9, there exist negative μ̂ values such
that some backward iterate of Ws

loc
(O2) intersects Wu(�cs) and the forward iterates of Wu

loc
(O1) leave

the neighborhood of the cycle (Color figure online)

manifold of �cs intersects transversely (for μ = 0, hence for all small μ; see Fig. 10)
any vertical disc that crosses � properly with respect to Cuu, so it intersects trans-
versely F21 ◦ Fm

2 ◦ F12(W
u
loc(O1)) when μ̂ ∈ Iu

m (by the first item of Lemma 5.3).
Our assumption on �cs also gives us the existence of a transverse intersection of
Wu

loc(�
cs) and Ws

loc(O1), which proves that O1 and �cs are homoclinically related
for μ̂ ∈ Iu

m.
Now, let μ̂ ∈ I s

k . With the formula for F21(W
u
loc(O2)) in (3.23), the existence

of a non-trivial hyperbolic basic set containing O2 is given by the second item of
Lemma 5.3 (the existence of a transverse homoclinic to O2). Also by the same result,
we immediately find that O2 activates �cs , meaning the existence of a persistent non-
transverse heteroclinic connection between Ws(O2) and Wu(�cs) (see Fig. 11). It
remains to note that the non-empty transverse intersection of Ws(�cs) with Wu(O2)

is given by the assumption on �cs .
�

5.2 Nonstabilizability of type-I cycles. Proof of Theorem 3

By the assumption that the cycle is of type-I, we have λ > 0, γ > 0 and ax+u− > 0 at
μ = 0, and hence at all sufficiently small μ. We further assume that u− > 0 at μ = 0,
which means that ax+ > 0 too. It is clear from the proof that when u− < 0, all results
remain true after reversing the sign of μ. As mentioned before, we only consider the
|α| < 1 case.

We first prove the second part of the statement describing the situation at μ � 0.
It suffices to show that, at μ � 0, the image Fm ◦ F12(W

u
loc(O1)) does not enter the

domain of F21, i.e., it is outside a small neighborhood of M−
2 = (u−,0,w−) for any

sufficiently large m. Since Wu
loc(O1) is given by the equation (x = 0, z = 0), this is

equivalent (see (3.10) and (3.7)) to showing that the system of equations

u = μ̂ + a12w + O(w2), u = γ −mũ + o(γ m),

v = a22w + O(w2), ṽ = o(λ̂m),

y − y− = a32w + O(w2), w = o(γ m),
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does not have a solution (ũ, ṽ, w̃) near (u−,0,w−) for small (y −y−) and w, for any
sufficiently large m. A straightforward computation reduces the above system to

ũ = γ mμ̂ + o(1)m→∞.

Since we have here γ > 0, the above equation together with the relation (3.11) implies
that ũ � 0 for μ � 0 and sufficiently large m. Thus, by the assumption u− > 0, the
point (ũ, ṽ, w̃) never enters a small neighborhood of (u−,0,w−) indeed.

Now we switch to the case μ > 0. First, note that like above, one can easily see
(e.g. from equation (5.4) for F−k ◦F−1

12 (Ws
loc(O2))) that no point of Ws

loc(O2) has an
orbit that lies entirely in U for μ > 0. In particular, no heteroclinic orbits of intersec-
tion of Wu(O1) and Ws(O2) can lie entirely in U . Thus, given an orbit O that lies
entirely in U , we have two possibilities: ether O is one of the orbits L1,2 of the points
O1,2, or it intersects the δ-neighborhood � of the heteroclinic point M+

1 in U01. Let
Ms be the consecutive points of intersection of O with �; we have Ms+1 = Tks,ms Ms ,
where Tk,m is the first-return map given by (3.20) and (ks,ms) are positive integers.
The sequence Ms can be infinite in both directions, infinite in one direction, or finite;
let us consider the case where the sequence {Ms}s∈Z is infinite in both directions first.

Let us show that the set �̂ comprised by such orbits O is indeed a hyperbolic set
with index-d1 when μ > 0 (equivalently, when μ̂ > 0, see (3.11)). It follows from
(3.20) and Ms+1 ∈ � that

γ ms μ̂ + ax+λks γ ms = u− + O(δ).

Recall that we assumed γ > 0, λ > 0, ax+ > 0, u− > 0, and μ̂ > 0, so we obtain

0 < ax+λks γ ms < u− + O(δ). (5.6)

In particular, the numbers (ks,ms) are always such that λks γ ms is uniformly bounded.
Therefore, by the same argument we used to deduce formula (3.26) from (3.20)
at μ̂ = 0, we obtain for our case the following formula for Tks,ms : (X,Y,Z) 	→
(X̄, Ȳ , Z̄) (where we use coordinates (3.19)):

X̄ = bγ ms μ̂ + abλks γ ms x+ − bu− + abλks γ ms X + φ̃1(X, Ȳ ,Z),

Y = φ̃2(X, Ȳ ,Z), Z̄ = φ̃3(X, Ȳ ,Z),
(5.7)

where

φ̃1 = O(δ2) + o(1)k,m→∞,
∂φ̃1

∂(X, Ȳ ,Z)
= O(δ) + o(1)k,m→∞,

‖φ̃2‖C1 = o(γ̂ −k), ‖φ̃3‖C1 = o(λ̂m).

Multiplying |b/x+| to each term in (5.6) yields

|abλks γ ms | < |α| + O(δ) < 1 (5.8)

for all sufficiently small δ. So, we have exactly the same formula (3.32) for the deriva-
tive of Tks,ms (one should only replace α by abλks γ ms ). Also note that by shrinking
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the size of U , the values ks , ms can be made arbitrarily large. Now, we have the result
of Lemma 3.1, which along with (5.8), gives us the existence of invariant cone fields
Ccs and Cuu, which immediately implies that �̂ is a hyperbolic set with index-d1 (all
maps Tks,ms contract in (X,Z) and expand in Y ).

The results analogous to Remarks 4.8 and 4.9 also hold. In particular, every for-
ward orbit {Ms} that intersects � infinitely many times must belong to Ws

loc(�̂∩�),
while every backward orbit that intersects � infinitely many times must belong to
Wu

loc(�̂ ∩ �). Also, Wu
loc(�̂ ∩ �) intersects Ws

loc(O1) transversely, while Ws
loc(�̂ ∩

�) intersects F21(W
u
loc(O2)) transversely.

We can now go through various cases where the sequence Ms of consecutive in-
tersections of O with � is not infinite in both directions.

1. {Ms}0
s=−∞ is infinite backwards. As we just explained, this may happen only

when M0 ∈ Wu
loc(�̃ ∩ �) ∩ Ws

loc(O1) or M0 ∈ Wu
loc(�̃ ∩ �) ∩ Ws(O2). The lat-

ter case does not happen since no point of Ws
loc(O2) has an orbit entirely con-

tained in U for μ > 0, as we mentioned. In the former case, M0 is a hyperbolic
point of index d1 (since O and �̃ have the same index d1 and the intersection of
Wu

loc(�̃ ∩ �) and Ws
loc(O1) is transverse). We include all such orbits into the set

� of Theorem 3, along with the set �̃ and the orbit L1 (and orbits in Wu(L1)

which we consider below).
2. {Ms}∞s=0 is infinite forwards. This happens when M0 ∈ Ws

loc(�̃∩�)∩F21 ◦Fm
2 ◦

F12(W
u
loc(O1)) for some large m or when M0 ∈ Ws

loc(�̃ ∩ �) ∩ F21(W
u
loc(O2)).

The latter case, as the intersection is transverse, is in the complete agreement with
the statement of the Theorem. In the former case, M0 is a hyperbolic point of
index d1 because the intersection of Ws

loc(�̃ ∩ �) and F21 ◦ Fm
2 ◦ F12(W

u
loc(O1))

is transverse. Indeed, the disc F21 ◦Fm
2 ◦F12(W

u
loc(O1)) is given by equation (5.3)

where we have

bγ mμ̂ − bu− = O(δ)

because M0 ∈ �. From that, exactly like in Lemma 5.3, one obtains that the tan-
gent spaces of F21 ◦ F2 ◦ F12(W

u
loc(O1)) lie in Cuu, hence the transversality with

Ws
loc(�̃ ∩ �).

3. The sequence {Ms} is finite. This happens when M0 ∈ Ws(O1) ∩ F21(W
u
loc(O2))

or M0 ∈ Ws(O1) ∩ F21 ◦ F2 ◦ F12(W
u
loc(O1)). Since the tangents to Ws

loc(O1) :
{Y = 0} lie in the backward-invariant cone field Ccs , all its preimages by Tks,ms

also have tangents in Ccs , hence the intersections of Ws(O1) with F21(W
u
loc(O2))

and F21 ◦ F2 ◦ F12(W
u
loc(O1)) are transverse.

In all cases we have the agreement with the statement of the theorem. �

5.3 Unfolding a tied pair of type-I and -II cycles. Proof of Theorem 4

As can be seen from the proof of Theorem 3, the main reason that prevents the blender
from having homoclinic connections to both O1 and O2 is that, when one saddle
connects to the blender, the iterates of the local stable or unstable manifold of the
other leave the small neighborhood U of � (see Figs. 10 and 11). In what follows, we
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show that, if there exists a type-II cycle tied with �, then the leaving manifold can
return to U by following the robust heteroclinic orbit of the type-II cycle.

Let �̃ = L1 ∪ L2 ∪ �0 ∪ �̃1 be a heterodimensional cycle sharing the fragile hete-
roclinic orbit �0 with �. By definition, any generic one-parameter unfolding of � is
also a generic one for �̃. These two cycles have the same transition map F12, and the
local maps F1 and F2 are the same. Denote by F̃21 the transition map from a neigh-
borhood of M̃−

2 = (ũ−,0, w̃−) ∈ �̃1 to a neighborhood of M̃+
1 = (x̃+,0, z̃+) ∈ �̃1.

The map F̃21 has the same form as (3.13), just one needs to replace coefficients bij

by some b̃ij , b by b̃ �= 0 and also x+, z+, u− by x̃+, z̃+, ũ−.
Recall that the coefficients in (3.13) depend continuously on μ; they are smooth

in μ when the smoothness class of fμ is at least C3. The eigenvalues λ and γ remain
smooth in μ in the C2-case too.

Let us mark the values of the coefficients a, b̃, λ, γ , ũ−, x̃+ at μ = 0 by the
subscript “0”

Lemma 5.4 Let �̃ be a non-degenerate type-II cycle (i.e., a0x̃
+
0 ũ−

0 < 0 and
|b̃0ũ

−
0 /x̃+

0 | �= 1). Consider a generic one-parameter unfolding {fμ} of �̃. Assume
θ0 is irrational and take a sequence {(kj ,mj )} of pairs of positive even integers
satisfying kj ,mj → ∞ and

a0b̃0λ
kj

0 γ
mj

0 → −α̃0 = − b̃0ũ
−
0

x̃+
0

(5.9)

as j → ∞. There exists a sequence of values {μj } satisfying

μj = −a0x̃
+
0 λ

kj

0 + o(λ
kj

0 ) = ũ−
0 γ

−mj

0 + o(γ −mj ), (5.10)

such that the system fμj
has a new orbit �

0,new
j of heteroclinic intersection of

Wu(O1) with Ws(O2), and hence a new heterodimensional cycle �new
j = L1 ∪ L2 ∪

�
0,new
j ∪ �1. The heteroclinic connection �

0,new
j splits when μ varies in an o(μj )-

interval around μj . It splits with non-zero velocity if fμ is of class Cr with r � 3.

Remark 5.5 The newly created heterodimensional cycle �new
j is non-degenerate. In-

deed, one only needs to check that �
0,new
j satisfies condition C1 (the other non-

degeneracy conditions hold because of the non-degeneracy of the cycle �). Con-
dition C1 holds for �

0,new
j because �new

j is a partially-hyperbolic set with a one-

dimensional center direction. This is true because cl(�0,new
j ) lies in a small neigh-

borhood of �̃ which is a compact partially-hyperbolic set with a one-dimensional
center direction (by the non-degeneracy assumption), and the partial hyperbolicity of
a compact invariant set is inherited by every closed invariant set in its neighborhood.

Proof of Lemma 5.4 We create the new (fragile) heteroclinic orbit �
0,new
j by finding

values of μ at which Ws
loc(O2) intersects W̄u

1 := F12 ◦Fk
1 ◦ F̃21 ◦Fm

2 ◦F12(W
u
loc(O1)).
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By putting x̃ = 0, z̃ = 0 in (3.10), we find that the image F12(W
u
loc(O1)) near the

point M+
2 is given by

u = μ̂ + O(w), v = v+ + O(w). (5.11)

Let us now find an equation for F̃21 ◦ Fm
2 ◦ F12(W

u
loc(O1)). We use an analogue of

formula (3.17) for the map F̃21 ◦ Fm
2 from a small neighborhood of M+

2 to a small
neighborhood of M̃+

1 , which now reads

u = γ −m(u− + b̃−1(x − x̃+ − b̃13y + ĥ01(x − x̃+, y))) + ĥ1(x, v, y),

z − z̃+ = b̃31b̃
−1(x − x̃+ − b̃13y) + b̃33y + ĥ02(x − x̃+, y) + ĥ2(x, v, y)

with the modified functions ĥ satisfying the same estimates (3.16). By substituting
equation (5.11) into this formula, we obtain that F̃21 ◦ Fm

2 ◦ F12(W
u
loc(O1)) is given

by

x = x̃+ + b̃(γ mμ̂ − ũ−) + O(‖y‖ + (γ mμ̂ − ũ−)2) + o(1)m→∞,

z = z̃+ + O(‖y‖ + |γ mμ̂ − ũ−|) + o(1)m→∞,

where m must be such that γ mμ̂ is sufficiently close to ũ−.
Finally, substituting the above two equations into (3.15) yields the equation for

W̄u
1 := F12 ◦ Fk

1 ◦ F̃21 ◦ Fm
2 ◦ F12(W

u
loc(O1)):

u = μ̂ + ab̃λkγ mμ̂ + aλkx̃+ − ab̃λkũ− + O(w) + λkO((γ mμ̂ − ũ−)2) + o(λk),

v = v+ + O(w) + O(λk).

The heteroclinic orbit �0,new corresponds to an intersection of W̄u
1 with Ws

loc(O2),
which corresponds to letting (u,w) = 0 in the above two equations, i.e.,

0 = μ̂ + ab̃λkγ mμ̂ + aλkx̃+ − ab̃λkũ− + λkO((γ mμ̂ − ũ−)2) + o(λk). (5.12)

We will look for solutions μ = O(λk) for large enough and even (k,m) from the
sequence {kj ,mj } satisfying (5.9), i.e.,

m − kθ0 → 1

ln |γ0| ln

∣∣∣∣∣
ũ−

0

a0x̃
+
0

∣∣∣∣∣ , (5.13)

where the 0 subscript stands for the value at μ = 0. Since λ and γ depend smoothly on
μ, we have, in particular, Lipshitz dependence of θ = − ln |λ|/ ln |γ | on μ, implying

θ = θ0 + O(μ) = θ0 + O(λk). (5.14)
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Since a0x̃
+
0 ũ−

0 < 0 by assumption, and k, m are even, the above equation along with
(5.13) implies

λkγ m = |γ |m−kθ = |γ0|m−kθ0+O(kλk)

∣∣∣∣ γ

γ0

∣∣∣∣
−kθ0+O(kλk)

= − ũ−
0

a0x̃
+
0

+ o(1)k,m→∞.

(5.15)

Note that we used here Lipshitz dependence of θ on μ, but we only used continuity
of γ ’s dependence on μ.

Now, we rewrite (5.12) as

0 = (γ mμ̂ − ũ−)(1 + ab̃λkγ m) + ũ− + aλkγ mx̃+ + λkγ mO((γ mμ̂ − ũ−)2)

+ o(λkγ m),

or, by (5.15) and continuous dependence of coefficients on μ,

0 = (γ mμ̂ − ũ−)(1 − b̃ũ−
0

x̃+
0

+ o(1)k,m→∞) + O((γ mμ̂ − ũ−)2) + o(1)k,m→∞.

Since b̃ũ−
0 /x̃+

0 = α̃0 �= 1 (as given by the non-degeneracy assumption C4.1 for the

cycle �̃), we find that the new heteroclinic connection �
0,new
j exists when

μ̂j = γ −mj (ũ−
0 + o(1)j→∞) = −λkj (a0x̃

+
0 + o(1)j→∞) (5.16)

for large enough even (kj ,mj ) defined by (5.9). By (3.11), this can be rewritten as

μj = γ −mj (ũ−
0 + o(1)j→∞) = −λkj (a0x̃

+
0 + o(1)j→∞). (5.17)

Note that γ and λ in this formula (as well as the o(1) terms) depend on μ, so this is
an implicit relation on μj .

If fμ is of class C3 with respect to variables and μ, then the right-hand side of
(5.17) is smooth with respect to μ, so we obtain a unique solution μj for each suffi-
ciently large j by the Implcit Function Theorem. It also follows that the correspond-
ing heteroclinic connection �

0,new
j splits with non-zero velocity as μ varies across

μj .
If fμ is only C2, we can only guarantee a continuous dependence of the right-

hand side of (5.17) on μ. Still, it is obvious that the continuity gives the existence
(though not necessarily uniqueness) of the solution μj for all sufficiently large j .
Thus, we have the existence of the sought fragile heteroclinic connection �

0,new
j for

some μj ∈ int (�j ) where the interval �j corresponds to

|μj − γ −mj ũ−
0 | < κjγ

−mj , |μj + a0x̃
+
0 λkj | < κjλ

kj , (5.18)

for some κj → 0. Note that we can choose κj going to 0 sufficiently slowly, so that
�

0,new
j necessarily splits when μ gets out of �j .
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We finish the proof of the lemma by recalling that λ and γ depend smoothly on μ,
hence

λ = λ0 + O(μ), γ = γ0 + O(μ),

which, upon substitution into (5.17), gives (5.10). �
Since the cycle �̃ is tied with �, we have x+ = x̃+ or u− = ũ−. It follows imme-

diately from formula (5.16) that if x+ = x̃+, then μ̂j lies in the interval I s
k defined in

(5.2), and if u− = ũ−, then μ̂j lies in the interval Iu
m defined in (5.1). In either case,

Proposition 5.2 implies that the blender which exists by Theorem 1 near the type-I
cycle � is robustly connected10 to one of the saddles O1,2 when the system has the
newly created fragile heteroclinic orbit �

0,new
j of Lemma 5.4.

Theorem 1 gives us the blender at μ = 0, which persists for all small μ, and
satisfies conditions of Proposition 5.1. The robust connection to the saddle O1 or O2
also persists for all μ corresponding to the interval Iu

m or I k
s , i.e., it persists for all

μ from the intervals �j defined by (5.18). Let us show that there are sub-intervals
inside �j where the blender has a robust connection to the other saddle too.

Indeed, when μ varies from one end of �j to the other, the heteroclinic orbit
�

0,new
j splits. Therefore, we can apply Proposition 5.1 to the heterodimensional cycle

�new
j = L1 ∪ L2 ∪ �0,new ∪ �1 at μ = μj (that is, system f in Proposition 5.1 is our

system fμj
; the coefficient μ̂ in Proposition 5.1 measures the distance between W̄u

1

with Ws
loc(O2) when �

0,new
j splits; note that Proposition 5.1 is applicable because

�new
j is non-degenerate, see Remark 5.5). As a result, we find that there are intervals

of μ values inside �j which correspond to a robust connection between the blender
and O1, as well as intervals which correspond to a robust connection between the
blender and O2 (the connections can be transverse, or persistent heterodimensional).
In any case, we have found intervals of μ values for which the blender is connected
to both saddles O1 and O2; see Fig. 12. This completes the proof of Theorem 4. �

Remark 5.6 In the proof of this theorem we only used the smoothness with respect to
μ in two places: when we claimed the Lipshitz dependence of θ on μ (see (5.14)), and
when we inferred (5.10) from (5.17). However, we did not use formula (5.10) for μj

when we derived Theorem 4 from Lemma 5.4, and used only relation (5.17) for μj .
The existence of such values μj is established for any continuous family in which
�0 splits, i.e., for which the splitting functional is not constantly zero and changes
sign. Therefore, Theorem 4 remains intact, for example, for any one-parameter family
going through f such that

• the splitting functional μ changes sign, and
• θ stays equal to the same irrational constant.

Even more, the result still holds if we replace the one-parameter unfolding by any
connected set of systems which contains f and satisfies the above conditions – the

10Here by robust connection between a blender and a saddle we mean that they are homoclinically re-
lated if they have the same index, or they are involved in robust heterodimensional dynamics if they have
different indices.



Persistence of heterodimensional cycles

Fig. 12 A pair of tied heterodimensional cycles of type I and II with M+
1 and M̃+

1 ly-
ing in the same strong-stable leaf and with x+ > 0, u− > 0. There exist negative μ val-
ues such that some backward iterate of Ws

loc
(O2) intersects Wu(�cs), and the forward iterate

F12 ◦Fk
1 ◦F̃21 ◦Fm

2 ◦F12(Wu
loc

(O1)) =: Fnew
12 (Wu

loc
(O1)) intersects Ws

loc
(O2) producing a new heterodi-

mensional cycle. After a further change in μ, so that the newly obtained fragile heteroclinics splits to the

right (i.e., Fnew
12 (Wu

1 ) lies in {u > 0}), one can find m′ satisfying Fm′
2 ◦Fnew

12 (Wu
1 )∩F−1

21 (Ws
loc

(O1)) �= ∅
such that the iterate F21 ◦ Fm′

2 ◦ Fnew
12 (Wu

1 ) crosses �′ vertically, and, therefore, it intersects Ws(�cs).
As a result, the two saddles O1 and O2 get connected to the blender at the same time (Color figure online)

intervals Ij in the formulation of Theorem 4 should be replaced by open subsets Ij

converging to f .

5.4 Creating a tied pair of type-I and -II cycles. Proofs of Theorem 5 and
Corollary 2

Theorem 4 immediately shows that cycles of type III can be stabilized. In this section
we prove the same for type-II cycles in the following way. We let |α| < 1 (the case
|α| > 1 is reduced to this one by the time-reversal). Then, we show that a generic
one-parameter unfolding of a type-II cycle gives rise to a pair of tied cycles of type
I and type II associated with O1 and to a new saddle periodic point O ′

2 of index
d1 + 1, see Fig. 13. Next, we compute the value of the modulus θ for the new cycles:
θ ′ := − ln |λ|/ ln |γ ′|, where γ ′ is the center-unstable multiplier of O ′

2, and show that
by taking θ of the original cycle as a second parameter and varying it, we can make
θ ′ irrational, so that Theorem 4 becomes applicable.

Proof of Theorem 5 Assume |α| < 1. Since � is a cycle of type II, Lemma 5.4 is appli-
cable to it (just replace �̃ by � in the formulation of the lemma, and remove the tildes
from the coefficients in (5.9) and (5.10)). This gives that for a sequence {(kj ,mj )} of
pairs of positive even integers satisfying kj ,mj → ∞ and

a0b0λ
kj

0 γ
mj

0 → −b0u
−
0

x+
0

(5.19)
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Fig. 13 At the moment of a new cycle given by Lemma 5.4 at μ = μj , we find an index-(d1 +1) point O ′
2

near M+
1 , homoclinically related to O2. After a small perturbation, we can transfer the fragile heteroclinic

intersection of Ws(O2) with Wu(O1) to Ws(O ′
2). We will show that there are two robust heteroclinics

between O1 and O ′
2, giving rise to two heterodimensional cycles of type I and II

as j → ∞, there exists a sequence of values {μ′
j }

μ′
j = −a0x

+
0 λ

kj

0 + o(λ
kj

0 ) (5.20)

such that the system fμ′
j

has a new heterodimensional cycle associated with O1 and
O2. By (3.11), we also have

μ̂′
j := μ̂(μ′

j ) = −a0x
+
0 λ

kj

0 + o(λ
kj

0 ) (5.21)

for the coefficient μ̂ in formula (3.20) for the first-return map near �.
Denote m′

j = mj + m∗ for some fixed even integer m∗ (to be determined below).
In what follows, we find for each sufficiently large j a fixed point of the first-return
map Tkj ,m′

j
for the values of μ which are o(μ′

j )-close to μ′
j . Note first that due to the

smooth dependence of λ and γ on the parameter μ, we obtain from (5.20) and (5.19)
that

λ(μj )
kj = (λ0 + O(μj ))

kj = λ
kj

0 + O(kjλ
kj

0 μj ) = λ
kj

0 (1 + O(kjλ
kj

0 ),

γ (μj )
mj = (γ0 + O(μj ))

mj = γ
mj

0 + O(mjγ
mj

0 μj )

= γ
mj

0 (1 + O(mjγ
−mj

0 )).

(5.22)

Thus,

λkj γ
m′

j → −u−
0 γ m∗

a0x
+
0

, (5.23)

so, in particular, λkj γ
m′

j stays uniformly bounded as j → ∞.
With this, one notices that the term γ mφ̂1 in formula (3.20) for the first-return map

Tk,m is o(1)j→∞ when k = kj and m = m′
j . Hence, with the estimates in (3.21) and
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(3.22), we can write the map Tkj ,m′
j

as

X̄ = bγ
m′

j μ̂ + abλkj γ
m′

j x+ − bu− + abλkj γ
m′

j X + O(X̄2 + Ȳ 2)

+ o(1)j→∞,

Y = o(γ̂ −kj ), Z̄ = o(λ̂
m′

j ).

(5.24)

It follows that the fixed point (Xj ,Yj ,Zj ) of Tkj ,m′
j

satisfies

Xj =
−(aλkj )−1μ̂′

j + (aλkj γ
m′

j )−1u− − x+ + O(X2
j ) + o(1)kj ,m′

j →∞

1 − (abλkj γ
m′

j )−1
,

Yj = O(γ̂ −kj ), Zj = O(λ̂
m′

j );

(5.25)

note that 1 − (abλkj γ
m′

j )−1 �= 0, as follows from (5.23) if m∗ is sufficiently large.
We need to verify that (Xj ,Yj ,Zj ) ∈ �. It suffices to show that |Xj | < δ for all

large kj and m′
j . Substituting (5.21), (5.22), and (5.23) into the first equation of (5.25)

yields

Xj = x∞ + o(1)j→∞, (5.26)

where

x∞ = −x+
0 γ −m∗

0 + O(γ −2m∗
0 ). (5.27)

Thus, by taking m∗ sufficiently large and δ sufficiently small, we obtain that |Xj | < δ

for all sufficiently large j , as required.
We have shown that at μ = μ′

j the system has a non-degenerate heterodimensional
cycle associated with O1 and O2 and the first-return map Tkj ,m′

j
has a fixed point in �

given by (5.26) for any sufficiently large m∗. We denote this point as O ′
2. By (5.24),

the map Tkj ,m′
j

strongly contracts in Z and strongly expands in Y . Also, since

|abλkj γ
m′

j | =
∣∣∣∣∣
b0u

−
0 γ m∗

0

x+
0

∣∣∣∣∣ + o(1)j→∞ � 1,

the map is expanding in X if m∗ is taken large enough. Thus, the point O ′
2 is a saddle

of index d1 + 1.
Arguing as in the proof of Lemma 3.1, one finds, on the set of points whose im-

ages under Tkj ,m′
j

belong to �, a forward-invariant unstable cone field around the

(X,Y )-space and a forward-invariant strong-unstable cone-field around the Y -space,
and also, on the set of points whose preimages belong to �, a backward-invariant
stable cone field around the Z-space. This implies that Wu

loc(O
′
2) and Ws

loc(O
′
2) are

given by Z = Zj + wu
j (X,Y ) and (X,Y ) = (Xj ,Yj ) + ws

j (Z), respectively, for a

smooth function wu
j defined for (X,Y ) ∈ [−δ, δ] × [−δ, δ]d1 and a smooth func-

tion ws
j defined for Z ∈ [−δ, δ]d−d1−1. Also, Wu

loc(O
′
2) contains the strong-unstable
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Fig. 14 Creation of the heteroclinic point M̃ and the homoclinic point M ′ , which are on different sides of
Wuu

loc
(O ′

2)

manifold Wuu
loc(O

′
2) of the form {X = Xj + wuu

j (Y ),Z = Zj + wu
j (X,Y )} where the

smooth function wuu
j is defined for Y ∈ [−δ, δ]d1 . Note that it immediately follows

from (5.24) that in the limit j → ∞ we have

Wu
loc(O

′
2) → {Z = 0}, Ws

loc(O
′
2) → {X = x∞, Y = 0},

Wuu
loc(O

′
2) → {X = x∞,Z = 0} (5.28)

in the C1-topology.
Now, since F21(W

u
loc(O2)) is given by {Z = 0} (see (3.23)), we obtain that it inter-

sects Ws
loc(O

′
2) transversely. Since the value μ̂′

j lies in the interval I s
kj

in Lemma 5.3,

it follows that F
−kj

1 ◦ F−1
12 (Ws

loc(O2)) is a horizontal disc that crosses � properly
with respect to Css in Lemma 3.1, so it intersects Wu

loc(O
′
2) transversely. Thus, O ′

2
is homoclinically related to O2. This, in particular, implies that O ′

2 has transverse
homoclinics. See Fig. 14 for an illustration.

Let us show that in Wu
loc(O

′
2) there exists a homoclinic point M ′ of transverse

intersection of Wu
loc(O

′
2) with Ws(O ′

2), such that M ′ /∈ Wuu
loc(O

′
2). By (5.28), we just

need to show that the X-coordinate of the homoclinic point M ′ can be kept bounded
away from x∞. Since Ws

loc(O
′
2) intersects F21(W

u
loc(O2)) transversely, the preimages

F−m
2 ◦ F−1

21 (Ws
loc(O

′
2)) accumulate (in C1) to Ws

loc(O2) as m → ∞. Hence, we can
choose the homoclinic point M ′ as close as we want to a point of transverse intersec-

tion of Wu
loc(O

′
2) with the preimage F

−kj

1 ◦ F−1
12 (Ws

loc(O2)). This preimage is given
by the equation

x = −1

a
μ̂λ−kj + o(1)kj →∞, y = o(1)kj →∞,

as follows from substitution of (u = 0,w = 0) (the equation of Ws
loc(O2)) into equa-

tion (3.15) for the map F12 ◦ Fk
1 . In the coordinates (3.19), we get

X = −1

a
μ̂λ−kj − x+ + o(1)kj →∞.

This implies, by (5.21) and (5.22), that for any μ which is o(μ′
j )-close to μ = μ′

j

the X-coordinate of the intersection of F
−kj

1 ◦ F−1
12 (Ws

loc(O2)) with Wu
loc(O

′
2) is
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o(1)j→∞. Hence, the X-coordinate of the homoclinic point M ′ can be made as close
to zero as we want, i.e., it is bounded away, as claimed, from x∞ (which is non-zero
by (5.27)), see Fig. 14.

Now, let us construct a heteroclinic intersection of Wu(O1) with Ws(O ′
2). The

newly created heterodimensional cycle at μ = μ′
j includes an orbit of a non-

transverse intersection between Wu(O1) and Ws(O2). This orbit splits as μ varies
in an interval of size o(μ′

j ) (by Lemma 5.4). Since O2 and O ′
2 are homoclinically

related, the invariant manifold Ws(O ′
2) accumulates on Ws(O2), which means that

when μ varies, an orbit of a non-transverse intersection of Wu(O1) and Ws(O ′
2)

emerges. Let it happen at μ = μj ; it is o(μ′
j )-close to μ′

j , and by (5.20) we have

μj = −a0x
+
0 λ

kj

0 + o(λ
kj

0 ). (5.29)

Note that the orbit �0
j of the fragile heteroclinic intersection of Wu(O1) and Ws(O ′

2)

at μ = μj satisfies condition C1 by the partial-hyperbolicity argument as in Re-
mark 5.5.

To finish the proof, we need to find a pair of orbits �1
j,I and �1

j,II of a transverse
intersection of Wu(O ′

2) and Ws(O1) such that the corresponding heterodimensional
cycles �j,I = L1 ∪ L′

2 ∪ �0
j ∪ �1

j,I and �j,II = L1 ∪ L′
2 ∪ �0

j ∪ �1
j,II (where L′

2 is
the orbit of the periodic point O ′

2) satisfy the remaining non-degenerate conditions
C2–C4.1, are tied to each other, and have different types (I and II).

We, first, notice that Ws
loc(O1) : {Y = 0} transversely intersects the local strong-

unstable manifold Wuu
loc(O

′
2) (indeed, by (5.28), Wuu

loc(O
′
2) is C1-close to {X =

x∞,Z = 0, Y ∈ [−δ, δ]d1}). Let M be the point of intersection. The local unstable
manifold Wu

loc(O
′
2) is divided by Wuu

loc(O
′
2) into two connected components. It fol-

lows from the transversality of the intersection of Wuu
loc(O

′
2) with Ws

loc(O1) that the
intersection of Ws

loc(O1) with Wu
loc(O

′
2) near M is a curve that goes from one compo-

nent to another while crossing Wuu
loc(O

′
2) at M . Choose a point M̃ on this curve such

that M̃ is close to M and M̃ lies in a different component of Wu
loc(O

′
2) \ Wuu

loc(O
′
2)

from the homoclinic point M ′ ∈ Wu
loc(O

′
2) ∩ Ws(O ′

2).
The orbit of M̃ is an orbit of transverse intersection of Wu(L′

2) and Ws(L1). The
non-degeneracy condition C2 is satisfied by this orbit due to partial hyperbolicity of
every orbit lying in a small neighborhood of the original non-degenerate cycle � (see
Remark 5.5). Condition C3 is satisfied because we take M̃ �= M , i.e., M̃ is not in
Wuu

loc(O
′
2). However, we take M̃ sufficiently close to Wuu

loc(O
′
2), so the u-coordinates

of M̃ is sufficiently close to zero, making the non-degeneracy condition C4.1 fulfilled
too. The non-degenerate heterodimensional cycle �∗ comprised by the orbit of M̃ ,
the periodic orbits L1 and L′

2 and the fragile heteroclinic �
j

0 at μ = μj is the sought
cycle �j,I or �j,II (depending on whether it is type I or type II).

By Remark 2.2, the fact that M̃ and the homoclinic point M ′ belong to different
components of Wu

loc(O
′
2) \ Wuu

loc(O
′
2) implies that the cycle �∗ is tied with a cycle

�∗∗ of a different type. So, we have the sought pair of heterodimensional cycles �j,I

and �j,II , and hence the result of the theorem, once we show the non-degeneracy of
�∗∗ below.
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The orbit of transverse intersection of Ws(O1) and Wu(O ′
2) given by Remark 2.2

(i.e., the robust heteroclinic of �∗∗) intersects Wu
loc(O

′
2) at some point M ′′ close to

the homoclinic point M ′. By the partial hyperbolicity argument, we have the non-
degeneracy condition C2 for this orbit; condition C3 holds because M ′ /∈ Wuu

loc(O
′
2).

Let us establish the last non-degeneracy condition C4.1. The orbit of the point M ′′
goes close to the orbit of M ′ and gets back to a small neighborhood of O ′

2 (since M ′
is homoclinic). After that the orbit spends a long time near L′

2, which corresponds
to a large number of iterations of the first-return map Tkj ,mj +m∗ near O2, before get-
ting to Ws

loc(O1). The iterations near O2 create a very large expansion in the central
direction, i.e., the expansion factor b in (2.3) gets very large for this orbit, making
|α| � 1 in (2.4). Thus, the non-degeneracy condition C4.1 is fulfilled for this orbit,
provided M ′′ is chosen close enough to M ′. �

We can now finish the proof of Theorem B for the case of real central multipliers.

Proof of Corollary 2 In a proper unfolding fε of a heterodimensional cycle of type II,
we fix the values of all parameters except for μ and θ and show that an arbitrary small
change of μ and θ can lead the system into the region of robust heterodimensional
dynamics involving O1 and O2. So, we may from the very beginning consider a two-
parameter family fμ,θ where μ varies in a small neighborhood of zero and θ varies
in a neighborhood of some irrational θ = c0. By Theorem 5, on the line θ = c0 we
have (see (5.29)) a sequence of values

μj = −a0x
+
0 λ

kj

0 (1 + o(1)j→∞)

for which the system has a tied pair of cycles of different types involving O1 and a pe-
riodic point O ′

2, homoclinically related to O2. The coefficients a0, x+
0 , λ0 correspond

to μ = 0 and depend continuously on the parameter θ ; the o(1) term also depends
continuously on θ and the rate at which it tends to zero is uniform with respect to θ .

Moreover, as proved in Lemma 5.4, when μ varies (on the line θ = c0) within
a centered at μ = μj interval �j of size o(μj ), the fragile heteroclinic connection

�0 shared by the tied cycles splits. Namely, there exist μ−
j = λ

kj

0 (−a0x
+
0 − κ) and

μ+
j = λ

kj

0 (−a0x
+
0 + κ) with some small κ > 0 such that �0 is split at (μ = μ±

j , θ =
c0) in opposite directions. The same holds true at μ = μ±

j for any value of θ close
to c0. It follows that for any connected set L sufficiently close to the line θ = c0 in
the (μ, θ)-plane such that L has a point at the line μ = μ−

j and another point at the

line μ = μ+
j , there is a point in L corresponding to the existence of �0, i.e., to the

tied pair of cycles involving O1 and O ′
2. Moreover, �0 splits when we move within L

from μ = μ−
j to μ = μ+

j . Therefore, we immediately get the result (the existence of
robust heterodimensional dynamics involving O1 and O ′

2 – hence, O2) by applying
the version of Theorem 4 given in Remark 5.6, if we can choose the connected set L
such that the modulus θ ′ = − ln |λ|/ ln |γ ′| stays equal to a certain irrational constant
everywhere on L (recall that we denote by γ ′ the central multiplier of the point O ′

2).
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For that, we just need to show that arbitrarily close to c0 there exist constants c−
and c+ such that, if j is large enough,

sup
μ∈[μ−

j ,μ+
j ]

θ ′(μ, θ = c−) < inf
μ∈[μ−

j ,μ+
j ]

θ ′(μ, θ = c+). (5.30)

Let us compute the central multiplier γ ′ of O ′
2. It is, up to o(1)j→∞ terms, the deriva-

tive dX̄/dx of the map (5.24) at O ′
2. This gives us

γ ′ = abλkj γ
m′

j (1 + O(δ)) + o(1)j→∞,

or, according to (5.23),

γ ′ = − b0u
−
0

x+
0

γ m∗
(1 + O(δ)) + o(1)j→∞.

This gives

θ ′ = 1

m∗ θ + O((m∗)−2), (5.31)

so, by taking m∗ sufficiently large, we obtain (5.30). �

5.5 Heterodimensional cycles with rational θ . Proof of Theorem 6

Recall that by a heterodimensional cycle we mean the set � = L1 ∪ L2 ∪ �0 ∪ �1,
where L1,2 are the orbits of O1,2, and �0 and �1 are the fragile and robust hetero-
clinic orbits, respectively. In this section we prove that the complexity of dynamics in
a sufficiently small neighborhood of a heterodimensional cycle � in the saddle case
depends essentially on whether θ is rational or not. That is, in contrast to the appear-
ance of blenders for irrational θ , we show the persistence of simple dynamics near �

for generic one-parameter unfoldings when the θ value (for the unperturbed system)
is rational. This is done by investigating the structure of the set consisting of points
whose entire orbits lie in a small neighborhood U of �.

Note that such orbits, except for those in the stable and unstable manifolds of
L1 and L2, must intersect the neighborhood � of the heteroclinic point M+

1 in U01
(the small neighborhood of O1 contained in U ) infinitely many times both forwards
and backwards in time. If such orbit exists, then for any two consecutive intersection
points of the orbit with �, the second one is the image of the first one under the map
Tk,m given by (3.20) for some pair of integers (k,m). Moreover, k and m have to be
large enough if U is small. Recall that for a saddle heterodimensional cycle, we use λ

and γ to denote the center-stable multiplier of O1 and, respectively, center-unstable
multiplier of O2.

Lemma 5.7 Let fμ be a generic one-parameter unfolding of the system f0 with a
non-degenerate heterodimensional cycle involving two saddles, such that θ(f0) =
− ln |λ|

ln |γ | = p
q

is rational. Assume condition (2.8) is satisfied. Let {(ks,ms)} be a se-
quence (finite or infinite) of different pairs of integers such that, for some small μ and
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some points Mi = (Xi, Yi,Zi) ∈ �, we have Tki ,mi
(Mi) = (X̄i, Ȳi , Z̄i) =: M̄i ∈ �

for all i. Then, for all sufficiently small δ, either all mi are equal to each other,
mi = m, and

λki = O(δ)γ −m (5.32)

for all i, or all ki are equal to each other, ki = k, and

γ −mi = O(δ)λk (5.33)

for all i.

Remark 5.8 Note that in this lemma we also allow ki or mi to be infinite (with the
convention γ −∞ = 0, λ∞ = 0). Here, ki = ∞ corresponds to Mi ∈ Ws

loc(O1) and M̄i

being a point of intersection of Wu(L1) with �; more specifically, M̄i ∈ F21 ◦ F
mi

2 ◦
F12(W

u
loc(O1)). The case mi = ∞ corresponds to Mi being a point of intersection of

Ws(L2) with �, i.e., Mi ∈ F
−ki

1 ◦ F−1
12 (Ws

loc(O2)) and M̄i ∈ F21(W
u
loc(O2)).

Proof of Lemma 5.7 Consider, first, the case where we have only 2 pairs in the se-
quence (ki,mi). By (3.20), conditions Tk1,m1(M1) = M̄1 and Tk2,m2(M2) = M̄2 give

μ̂ + aλk1X1 + aλk1x+ − γ −m1u− + γ −m1O((X̄1)
2 + (Ȳ1)

2)

+ o(λk1) + o(γ −m1) = γ −m1b−1X̄1,

μ̂ + aλk2X2 + aλk2x+ − γ −m2u− + γ −m2O((X̄2)
2 + (Ȳ2)

2)

+ o(λk2) + o(γ −m2) = γ −m2b−1X̄2.

(5.34)

Assumptions that M1,2 ∈ � and M̄1,2 ∈ � imply |X1,2| < δ, |X̄1,2| < δ, ‖Ȳ1,2‖ < δ.
Thus, it follows from (5.34) that the system

μ̂ + aλk1(x+ + K1δ) − γ −m1u− = γ −m1b−1C1δ,

μ̂ + aλk2(x+ + K2δ) − γ −m2u− = γ −m2b−1C2δ,
(5.35)

must have a solution (μ̂, k1,m1,K1,C1, k2,m2,K2,C2) with |K1,2| < 1, |C1,2| < 1.
Subtracting the second equation of (5.35) from the first one, yields

λk1 − λk2
x+ + K2δ

x+ + K1δ
= γ −m1

C1δ + bu−

ab(x+ + K1δ)
− γ −m2

C2δ + bu−

ab(x+ + K1δ)
. (5.36)

Recall that λ, γ , a, b, x+, and u− depend on μ. Let us indicate their values at
μ = 0 by the subscript “0”. Since the multipliers λ and γ depend smoothly on μ, we
have

λk = (λ0 + O(μ))k = λk
0 + O(kλk

0μ),

γ −m = (γ0 + O(μ))−m = γ −m
0 + O(mγ −m

0 μ).
(5.37)
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Using (3.11) and (5.37), one can estimate μ from (5.35) as

μ = O(|λ0|k1 + |γ0|−m1) and μ = O(|λ0|k2 + |γ0|−m2).

Substituting this into (5.37), and also using the continuous dependence of all the
coefficients on μ, we rewrite (5.36) as

λ
k1
0 − λ

k2
0

x+
0 + K2δ

x+
0 + K1δ

(1 + o(1))

= γ
−m1
0

C1δ + b0u
−
0

a0b0(x
+
0 + K1δ)

(1 + o(1)) − γ
−m2
0

C2δ + b0u
−
0

a0b0(x
+
0 + K1δ)

(1 + o(1)),

where o(1) denotes terms that tend to zero as k1,2 → ∞, m1,2 → ∞. Note that these
estimates make sense since when δ is sufficiently small, the k and m satisfying the
assumption must be sufficiently large.

It is obvious that this equation is not solvable for sufficiently small δ and suffi-
ciently large k1 �= k2 and m1 �= m2, unless the quantity u−

0 /(a0x
+
0 ) is a limit point of

the set {
λ

k1
0 − λ

k2
0

γ
−m1
0 − γ

−m2
0

: k1,2 ∈ N,m1,2 ∈N, k1 �= k2, m1 �= m2

}
. (5.38)

Since

|λ0| = |γ0|−θ0 , (5.39)

and θ0 is a rational number p/q (with p and q coprime), we obtain, assuming k1 > k2
and m1 > m2, that∣∣∣∣∣

λ
k1
0 − λ

k2
0

γ
−m1
0 − γ

−m2
0

∣∣∣∣∣ = |λ0|k2

|γ0|−m2
·
∣∣∣∣∣
γ

−(k1−k2)θ
0 − 1

γ
−(m1−m2)
0 − 1

∣∣∣∣∣ = |γ0|
−k2p+m2q

q
1 − λ

k1−k2
0

1 − γ
−(m1−m2)
0

.

This implies that the absolute values of the limit points of the set (5.38) form the set

cl

{
|γ0|

s
q

1 − λl
0

1 − γ −n
0

}
s∈Z,l∈N,n∈N

and, therefore, by (2.8), we find that u−
0 /(a0x

+
0 ) is not a limit point of the set (5.38).

Thus, the system (5.35) can have a solution (for sufficiently small δ and large k1,2,
m1,2) only if k1 = k2 or m1 = m2.

If m1 = m2 = m, then we have

λk1 − λk2
x+ + K2δ

x+ + K1δ
= O(δ)γ −m

from (5.36), which implies (5.32) when k1 �= k2. If k1 = k2 = k, then we have

γ −m1
C1δ + bu−

ab(x+ + K1δ)
− γ −m2

C2δ + bu−

ab(x+ + K1δ)
= O(δ)λk

from (5.36), which implies (5.33) when m1 �= m2.
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This proves the lemma in the particular case of two pairs (ki,mi). If we have
more pairs, take the first two in the sequence. As we just proved, we either have
m1 = m2 = m, or k1 = k2 = k. The arguments are the same in both cases, so we
consider only the case m1 = m2 = m; note that we then have

λk1 � γ −m1 (5.40)

by (5.32). We want to prove that mi = m for all i in this case, so assume, to the
contrary, that mi �= m1 = m for some i. Then, as we just proved, ki = k1, and

γ −m1 � λk1

by (5.33). This is a contradiction with (5.40), which proves the claim. �

Proof of Theorem 6 The case k1 = m1 = ∞ in Lemma 5.7 corresponds (see Re-
mark 5.8) to the orbit of the fragile heteroclinic intersection of F12(W

u
loc(O1)) with

Ws
loc(O2) (so we may think of M1 ∈ Ws

loc(O1) and M̄1 ∈ F21(W
u
loc(O2))). Such in-

tersection exists at μ = 0. Note that in this case we also have k2 = m2 = ∞. Indeed,
if we assume m2 �= m1, then k2 = k1 = ∞ and, by (5.33), we get γ −m2 = 0, i.e.,
m2 = ∞, and if we assume k2 �= k1, then m2 = m1 = ∞ and, by (5.32), λk2 = 0,
i.e., k2 = ∞, too. This means that no other orbits in U can intersect � in this case
except for the orbits corresponding to the transverse intersection of F21(W

u
loc(O2))

with Ws
loc(O1). This gives us the result of Theorem 6 at μ = 0.

At μ �= 0, let there exist an orbit L in U , different from L1, L2 and from het-
eroclinic orbits corresponding to the intersection of F21(W

u
loc(O2)) with Ws

loc(O1)

(we call L a non-exceptional orbit). Then, L intersects � in a sequence of points Ms

such that Ms+1 = Tks,ms (Ms). If this sequence is infinite, then all (ks,ms) consist
of finite positive integers. If the sequence is finite from the left, then either the most
left point Msl ∈ F21(W

u
loc(O2)) ∩ �, or Msl ∈ F21 ◦ Fm

2 ◦ F12(W
u
loc(O1)) ∩ � for

some finite m – in this case we define ksl−1 = ∞, msl−1 = m. Similarly, if this se-
quence is finite from the right, then either the most right point Msr ∈ Ws

loc(O1)∩�, or
Msr ∈ F−k

1 ◦F−1
12 (Ws

loc(O2))∩� for some finite k – in this case we define msr = ∞,
ksr = k.

By Lemma 5.7, we have three possibilities.

• The first possibility is that ks and ms are finite and the same for all s and all non-
exceptional orbits, that is, ks = k and ms = m for some integers k and m. In this
case Tk,m(�) intersects �, which implies, by the first equation of (3.20), that μ =
O(|λ|k + |γ |−m). By (5.37), this implies μ = O(|λ0|k + |γ0|−m), hence

λkγ m = λk
0(1 + O(k|λ0|k) + O(k|γ0|−m))γ m

0 ((1 + O(m|γ0|−m) + O(m|λ0|k))
= λk

0γ
m
0 (1 + o(1)k,m→∞) + o(1)k,m→∞.

Thus, using (5.39), we obtain

abλkγ m = a0b0λ
k
0γ0m(1 + o(1)k,m→∞) + o(1)k,m→∞

= a0b0γ

mq−kp
q

0 (1 + o(1)k,m→∞) + o(1)k,m→∞.
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By (2.7), we obtain that |abλkγ m| stays bounded away from 1. Since this is, up
to small corrections, the derivative dX̄/dX in (3.20), and since we have a strong
contraction in Z and a strong expansion in Y , the hyperbolicity of Tk,m follows, if k,
m are sufficiently large and the neighborhood U is sufficiently small.

By the hyperbolicity of Tk,m, it can have only one fixed point and it is the only
orbit of Tk,m that never leaves �. Thus, in the case under consideration, we have that
Ms = M0 for all s and the orbit L of M0 is a hyperbolic periodic orbit. Any other
orbits in U must lie in the stable or unstable manifold of L1,2, which includes the
orbits L1 and L2 themselves, as well as orbits of transverse intersections of Wu(L2)

with Ws(L1), of Wu(L2) with Ws(L) if L has index d1, and of Ws(L1) with Wu(L)

if L has index d2. At the same time, no orbits from Wu(L1) \ L1 or Ws(L2) \ L2
can lie entirely in U in this case (as such orbits would correspond to infinite k or
m). This is in a complete agreement with the statement of the theorem: if L is of
index d1, then the hyperbolic set �1 from the statement of the theorem is the union
of L1, L, and the heteroclinic orbits corresponding to the intersection of Wu(L) with
Ws(L1); otherwise, we have the set �2 comprised by L2, L, and the heteroclinic
orbits corresponding to the intersection of Wu(L2) with Ws(L).

• The second possibility is that ms are finite and the same for all s and all non-
exceptional orbits, that is, we have ms = m while some ks are different. In this case,
|abλkγ m| < 1 by (5.32), where k is the minimal value of ks taken over all non-
exceptional orbits. Thus, the derivative dX̄/dX in (3.20) is small. This means that
the maps Tks,ms=m are all hyperbolic, with contraction in (X,Z) and expansion in
Y , and the set of all non-exceptional orbits which are not in Wu(L2) is uniformly
hyperbolic of index d1. The union of this set and L1 is the hyperbolic set �1 from
the statement of the theorem. Note also that the finiteness of m implies that no orbit
in Ws(L2) \ L2 can lie entirely in U in this case.

• The last possibility is that ks are finite and the same for all s and all non-exceptional
orbits, that is, we have ks = k while some ms are different. In this case, |abλkγ m| > 1
by (5.33), where m is the minimal value of ms taken over all non-exceptional orbits.
Thus, the derivative dX̄/dX in (3.20) is very large, so all the maps Tks=k,ms are hyper-
bolic, with expansion in (X,Y ) and contraction in Z. The set of all non-exceptional
orbits which are not in Ws(L1) is uniformly hyperbolic of index d2, and stays at a
non-zero distance from L1 (the union of this set with L2 is the set �2 from the state-
ment of the theorem). The finiteness of k implies that no orbit in Wu(L1) \L1 can lie
entirely in U in this case.

In all three cases we have a complete agreement with the statement of the theorem.
�

6 Saddle-focus and double-focus cases. Proof of Theorem 7

In this section, we consider the case where at least one of the central multipliers λ1,1
and γ2,1 is complex (nonreal), and prove Theorem 7. The strategy is to detect the
dynamics similar to those near type-I heterodimensional cycles; namely, we check
that the rational independence conditions of Theorem 7 imply that certain collections
of the first-return maps satisfy conditions of Proposition 4.12.
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It should be pointed out that we do not create type-I cycles via bifurcations; in-
stead, we use the rotation brought by the complex central multipliers in order to see
that conditions of Proposition 4.12 are satisfied, both for the creation of cs-blenders
and cu-blenders. The only place where we study bifurcations is the result on the sta-
bilization of cycles in the saddle-focus case.

Let us start with the saddle-focus case. Like in Sect. 3, we derive formulas for
first-return maps Tk,m near a saddle-focus heterodimensional cycle, see Sect. 6.1. An
immediate observation is that the formula (6.18) for these maps has almost the same
form as the formula (3.26) in the saddle case. The only difference is that the co-
efficient governing the contraction/expansion in the central coordinate now contains
trigonometric functions, which gives the possibility to obtain partially hyperbolic sets
with different types of central dynamics by choosing appropriate k and m. This fact is
summarized in Lemma 6.1, a counterpart of Lemma 3.1 in the saddle case. Then, we
prove in Proposition 6.2 that, without destroying the original cycle, the simultaneous
existence of both cs- and cu-blenders follows from Proposition 4.12, provided that θ ,
ω

2π
and 1 are rationally independent (θ is defined in (2.5) and ω is the argument of

the nonreal central multiplier).
Next, we study the local stabilization of saddle-focus cycles in Sect. 6.3. The

key is to find a replacement of Lemma 5.3, which tells us when the iterates
F21 ◦ Fm

2 ◦ F12(W
u
loc(O1)) and F−k

1 ◦ F−1
12 (Ws

loc(O2)) enter the activating domain
�′ of the blenders. Thanks to the rotation, some of the iterates automatically cross
�′ properly, depending on which central multiplier is nonreal, i.e., where the rotation
happens, in F1 or F2. The other manifold can also cross �′ after unfolding the het-
erodimensional cycle, as in the saddle case (this is the only place where we unfold
the original cycle). These facts are proven in Lemmas 6.4 and 6.5.

Finally, double-focus heterodimensional cycles are dealt with in Sect. 6.4. The
main effort in this case is to obtain the necessary formula for the first-return maps.
After that, one immediately finds that it has the same form as in the saddle-case.
Consequently, a counterpart to Proposition 6.2 stating the coexistence of blenders
follows, see Proposition 6.7. The main difference is that the required arithmetic con-
dition becomes the rational independence among θ , ω1

2π
, θ ω2

2π
and 1, where ω1,2 are

the arguments of the nonreal central multipliers. The stabilization part is also similar
to the saddle-focus case but now both Wu(O1) and Ws(O2) enter �′ automatically
due to the simultaneous rotations near O1 and O2, see Lemmas 6.8 and 6.9.

6.1 First-return maps in the saddle-focus case

We assume that

λ1,1 = λ∗
1,2 = λeiω, ω ∈ (0,π), and γ := γ2,1 is real,

where λ > |λ1,3| and |γ2,1| < |γ2,2|. As mentioned in the introduction, the other case
(where λ1,1 is real while γ2,1 is complex) can be reduced to this one by the time
reversal. The main goal of this section is to obtain a formula for the first-return maps
and prove its partial hyperbolicity in Lemma 6.1. As mentioned before, the way to
find the first-return maps is the same as in the saddle case.
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6.1.1 Local maps

We use the same coordinates near O2 as in the saddle case so that the formulas for
the local map F2 remains the same (see (3.7)). Let us now introduce coordinates
(x1, x2, y, z) ∈R×R×R

d1 ×R
d−d1−2 near O1 such that the local map F1 takes the

form (see [34, Lemmas 5 and 6])

x̄1 = λx1 coskω + λx2 sin kω + g1(x1, x2, y, z),

x̄2 = −λx1 sin kω + λx2 coskω + g2(x1, x2, y, z),

ȳ = P1y + g3(x1, x2, y, z), z̄ = P2z + g4(x1, x2, y, z),

(6.1)

where we do not indicate the dependence on parameters for simplicity. The eigen-
values of the matrices P1 and P2 are γ1,1, γ1,2, . . . , γ1,d1 and λ1,3 . . . λ1,d−d1 , respec-
tively. The functions g vanish along their first derivatives at the origin, and satisfy

g1,2,4(0,0, y,0) = 0, g3(x1, x2,0, z) = 0, g1,2(x1, x2,0, z) = 0,

∂g1,2,4

∂(x1, x2)
(0,0, y,0) = 0,

for all sufficiently small x1, x2, y and z. Similar to the saddle case, in these co-
ordinates the local manifolds Ws

loc(O1) and Wu
loc(O1) are given by {y = 0} and

{x1 = 0, x2 = 0, z = 0}; the leaves of the strong-stable foliation have the form
{(x1, x2) = const, y = 0}; the restriction of the map to Ws

loc(O1) is linear in x. This
is the same coordinate system as described in Sect. 2.

By Lemma 7 of [34], for any point (x1, x2, y, z) in U01, we have (x̃1, x̃2, ỹ, z̃) =
Fk

1 (x1, x2, y, z) if and only if

x̃1 = λkx1 coskω + λkx2 sin kω + p1(x1, x2, ỹ, z),

x̃2 = −λkx1 sin kω + λkx2 coskω + p2(x1, x2, ỹ, z),

y = p3(x1, x2, ỹ, z), z̃ = p4(x1, x2, ỹ, z),

(6.2)

where

‖p1,2,4‖C1 = o(λk), ‖p3‖C1 = o(γ̂ −k),

for some constant γ̂ ∈ (1, |γ1,1|), and these estimates are uniform for all systems
C2-close to f .

6.1.2 Transition maps

Let us now define the transition maps F12 and F21 from a neighborhood of M−
1 =

(0,0, y−,0) to a neighborhood of M+
2 = (0, v+,0) and, respectively, from a neigh-

borhood of M−
2 = (u−,0,w−) to a neighborhood of M+

1 = (x+
1 , x+

2 ,0, z+). Argu-
ing like in the saddle case, by the first part of condition C1 (that F−1

12 (WsE
loc (O2)) �
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Wu
loc(O1) at M−

1 ), the transition map F12 : (x̃1, x̃2, ỹ, z̃) 	→ (u, v,w) can be written as
follows (the dots refer to the second and higher order terms in the Taylor expansion):

u = μ̂ + a11x̃1 + a12x̃2 + a13z̃ + a14w + · · · ,

v − v+ = a21x̃1 + a22x̃2 + a23z̃ + a24w + · · · ,

ỹ − y− = a31x̃1 + a32x̃2 + a33z̃ + a34w + · · · ,

(6.3)

where the relation between μ̂ and μ is the same as in the saddle case and is given by
(3.11).

Recall the second part of C1 that F12(W
uE
loc (O1)) intersects Ws

loc(O2) transversely
at M+

2 . When the dimension of the map F12 is large than three (i.e., when the
system has dimension higher than three if it is a diffeomorphism or higher than
four if it is a flow), this condition means that the common directions shared by
DF12(TM−

1
WuE

loc (O1)) ∩ TM+
2
Ws

loc(O2) is at most one-dimensional, which happens
only if

a2
11 + a2

12 �= 0. (6.4)

When the dimension of F12 equals three, the strong-stable coordinates z are absent.
In this case the above inequality holds automatically since F12 is a diffeomorphism.

Similarly, condition C2 shows that the other transition map F21 : (ũ, ṽ, w̃) 	→
(x1, x2, y, z) can be written as

x1 − x+
1 = b11(ũ − u−) + b12ṽ + b13y + · · · ,

x2 − x+
2 = b21(ũ − u−) + b22ṽ + b23y + · · · ,

w̃ − w− = b31(ũ − u−) + b32ṽ + b33y + · · · ,

z − z+ = b41(ũ − u−) + b42ṽ + b43y + · · · ,

(6.5)

with b2
11 + b2

21 �= 0. By rotating the x-coordinates to a small angle, if necessary, we
can assume

b11 �= 0. (6.6)

Thus, the above formula can be rewritten as

ũ − u− = b−1
11 (x1 − x+

1 − b13y) + O(‖ṽ‖ + (x1 − x+
1 )2 + y2),

x2 − x+
2 = b21b

−1
11 (x − x+

1 − b13y) + b23y + O(‖ṽ‖ + (x1 − x+
1 )2 + y2),

w̃ − w− = O(|x1 − x+
1 | + ‖ṽ‖ + ‖y‖),

z − z+ = b41b
−1
11 (x − x+

1 − b13y) + b43y + O(‖ṽ‖ + (x1 − x+
1 )2 + y2).

(6.7)
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6.1.3 First-return maps and cone field lemma

Now we can find a formula for the first-return map in the same way as in the saddle
case. Namely, combining (6.2) and (6.3) yields the analogue of (3.15):

u = μ̂ + a11λ
kx1 coskω + a11λ

kx2 sin kω − a12λ
kx1 sinkω

+ a12λ
kx2 coskω + h̃1(x1, x2, z,w),

y = h̃2(x1, x2, z,w), v − v+ = h̃3(x1, x2, z,w),

(6.8)

where

h̃1(x1, x2, z,w) = O(‖w‖) + o(λk), h̃2(x1, x2, z,w) = o(γ̂ −k),

h̃3(x1, x2, z,w) = O(‖w‖ + |λ|k).
Combining (3.7) and (6.7) yields the analogue of (3.17)

u = γ −m(u− + b−1
11 (x1 − x+

1 − b13y + ĥ01(x1 − x+
1 , y)))

+ ĥ1(x1, v, y),

x2 − x+
2 = b21b

−1
11 (x1 − x+

1 − b13y) + b23y + ĥ02(x1 − x+
1 , y)

+ ĥ2(x1, v, y),

z − z+ = b41b
−1
11 (x1 − x+

1 − b13y) + b43y + ĥ03(x1 − x+
1 , y)

+ ĥ3(x1, v, y),

w = ĥ4(x1, v, y),

(6.9)

where

ĥ0i (x1 − x+
1 , ȳ) = O((x1 − x+

1 )2 + y2) (i = 1,2,3),

ĥ1,4(x1, v, y) = o(γ −m), ĥ2,3(x1, v, y) = o(λ̂m).

Finally, combining (6.8) and (6.9) with renaming x1, x2, y, z by x̄1, x̄2, ȳ, z̄ in (6.9),
we obtain the following form for the first-return map Tk,m := F21 ◦ Fm

2 ◦ F12 ◦ Fk
1 :

(x1, x2, y, z) 	→ (x̄1, x̄2, ȳ, z̄):

x̄1 − x+
1 = b11γ

mμ̂ + b11λ
kγ m

(
(a11x1 + a12x2) coskω

+ (a11x2 − a12x1) sin kω
)

− b11u
− + b13ȳ − ĥ01(x̄1 − x+

1 , ȳ) + γ mh1(x1, x̄1, x2, ȳ, z),

x̄2 − x+
2 =b21b

−1
11 (x̄1 − x+

1 − b13ȳ) + b23ȳ + ĥ02(x̄1 − x+
1 , y) (6.10)

+ h2(x1, x̄1, x2, ȳ, z),

z̄ − z+ =b41b
−1
11 (x̄1 − x+

1 − b13ȳ) + b43ȳ + ĥ03(x̄1 − x+
1 , ȳ)
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+ h3(x1, x̄1, x2, ȳ, z)

y = h4(x1, x̄1, x2, ȳ, z),

where

h1 = o(λk) + o(γ −m), h2,3 = o(λ̂m), h4 = o(γ̂ −k).

We further do computations with the first-return map Tk,m only at μ = 0, so we
will omit the term bγ mμ̂ in formula (6.10). Make the coordinate transformation

X1 = x1 − x+
1 − b13y, Y = y,

X2 = δ− 1
2 (x2 − x+

2 − b21b
−1
11 (x1 − x+

1 − b13y) − b23y

− ĥ02(x1 − x+
1 , y)),

Z = z − z+ − b41b
−1
11 (x − x+

1 − b13y) − b43y − ĥ03(x1 − x+
1 , y).

(6.11)

The first-return map acquires the form

X̄1 = Ak,mX1 + Bk,m + δ
1
2 O(λkγ m)X2 + φ̂01(X̄1, Ȳ )

+ γ mφ̂1(X1, X̄1,X2, Ȳ ,Z),

X̄2 = δ− 1
2 φ̂2(X1, X̄1,X2, Ȳ ,Z),

Y = φ̂3(X1, X̄1,X2, Ȳ ,Z), Z̄ = φ̂4(X1, X̄1,X2, Ȳ ,Z),

(6.12)

where

φ̂01 = O(X̄2
1 + Ȳ 2), ‖φ̂1‖C1 = o(λk)+ o(γ −m),

‖φ̂2,4‖C1 = o(λ̂m), ‖φ̂3‖C1 = o(γ̂ −k),
(6.13)

and

Ak,m = λkγ m ((a11b21 − a12b11) sin kω + (a11b11 + a12b21) coskω)

= λkγ mA sin(kω + η1),

Bk,m = λkγ mb11(a11x
+
2 − a12x

+
1 ) sin kω + b11(a11x

+
1 + a12x

+
2 ) coskω)

− b11u
−

= λkγ mB sin(kω + η2) − b11u
−.

(6.14)

Note the factor δ
1
2 in front of X2 in (6.12) which appears because we scale x2 to δ

1
2

in (6.11). Note also that the coefficients

A =
√

(a2
11 + a2

12)(b
2
11 + b2

21) and B = |b11|‖x+‖
√

a2
11 + a2

12
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are non-zero by (6.4), (6.6) and because x+ = (x+
1 , x+

2 ) �= 0 due to the non-
degeneracy condition C3. The phases η1,2 are defined by

A sinη1 = a11b11 + a12b21, A cosη1 = a11b21 − a12b11,

B

b11
sinη2 = a11x

+
1 + a12x

+
2 ,

B

b11
cosη2 = a11x

+
2 − a12x

+
1 ,

which, together with b11/b21 �= x+
1 /x+

2 due to the non-degeneracy condition C4.2
(see (6.5)), imply that

tanη1 �= tanη2. (6.15)

Similarly to the saddle case, we consider pairs (k,m) such that the maps Tk,m take

� = [−δ, δ] × [−δ, δ] × [−δ, δ]d1 × [−δ, δ]d−d1−1 (6.16)

into itself, which implies that

λkγ mB sin(kω + η2) = b11u
− + O(δ). (6.17)

We will consider only such k for which sin(kω + η2) stays bounded away from 0.
This, along with (6.17), implies that λkγ m is uniformly bounded. In particular, the
term γ mφ̂1 in (6.12) tends to zero as k,m → ∞. This allows to express X̄1 as a
function of (X1,X2,Z, Ȳ ) from the first equation of (6.12), and thus get rid of the
dependence on X̄1 in the right-hand side of (6.12). Thus, we can rewrite formula
(6.12) for Tk,m as

X̄1 = Ak,mX1 + Bk,m + φ1(X1,X2,Z, Ȳ ),

X̄2 = φ2(X1,X2,Z, Ȳ ), Z̄ = φ4(X1,X2,Z, Ȳ ),

Y = φ3(X1,X2,Z, Ȳ ),

(6.18)

where

φ1 = O(δ
3
2 ) + o(1)k,m→∞,

∂φ1

∂(X1,X2, Ȳ ,Z)
= O(δ

1
2 ) + o(1)k,m→∞,

‖φ2,4‖C1 = o(λ̂m), ‖φ3‖C1 = o(γ̂ −k).

(6.19)
We have the above estimate for φ2 because in the X̄2-equation in (6.12) the coefficient

δ− 1
2 can be absorbed by φ̂2. Indeed, we always first take δ sufficiently small and then

take k, m sufficiently large.
Formula (6.18) represents the first-return maps in the form used in Proposi-

tion 4.12 (where one should choose (X2,Z) as a new Z-variable). We will check
in Sect. 6.2 that these maps indeed satisfy conditions of this proposition, thus estab-
lishing the existence of the blenders. Before doing that, we further restrict the choice
of (k,m) by the requirement that sin(kω + η1) stays bounded away from zero. Then,
the constant Ak,m in (6.18) stays bounded away from zero, and we notice that the
map (6.18) assumes, upon setting X = X1 and Znew = (X2,Z), the same form as
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(3.26) (with the only difference being a slightly worse estimate for φ1, which does
not affect the further results). This gives us the following analogue of Lemma 3.1 for
the saddle-focus case:

Lemma 6.1 Let μ = 0. Given any K > 0, one can choose δ sufficiently small, such
that for all sufficiently large (k,m) such that sin(kω + η1) and sin(kω + η2) stay
bounded away from zero, the cone fields on �

Ccu = {(�X1,�X2,�Y,�Z) : ‖(�X2,�Z)‖ � K(|�X1| + ‖�Y‖)}, (6.20)

Cuu = {(�X1,�X2,�Y,�Z) : max{|�X1|,‖(�X2,�Z)‖} � K‖�Y‖}, (6.21)

are forward-invariant in the sense that if a point M ∈ � has its image M̄ = Tk,m(M)

in �, then the cone at M is mapped into the cone at M̄ by DTk,m; the cone fields

Ccs = {(�X1,�X2,�Y,�Z) : ‖�Y‖ � K(|�X1| + ‖(�X2,�Z)‖)}, (6.22)

Css = {(�X1,�X2,�Y,�Z) : max{|�X1|,‖�Y‖} � K‖(�X2,�Z)‖}, (6.23)

are backward-invariant in the sense that if a point M̄ ∈ � has its preimage M =
T −1

k,m(M̄) in �, then the cone at M̄ is mapped into the cone at M by DT −1
k,m. Moreover,

vectors in Cuu and, if |Ak,m| > 1, also in Ccu are expanded by DTk,m; vectors in Css

and, if |Ak,m| < 1, also in Ccs are contracted by DTk,m.

6.2 Coexistence of mutually activating blenders

Here we prove the first part of Theorem 7 for the saddle-focus case.

Proposition 6.2 If θ , ω
2π

and 1 are rationally independent, then, at μ = 0, there exist,
arbitrarily close to the heterodimensional cycle �, a cs-blender �cs with an activat-
ing pair (�′,Css) and a cu-blender �cu with an activating pair (�′,Cuu) such that
Ws(�cs) � Wu(�cu) �= ∅ and the two blenders activate each other, namely, Wu(�cs)

contains a piece crossing �′ properly with respect to Cuu and Ws(�cu) contains a
piece crossing �′ properly with respect to Css . Here

�′ = [−qδ, qδ] × [−δ, δ] × [−δ, δ]d1 × [−δ, δ]d−d1−2 (6.24)

for some fixed q ∈ (0,1), and Css , Cuu are given by Lemma 6.1 with some sufficiently
small K .

This proposition immediately leads to robust heterodimensional dynamics involv-
ing the two blenders, see the discussion after Definition 4.2.

Proof The rational independence condition implies that the set

{(−kθ + m,k
ω

2π
− p)}k,m∈N,p∈Z
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is dense in R
2. So, given any (s, t) ∈ R

2, one can find a sequence {(kn,mn,pn)} with
kn,mn → ∞ such that mn are even and

−knθ + mn → t and kn

ω

2π
− pn → s. (6.25)

In fact, we fix a sufficiently large value of t and let s depend on n so that

kn

ω

2π
− pn − sn → 0.

We take the sequence {sn} dense in a sufficiently small closed interval � such that
the values

|γ |tB sin(2πsn + η2) − b11u
− (6.26)

are dense in a small interval around zero. In particular, this difference is O(δ). More-
over, by (6.15), we can always choose � such that, for some constants C1 and C2,

0 < C1 <

∣∣∣∣b11u
−A sin(2πs + η1)

B sin(2πs + η2)

∣∣∣∣ < C2 < 1 (6.27)

for all s ∈ �, or such that, for some constants C3 and C4,

1 < C3 <

∣∣∣∣b11u
−A sin(2πs + η1)

B sin(2πs + η2)

∣∣∣∣ < C4 < ∞ (6.28)

for all s ∈ �.
For the corresponding sequences {(kn,mn,pn)}, the values of sin(knω + η1) and

sin(knω + η2) get bounded away from zero for all sufficiently large n. Since mn are
even, we have γ mn = |γ |mn and, since λ > 0, we have λknγ mn = |γ |mn−knθ → |γ |t .
It then follows from (6.26) that condition (6.17) is satisfied, and hence the first-return
maps Tn := Tkn,mn can be represented in the form (6.18) with estimates in (6.19), and
the cone lemma (Lemma 6.1) holds.

The coefficients Bkn,mn given by (6.14) are dense in a small interval around zero,
and, by passing to a subsequence if necessary, we have that Bkn,mn lie in this interval
for all n. Since by (6.14) one can write

Akn,mn = (Bkn,mn + b11u
−)A sin(knω + η1)

B sin(knω + η2)
,

inequalities (6.27) and (6.28) imply that C1 < |Akn,mn | < C2 or C3 < |Akn,mn | < C4,
depending on the choice of the interval �.

Then, by setting X = X1 and Znew = (X2,Z), one immediately sees that condi-
tions of Proposition 4.12 are satisfied by the maps Tn, which gives us both the cu-
and cs- blender (by appropriate choices of the interval �).

What remains is to show the homoclinic connection between the two blenders.
Similarly to Remark 4.9, for every point M1 ∈ �cs , we define its local stable manifold
as a connected piece of Ws(�cs) ∩ � through M1, and the local unstable manifold
as a connected piece of Wu(�cs) ∩ � through M1. By Lemma 6.1, the tangent space
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of Ws
loc(M1) at any point lies in the stable cone Ccs , so Ws

loc(M1) is given by an
equation Y = ξ s

M1
(X1,X2,Z) where ξ s

M1
has its derivative small and is defined on

[−δ, δ] × [−δ, δ] × [−δ, δ]d−d1−2. Similarly, the manifold Wu
loc(M1) is the graph of

(X1,X2,Z) = ξu
M1

(Y ) defined for Y ∈ [−δ, δ]d1 and the tangent space of Wu
loc(M1)

at any point lies in Cuu. This means that Wu
loc(M1) crosses �′ properly with respect

to Cuu, i.e., �cs activates �cu.
For every point M2 ∈ �cu, the manifold Wu

loc(M2) is the graph of (X2,Z) =
ξu
M2

(X1, Y ) defined for (X1, Y ) ∈ [−δ, δ]× [−δ, δ]d and its tangents lie in Ccu. It im-
mediately follows that it has a non-empty transverse intersection with Ws

loc(M1) for
any point M1 ∈ �cs , so we have Ws(�cs) � Wu(�cu) �= ∅. The manifold Ws

loc(M2)

is the graph of (X1, Y ) = ξ s
2 (X2,Z) defined for (X2,Z) ∈ [δ, δ]×[−δ, δ]d−d1−2, and

its tangents lie in Css . So, it crosses �′ properly with respect to Css , which means that
�cu activates �cs . �

Remark 6.3 It follows from the arguments at the end of this proof that Wu(�cs) in-
tersects transversely Ws

loc(O1) (i.e., the manifold {Y = 0}), while Ws(�cs) intersects
transversely any manifold which crosses � properly with respect to Cuu. Similarly,
Ws(�cu) intersects transversely F21(W

u
loc(O2)) (i.e., the manifold {X2 = 0,Z = 0}

obtained by taking m → ∞ in (6.9)), and Wu(�cu) intersects transversely any man-
ifold which crosses � properly with respect to Css .

6.3 Local stabilization of heterodimensional cycles in the saddle-focus case

In this section we prove the second part of Theorem 7 for the saddle-focus case. As in
the saddle case, we investigate the iterates of the local invariant manifolds Wu

loc(O1)

and Ws
loc(O2).

Lemma 6.4 Let q , �′, Cuu be given by Proposition 6.2. Define the intervals

Iu
m =

(
γ −mu− − 1

2
|b−1

11 γ −m|qδ, γ −mu− + 1

2
|b−1

11 γ −m|qδ

)
.

Take sufficiently small δ. For every sufficiently large m, if μ̂ ∈ Iu
m, then the image

Su
m := F21 ◦ F2 ◦ F12(W

u
loc(O1)) is a disc of the form (X1,X2,Z) = s(Y ) for some

smooth function s. The disc Su
m crosses the cube �′ properly with respect to the cone

field Cuu.

Proof Since Wu
loc(O1) near M−

1 has equation (x̃, z̃) = 0, it follows from formulas
(6.3), (3.7) and (6.5), that the image Su

m is given by

x1 − x+
1 = b11γ

mμ̂ − b11u
− + b13y + O((γ mμ̂ − u−)2 + y2) + o(1)m→∞,

x2 − x+
2 = b21γ

mμ̂ − b21u
− + b23y + O((γ mμ̂ − u−)2 + y2) + o(1)m→∞,

z − z+ = b41γ
mμ̂ − b41u

− + b43y + O((γ mμ̂ − u−)2 + y2) + o(1)m→∞,
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which, after the transformation (6.11), recasts as

X1 = b11γ
mμ̂ − b11u

− + O((γ mμ̂ − u−)2 + Y 2) + o(1)m→∞,

X2 = δ− 1
2 O((γ mμ̂ − u−)2 + Y 2) + δ− 1

2 o(1)m→∞,

Z = O((γ mμ̂ − u−)2 + Y 2) + o(1)m→∞

(6.29)

Since μ̂ ∈ Iu
m, we have

|b11γ
mμ̂ − b11u

−| < qδ

2
,

which for Y ∈ [−δ, δ]d1 implies

|X1| < qδ

2
+ O(δ2) + o(1)m→∞ < qδ and

‖(X2,Z)‖ = O(δ
3
2 ) + δ− 1

2 o(1)m→∞ < δ,

where we first take δ sufficiently small and then take m sufficiently large (and we do

the same whenever terms like δ− 1
2 o(1)m→∞ appear). This means that Su

m crosses �′.
One also finds from (6.29) that

∂(X1,X2,Z)

∂Y
= O(δ

1
2 ) + δ− 1

2 o(1)m→∞,

which can be made sufficiently small so that the tangent spaces of Su
m ∩ � lie in Cuu.

So, the crossing is also proper with respect to Cuu. �

Lemma 6.5 Let �′ and Css be given by Proposition 6.2. There exists a sequence

{kj } → ∞ such that, at μ = 0, the preimage Ss
j := F

−kj

1 ◦ F−1
12 (Ws

loc(O2)) is a disc
of the form (X1, Y ) = s(X2,Z) for some smooth function s. The disc Ss

j crosses �′
properly with respect to the cone field Css .

Proof Since Ws
loc(O2) near the point M+

2 is given by {(u,w) = 0}, the preimage
F−k

1 ◦ F−1
12 (Ws

loc(O2)) can be found from (6.8) by setting μ̂ = 0 and u = w = 0,
which in coordinates (6.11) is given by

X1 = −B sin(kω + η2)

A sin(kω + η1)
+ O(δ

3
2 ) + o(1)k→∞,

Y = o(γ̂ −k),

(6.30)

where the right-hand sides are functions of (X2,Z).
The assumption that θ , ω/2π , and 1 are rationally independent implies that ω/2π

is irrational. As a result, one can find a sequence {kj } of positive integers with kj →
∞ such that ∣∣∣∣B sin(kjω + η2)

A sin(kjω + η1)

∣∣∣∣ <
qδ

2
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for all sufficiently large kj . It follows that for all sufficiently small δ and sufficiently
large kj , we have

|X1| < qδ, ‖Y‖ < δ,
∂(X1, Y )

∂(X2,Z)
= O(δ

3
2 ) + o(1)k→∞

in (6.30), which completes the proof of the lemma. �

We can now finish the proof of Theorem 7 for the saddle-focus case. Let �cs and
�cu be the cs- and cu-blenders of Proposition 6.2. By Remark 6.3, Lemma 6.4 implies
that �cs is homoclinically related to O1 when μ̂ ∈ Iu

m; and Lemma 6.5 implies that
�cu is homoclinically related to O2 at μ = 0, hence at all small μ, e.g. when μ̂ ∈
Iu
m. �

6.4 Double-focus case

We finish the paper by considering the case

λ1,1 = λ∗
1,2 = λeiω1, ω1 ∈ (0,π), and γ2,1 = γ ∗

2,2 = γ eiω2, ω2 ∈ (0,π),

where λ > |λ1,3|, γ < |γ2,3|. We no longer need to split the heterodimensional cycle
to get robust heterodimensional dynamics, so below we write formulas only for the
unperturbed system (e.g. μ = 0).

6.4.1 Local maps

We use the same coordinates near O1 as in the saddle-focus case, so the local map
F1 is given by (6.1) with replacing ω by ω1. Near O2 we introduce coordinates
(u1, u2, v,w) ∈ R × R × R

d−d1−1 × R
d1−1 such that the local map F2 assumes the

form (see [34, Lemmas 5 and 6])

ũ1 = γ u1 coskω2 + γ u2 sin kω2 + ĝ1(u1, u2, v,w),

ũ2 = −γ u1 sin kω2 + γ u2 coskω2 + ĝ2(u1, u2, v,w),

ṽ = Q1v + ĝ3(u1, u2, v,w),

w̃ = Q2w + ĝ4(u1, u2, v,w),

where the eigenvalues of the matrices Q1 and Q2 are λ2,1, . . . , λ2,d−d1−1 and
γ2,3 . . . γ1,d1+1, respectively. Here the functions ĝ satisfy

ĝ1,2,4(0,0, v,0) = 0, ĝ3(u1, u2,0,w) = 0, ĝ1,2(u1, u2,0,w) = 0,

∂ĝ1,2,4

∂(u1, u2)
(0,0, v,0) = 0

for all sufficiently small u1, u2, v and w. Similar to the saddle case, in these co-
ordinates the local manifolds Wu

loc(O2) and Ws
loc(O2) are given by {v = 0} and

{u1 = 0, u2 = 0,w = 0}; the leaves of the strong-unstable foliation have the form
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{(u1, u2) = const, v = 0}; and the restriction of the map to Wu
loc(O2) is linear in u.

This is the same coordinate system as discussed in Sect. 2.
By Lemma 7 of [34], the above coordinates can be chosen such that for any point

(u1, u2, v,w) ∈ U02, we have (ũ1, ũ2, ṽ, w̃) = Fm
2 (u1, u2, v,w) if and only if

u1 = γ −mũ1 cosmω2 + γ −mũ2 sinmω2 + q1(ũ1, ũ2, v, w̃),

u2 = −γ −mũ1 sinmω2 + γ −mũ2 cosmω2 + q2(ũ1, ũ2, v, w̃),

ṽ = q3(ũ1, ũ2, v, w̃),

w = q4(ũ1, ũ2, v, w̃),

(6.31)

where

‖q1,2,4‖C1 = o(γ −m), ‖q3‖C1 = o(λ̂m),

for some constant λ̂ ∈ (1, |λ2,1|), and these estimates are uniform for all systems C2-
close to f .

6.4.2 Transition maps

We now take the heteroclinic points

M+
1 = (x+

1 , x+
2 ,0, z+), M−

1 = (0,0, y−,0), M+
2 = (0,0, v+,0),

M−
2 = (u−

1 , u−
2 ,0,w−).

By the non-degeneracy condition C3, we have x+ �= 0 and u− �= 0. Up to a linear
rotation of the coordinates u, we can always achieve

u−
1 �= 0,

which will be our standing assumption.
The transition map F12 : (x̃1, x̃2, ỹ, z̃) 	→ (u1, u2, v,w) from a neighborhood of

M−
1 to a neighborhood of M+

2 is given by

u1 = a′
11x̃1 + a′

12x̃2 + a′
13(ỹ − y−) + a′

14z̃ + · · · ,

u2 = a′
21x̃1 + a′

22x̃2 + a′
23(ỹ − y−) + a′

24z̃ + · · · ,

v − v+ = a′
31x̃1 + a′

32x̃2 + a′
33(ỹ − y−) + a′

34z̃ + · · · ,

w = a′
41x̃1 + a′

42x̃2 + a′
43(ỹ − y−) + a′

44z̃ + · · · ,

where dots denote the second and higher order terms in the Taylor expansion. Note
that here dimy = dimw + dimu2 and condition C1 means that det(a′

23, a
′
43) �= 0. So,

we can rewrite the formula as

u1 = a11x̃1 + a12x̃2 + a13z̃ + a14u2 + a15w + · · · ,

v − v+ = a21x̃1 + a22x̃2 + a23z̃ + a24u2 + a25w + · · · ,

ỹ − y− = a31x̃1 + a32x̃2 + a33z̃ + a34u2 + a35w + · · · ,

(6.32)
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where a2
11 + a2

12 �= 0 by the second part of C1. Similarly, it follows from condition
C2 that the transition map F21 : (ũ1, ũ2, ṽ, w̃) 	→ (x1, x2, y, z) from a neighborhood
of M−

2 to a neighborhood of M+
1 is given by

x1 − x+
1 = b11(ũ1 − u−

1 ) + b12ṽ + b13y + · · · ,

x2 − x+
2 = b21(ũ1 − u−

1 ) + b22ṽ + b23y + · · · ,

z − z+ = b31(ũ1 − u−
1 ) + b32ṽ + b33y + · · · ,

ũ2 − u−
2 = b41(ũ1 − u−

1 ) + b42ṽ + b43y + · · · ,

w̃ − w− = b51(ũ1 − u−
1 ) + b52ṽ + b53y + · · · ,

(6.33)

where b2
21 + b2

12 �= 0.

6.4.3 First-return maps

Slightly different from the previous cases, here we work with the first-return maps

Fk,m := Fm
2 ◦ F12 ◦ Fk

1 ◦ F21 : (ũ1, ũ2, ṽ, w̃) 	→ (ū1, ū2, v̄, w̄)

defined in a small neighbourhood of M−
2 .

Lemma 6.6 Suppose that cosmω2 and (cosmω2 + a14 sinmω2) are both bounded
away from zero. Then, for a point (ũ1, ũ2, ṽ, w̃) in a small neighborhood of M−

2 , we
have (ū1, ū2, v̄, w̄) = Fk,m(ũ1, ũ2, ṽ, w̃) if and only if

(cosmω2 + a14 sinmω2)ū1 = λkγ m(Ck(ũ1 − u−
1 ) + Dk)

+ (a14 cosmω2 − sinmω2)ū2

+ λkγ mh01(ũ1 − u−
1 , ṽ)

+ γ mh1(ũ1, ū2, ṽ, w̄),

ũ2 − u−
2 = b41(ũ1 − u−

1 ) + b42ṽ + h02(ũ1 − u−
1 , ṽ)

+ h2(ũ1, ū2, ṽ, w̄),

w̃ − w−
2 = b51(ũ1 − u−

1 ) + b52ṽ + h03(ũ1 − u−
1 , ṽ)

+ h3(ũ1, ū2, ṽ, w̄),

v̄ = h4(ũ1, ū2, ṽ, w̄),

(6.34)

where

Ck = (a11b11 + a12b21) coskω1 + (a11b21 − a12b11) sin kω1,

Dk = (a11x
+
1 + a12x

+
2 ) coskω1 + (a11x

+
2 − a12x

+
1 ) sin kω1,

(6.35)
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and

h01 = O((ũ1 − u−
1 )2 + ‖ṽ‖), h0i = O((ũ1 − u−

1 )2 + ṽ2) (i = 2,3),

h1 = o(λk) + o(γ −m), h2,3 = o(γ̂ −k), h4 = o(λ̂m).

Proof Consider first the composition Fk
1 ◦ F21. Substituting the y-equation of (6.2)

into the first three equations in (6.33), one expresses x1, x2, z as functions of ũ1,
ṽ, ỹ. Substituting these expressions together with the y-equation of (6.2) into the
remaining equations in (6.33) leads to ũ2, w̃ as functions of ũ1, ṽ, ỹ. Then, com-
bining (6.33) with the newly obtained equations for x1, x2, z, ũ2, w̃ yields that
for a point (ũ1, ũ2, ṽ, w̃) in a small neighborhood of M−

2 we have (x̃1, x̃2, ỹ, z̃) =
Fk

1 ◦ F21(ũ1, ũ2, ṽ, w̃) if and only if

x̃1 = λk(x+
1 + b11(ũ1 − u−

1 ) + b12ṽ) coskω1

+ λk(x+
2 + b21(ũ1 − u−

1 ) + b22ṽ) sin kω1

+ λkO((ũ1 − u−
1 )2 + ṽ2) + h̃1(ũ1, ṽ, ỹ),

x̃2 = −λk(x+
1 + b11(ũ1 − u−

1 ) + b12ṽ) sin kω1

+ λk(x+
2 + b21(ũ1 − u−

1 ) + b22ṽ) coskω1

+ λkO((ũ1 − u−
1 )2 + ṽ2) + h̃2(ũ1, ṽ, ỹ),

ũ2 − u−
2 = b41(ũ1 − u−

1 ) + b42ṽ + O((ũ1 − u−
1 )2 + ṽ2) + h̃3(ũ1, ṽ, ỹ),

w̃ − w−
2 = b51(ũ1 − u−

1 ) + b52ṽ + O((ũ1 − u−
1 )2 + ṽ2) + h̃4(ũ1, ṽ, ỹ),

z̃ = h̃5(ũ1, ṽ, ỹ),

(6.36)

where ‖h̃1,2,5‖C1 = o(λk) and ‖h̃3,4‖C1 = o(γ̂ −k).
We proceed to find a formula for Fm

2 ◦ F12. Substituting the v-equation in (6.32)
into the u2- and w-equations in (6.31), one obtains u2 and w as functions of ũ1, ũ2,
w̃, x̃1, x̃2, z̃. Substituting these into the remaining equations, leads to u1 and ṽ as
functions of ũ1, ũ2, w̃, x̃1, x̃2, z̃. So we have the following relations:

u1 = γ −mũ1 cosmω2 + γ −mũ2 sinmω2 + q ′
1(ũ1, ũ2, w̃, x̃1, x̃2, z̃),

u2 = −γ −mũ1 sinmω2 + γ −mũ2 cosmω2 + q ′
2(ũ1, ũ2, w̃, x̃1, x̃2, z̃),

ṽ = q ′
3(ũ1, ũ2, w̃, x̃1, x̃2, z̃),

w = q ′
4(ũ1, ũ2, w̃, x̃1, x̃2, z̃),

where ‖q ′
1,2,4‖C1 = o(γ −m) and ‖q ′

3‖C1 = o(λ̂m).
Now, since cosmω2 is bounded away from zero, one can express ũ1 as a function

of u1, ũ2, v, w̃ from the u1-equation. Substituting the result into the equations for u2,
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ṽ and w, we obtain

γ −mũ1 cosmω2 = u1 − γ −mũ2 sinmω2 + q ′′
1 (u1, ũ2, w̃, x̃1, x̃2, z̃),

u2 = −u1 sinmω2

cosmω2
+ γ −mũ2

cosmω2
+ q ′′

2 (u1, ũ2, w̃, x̃1, x̃2, z̃),

ṽ = q ′′
3 (u1, ũ2, w̃, x̃1, x̃2, z̃),

w = q ′′
4 (u1, ũ2, w̃, x̃1, x̃2, z̃),

(6.37)

where ‖q ′′
1,2,4‖C1 = o(γ −m) and ‖q ′′

3 ‖C1 = o(λ̂m).
Recall that by assumption cosmω2 +a14 sinmω2 is also bounded away from zero.

Then, substituting the above u2-equation into the u1-equation in (6.32) yields

(
1 + a14 sinmω2

cosmω2

)
u1 = a11x̃1 + a12x̃2 + a13z̃ + a14γ

−mũ2

cosmω2
+ a15w

+ O(x̃2
1 + x̃2

2 + z̃2 + ũ2
2 + w2).

Combining this with (6.37) and the ỹ-equation in (6.32), yields that for a point
(x̃1, x̃2, ỹ, z̃) in a small neighborhood of M−

1 we have (ũ1, ũ2, ṽ, w̃) = Fm
2 ◦

F12(x̃1, x̃2, ỹ, z̃) if and only if

γ −m(cosmω2 + a14 sinmω2)ũ1 = γ −m(a14 cosmω2 − sinmω2)ũ2

+ a11x̃1 + a12x̃2 + a13z̃

+ O(x̃2
1 + x̃2

2 + z̃2)

+ ĥ1(x̃1, x̃2, z̃, ũ2, w̃),

ỹ − y− = O(|x̃1| + |x̃2| + ‖z̃‖)
+ ĥ2(x̃1, x̃2, z̃, ũ2, w̃),

ṽ = ĥ3(x̃1, x̃2, z̃, ũ2, w̃),

(6.38)

where ‖ĥ1‖C1 = o(γ −m), ‖ĥ2‖C1 = O(γ −m), ‖ĥ3‖C1 = o(λ̂m).
Replacing ũ1, ũ2, ṽ, w̃ by ū1, ū2, v̄, w̄ in the above formula, and combining it

with (6.36) yields (6.34). �

In formula (6.34), write

Ck = C sin(kω1 + η1) and Dk = D sin(kω1 + η2) (6.39)

and

cosmω2 + a14 sinmω2 =
√

1 + a2
14 cos(mω2 + η3),

a14 cosmω2 − sinmω2 = −
√

1 + a2
14 sin(mω2 + η3).

(6.40)
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Since a2
11 + a2

12 �= 0, b2
21 + b2

12 �= 0, and x+ �= 0 by conditions C1–C3, we have

C �= 0 and D �= 0.

Moreover, by condition C4.2 and (6.35),

tanη1 �= tanη2. (6.41)

Introduce the coordinate transformation

U1 = ũ1 − u−
1 , δ

1
2 U2 = ũ2 − u−

2 − b41(ũ1 − u−
1 ) − b42ṽ,

δ
1
2 V = ṽ, W = w̃ − w− − b51(ũ1 − u−

1 ) − b52ṽ,
(6.42)

and consider the restriction of Fk,m to

� = [−δ, δ] × [−δ, δ] × [−δ, δ]d−d1−1 × [−δ, δ]d1−1 (6.43)

in the new coordinates. Then, formula (6.34), along with (6.39) and (6.40), implies
that for a point (U1,U2,V ,W) ∈ � we have (Ū1, Ū2, V̄ , W̄ ) = Fk,m(U1,U2,V ,W)

if and only if

(1 + b41 tan(mω2 + η3))Ū1

= λkγ mC sin(kω1 + η1)U1 + λkγ mD sin(kω1 + η2)√
1 + a2

14 cos(mω2 + η3)

− u−
1

− tan(mω2 + η3)u
−
2 + φ1(U1, Ū2,V , W̄ ),

U2 = φ2(U1, Ū2,V , W̄ ), V̄ = φ3(U1, Ū2,V , W̄ ),

W = φ4(U1, Ū2,V , W̄ ),

(6.44)

where

φ1 = λkγ m(O(δ
3
2 ) + o(1)k,m→∞) + O(δ

3
2 ) + o(1)k,m→∞,

∂φ1

∂(U1, Ū2,V , W̄ )
= λkγ m(O(δ

1
2 ) + o(1)k,m→∞) + O(δ

1
2 ) + o(1)k,m→∞,

φ2,4 = O(δ
3
2 ) + o(γ̂ −k),

∂φ2,4

∂(U1, Ū2,V , W̄ )
= O(δ

1
2 ) + o(γ̂ −k),

‖φ3‖C1 = o(λ̂m).

(6.45)

6.4.4 Mutually activating blenders

For the proof of the next proposition, we will consider only such m that sin(mω2 +η3)

is close to zero. In this case, the condition of Lemma 6.6 that cosmω2 and (cosmω2 +
a14 sinmω2) are both bounded away from zero are automatically satisfied, as follows
from (6.40).
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Proposition 6.7 Let the system f have a heterodimensional cycle � of double-focus
type, and θ , ω1

2π
, θ ω2

2π
and 1 are rationally independent. There exist, arbitrarily close to

�, a cs-blender with an activating pair (�′,Css) and a cu-blender with an activating
pair (�′,Cuu) where

�′ = [−qδ, qδ] × [−δ, δ] × [−δ, δ]d−d1−1 × [−δ, δ]d1−1 (6.46)

for some fixed q ∈ (0,1), and

Css = {(�U1,�U2,�V,�W) : max{|�U1|,‖(�U2,�W)‖}�K‖�V ‖},
Cuu = {(�U1,�U2,�V,�W) : max{|�U1|,‖�V ‖}� K‖(�U2,�W)‖}

for some sufficiently small K . The two blenders mutually activate each other (in the
sense of Proposition 6.2).

Proof Denote

Ak,m = λkγ m C√
1 + a2

14

sin(kω1 + η1),

Bk,m = λkγ m D√
1 + a2

14

sin(kω1 + η2) − u−
1 .

(6.47)

We see that if we replace

U1 → X1, (U2,W) → Y, V → (X2,Z), (6.48)

then the first-return map (6.44) takes the same form as the first-return map (6.18) in
the saddle-focus case, provided we consider the values of (k,m) such that sin(mω2 +
η3) → 0 and λkγ m stays bounded. Moreover, formulas (6.47) coincide with formulas
(6.14) for the saddle-focus case if we rename the constants A = C√

1+a2
14

, B = D√
1+a2

14

,

and replace u−
1 by b11u

−, and ω1 by ω.
Thus, we obtain Proposition 6.7 in the same way as Proposition 6.2, if we show

that given any (s, t) ∈ R
2, one can find a sequence {(kn,mn,pn)} with kn,mn → ∞

such that conditions (6.25) are satisfied, and

sin(mnω2 + η3) → 0

(we do not need the evenness of mn here, as γ > 0 in the double-focus case).
These requirements are equivalent to the existence of a sequence of integers

{(kn,mn,pn, ln)} such that

knθ − mn → −t, kn

ω1

2π
− pn → s, kn

1

π
θω2 − ln → − tω2 + η3

π
.

This is guaranteed by our assumption that θ , ω1/2π , θω2/2π , and 1 are rationally
independent. �
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6.4.5 Local stabilization of heterodimensional cycles in the double-focus case

To complete the proof of Theorem 7 we need to show that the two periodic points O1
and O2 are homoclinically related to the cs-blender and, respectively, the cu-blender
obtained in the above proposition.

Lemma 6.8 Let �′ and Cuu be given by Proposition 6.7. There exists a sequence {mj }
of positive integers with mj → ∞ such that the image Su

j := F
mj

2 ◦ F12(W
u
loc(O1)) ∩

� is a disc of the form (U1,V ) = s(U2,W) for some smooth function s. The disc Su
j

crosses �′ properly with respect to the cone field Cuu.

Proof By (6.38) and (6.42), the image Fm
2 ◦ F12(W

u
loc(O1)) satisfies

(cosmω2 + a14 sinmω2)(U1 + u−
1 )

= (a14 cosmω2 − sinmω2)(δ
1
2 U2 + u−

2 + b41U1 − b42δ
1
2 V ) + o(1)m→∞,

V = δ− 1
2 o(λ̂m),

which by (6.40) reduces to

(1 + b41 tan(mω2 + η3))U1

= −u−
1 − tan(mω2 + η3)u

−
2 − tan(mω2 + η3)δ

1
2 U2 + o(1)m→∞,

V = δ− 1
2 o(λ̂m).

Now consider a sequence {mj } → ∞ such that tan(mjω2 + η3) → −u−
1 /u−

2 .
Since 1/b41 �= u−

1 /u−
2 by condition C4.2 and (6.33), it follows that the above equa-

tions can be rewritten as

U1 = − tan(mjω2 + η3)

1 + b41 tan(mjω2 + η3)
δ

1
2 U2 + o(1)j→∞,

V = δ− 1
2 o(λ̂mj ).

This immediately shows that for all sufficiently small δ and all sufficiently large j ,
and for all (U2,W) ∈ [−δ, δ] × [−δ, δ]d1−2 we have

|U1| < 1

2
δ, ‖V ‖ <

1

2
δ,

∂(U1,V )

∂(U2,W)
= O(δ

1
2 ) + o(1)j→0.

The proper crossing of Su
j with respect to Cuu is thus guaranteed. �

Lemma 6.9 Let �′ and Css be given by Proposition 6.7. There exists a sequence

{kj } of positive integers with kj → ∞ such that the preimage Ss
j := F−1

21 ◦ F
−kj

1 ◦
F−1

12 (Ws
loc(O2))∩� is a disc of the form (U1,U2,W) = s(V ) for some smooth func-

tion s. The disc Ss
j crosses �′ properly with respect to the cone field Css .
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Proof By (6.32), the preimage F−1
12 (Ws

loc(O2)) satisfies

0 = a11x̃1 + a12x̃2 + a13z̃ + O(x̃2
1 + x̃2

2 + z̃2),

ỹ − y− = a31x̃1 + a32x̃2 + a33z̃ + O(x̃2
1 + x̃2

2 + z̃2).

Substitute the equations for x̃1, x̃2, z̃ from formula (6.36) for the map Fk
1 ◦ F21 into

the second equation above. This yields ỹ = y− + O(λk) as a function of (ũ1, ṽ).
Combining the first equation above with (6.36) and using the new expression for ỹ,
we obtain the following equation for F−1

21 ◦ F−k
1 ◦ F−1

12 (Ws
loc(O2)) (see (6.35) and

(6.39)):

ũ1 − u−
1 = −D sin(kω1 + η2)

C sin(kω1 + η1)
+ O((ũ1 − u−)2 + ‖ṽ‖) + o(1)k→∞,

ũ2 − u−
2 = b41(ũ1 − u−

1 ) + b42ṽ + O((ũ1 − u−)2 + ṽ2) + o(γ̂ −k),

w̃ − w−
2 = b51(ũ1 − u−

1 ) + b52ṽ + O((ũ1 − u−)2 + ṽ2) + o(γ̂ −k),

where the small terms are functions of ũ1 and ṽ. Since ω1 is irrational, we can choose
the sequence of values of k → ∞ such that sin(kω1 + η1) stays bounded away from
zero.

Now, after solving ũ1 from the first equation, we apply the coordinate transforma-
tion (6.42) and obtain the intersection F−1

21 ◦ F−k
1 ◦ F−1

12 (Ws
loc(O2)) ∩ � as

U1 = −D sin(kω1 + η2)

C sin(kω1 + η1)
+ O(δ

1
2 V ) + o(1)k→∞,

U2 = O(δ− 1
2 U2

1 + δ
1
2 |V |) + o(1)k→∞, W = O(U2

1 + δ|V |) + o(1)k→∞.

After comparing this with (6.30) using the correspondence (6.48), one just follows
the proof of Lemma 6.5. �

It can be seen from (6.42) that Wu
loc(O2) = {V = 0}, and, after additionally taking

k → ∞ in (6.36), that the intersection F−1
21 (Ws

loc(O1)) ∩ � is the graph of some
smooth function (U2,W) = s(U1,V ) satisfying s = O(U2

1 + δV 2) and defined on
[−δ, δ] × [−δ, δ]d−d1−1.

Therefore, since the above two lemmas are completely analogous to Lemmas 6.4
and 6.5, one obtains the homoclinic relations between O1 and the cs-blender, and
between O2 and the cu-blender in the same way as it is shown in the end of Sect. 6.3.

Appendix: Standard blenders

Here we give a detailed construction of standard blenders. Essentially, this is a sum-
mary (with a necessary generalization to the case of an arbitrary Markov partition)
of the blender horseshoe construction [16]. We also show in Proposition A.4 that the
blenders found in this paper are standard. The main purpose is to make our blender-
related results more accessible for further use. As an example, see the application
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in [44] where we show the C1-robustness of homoclinic tangencies near homoclinic
tangencies of effective dimension larger than one.

Recall that a compact invariant set � of a diffeomorphism g is hyperbolic if it
possesses a continuous Dg-invariant splitting of its tangent bundle: T�M = Es ⊕
Eu, such that Dg is expanding in Eu and contracting in Es . This implies the existence
of invariant continuous cone fields Cs and Cu in a small neighborhood U of �: for
any point M ∈ U , and any vectors v ∈ cl(Cs

M) ⊂ TMU and w ∈ cl(Cu
M) ⊂ TMU , one

has Dg−1(v) ∈ int (Cs
g−1(M)

) if g−1(M) ∈ U , and Dg(v) ∈ int (Cu
g(M)) if g(M) ∈ U ;

moreover, Dg is uniformly expanding in Cu and uniformly contracting in Cs .
The hyperbolic set � is cs-partially hyperbolic if the invariant subbundle Es ad-

mits a further invariant splitting Es = Ess ⊕Ecs with Ecs �= 0, where the contraction
in Ess is uniformly stronger than in Ecs . Similarly, it is cu-partially hyperbolic if the
invariant subbundle Eu admits an invariant splitting Eu = Euu ⊕ Ecu with Ecu �= 0,
where the expansion in Euu is uniformly stronger than in Ecu. The partial hyperbol-
icity implies the existence of a forward-invariant cone field Cuu ⊂ Cu that contains
Euu or a backward-invariant cone field Css ⊂ Cs that contains Ess .

The compact hyperbolic set � is called basic if it is transitive and locally-maximal,
i.e., there is an orbit which is dense in � and, when the neighborhood U of � is
sufficiently small, any orbit which lies entirely in U lies in �. Note that any point
whose forward orbit never leaves U belongs to the local stable manifold of some
point in �, and any point whose backward orbit never leaves U belongs to the local
unstable manifold of some point in �.

We specifically consider zero-dimensional basic sets. Such sets admit a description
in terms of finite Markov chains. Namely, one can find a finite unidirectional graph
G with k vertices such that the set of orbits in � is in 1-to-1 correspondence with
the set of all infinite paths along the edges of G. The correspondence is established
as follows. One finds a finite collection of disjoint open subsets U1, . . . ,Un of U (a
Markov partition) such that � ⊂ U1 ∪ · · · ∪ Un, and g(cl(Us)) ∩ cl(Uj ) �= ∅ if and
only if there is an edge in the graph G that goes from the vertex s to the vertex j . Any
orbit in � defines a coding sequence {ji}i∈Z ∈ {1, . . . , n}Z such that the i-th point of
the orbit lies in Uji

, for all i. Moreover, the partition {U1, . . . ,Un} can be chosen
such that these sequences encode orbits in � uniquely (i.e., different orbits produce
different sequences {ji}) and a sequence {ji}i∈Z corresponds to some orbit of � if
and only if the graph G has an edge from the vertex ji to the vertex ji+1 for all i.

One can choose the Markov partition such that cl(Uj ) is, for each j , a diffeomor-
phic image of a Cartesian product Xj ×Yj ⊂ R

ds ×R
du

of two compact convex sets,
where ds = dim(Es) and du = dim(Eu). Hence, we can use x ∈ R

ds
and y ∈ R

du
as

coordinates on cl(Uj ). Let us denote by dx and dy the vectors in the tangent spaces.
The invariant cone fields in U1 ∪ · · · ∪ Un are then given by Cu = {‖dx‖ < Ku

j ‖dy‖}
and Cs = {‖dy‖ < Ks

j ‖dx‖} (where the numbers K
s,u
j may depend on the point in

Xj ×Yj ). Moreover, given any complete u-disc S ⊂ cl(Uj ), i.e., a graph of a smooth
function x = h(y) defined for all y ∈ Yj , taking values x ∈ int (Xj ) for some j , and
satisfying the Lipshitz property (Dh(dy), dy) ∈ Cs , if there is an edge of the graph G

going from j to s, then the image g(S ∩ g−1(cl(Us))) is a complete u-disc in cl(Us),
i.e., it is a graph of a smooth function satisfying the same Liprshitz property and de-
fined for all y ∈Ys . Similarly, given any complete s-disc S ⊂ cl(Us), i.e., a graph of a
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smooth function y = h(x) defined for all x ∈ Xs , taking values y ∈ int (Ys), and sat-
isfying the Lipshitz property (dx,Dh(dx)) ∈ Cu, the preimage g−1(S ∩ g(cl(Uj )))

is a complete s-disc in cl(Uj ).
Since the tangents to the s-discs lie in Cs and the tangents to the u-discs lie in

Cu, the map g is uniformly expanding on the u-discs and uniformly contracting on
the s-discs. The stable lamination Ws

loc(�) is comprised by complete s-discs and the
unstable lamination Wu

loc(�) by complete u-discs. Moreover, Ws
loc(�) = ⋃

J Ws
loc,J

where the union is taken over all forward paths J = {ji}i�0 in the graph G and
Ws

loc,J is the uniquely defined complete s-disc that consists of all points M ∈ cl(Uj0)

such that gi(M) ∈ cl(Uji
) for all i � 0. Similarly, Wu

loc(�) = ⋃
J Wu

loc,J where the
union is taken over all backward paths J = {ji}i�0 in the graph G and Wu

loc,J is the
uniquely defined completely u-disc that consists of all points M ∈ cl(Uj0) such that
gi(M) ∈ cl(Uji

) for all i � 0.
If the zero-dimensional basic set is also cs-partially hyperbolic, we assume that the

Markov partition is chosen such that Xj = X
ss
j ×X

cs
j , where X

ss
j and X

cs
j are convex

compact sets of dimension dim(Ess) and dim(Ecs), respectively. Thus, a point in
cl(Uj ) has coordinates (xss, xcs, y) with xss ∈ X

ss
j , xcs

j ∈ X
cs
j , y ∈ Yj . A complete

ss-disc of Uj is the graph  := (xcs, y) = p(xss) of a smooth function p defined for
all xss ∈X

ss
j and such that the tangents to  lie in Css at every point of .

We say that the covering property is satisfied if for any complete ss-disc  there
exists s such that the preimage g−1( ∩ g(cl(Us))) is a complete ss-disc again.

Definition A.1 (Standard blenders) A basic zero-dimensional cs-partially hyperbolic
set � is called a standard cs-blender of coindex d = dim(Ecs) if it satisfies the cov-
ering property.

By the covering property, given any complete ss-disc, we have an infinite sequence
of its preimages by g which lie in a small neighborhood U of a cs-blender �. So,
every such disc has at least one point whose backward orbit never leaves U . Such
points must belong to Wu

loc(�), which means that every complete ss-disc has a non-
empty intersection with the local unstable lamination of the standard cs-blender.

Since the sum of the dimensions of any leaf Wu
loc,J of Wu

loc(�) and any ss-disc is
strictly less than dim(U), these intersections are non-transverse, so they get destroyed
by arbitrarily small perturbations. However, one can easily show that the covering
property is C1-open: the basic set � persists for all C1-small perturbations of g, i.e.,
it depends continuously on g, the Markov partition and the cone families Css ⊂ Cs

and Cu remain unchanged, and the covering property holds for the continuation of
�. It follows that, given any complete ss-disc, it has an intersection with some leaf
of Ws

loc(�) for every map which is C1-close to g. Thus, a standard cs-blender is a
cs-blender in the usual terminology [13, 17, 19], and, particularly, satisfies Defini-
tion 1.9.

The set � is a standard cu-blender if it is a standard cs-blender of the system
obtained from time inversion. More specifically, when � is cu-partially hyperbolic,
one chooses the Markov partition such that Yj = Y

uu
j × Y

cu
j , and defines complete

uu-discs as graphs of functions of the form (x, ycu) = p(yuu). The set � is called
a standard cu-blender of coindex d = dim(Ecu) if it satisfies the following covering
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property: for any complete uu-disc  there exists s such that the preimage g( ∩
g−1(cl(Us))) is a complete uu-disc again. Then every complete uu-disc activates
(i.e., has a non-empty intersection with the local stable lamination) the standard cu-
blender � and this property persists for every C1-close map.

Remark A.2 Note that the same construction can be carried out in the case of
continuous-time dynamical systems. Given a compact, transitive, locally-maximal,
one-dimensional uniformly hyperbolic invariant set � of a smooth flow, we can take
a cross-section U such that the flow near � defines, on U , the return map g – a dif-
feomorphism acting from a small neighborhood of � ∩ U into U such that � ∩ U

is a zero-dimensional basic set of g. Then, � is a standard blender of the flow if and
only if � ∩ U is a standard blender of g.

Remark A.3 Similarly to the case of a flow, given a diffeomorphism f and a zero-
dimensional basic set � of f , take an open set U such that ∂U ∩� = ∅. Then, �∩U

is a basic set of an induced map g defined on the union of finitely many disjoint open
subsets Uj of U , by the restriction of certain iterations of f to Uj . Iterating by f the
Markov partition {Uj }, one extends it to a small neighborhood of �, and proves that
if � ∩ U is a standard blender for g, then � is a standard blender of f .

Finally, let us show that the blenders obtained in this paper are standard. By the
symmetry of the problem, it suffices to consider only cs-blenders. Recall that the
finite set Jδ′ of pairs in Lemma 4.10 corresponds to a hyperbolic basic set � := �Jδ′
by Lemma 4.7, and it is just the cs-blender in Proposition 4.4.

Proposition A.4 The cs-blender � is standard.

Proof Let �′ be the cube of size δ′, as in Lemma 4.10. For each pair (kj ,mj ) ∈ Jδ′ ,
the intersection T −1

kj ,mj
(�′) ∩ �′ is a “horizontal strip” of the form

Uj = {(X,Y,Z) | X ∈ [−δ′, δ′], Y ∈ φmj ,kj
(X, [−δ′, δ′]d1 ,Z),Z ∈ [−δ′, δ′]d−d1−1},

where φmj ,kj
is the function φ2 = o(γ̂ −k) from (3.26) (take (k,m) = (kj ,mj )). These

strips are pairwise disjoint, and their union contains � ∩ �′. If we define a map g on⋃
Uj by

g(M) = Tkj ,mj
(M) if M ∈ int (σkj ,mj

),

then the set �∩�′ is a partially hyperbolic basic set of g. Moreover, it is cs-partially
hyperbolic, with the cone fields Ccs , Css and Cuu described in Lemma 3.1.

By Remarks A.2 and A.3, it suffices to prove that � ∩ �′ is a standard cs-blender
of g. Obviously, the sets Uj form a Markov partition for � ∩ �′ with the property
that for any s and j we have g(cl(Us)) ∩ cl(Uj ) non-empty. Next, observe that every
cl(Uj ) is the diffeomorphic image of

Q = {(xcs, xss, y) | xcs ∈ [−δ′, δ′], xss ∈ [−δ′, δ′]d−d1−1, Y ∈ [−δ′, δ′]d1},
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where the diffeomorphism is defined by

X = xcs, Y = φmj ,kj
(xcs, y, xss), Z = xss .

The last thing to check is the covering property, but this is exactly Lemma 4.10. So
� ∩ �′ is indeed a standard cs-blender of g. �
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