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Abstract
We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization
procedure of Charney and Davis are virtually compact special, hence linear and resid-
ually finite. Our strategy consists in constructing an action of a hyperbolized group
on a certain dual CAT(0) cubical complex. As a result, all the common applica-
tions of strict hyperbolization are shown to provide manifolds with virtually compact
special fundamental group. In particular, we obtain examples of closed negatively
curved Riemannian manifolds whose fundamental groups are linear and virtually al-
gebraically fiber.
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1 Introduction

Closed aspherical manifolds occupy a central place in manifold topology. For this
class of manifolds, the Borel Conjecture predicts that two such manifolds are home-
omorphic if and only if they have isomorphic fundamental groups – in other words,
that the topology is entirely encoded in the fundamental group. A challenging prob-
lem is the question of examples. The fundamental group will always satisfy Poincaré
Duality over Z (i.e. they are PDn groups), and the Wall Conjecture predicts that
conversely, any PDn group is the fundamental group of an aspherical manifold. Clas-
sically, there were two sources of examples of aspherical manifolds: they either arose
from Lie theory, as quotients of contractible Lie groups by discrete subgroups, or
from differential geometry, as non-positively curved manifolds.

In the late 1970’s, Gromov introduced two metric versions of non-positive cur-
vature, CAT(0) spaces and Gromov hyperbolic spaces. Simply connected, complete,
locally CAT(0) spaces are automatically contractible. In dimensions ≥ 4, manifolds
that support locally CAT(0) metrics form a new source of aspherical manifolds.
Moreover, it is easy to produce such manifolds, through a process known as hyper-
bolization. This was originally outlined by Gromov in [32], and subsequently devel-
oped by Davis and Januszkiewicz in [18]. Hyperbolization is a functorial procedure,
which inputs a simplicial complex, and outputs a locally CAT(0) space. In a later
refinement, Charney and Davis in [14] developed a strict hyperbolization procedure,
where the output is locally CAT(−1), i.e. admits a metric of negative curvature (as
opposed to just non-positive curvature). The hyperbolization procedures have been
used to produce examples of aspherical manifolds with various unexpected proper-
ties. In this work we show that one can construct hyperbolizations that have some
additional algebraic regularity.
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Theorem 1.1 Given a dimension n > 0, there exists a strict hyperbolization procedure
H with the following property. Let K be any n-dimensional simplicial complex, which
is compact, homogeneous, and without boundary. Then the resulting hyperbolized
space H(K) has fundamental group G = π1(H(K)) which acts cocompactly on a
CAT(0) cubical complex by cubical isometries.

Most of the paper is concerned with the proof of this result (see §3 and §4). The
cubical complex in this statement is n-dimensional, but it is not locally compact and
the action is not proper. Nevertheless, since the hyperbolization procedure is strict
(i.e. H(K) is locally CAT(−1)), the fundamental group G is Gromov hyperbolic.
Therefore the work of Agol, Haglund–Wise, and Groves–Manning about special cube
complexes (see [2, 35, 39]) can be used to extract information about G. A cubical
complex is special if it admits a local isometry to the Salvetti complex of a right-
angled Artin group (RAAG) (see [39]). A group is virtually compact special if it has
a finite index subgroup which is the fundamental group of a compact special cubical
complex.

Theorem 1.2 Given a dimension n > 0, there exists a strict hyperbolization proce-
dure H with the following property. Let K be any n-dimensional compact simpli-
cial complex. Then the resulting hyperbolized space H(K) has fundamental group
G = π1(H(K)) which is Gromov hyperbolic and virtually compact special. In par-
ticular, G enjoys the following properties.

(1) G virtually embeds in a right–angled Artin group (RAAG) (see [39]).
(2) G is linear over Z (see [19, 39]), hence is residually finite.
(3) G has separable quasiconvex subgroups (see [39]).
(4) G is virtually residually finite rationally solvable (RFRS) (see [1]).
(5) G has the Haagerup property, hence does not have property (T) (see [15, 58]).
(6) G satisfies the strong Atiyah conjecture (see [68]).
(7) G is virtually bi-orderable (see [25]).
(8) G virtually embeds in the mapping class group of a closed surface, in a braid

group, and in the group of diffeomorphisms of R (see [3, 49, 50]).
(9) G admits a proper affine action on R

n for some n ≥ 1 (see [17]).
(10) G admits Anosov representations (see [24]).

This is achieved in §5 via a study of the cube stabilizers for the action from The-
orem 1.1 and using a criterion for improper actions from [35]. The special cubical
complex in Theorem 1.2 comes from a geometric action on a CAT(0) cubical com-
plex different from the one in Theorem 1.1; its dimension is in general larger than
n and not easy to bound. We note that the fact that hyperbolized groups do not have
property (T) was already observed by Belegradek in [9] without using cubical meth-
ods.

The use of strict hyperbolization (as opposed to non–strict hyperbolization pro-
cedures) is crucial here. Indeed, there are closed aspherical manifolds whose funda-
mental group is not Gromov hyperbolic and not residually finite (see [8, 55]). A well–
known question by Gromov asks whether all Gromov hyperbolic groups are residu-
ally finite. Theorem 1.2 implies that the strict hyperbolization procedure introduced
by Charney and Davis in [14] does not provide counterexamples to this question.
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In [36] we obtained results analogous to Theorems 1.1 and 1.2 for the relative
strict hyperbolization procedure that was considered in [9, 20] to construct aspherical
manifolds with boundary and relatively hyperbolic groups.

1.1 The main arguments

The hyperbolization procedure in Theorems 1.1 and 1.2 is the composition of two
hyperbolization procedures. The first one is Gromov’s cylinder construction, which
turns the simplicial complex K into a non–positively curved cubical complex G(K)

(see §2.4, and [32, §3.4.A]). The second one is the strict hyperbolization procedure
of Charney and Davis, which turns a non–positively curved cubical complex X into a
locally CAT(−1) piecewise hyperbolic polyhedron X� (see §3, and [14]). Here � is
a certain uniform arithmetic lattice of simple type in SO0(n,1) = Isom+(Hn), which
needs to be chosen to define the strict hyperbolization procedure. The hyperbolization
procedure in Theorem 1.1 is then given by H(K) = (G(K))� , i.e. by the composition

K �→ X = G(K) �→ X� = (G(K))� ,

and in this paper we are mostly concerned with the study of the second part, i.e. the
strict hyperbolization of a cubical complex. Sections §3 and §4 lead to the following
argument.

Proof of Theorem 1.1 Let K be an n-dimensional simplicial complex, which is com-
pact, homogeneous, and without boundary. Then the cubical complex X = G(K)

is an n-dimensional cubical complex, which is compact, homogeneous, and with-
out boundary. Moreover, up to a barycentric subdivision of K , the cubical com-
plex X = G(K) can be assumed to be foldable, i.e. to admit a combinatorial map
f : X → �n to the standard cube which is injective on each cube (see Proposi-
tion 2.7).

Foldability provides a collection of subspaces of X that we call mirrors. A mirror
is defined as a connected component of the full preimage in X of a codimension-
1 face of the standard cube �n under the folding f : X → �n (see §3.4). Mirrors
of X give rise to nice locally convex codimension-1 subspaces of the hyperbolized
complex X� , which we still call mirrors. Lifting the collection of mirrors of X� to the
universal cover ˜X� of X� provides a stratification of ˜X� : a point is in the k-stratum
if it is contained in n − k mirrors (where n = dimK = dimX = dimX�).

We construct a dual cubical complex C(˜X�) in which vertices are given by cells in
this stratification, and edges correspond to codimension-1 inclusion of cells (see §4).
The complex C(˜X�) comes with a natural height function on its vertices, recording
the dimension of the corresponding cell. In particular, the link of each vertex splits
into an ascending sublink and a descending sublink. The former is flag because the
cubical complex X = G(K) is non–positively curved, and the latter is flag because
of a Helly property satisfied by collections of pairwise orthogonal hyperplanes in
H

n (see Lemma 4.9). It follows that links of vertices in C(˜X�) are flag (see Propo-
sition 4.10), hence C(˜X�) is a non–positively curved cubical complex. Moreover,
the separation properties of the collection of mirrors (see §3.7) imply that C(˜X�) is
simply–connected, hence CAT(0) (see Theorem 4.29).
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Finally, note that the action of G = π1(X�) = π1(H(K)) on ˜X� by deck transfor-
mations induces an action of G on C(˜X�), as desired (see Lemma 4.30). �

The reader should note that the dimension of the dual cubical complex C(˜X�)

in Theorem 1.1 is the same as the dimension of the input simplicial complex K .
Moreover, the Charney-Davis strict hyperbolization procedure from [14] relies on
the careful choice of a suitable arithmetic lattice �. Such a lattice can be chosen with
a certain flexibility, and the proof of Theorem 1.1 works for any choice of � for which
the strict-hyperbolization procedure is defined.

The action from Theorem 1.1 is further studied in §5.

Proof of Theorem 1.2 First of all, let us prove the theorem under the hypothesis and in
the setting of Theorem 1.1, i.e. with the additional assumption that K is homogeneous
and without boundary. Then the Gromov hyperbolic group G = π1(X�) = π1(H(K))

acts on the dual CAT(0) cubical complex C(˜X�) cocompactly and by cubical isome-
tries.

The action is not proper, but the cube stabilizers can be identified with suitable
cell stabilizers for the action of G by deck transformations on the universal cover
˜X� of H(K) (see §5.1). These stabilizers are quasiconvex subgroups both of G and
of � (see §5.2). Arithmetic lattices like � are known to be virtually compact special
by [40]. In particular, we obtain that cell stabilizers for the action of G on C(˜X�)

are virtually compact special. It then follows from [35, Theorem D] that G itself is
virtually compact special (see Theorem 5.15).

Finally, let us prove the theorem for an arbitrary compact simplicial complex K ,
without additional assumptions. To this end, let K ′ be a compact and homogeneous
simplicial complex in which K embeds as a subcomplex. (For instance, first embed
K in the complete simplex on its vertex set, and then embed this simplex in a triangu-
lation K ′ of a sphere.) Since Gromov’s cylinder construction maps subcomplexes to
locally convex subcomplexes, and the Charney-Davis hyperbolization preserves lo-
cal convexity, we have that H(K) is a locally convex subspace of H(K ′). It follows
that G = π1(H(K)) is a quasiconvex subgroup of G′ = π1(H(K ′)). But G′ is hyper-
bolic and virtually compact special by the first part of this proof, hence G is virtually
compact special too by Lemma 5.10. �

For the sake of clarity: the cubical complex that witnesses the specialness of G is
not the cubical complex from Theorem 1.1. It is obtained via the construction in [35],
and its dimension is in general higher than n = dimK . One of the benefits of working
with the dual CAT(0) cubical complex C(˜X�) (as opposed to other available CAT(0)

cubical complexes, such as ˜X) is that the stabilizers for the action of G on C(˜X�) can
be related to the stabilizers for the action on ˜X� , which are more geometric in nature
and easier to understand.

1.2 Classical applications of hyperbolization procedures

The interest in hyperbolization procedures is that they can be used to construct closed
aspherical manifolds with various interesting properties. As a result of our Theo-
rem 1.2, many applications of the strict hyperbolization procedure introduced by
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Charney and Davis in [14] can be obtained with additional algebraic features (e.g.
the properties (1)-(10) listed in Theorem 1.2). We now collect some of these applica-
tions.

1.2.1 Riemannian hyperbolization

The strict hyperbolization procedure introduced by Charney and Davis in [14] out-
puts a space with a metric which is locally CAT(−1) and piecewise hyperbolic: the
space is obtained by gluing together copies of the hyperbolizing cube �n

� (see §3).
When the cell complex X used in the hyperbolization procedure is homeomorphic
to a smooth manifold, the hyperbolized complex X� is homeomorphic to a manifold
too, but the locally CAT(−1) metric can a priori have singularities where the bound-
aries of different copies of the hyperbolizing cube �n

� meet. It was recently shown by
Ontaneda in [60] that the construction can be tweaked in such a way that the manifold
X� supports a smooth Riemannian metric with strictly negative sectional curvatures
(possibly with respect to a different smooth structure).

This was used in [60, Corollary 5] to construct examples in any dimension n ≥ 4
of closed Riemannian n–manifolds of pinched negative curvature which are “new”
in the sense that they are not homeomorphic to any of the previously known exam-
ples of Riemannian manifold of negative curvature, such as closed real hyperbolic
manifolds (or more generally locally symmetric spaces of rank 1), or the Gromov-
Thurston branched covers in [33], or the examples of Mostow-Siu in [57] or Deraux
in [22]. These manifolds are also distinct from the recent examples constructed by
Stover–Toledo in [71, 72], as the latter are Kähler, while the result of strict hyper-
bolization cannot be Kähler by [9, Theorem 1.8]. Our construction does not require
the smoothness provided by Ontaneda’s work, but it is compatible with it, so we get
the following.

Corollary 1.3 For any ε > 0 and n ≥ 4 there are closed Riemannian n-manifolds with
the following properties:

• they have sectional curvatures in the interval [−1 − ε,−1];
• they are not homeomorphic to a locally symmetric space of rank 1, or one of

the manifolds constructed by Gromov–Thurston, Mostow–Siu, Deraux, or Stover–
Toledo;

• their fundamental groups are Gromov hyperbolic and virtually compact special (in
particular, they satisfy properties (1)-(10) in Theorem 1.2).

Remark 1.4 Thanks to the solution of the Borel Conjecture for closed aspherical
n-manifolds with Gromov hyperbolic fundamental group in dimension n ≥ 5 (see
Bartels-Lück in [5]), the fundamental groups of these manifolds provide examples of
Gromov hyperbolic groups that are not isomorphic to lattices in SO(n,1) or the other
real simple Lie groups of rank 1. While it is not a priori clear from their construction
whether these groups are linear, they actually turn out to be virtually compact special,
hence linear over Z and residually finite. We note that Giralt proved in [31] that the
fundamental groups of the Gromov-Thurston manifolds are also virtually compact
special.
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Similarly, other applications obtained by Ontaneda in [60] can be taken to have
additional algebraic features. For example, we have the following versions of Corol-
lary 2 in [60].

Corollary 1.5 Let ε > 0. The cohomology ring of any finite CW–complex embeds in
the cohomology ring of a closed Riemannian manifold which has sectional curvatures
in [−1 − ε,−1] and whose fundamental group is Gromov hyperbolic and virtually
compact special (hence satisfies properties (1)-(10) in Theorem 1.2). In particular,
it can be embedded into the cohomology ring of a Poincaré Duality subgroup of
SLN(Z) (for N large).

For another application in the spirit of Corollary 1.3 see [64], where a relative
version of the Charney-Davis hyperbolization procedure is used to construct closed
manifolds with hyperbolic fundamental group that do not admit any real projective or
flat conformal structures, in any dimension at least 5. It follows from the present work
(or from [36]) that the fundamental groups of these manifolds are virtually compact
special too.

1.2.2 Pathological aspherical manifolds

Davis and Januszkiewicz used the hyperbolization procedures to construct aspherical
manifolds exhibiting a variety of pathological behavior (see [18]). As a consequence
of our Theorem 1.2, these examples can now be constructed to have the added prop-
erty that their fundamental groups are virtually compact special, hence satisfy prop-
erties (1)-(10) from Theorem 1.2. For the convenience of the reader, we collate some
of their examples.

Corollary 1.6 It is possible to construct (topological) manifolds of the following types
which are piecewise hyperbolic and locally CAT(−1).

• A closed 4-manifold which is not homotopy equivalent to any PL 4-manifold (see
[18, §5a]).

• For n = 4k, k ≥ 2, a closed n-manifold which is not homotopy equivalent to any
smooth manifold (see [6, Example 5.2]).

• For n ≥ 5, a closed n-manifold whose universal cover is not homeomorphic to R
n

(see [18, §5b]).
• For n ≥ 5, a closed n-manifold whose universal cover is homeomorphic to R

n, but
whose boundary at infinity is not homeomorphic to Sn−1 (see [18, §5c]).

Moreover, in all these examples, the fundamental groups of the manifolds are Gro-
mov hyperbolic and virtually compact special (in particular, they satisfy properties
(1)-(10) from Theorem 1.2).

Remark 1.7 Concerning the first example in Corollary 1.6, taking products with tori
yields examples in all dimensions n ≥ 4 of closed aspherical n-manifolds not homo-
topy equivalent to any PL n-manifold. These manifolds will have fundamental group
which is linear over Z, but when n ≥ 5 will only support a locally CAT(0) metric due
to the product structure. It would be interesting to produce examples in dimensions
n ≥ 5 which support locally CAT(−1) metrics.
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1.2.3 Representing cobordism classes

As another application, we can obtain representatives for cobordism classes that are
both topologically and algebraically nice.

Corollary 1.8 Let M be an arbitrary closed smooth manifold. Then M is cobordant
to an aspherical manifold M ′, where π1(M

′) is a Gromov hyperbolic and virtually
compact special (in particular, it satisfies properties (1)-(10) from Theorem 1.2).

Following an idea of Gromov (see [32, 61]), one lets K be the cone over a smooth
triangulation τ of M . Then we apply the strict hyperbolization H(K), and note that
since hyperbolization preserves links, the point p ∈ H(K) corresponding to the cone
point will have link a copy of τ . Thus, removing a small neighborhood of p leaves us
with a cobordism W between M and M ′ := H(τ ). Our Theorem 1.2 then applies to
M ′. Note that π1(W) itself contains π1(M), hence might not be linear (for instance,
if π1(M) is a non–linear group). On the other hand, if π1(M) is residually finite, then
π1(M

′) is also residually finite by our Theorem 1.2, and we showed in [36, Corollary
5.9] that in this case there is a cobordism between M and M ′ that has residually finite
fundamental group.

Remark 1.9 Thom’s work showed that oriented cobordism classes are rationally
represented by products of even dimensional complex projective spaces (see [56,
Sect. 17]). So every smooth oriented closed manifold has a multiple which is cobor-
dant to a non–negatively curved Riemannian manifold. In analogy, combining Davis–
Januszkiewicz–Weinberger [20], Charney–Davis [14], and Ontaneda [60], one ob-
tains that every smooth oriented closed manifold is cobordant to a strictly negatively
curved Riemannian manifold.

In dimensions ≥ 5, the Borel Conjecture is known to hold for aspherical mani-
folds with Gromov hyperbolic groups (see Bartels–Lück [5]). As such, the topolog-
ical manifold M ′ := H(τ ) is completely determined, up to homeomorphism, by its
fundamental group. So the discussion above in principle reduces the study of cobor-
dism classes of manifolds of dimension n ≥ 5, to the study of the corresponding
π1(M

′). Our corollary further reduces it to the linear case.

Remark 1.10 More generally, Corollary 1.8 works for a PL manifold, or even for a
triangulable topological manifold. Note that in all dimension n ≥ 4 there exist closed
topological manifolds that are not triangulable (see [30, 54]). Moreover, in all dimen-
sion n ≥ 6 such manifolds can be chosen to be aspherical by [21], and have virtually
compact special (hence residually finite) fundamental group by [36, Theorem 5.12].

1.2.4 Prescribing the Gromov boundary

The groups obtained by strict hyperbolization are Gromov hyperbolic groups, so it is
natural to ask what their Gromov boundary looks like. For example, the groups ob-
tained by Riemannian hyperbolization in [60] (see §1.2.1) are fundamental groups of
smooth Riemannian manifolds of negative curvature, hence their Gromov boundaries
are spheres of the appropriate dimensions.
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Corollary 1.11 Let n ≥ 1, and let M be a closed connected orientable PL n-manifold
that bounds a compact orientable PL (n + 1)-manifold. Then there exists a Gromov
hyperbolic group G such that

• the Gromov boundary of G is homeomorphic to the tree of manifolds X(M);
• G is virtually compact special (hence satisfies (1)-(10) in Theorem 1.2).

The groups in this statement are the ones obtained by Świątkowski in [73] via
strict hyperbolization of certain pseudomanifolds in which the link of a point is either
a sphere or a copy of the manifold M . The tree of manifolds X(M) is a compact
metrizable space which is obtained, roughly speaking, as a certain limit of connected
sums of copies of M .

1.2.5 Manifolds with exotic symmetries

The hyperbolization procedures satisfy a certain functorial property: automorphisms
of the simplicial complex K induce isometries of the hyperbolized complex H(K).
This has been used by various authors to produce closed manifolds with interesting
symmetries.

For example, if G is a Gromov hyperbolic group which is a Poincaré Duality group
over Z, an easy application of Smith theory shows that the fixed subgroup Gσ of an
involution σ ∈ Aut(G) is still a Poincaré Duality group, but over Z2. Farrell–Lafont
in [26] used an exotic symmetry produced via strict hyperbolization, to give examples
whose fixed subgroups are not Poincaré Duality over Z. Our results now show that
these examples can also be chosen to satisfy properties (1)-(10) in Theorem 1.2.

For another application, recall that in their seminal paper [7], Baum–Connes de-
fined a trace map tr : K0(C

∗
r G) → R, where C∗

r G is the reduced C∗-algebra of the
discrete group G. They also formulated the trace conjecture, which predicted that
when G is a group with torsion, the image of the trace map is contained in the ad-
ditive subgroup of Q generated by 1/n, where n ranges over the order of finite sub-
groups of G. A counterexample to this conjecture was constructed by Roy [63], us-
ing the Davis–Januszkiewicz (non–strict) hyperbolization procedure. She constructed
a group G whose only finite subgroups are isomorphic to Z3, and an element in
K0(C

∗
r G) whose trace equals −1105/9. Nevertheless, there is always the possibil-

ity that the original Baum–Connes trace conjecture might hold for certain restricted
classes of groups. The computations carried out by Roy ([63], pgs. 210-213) apply
verbatim if one instead uses the Charney–Davis strict hyperbolization, so our results
have the following consequence.

Corollary 1.12 There exists a Gromov hyperbolic group G whose only finite sub-
groups are isomorphic to Z3, but where the image of the trace map contains
−1105/9. Moreover, this group satisfies properties (1)-(10) in Theorem 1.2. In par-
ticular, the original Baum–Connes trace conjecture does not hold for the classes of
groups (1)-(10) in Theorem 1.2.

Remark 1.13 Lück formulated a refinement of the original Baum–Connes trace con-
jecture: the image of the trace map is contained in the subring Z[1/|Fin(G)|], ob-
tained from Z by inverting all the orders of finite subgroups of G. Lück showed that
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this refined Trace Conjecture holds for any group that satisfies the Baum–Connes
Conjecture (see [53]). In the subsequent literature, this refined version is what is
commonly referred to as the Trace Conjecture. For Gromov hyperbolic groups, the
Baum–Connes Conjecture was established by Lafforgue (see [52]). Thus the group
appearing in our Corollary 1.12 satisfies the refined trace conjecture.

1.3 Virtual algebraic fibering

In this section we present new applications of a more algebraic flavor. We say a group
G algebraically fibers if it admits a surjective homomorphism to Z with finitely gen-
erated kernel. We say it virtually algebraically fibers if it has a finite index subgroup
that algebraically fibers. Agol introduced the notion of residually finite rationally
solvable (or RFRS) group in [1] as a major ingredient in the solution of the Virtual
Haken Conjecture and Virtual Fibering Conjecture. Kielak proved in [48, Thoerem
5.3] that a finitely generated virtually RFRS group virtually algebraically fibers if and
only if its first L2–Betti number vanishes. Fisher has extended this result in [28, The-
orem A] to relate the vanishing of higher L2–Betti numbers of G to higher finiteness
properties of the kernel of a virtual algebraic fibration.

All of the groups constructed in this paper via strict hyperbolization are virtually
compact special, hence virtually RFRS, see [1, Corollary 2.3]. In some cases, it is
possible to prove vanishing of many L2–Betti numbers (for instance for all the exam-
ples obtained by Ontaneda in [60], provided the curvatures are sufficiently pinched;
see below for details). Hence, we get several new examples of virtually compact spe-
cial Gromov hyperbolic groups that admit a virtual algebraic fibration, whose kernel
has good algebraic finiteness properties. On the other hand, these groups can often
be seen to be incoherent, and in some cases it is possible to see that the kernel of a
virtual algebraic fibration is itself a witness to incoherence (i.e. is finitely generated
but not finitely presented).

Before providing the details for our case, we note that similar arguments also
work for arithmetic hyperbolic manifolds of simple type and for Gromov–Thurston
manifolds. These are known to be virtually specially cubulated (hence RFRS) by [40]
and [31] respectively.

1.3.1 Kernels with good algebraic finiteness properties

We start by constructing Gromov hyperbolic groups that virtually algebraically fiber,
and are not isomorphic to groups that were previously known to have this property.

Corollary 1.14 For all n ≥ 4 there is a closed Riemannian n-manifold M with nega-
tive sectional curvatures and such that

• π1(M) virtually algebraically fibers;
• π1(M) is Gromov hyperbolic and virtually compact special (hence satisfies

(1)-(10) in Theorem 1.2);
• π1(M) is not isomorphic to a uniform lattice in SO(n,1) (or other real simple Lie

group of rank 1), or to the fundamental group of a Gromov-Thurston, Mostow-Siu,
Deraux, or Stover–Toledo manifold.
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The manifolds in this statement are the ones constructed by Ontaneda in [60] (see
Corollary 1.3 above). As a result of our Theorem 1.2 the fundamental group of such
a manifold M is virtually compact special, and in particular it is virtually RFRS.
Moreover, M can be chosen to have sectional curvatures pinched in the interval [−1−
ε,−1] for an arbitrarily small ε > 0. By a result of Donnelly and Xavier (see [23, §4],
and also [45, Theorem 2.3]), if the curvatures of M are sufficiently pinched (i.e. ε is
sufficiently small with respect to the dimension n), then M does not have any non–
zero L2–harmonic p-forms, for p in a certain range. In particular, b

(2)
1 (π1(M)) = 0.

By [48] we see that if ε is small enough then π1(M) virtually algebraically fibers.
Furthermore, one can pinch the curvatures even more to force the vanishing of the

L2–Betti numbers for p = 0,1, . . . , �n
2 	 − 1. In particular, using results from [28]

one can obtain examples in which π1(M) virtually algebraically fibers with kernel of
type FP� n

2 	−1(Q). Also note that in the even dimensional case M will then satisfy

the (weak) Hopf conjecture, i.e. (−1)
n
2 χ(M) ≥ 0.

1.3.2 Kernels witness incoherence in dimension 4

We have discussed how to use strict hyperbolization to obtain Gromov hyperbolic
groups that virtually algebraically fiber with kernel of type FP� n

2 	(Q). On the other
hand, these kernels should not be expected to have better finiteness properties. Indeed,
in the context of the previous paragraph, we can show that in dimension n = 4 these
kernels are not finitely presented (i.e. not of type F2).

To see this, notice that Chern–Weil theory implies that the Euler characteristic of
a closed negatively curved 4-manifold is strictly positive (see [16]). This prevents
the kernel of an algebraic fibration of π1(M) from being finitely presented, as we
now describe. We thank Genevieve Walsh for sharing the following argument with
us. (This appears in [51].)

Lemma 1.15 Let M be a closed aspherical 4-manifold such that χ(M) 
= 0. If π1(M)

virtually algebraically fibers, then π1(M) is incoherent (the kernel is not finitely pre-
sented).

Proof Suppose π1(M) virtually algebraically fibers, and let G be the finite index
subgroup of π1(M) which surjects to Z with finitely generated kernel K . Notice
that G is a PD4 group with χ(G) 
= 0 (since Euler characteristic is multiplicative
by index), and that Z is a PD1 group. Assume by contradiction that K is finitely
presented (i.e. type F2). Then K is in particular of type FP2, and it follows from [41,
Corollary 1.1] that K is a PD3 group. In particular K has finite homological type (and
the same is true for Z). So, by the properties of Euler characteristics on short exact
sequences (see [12, Chapter IX, 7.3(d)]) we can conclude that χ(G) = χ(K)χ(Z) =
0. This contradicts the fact that χ(G) 
= 0. �

An alternative argument for this Lemma, under the additional assumption that
π1(M) is virtually RFRS, was shared with us by Kevin Schreve.

Proof In the same set up, if by contradiction K is finitely presented, then it is in
particular of type FP2(Q). So, since G is also virtually RFRS, by [28, 48] we get
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that b
(2)
1 (G) = b

(2)
2 (G) = 0. But G is a PD4 group, so by duality this implies that all

L2-Betti numbers vanish. This gives χ(G) = 0, which is again absurd. �

As a result we obtain the following statement. The manifold in it is once again one
of the manifolds obtained by Ontaneda, with curvatures sufficiently pinched.

Corollary 1.16 There exists a closed 4-dimensional Riemannian manifold M with
negative sectional curvatures and such that

• π1(M) is incoherent (it virtually algebraically fibers with non finitely presented
kernel);

• π1(M) is Gromov hyperbolic and virtually compact special (hence satisfies
(1)-(10) in Theorem 1.2);

• π1(M) is not isomorphic to a uniform lattice in SO(n,1) (or other real simple Lie
group of rank 1), or to the fundamental group of a Gromov-Thurston, Mostow-Siu,
or Stover–Toledo manifold.

Remark 1.17 The situation in dimension 4 is quite different from that in dimension 5.
Indeed, Italiano, Martelli, Migliorini in [44] obtained a 5-dimensional cusped hyper-
bolic manifold that fibers over the circle. Its fundamental group algebraically fibers,
with kernel of finite type (in particular finitely presented). The hyperbolic groups ob-
tained by suitable Dehn filling on these examples were shown to fiber with kernel of
finite type. Moreover, recent work of Groves and Manning shows that some of these
groups are virtually compact special (see [34]).

Remark 1.18 When n ≥ 5, the groups obtained by strict hyperbolization done with
a sufficiently large piece (as in Ontaneda) contain subgroups isomorphic to uniform
arithmetic lattices in SO(4,1). The incoherence of these subgroups (see [1, 46, 47])
gives incoherence of the hyperbolized groups, but these subgroups are not fibers
themselves (for instance because they are quasiconvex). Notice that this approach
does not work in dimension n = 4, as uniform lattices in SO(3,1) are coherent.

Structure of the paper This paper is structured as follows. In §1 we presented the
motivation, the context, the statements, and the major applications of our results.
In §2, we provide combinatorial and metric background about cell complexes and
hyperbolization procedures. §3 is devoted to a description of Charney–Davis strict
hyperbolization procedure for a cubical complex X. In particular, we study the ge-
ometry of the universal cover ˜X� of the hyperbolized complex X� in terms of a cer-
tain collection of convex subspaces called mirrors. This provides a graph of spaces
decomposition of X� . In §4 we construct and study a dual CAT(0) cubical complex
C(˜X�). Finally in §5 we study the action of the hyperbolized group �X = π1(X�) on
this dual cubical complex C(˜X�), and prove that �X is virtually compact special.

Common terminology and notation The numbers in parentheses refer to the sec-
tion(s) in which each item is introduced or discussed.
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• The hyperbolizing lattice � (§3.1) and the cubical complex X.
• The hyperbolized complex X� (§3.2), and its universal cover ˜X� (§3.3).
• The hyperbolized cube �n

� (§3.1), and its universal cover ˜�n
� (§3.3).

• The hyperbolized groups ��n = π1(�n
�) (§3.1) and �X = π1(X�) (§3.2).

• The folding map f : X → �n of a foldable complex (§2.2), and the induced map
f� : X� → �n

� on the hyperbolized complex (§3.2,§3.3).
• The Charney-Davis map g : �n

� → �n, and the induced map gX : X� → X on the
hyperbolized complex (§3.2).

• The dual cubical complex C(˜X�) (§4).
• A face F ⊆ �n.
• A cube C ⊆ X (if X is a cubical complex) or Q ⊆ C(˜X�).
• A cell σ ⊆ X� , ˜X� (§3.5), Hn, �n

� , ˜�n
� (§3.3).

• A tile τ in ˜X� (§3.3), and the dual tile C(τ ) in C(˜X�) (§4.2).
• A mirror M in ˜X� (§3.4), and the dual mirror C(M) in C(˜X�) (§4.3).
• An edge–path p in C(˜X�), its length �(p), its height h(p) (§4.1, §4.2), the num-

ber of (p,M)–crossings m(p,M) with respect to a mirror M , and its total mirror
complexity m(p) (§4.3).

2 Cell complexes and hyperbolization procedures

We collect in this section some background material used in our constructions. In
§2.1 we review the basics about cell complexes, and in §2.2 we focus on foldable
complexes, i.e. complexes that can be folded down to a standard simplex or cube. In
§2.3 we introduce a general template for the study of hyperbolization procedures for
foldable complexes. In §2.4 we review a specific hyperbolization procedure due to
Gromov.

2.1 Combinatorial and metric geometry of cell complexes

In this section we collect background material about cell complexes, mainly to fix
notation and terminology; for a detailed treatment see [11, §I.7, §II.5]. Let us de-
note by M

n
k the simply connected Riemannian manifold of dimension n and constant

sectional curvature k: for instance M
n
1 = S

n is the round sphere, Mn
0 = E

n is the Eu-
clidean space, and M

n
−1 = H

n is the hyperbolic space. An isometrically embedded
copy of Md

k inside M
n
k will be called a d–plane, or a hyperplane if d = n − 1.

2.1.1 Cells

A cell in M
n
k is defined to be the convex hull of a finite set of points; if k > 0 we are

going to also require that it is contained in an open ball of radius π

2
√

k
. The dimension

of a cell C is the smallest d such that C is contained in a d–plane. A cell of dimension
d will also be called a d–cell. The interior of C is its interior inside this d–plane.
A face F of C is a subspace of the form F = H ∩ C where H is a hyperplane such
that C lives in one of the two closed half–spaces bounded by H , and H ∩ C 
= ∅.
A face is itself a cell, and we call vertices and edges of C the faces of dimension 0
and 1 respectively.
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2.1.2 Cell complexes

An M
n
k -cell complex is a topological space X obtained by gluing together cells from

M
n
k by isometries of their faces, in such a way that each cell embeds in X and the

intersection of any two cells is either empty or a cell. Notice that this definition is
slightly more restrictive than the one in [11, Definition I.7.37] (which allows one to
glue two faces of the same cell), and the one in [14] (in which cells are allowed to
intersect in a proper union of faces). Both conditions can be satisfied by performing a
cellular subdivision. On the other hand, we do not require cell complexes to be locally
compact at this stage, i.e. a vertex can be contained in infinitely many cells.

We call an M
n
k -cell complex simply a cell complex when we do not need to keep

track of M
n
k . For instance we will denote by �n the standard n-simplex and by

�n = [0,1]n the standard n-cube; these are cells in M
n
0. A simplicial complex is a

cell complex obtained by gluing simplices, and a cubical complex is a cell complex
obtained by gluing cubes.

The dimension of a cell complex is the maximum dimension of its cells. We say
that an n-dimensional cell complex is homogeneous if every cell is contained in a cell
of dimension n, and that it is without boundary if every (n − 1)-cell is contained in
at least two different n-cells. For all k = 0, . . . , n, the k-skeleton of X is the subspace
consisting of all the cells of dimension at most k, and will be denoted by X(k). A sub-
complex of X is a closed subspace Y ⊆ X which is a union of cells of X. If X and Y

are cell complexes, a continuous function f : X → Y is a combinatorial map if for
every cell C of X we have that f is a homeomorphism from C to a cell f (C) of Y .

Given a cell complex X, its barycentric subdivision B(X) is the simplicial
complex whose k-simplices correspond to strictly ascending sequences of faces
F0 ⊂ · · · ⊂ Fk of X. There exists a natural (non–combinatorial) homeomorphism
X →B(X). We refer to [11, §I.7.44-48] for more details. Similarly, if X is a cubical
complex, then its cubical subdivision is the cubical complex obtained by subdividing
each n–cube along midcubes into 2n cubes.

Remark 2.1 By definition, a cell is compact, it has finitely many faces, and it can be
realized as the intersection of finitely many closed half-spaces (see [11, §I.7]). We
want to warn the reader that one of the main object under investigation in this paper
(see §3.5) is obtained by gluing together certain “generalized cells”, i.e. subsets of
H

n which are given by the intersection of an infinite but locally finite collection of
closed half-spaces. These subsets are convex but not compact, so the resulting space
is not strictly speaking a cell complex. However, some of the usual tools for the study
of cell complexes can be applied in this context (e.g. links). We will highlight the
subtleties in the construction whenever relevant.

2.1.3 Links

Let X be a cell complex. We define the link of points and cells as follows (see [11,
§I.7] for more details). Let p be a point of an n–cell C ⊆ M

n
k . Then we define the link

lk (p,C) to be the space of unit vectors in the tangent space at p inside C. Measuring
the angle between vectors endows lk (p,C) with a natural length metric, which makes
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it isometric to an (n− 1)–cell in S
n−1. The link lk (p,X) of p in X is then defined by

gluing together the links lk (p,Ci), where Ci ranges over the cells of X containing
p. This is naturally an M

n−1
1 –cell complex. If Y is a sufficiently regular subspace of

X containing p (e.g. a subcomplex), then the link lk (p,Y ) is defined analogously,
restricting to vectors along Y .

Let F be a d–face of an n–cell C ⊆ M
n
k . Then we define the link lk (F,C) to be the

subspace of unit vectors in the tangent space at an interior point of F , which are point-
ing into C and are orthogonal to F . As before, this is naturally an (n − d − 1)–cell
in S

n−1. The link lk (C,X) of a d–cell C ⊆ X is then defined by gluing together the
links lk (C,Ci), where Ci ranges over the cells of X containing C. It is naturally an
M

n−d−1
1 –cell complex. Finally, if Y ⊆ X is a subcomplex of X containing C, the link

lk (C,Y ) of C in Y is defined analogously, by restricting to the cells of Y that contain
C. Observe that if X is a simplicial or cubical complex, then the link of a d–cell C is
a simplicial complex in which vertices are given by the (d + 1)–cells containing C,
and in which m+ 1 vertices span an m–simplex if and only if the corresponding cells
are contained in a (d + m + 1)–cell.

2.1.4 Spaces and complexes of bounded curvature

We will consider the usual notions of curvature for metric spaces, such as being lo-
cally CAT(k) or Gromov hyperbolic (see [11, §II.1, §III.H.1] for more details). In
particular, we will say a space is non–positively curved if it is locally CAT(0), and
negatively curved if it is locally CAT(k) for some k < 0. Note that if k < 0 then a
CAT(k) space is in particular Gromov hyperbolic (see [11, Proposition III.H.1.2]),
and that if k ≤ 0 then a CAT(k) space is uniquely geodesic (see [11, Proposition
II.1.4]). Whenever x, y are points in a uniquely geodesic space, we denote by [x, y]
the unique geodesic between them.

Let X be an M
n
k -cell complex. Each cell can be naturally endowed with a metric

from M
n
k , and these can be glued together to make X into a complete geodesic metric

space, as soon as there are only finitely many isometry classes of cells in X (see [11,
Theorem I.7.50]). When equipped with this metric, X is said to be a cell complex
of piecewise constant curvature k; we say it is piecewise spherical, Euclidean, or
hyperbolic when k = 1,0,−1 respectively. If not otherwise specified, a simplicial or
cubical complex is always endowed with its standard piecewise Euclidean metric.

It is natural to ask for conditions under which a complex of piecewise constant
curvature is a space of bounded curvature, namely a locally CAT(k) space. For cu-
bical complexes this is completely controlled by the links of vertices. In a cubical
complex, cells are isometric to the standard Euclidean cube �n = [0,1]n, so the link
of a vertex is a piecewise spherical simplicial complex, in which all edges have length
π
2 . The following is known as Gromov’s link condition (see [11, Theorems II.5.18,
II.5.20]). A simplicial complex is flag if any k + 1 pairwise adjacent vertices span a
k–simplex.

Lemma 2.2 Let X be a cubical complex. Then the following are equivalent.

(1) X is non–positively curved (i.e. locally CAT(0)).
(2) The link of each vertex is a flag simplicial complex.
(3) The link of each vertex is a CAT(1) simplicial complex.
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2.2 Foldable complexes

Here we consider the notion of foldability for simplicial and cubical complexes that
we will require later. The first definition is essentially from [4, §1] (but see also [14,
Definition 7.2], and [76] for a more recent discussion).

A simplicial (respectively cubical) n-dimensional complex X is foldable if it ad-
mits a combinatorial map f : X → �n (respectively f : X → �n) such that its re-
striction to each cell of X is injective. Such a map will be called a folding for X. No-
tice that in a foldable complex the cells are necessarily embedded. This is the main
reason why we have incorporated this condition in the definition of cell complex in
§2.1.

Foldability has some immediate consequences. If X is foldable, and p : Y → X

is a combinatorial map which is injective on each cell, then Y is foldable too. In
particular any covering of a foldable complex is foldable. Moreover if X is foldable,
then the links of cells of codimension 2 are bipartite graphs. We collect below some
examples in the cubical case; analogous ones can be constructed for the simplicial
case.

Example 2.3 (Foldable and not foldable cubical complexes)

(1) A graph is foldable if and only if it is bipartite (Fig. 1, left).
(2) The rose Rm consisting of m squares with a vertex in common is foldable if and

only if m is even (Fig. 1, right).
(3) Foldability of X implies that links of codimension 2 cells are bipartite. However,

foldability is not completely determined by this property. For example, let X

be the cubical complex obtained by taking the product ∂
2 × R, where R is
endowed with the standard cell structure induced by Z. Then the links of vertices
are cycles of length 4 (hence they are bipartite), but X is not foldable; notice
that the universal cover of X identifies the square complex defined by Z

2 in R
2,

which is foldable (compare [4, Lemma 1.2]).

A main source of foldability comes from barycentric subdivisions; the following
is well–known (see [4, Lemma 2.1]), we include a proof for completeness (see left of
Fig. 2 for an example).

Fig. 1 Foldable cubical complexes
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Fig. 2 The barycentric subdivision of the rose of 3 squares is a foldable simplicial complex, but its cubical
subdivision is not a foldable cubical complex

Lemma 2.4 If X is a cell complex, then B(X) is a foldable simplicial complex.

Proof Let X have dimension n, and consider the simplex spanned by {0, . . . , n}; this
is just the standard simplex �n. Then we can define a map f : B(X) → �n by send-
ing a vertex of B(X) to the number which is equal to the dimension of the corre-
sponding cell in X. �

On the other hand, if X is a non–foldable cubical complex of dimension at least
2, then its cubical subdivision is still non–foldable (see Fig. 2, right). In §2.4 we
will review Gromov’s construction and show that it can be used to turn any cubical
complex into a foldable one (mildly changing the topology).

2.3 Hyperbolization procedures

In this section we set a framework for the study of certain constructions, which take a
cell complex as input and return a non-positively curved space as output. The result-
ing space is in particular always aspherical, so the topology of the original complex
is altered. What is interesting is that this can happen in a controlled way that allows
to preserve some features of the original complex. Constructions of this type are gen-
erally known as hyperbolization procedures (or asphericalization procedures). They
were first introduced by Gromov (see [32, §3.4.A]), and then popularized by several
authors (see [14, 18, 21, 60, 61]).

All the hyperbolization procedures we will consider in this paper are obtained by
different incarnations of the same abstract construction, which we now review briefly,
referring the reader to [74] or [18, §1] for more details. The naive idea is to fix some
topological space S and then replace every top-dimensional cell of a complex X by
a copy of S. For this gluing to be well–defined, it is common to assume that both X

and S come equipped with chosen maps to a reference space.
For concreteness let us consider the following set up. Let us denote by σn the

standard simplex �n or the standard cube �n, and let us fix a topological space
S, equipped with a continuous map g : S → σn, and a foldable simplicial or cubical
complex X, equipped with a fixed folding f : X → σn. One then considers the fibered
product HS(X) = {(x, s) ∈ X × S | f (x) = g(s)}, i.e. the space obtained via the
pullback square in Fig. 3.
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Fig. 3 A template for
hyperbolization procedures HS(X)

X σn

S

f

g

fS

gX

Note that the construction endows HS(X) with natural continuous maps gX :
HS(X) → X and fS : HS(X) → S, which are just the restrictions of the projections
onto the factors of X × S, and which make the diagram commute. Properties of the
pair (S, g) will result in properties of the space HS(X), and the art of hyperbolization
consists in crafting a pair (S, g) which yields some interesting properties on HS(X).
For a trivial example, consider the case S consists of a single point. Then HS(X) is
just the discrete set f −1(g(S)).

The following lemma identifies a mild condition under which the space HS(X)

looks like a collection of copies of S (compare the remark on page 321 of [74]). We
explicitly remark that we do not assume S to be compact until part (3) of this lemma.
This will be relevant in §3.3 for the study of a certain combinatorial decomposition
of a space into non–compact pieces.

Lemma 2.5 Let g : S → σn be surjective, and let C ⊆ X be an n–cell. Then the
following hold.

(1) The map fS restricts to a homeomorphism ϕ : g−1
X (C) → S.

(2) The map ϕ−1 ◦ fS :HS(X) → g−1
X (C) is a retraction.

(3) If X and S are compact, then HS(X) is compact too.

Proof Let us denote by fC the restriction of the folding map f to C. Note that fC :
C → σn is a homeomorphism. To prove (1), let ϕ : g−1

X (C) → S be the restriction of
fS to g−1

X (C). Then ϕ is continuous, because it is just the restriction of the projection
X ×S → S. Injectivity and surjectivity of ϕ follow respectively from those of fC . To
conclude, we construct an explicit continuous inverse. Consider the map λ : S → C,
λ(s) = f −1

C (g(s)). Notice it is well–defined (because g is surjective), and continuous.
Then the map ψ : S → g−1

X (C) ⊆ X × S, ψ(s) = (λ(s), s) provides a continuous
inverse to ϕ.

Now (2) follows from (1), as every element of g−1
X (C) is of the form (λ(s), s).

Finally, to prove (3), observe that if X is compact, then it consists of finitely many
n–cells. As a result of the previous argument, HS(X) is covered by finitely many
copies of the compact space S, hence it is compact. �

Depending on the applications in which they are interested, authors differ on what
additional geometric conditions they require on the association X → HS(X), hence
they start with different spaces (S, g). We refer the reader to [18] for a very general
treatment of how properties of (S, g) imply properties of HS(X). Some commonly
required conditions are the following
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Fig. 4 Example for Remark 2.6:
a face of the hyperbolizing cell
S is not connected and HS(X)

is not simply connected. The
maps f and g here are defined
by the vertex coloring

(1) (Hyperbolicity): HS(X) admits a non-positively curved metric.
(2) (Functoriality): if Z ⊆ X is a locally convex subcomplex, then HS(Z) ⊆ HS(X)

is a locally convex subspace.
(3) (Local structure): if C ⊆ X is an n–cell, then HS(C) is an n-manifold with

boundary and corners, and lk (HS(C),HS(X)) ∼= lk (C,X). In particular, if X

is a manifold, then HS(X) is a manifold too.
(4) (Homology surjectivity): the map gX : HS(X) → X induces a surjection on ho-

mology.

The association X → HS(X) is then called the hyperbolization procedure defined
by (S, g). We call S the hyperbolizing cell, and HS(X) the hyperbolized complex.
Despite the name (established in the literature), the output HS(X) of a hyperboliza-
tion procedure is a metric space which a priori is just non-positively curved. A strict
hyperbolization is one for which HS(X) is negatively curved. In this paper we will
consider a (non–strict) hyperbolization for simplicial complexes due to Gromov (see
§2.4), and a strict hyperbolization for cubical complexes due to Charney and Davis
(see §3).

Remark 2.6 If (S, g) is a given hyperbolizing cell, g : S → σn is surjective, and F ⊆
σn is a closed face of the n–cell σn, then the subspace g−1(F ) will be called a face
of S. The dimension of a face of S is defined to be simply the dimension of the
corresponding face of σn. Note that a face of S does not need to be connected. When
this happens, HS(X) may fail to be simply connected, even if both X and S are. For
some interesting examples, see [18, 1b.1], or consider the elementary one in Fig. 4.
Despite their non–trivial role in the construction, most of the times the maps f and g

are omitted from the notation.

2.4 Gromov’s cylinder construction

In this section we review a construction, due to Gromov, which turns a simplicial
complex K into a foldable cubical complex G(K) having non-positive curvature (see
[32, §3.4.A] for the original source, or [18, §4c], [61, §4], and references therein, for
expository accounts).

The construction uses induction on dimension and pullback simultaneously, fol-
lowing this scheme. For each dimension n ≥ 1 we will first define G(�n) and a map
g : G(�n) → �n, then for any foldable n–dimensional simplicial complex K , with a
folding f : K → �n, we will define G(K) via the pullback square (compare §2.3)
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G(K)

K �n

G(�n)

f

g

fG(�n)

gK

Finally, for a general K (not necessarily foldable), we will define G(K) = G(B(K))

(recall that the barycentric subdivision is always foldable by Lemma 2.4). Note that
in any case the construction equips G(K) with a natural map to �n.

For n = 1 we set G(�1) = �1, and we define g : G(�1) → �1 to be just the
identity. By the pullback construction this defines G(K) and a map g : G(K) → �1

for all simplicial graphs K . Concretely, when K is a simplicial graph, then G(K) = K

if K is bipartite, and G(K) = B(K) otherwise; the folding to �1 is induced by the
bipartition.

Let us now assume by induction that for any simplicial complex K of dimension
at most n−1 the space G(K) is defined, and is endowed with a map to �n−1. In order
to define G(�n), consider a reflection of ∂�n, and induce a reflection on G(∂�n). Let
U , V be the two closed half-spaces exchanged by the reflection, and define

G(�n) = G(∂�n) × [−1,1]/ ∼
where (u, t) ∼ (u′, t ′) if and only if |t | = |t ′| = 1 and u = u′ ∈ U . Notice that taking
a further quotient which identifies also points on V , one would get a map G(�n) →
G(∂�n) × S1, and we can think of G(�n) as being obtained from G(∂�n) × S1 by
cutting a slit in it along a half–fiber (see Fig. 5).

By induction, G(∂�n) is well–defined, and it comes with a map G(∂�n) → �n−1.
Notice that the boundary of G(�n) consists of two copies of V , glued along a sub-
space identifiable with U ∩ V . In other words, ∂G(�n) can be naturally identified
with G(∂�n), hence ∂G(�n) comes with a map to ∂�n. This map can be extended
to a map G(�n) → �n as follows: take a regular neighborhood N ∼= ∂G(�n) × [0,1]

Fig. 5 Gromov’s cylinder construction
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inside G(�n), and identify �n with the cone over ∂�n. Then extend the map over
N along the cone direction, and collapse the complement of N to the cone point.
This completes the construction of G(�n) and a map g : G(�n) → �n. Arguing as
above (i.e. with the template from §2.3), this also defines G(K) for any simplicial
complex K .

Proposition 2.7 If K is a simplicial complex, then G(K) is a foldable cubical com-
plex of non–positive curvature. Moreover if K is homogeneous (respectively without
boundary, locally compact, or compact), then G(K) is also homogeneous (respec-
tively without boundary, locally finite, or compact).

Proof First we show that G(K) admits the structure of a cubical complex, starting
with the case K = �n. This is clear for G(�1) = [0,1] = �1. Then, arguing by in-
duction, G(�n) inherits a cubical structure from the one of G(∂�n) × [−1,1]. Here
we think of [−1,1] as being given the standard cubical structures as a union of two
unit intervals, and we give G(∂�n) × [−1,1] the standard cubical structure coming
from the fact that �n−1 ×�1 = �n. Since G(K) is in general defined via the pullback
construction (see §2.3), it inherits a natural cubical structure from G(�n).

We now prove that the cubical complex G(K) has the desired properties. Foldabil-
ity is proven in [14, Lemma 7.5]. Non–positive curvature is proven in [18, Propo-
sition 4c.2(3)]. For the other properties we argue as follows. Note that for each n

the hyperbolizing cell G(�n) is homogeneous, has a single boundary component,
and satisfies ∂G(�n) = g−1(∂�n). So, if K is homogeneous then G(K) is homoge-
neous, and if K is without boundary, the same holds for G(K). It is proved in [18,
Lemma 1e.1 and §4c] that Gromov’s construction preserves the local structure (e.g.
links). This implies that if K is locally finite, then so is G(K). In particular, by (3) in
Lemma 2.5, if K is compact, then so is G(K), because G(�n) is compact. �

We have defined Gromov’s construction for simplicial complexes. Given any cell
complex X we can first take its barycentric subdivision B(X) (which is a simplicial
complex), and then apply Gromov’s construction to it.

Corollary 2.8 If X is any cell complex, then G(B(X)) is a foldable cubical complex of
non–positive curvature. Moreover if X is homogeneous (respectively without bound-
ary, locally compact, or compact), then G(B(X)) is also homogeneous (respectively
without boundary, locally compact, or compact).

Proof We know K = B(X) is a (foldable) simplicial complex (by Lemma 2.4), home-
omorphic to X. Then the statements follow from Proposition 2.7. �

Gromov’s construction is known to satisfy even more properties, namely condi-
tions (1)-(6) in [14] and (1), (2’), (3)-(5) in [18]. Some of these are versions of condi-
tions (1)–(4) from §2.3, while others deal with preservation of stable tangent bundles
and rational Pontryagin classes, when they are defined. This is needed in the appli-
cations of the hyperbolization procedure to construct examples of closed aspherical
manifolds with various prescribed features or pathologies (as in [18, 60]).
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3 Strict hyperbolization

The hyperbolization procedure introduced by Charney and Davis in [14] is defined
for cubical complexes, and fits in the framework outlined in §2.3, in the sense that
it is determined by the choice of a hyperbolizing cell. Differently from Gromov’s
cylinder construction (described in §2.4), this procedure is not defined by induction.
Rather, for each dimension n > 0 a hyperbolizing cell is defined independently, and
defines a hyperbolization procedure for n–dimensional cubical complexes.

While the original construction is a bit more general than the version we use here,
we find it convenient to impose some mild restrictions on the cubical complex in order
to simplify the presentation. From now on assume X is admissible, i.e. it satisfies the
following conditions (see §2 for definitions):

(1) cubical;
(2) homogeneous, without boundary;
(3) foldable;
(4) non-positively curved;
(5) locally compact.

This setting, consistent with that of [76], is more general than the one in [4], as we
do not require gallery–connectedness. In particular, we allow X to be a pseudoman-
ifold. On the other hand, the first two conditions are a bit more restrictive than the
corresponding ones in [14], while the other ones are the same. More precisely, if X

is foldable, then necessarily cubes of X are embedded. In [14] they allow two cubes
to meet in a proper union of faces; note that such faces have to be disjoint in each
cube, because non–positive curvature guarantees that links of vertices are simplicial.
In particular, up to performing cubical subdivision, one can always assume that X

is cubical. Finally we remark that at this stage we are only assuming local finiteness
instead of compactness of X. While in our main theorems (Theorems 1.1 and 1.2)
we assume that the complex is compact (in order to get a hyperbolic group), most of
the geometric and combinatorial arguments do not need that, and in §5.8 we actually
need to consider a certain hyperbolization of Rn.

The main contribution of this section is to define some subspaces of the space that
results from strict hyperbolization on an admissible cubical complex X. We call such
subspaces mirrors, and prove that their lifts to the universal cover are convex and
separating (see Proposition 3.14 and Proposition 3.37 respectively). Along the way,
we also study a combinatorial decomposition of the universal cover (see §3.3 and
§3.5) that will be the starting point for the construction of the dual cubical complex
in §4.

3.1 The hyperbolizing cell

The hyperbolizing cell used in this hyperbolization procedure is a certain hyper-
bolic manifold with boundary and corners, obtained by cutting a closed hyper-
bolic manifold along a suitable collection of pairwise orthogonal totally geodesic
codimension–1 submanifolds. While the existence of such an object is clear in di-
mension 2 (see Fig. 6), the construction in higher dimension requires some arithmetic
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methods involving quadratic forms (see §3.1.1 below for more details). Specifically,
the construction relies on the choice of a suitable congruence subgroup � of an arith-
metic lattice in SO0(n,1), so we will denote the hyperbolizing cell by �n

� . Here and
in the following we denote by Bn the group of Euclidean isometries of the standard
cube �n. Also recall from Remark 2.6 that a k–face of �n

� is by definition a subspace
of the form g−1(�k), where �k is a k–face of �n.

Lemma 3.1 (Corollary 6.2 in [14]) For every n ≥ 2 there exists a compact, connected,
orientable hyperbolic n–manifold with corners �n

� , an isometric action of Bn on �n
� ,

and a Bn–equivariant and face–preserving map g :�n
� →�n, such that the following

hold.

(1) The poset of faces of �n
� is Bn–equivariantly isomorphic to that of �n.

(2) Each face of �n
� is totally geodesic.

(3) The faces of �n
� intersect orthogonally.

(4) Each 0–dimensional face is a single point.
(5) The map g : �n

� →�n and its restriction to each face have degree one.

We call �n
� the hyperbolizing cube, and g the Charney–Davis map. We denote by

��n = π1(�n
�) the fundamental group of the hyperbolizing cube.

Remark 3.2 In this hyperbolization procedure, a k–face of �n
� is guaranteed to be

connected when k = 0, n, but may be disconnected otherwise (see Remark 2.6, and
the Remark after Corollary 6.2 in [14]). Nevertheless, by abuse of notation, we will
denote by �k

� = g−1(�k) the k–face of �n
� , even when 0 < k < n. Notice that �k

� is
a priori different from the k–dimensional hyperbolizing cube, i.e. the hyperbolizing
cell that one obtains by hyperbolizing a k–dimensional cube with a hyperbolizing
lattice � ⊆ SO0(k,1) for 0 < k < n. Namely, �k

� is always connected by construc-
tion. Finally, with respect to (5) in Lemma 3.1, when �k

� is disconnected, there is a
preferred component of �k

� on which g has degree one, while it has degree zero on
the other components (see [14, Lemma 5.9(b)] and §3.1.1 for details).

3.1.1 The construction of �n
�

To construct the hyperbolizing cube �n
� , Charney and Davis consider the hyperboloid

model for H
n inside Minkowski space R

n,1, i.e. the space R
n+1 equipped with a

quadratic form of signature (n,1). The isometry group of Rn,1 is naturally identified
with the indefinite orthogonal group O(n,1), and its connected component SO0(n,1)

is naturally identified with the group of orientation preserving isometries of Hn. Then
they show that SO0(n,1) contains an arithmetic lattice � which enjoys some key
properties, from which the properties of �n

� in Lemma 3.1 follow. In particular, � is a
cocompact torsion–free lattice of SO0(n,1), whose normalizer in O(n,1) contains all
the permutations of the coordinates x1, . . . , xn, and all the reflections in the coordinate
hyperplanes Hi = {(x1, . . . , xn, xn+1) ∈ R

n,1 | xi = 0} for i = 1, . . . , n. Note that
these generate a group of isometries isomorphic to Bn. We will refer to the lattice
constructed in [14, §6] as the hyperbolizing lattice.
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Fig. 6 A hyperbolizing cube

If � is such a lattice, then it acts freely, properly discontinuously, and cocom-
pactly by orientation–preserving isometries on H

n. We can consider the closed con-
nected oriented hyperbolic n–manifold M� = H

n/�. The hyperplanes Hi descend
to codimension–1 submanifolds Mi = Hi/Stab�(Hi) which are closed, oriented,
totally geodesic and pairwise orthogonal (see Fig. 6). Then the hyperbolizing cell
�n

� is defined to be the metric completion of the space M� \ ∪n
i=1Mi , with respect

to the length metric induced on the complement of ∪n
i=1Mi . This is the manifold

with boundary and corners obtained by cutting M� open along the submanifolds
M1, . . . ,Mn (see [14, §5]). In particular, the map g :�n

� →�n is induced by the col-
lapse map g0 : M� → (S1)n obtained by applying the Pontryagin-Thom construction
to M� with respect to each of the codimension–1 submanifolds M1, . . . ,Mn.

Remark 3.3 It is implicit in [14] that a hyperbolizing lattice � contains infinitely many
other hyperbolizing lattices as proper subgroups. They still enjoy the properties which
are relevant for the construction, and provide corresponding hyperbolizing cubes. As
observed by Ontaneda in [59, Lemma 2.1], this can be used to produce hyperbolizing
cubes for which the normal injectivity radius of the faces is arbitrarily large.

3.2 The hyperbolized complex

Following the template of §2.3, to define the strict hyperbolization procedure of [14]
we proceed as follows. For each dimension n > 0, we choose the hyperbolizing cell
to be the hyperbolizing cube (�n

�, g) defined in §3.1. Then for any foldable cubical
complex X of dimension n, we define the hyperbolized complex to be the space X�

obtained as the fiber product of the folding map f : X → �n and the Charney-Davis
map g : �n

� → �n, i.e. by the pullback square in Fig. 7.

Remark 3.4 By (5) in Lemma 3.1 we know that g is surjective. So, Lemma 2.5 allows
us to think of X� as being obtained by replacing every n–cube of X by a hyper-
bolizing cube �n

� , in the following sense (see Fig. 8). If C is a top–dimensional
cube of X, then its preimage g−1

X (C) in X� is homeomorphic to �n
� (see (1) in

Lemma 2.5). Then one can endow X� with a length metric by gluing together these
local metrics. In particular, f� : X� → �n

� induces an isometry g−1
X (C) → �n

� for
each top–dimensional cube C ⊆ X. For a concrete example, if X is (a suitable cubical
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Fig. 7 The hyperbolized
complex X� as a fibered product X�

X �n

�n
�

f�

f

ggX

Fig. 8 Strict hyperbolization of a square complex

subdivision of) the standard cubical structure on the n–torus, then X� is a closed hy-
perbolic manifold (see [9, Lemma 3.2] for details). Indeed, the piecewise hyperbolic
metric obtained by gluing the hyperbolizing cubes together has no singularity and is
in fact globally smooth and hyperbolic.

We collect here some of the main properties of this construction which are relevant
for our work.

Proposition 3.5 (Proposition 7.1 in [14]) For every n ≥ 2 and every n–dimensional
foldable cubical complex X, the space X� carries the structure of an n–dimensional
piecewise hyperbolic cell complex, and is endowed with a map gX : X� → X, such
that the following hold.

(1) If C ⊆ X is a k–cube, then g−1
X (C) ⊆ X� is isometric to a k–face of �n

� , and

lk
(

g−1
X (C),X�

)

is a piecewise spherical cell complex, isomorphic to lk (C,X).

(2) If Z ⊆ X is locally convex subcomplex of X, then g−1
X (Z) is a locally convex

subspace of X� .
(3) If X is locally CAT(0), then X� is locally CAT(−1).
(4) If X is compact and locally CAT(0), then �X = π1(X�) is a Gromov hyperbolic

group.

Remark 3.6 The statement says in particular that if C is a top–dimensional cube of X

then g−1
X (C) is isometric to �n

� (compare Remark 3.4). On the other hand, if C is a
k–cube with k < n, then g−1

X (C) is isometric to �k
� = g−1(�k), i.e. the hyperboliza-

tion of a lower dimensional cell, as introduced in Remark 3.2.
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Fig. 9 Hyperbolization of lower
dimensional subcomplexes g−1

X (Z)

Z �k

�k
�

f|Z

gk

If Z ⊆ X is a k–dimensional subcomplex, the subspace g−1
X (Z) can be identified

with the fibered product of the maps f|Z : Z → �k and gk : �k
� → �k , respectively

obtained by restricting the folding map f : X →�n to Z and the Charney–Davis map
g : �n

� → �n to �k
� (see Fig. 9). Loosely speaking, hyperbolization trickles down to

the lower dimensional skeletons of the complex X.

Remark 3.7 In this construction the choice of X and � are essentially independent. In
particular for any fixed cubical complex X one can consider deeper hyperbolizations
by taking deeper hyperbolizing lattices (see Remark 3.3). While the combinatorial
geometry of the hyperbolized complex, controlled by X, remains unchanged under
different choices of the hyperbolizing lattice, its hyperbolic geometry can be quanti-
tatively improved by an appropriate choice of the hyperbolizing lattice, as observed
by Ontaneda in [59, Lemma 2.1].

Remark 3.8 (Finding codimension-1 subspaces) The original approaches to cubu-
lating a group G relied on producing sufficiently many codimension one subgroups
inside G (see [10, 42, 65, 66]).

Since the copies of �n
� in the hyperbolized complex X� are obtained from an arith-

metic hyperbolic manifold, they contain a large supply of compact totally geodesic
codimension one submanifolds. It is tempting to try and use these to produce codi-
mension one subgroups in the hyperbolized group �X = π1(X�). The difficulty with
this approach is due to lack of control on the angles at which these totally geodesic
codimension one hypersurfaces intersect the boundary of �n

� . This makes it unclear
how to extend the proposed subspace past the boundary. One could take a geodesic
extension, but it would not be clear what the global behaviour of the subspace would
be (see left of Fig. 10). Or one could take a geodesic reflection, but that would give
rise to a kink angle (see right of Fig. 10). Given that �n

� has fixed finite diameter,
kink angles too far from right angles might prevent the subspace from even being
quasiconvex.

You can try to control the kink angle, for instance by requiring the codimension
one submanifold to be orthogonal to all faces of �n

� . In this case, the extension would
be a locally convex subspace of X� . Examples of orthogonal subspaces can be ob-
tained by noting that the symmetry group of the cube Bn acts on �n

� (see Lemma 3.1).
Each reflection of Bn has some fixed point set, which meets the boundary orthogo-
nally and is totally geodesic.

However, one can only find finitely many such subspaces, both in the orthogonal
case and in the case of kink angles bounded away from 0 (see [70] and [29, §5]). This
would make it quite delicate to ensure that one can find enough such subspaces to
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Fig. 10 Failure of the attempt to create hyperplane–like subspaces. Left: geodesic extension. Right:
geodesic reflection

apply the standard criteria for properness of the induced cubulation (such as those in
[10, 42]). To address these issues, we turn to a different type of subspaces, which we
call mirrors. These are defined in §3.4 using the foldability of X, and enjoy proper-
ties reminiscent of those of hyperplanes in a CAT(0) cube complex. For the sake of
clarity, the collection of mirrors also fails to provide a proper action of �X = π1(X�)

on a CAT(0) cubical complex in the usual way. Nevertheless, in §4 we will be able
to use mirrors to construct an action of �X on a CAT(0) cubical complex for which
the cube stabilizers are manageable, and are in a certain sense already detected by
the action of �X by deck transformations on the universal cover ˜X� (see §5.1). The
reader interested in these remarks should also compare this discussion with that in
Remark 4.2 below.

3.3 Tiling, folding, and developing the universal cover

Recall that we are assuming X is an admissible complex, as defined at the beginning
of §3. It follows from Proposition 3.5 (see also Lemma 2.5) that the hyperbolized
complex X� admits a decomposition into hyperbolized cubes, analogous to the de-
composition of X into cubes. In this section we show how to obtain an analogous
decomposition of the universal cover ˜X� of X� into pieces which are isometric to
the universal cover ˜�n

� of the hyperbolizing cube. Let us denote by π : ˜X� → X�

and π� : ˜�n
� →�n

� the universal covering projections.
We start by realizing the space ˜�n

� as a convex subset of H
n. Let us consider

once again the coordinate hyperplanes Hi = {(x1, . . . , xn, xn+1) ∈ R
n,1 | xi = 0} for

i = 1, . . . , n (introduced in §3.1.1). An open �–cell is a connected component of the
complement in H

n of the collection of �–orbits of the hyperplanes Hi . A �–cell is
the closure of an open �–cell. Notice that all �–cells are convex, isometric to each
other, and that � permutes them transitively. It follows from the construction of �n

�

in §3.1.1 that the universal cover ˜�n
� of �n

� can be isometrically identified with any
�–cell (see Fig. 11).

While it might be tempting to think that ˜X� is obtained via some simple fibered
product construction involving ˜X and ˜�n

� , that is not the case.
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Fig. 11 The universal cover ˜�n
� of �n

� , and its isometric embedding in H
n as a �–cell

Fig. 12 The hyperbolized
complex X� , its covering
spaces, and the folding map

X�

X �n

�n
�

X′
�

˜�n
�

˜X�

f�

f

g

π�

gXg′
X

f ′
�

π ′

π ′′

π

˜f�

Remark 3.9 (What ˜X� is not) Note that ˜X� 
= (˜X)� , i.e. the universal cover of the
hyperbolization of X is not the hyperbolization of the universal cover of X. Indeed,
(˜X)� is not simply connected, because it retracts to �n

� by (2) in Lemma 2.5. Anal-
ogously, ˜X� is not the fiber product of ˜X and ˜�n

� either. Indeed, note that the faces
of ˜�n

� (i.e. the preimages of faces of �n via the map g ◦ π�) are disconnected (see
Fig. 11). This prevents the fiber product of ˜X and ˜�n

� from being simply connected,
as observed in Remark 2.6.

In order to address this, and get a working understanding of ˜X� , we consider the
intermediate space X′

� obtained as a fibered product of X and ˜�n
� along the maps

f : X → �n and g ◦ π� : ˜�n
� → �n

� → �n (see Fig. 12). By the universal property
of pullbacks we have an induced map π ′ : X′

� → X� .
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Fig. 13 Tiles in ˜X� , X� and X

Lemma 3.10 The map π ′ : X′
� → X� is a covering map.

Proof By the composition law for pullbacks the space X′
� is actually the same as

the pullback of f� : X� → �n
� and π� : ˜�n

� → �n
� . In particular, the map π ′ is the

pullback of the universal covering projection π� along the map f� , hence is itself a
covering map. �

In particular, X′
� can be endowed with a length metric that makes π ′ a local isom-

etry (see [11, Proposition I.3.25]), and the universal cover ˜X� can be realized as the
universal cover of this space X′

� , even in a metric sense. Let π ′′ : ˜X� → X′
� denote

the universal covering projection.
We define a tile of X� to be a subspace of the form g−1

X (C), for C a top–
dimensional cube of X. Recall from Remark 3.4 that each tile of X� is isometric
to �n

� . In complete analogy, we define a tile in X′
� and in ˜X� to be a connected

component of the lift of a tile from X� via the covering maps π ′ and π = π ′ ◦ π ′′
respectively. We refer to this decomposition into tiles as the tiling of each of these
spaces (see Fig. 13). Note that, since the complex X is assumed to be admissible,
each point of X is either contained in the interior of a tile, or in the intersection of at
least two tiles. Moreover the folding map f of X induces an analogous map on X�

and its covering spaces, as established in the next lemma.

Lemma 3.11 The map ˜f� = f ′
� ◦ π ′′ : ˜X� → X′

� → ˜�n
� restricts to an isometry be-

tween each tile of ˜X� and ˜�n
� .

Proof Recall that X′
� is defined via a pullback construction, in the sense of §2.3.

Therefore, by (1) in Lemma 2.5, the map f ′
� : X′

� → ˜�n
� restricts to a homeomor-

phism between each tile of X′
� and ˜�n

� . Since the metric on X′
� is lifted from X� via

π ′, and f� restricts to an isometry between each tile of X� and �n
� (see Remark 3.4),

the map f ′
� actually gives an isometry between a tile of X′

� and ˜�n
� . Since the tiles of

X′
� are simply connected, they lift isometrically to tiles of ˜X� via π ′′. In particular,

π ′′ maps a tile of ˜X� isometrically onto a tile of X′
� . Therefore the map ˜f� = f ′

� ◦π ′′
maps a tile of ˜X� isometrically onto ˜�n

� , just by composition. �

The map ˜f� from Lemma 3.11 will be called the folding map of ˜X� . The com-
position of the folding map ˜f� with any isometric embedding ϕ : ˜�n

� → C onto a
�–cell C ⊆ H

n will be called a developing map for ˜X� .
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Remark 3.12 The restriction of a developing map to a tile is an isometric embedding
of a tile into H

n as a �–cell. Moreover if T1, T2 are two tiles of ˜X� meeting along a
codimension–1 subspace Z, and ϕ1 : T1 → C1 ⊆ H

n is an isometric embedding onto
a �–cell that maps Z into some hyperplane H , then post–composing ϕ1 with the re-
flection across H provides an isometric embedding ϕ2 of T2 as a �–cell C2 adjacent
to C1 along H . The two embeddings can be glued together to give an isometric em-
bedding of T1 ∪T2 onto the union of two �–cells C1 ∪C2 adjacent along H . This can
be “analytically continued” by sequentially extending over adjacent tiles, to obtain a
globally defined map ˜X� → H

n. However, this does not result in a global isometric
embedding ˜X� → H

n in general. This is due to the fact that links in X can be very
large, which gives rise to overlaps and singularities.

3.4 Mirrors: convexity

In this section we exploit foldability to define a collection of convex subcomplexes
of X, and induce corresponding subspaces in X� and ˜X� . Let Y be a foldable cubi-
cal complex of dimension n (in the following we will consider Y = X and Y = ˜X

depending on the situation). If f : Y → �n is a fixed folding and F ⊆ �n is a
codimension-1 face, then we define a mirror in Y to be a connected component of
f −1(F ).

Proposition 3.13 Let Y be an admissible cubical complex. Then each mirror is a
locally convex and geodesically complete subcomplex of Y . In particular, if Y is
CAT(0), then each mirror is convex.

Proof For the first statement see [76, Proposition 2.3] (and references therein such
as [4, Lemma 3.2(4)]). In the CAT(0) case, local convexity implies global convexity
(see for instance [13, Theorem 1.6,1.10], or [62, Theorem 1.1]). �

We now define a mirror in ˜X� to be a connected components of ˜f −1(F ), where
F is a codimension-1 face of �n and ˜f is the map given by the composition ˜f =
f ◦ gX ◦ π : ˜X� → X� → X → �n (see Fig. 14 and Fig. 15). Equivalently, we could
define it as a connected component of the full preimage of a mirror of X via the map
g̃X = gX ◦π , but we find it convenient to use this definition. We will say that M folds
to F , and we will denote by M the collection of all mirrors in ˜X� . Mirrors in X� are
defined in the analogous way using the map f ◦ gX .

Fig. 14 Right to left: mirrors M1, M2 in X, their preimages ̂M1 = g−1
X

(M1), ̂M2 = g−1
X

(M2) in X� , and
the lifts ˜M1, ˜M2 to ˜X�
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Fig. 15 The hyperbolized
complex X� and the maps used
to define mirrors

X�

X �n

�n
�

˜X�

f�

f
˜f

ggXg̃X

π

Proposition 3.14 Let X be an admissible cubical complex. Then each mirror of ˜X�

is a closed connected convex subspace of ˜X� .

Proof Let M be a mirror of ˜X� , and let F ⊆ �n be the codimension-1 face to which
it folds. By definition M is connected and closed. To prove convexity we argue as
follows. Let Z = gX(π(M)) ⊆ X, and notice that Z is a mirror of X that folds to F .
By Proposition 3.13 we know that Z is locally convex in X. By (2) in Proposition 3.5,
we also know that g−1

X (Z) is locally convex in X� , and therefore M ⊆ ˜X� is locally
convex too. By (3) in Proposition 3.5 we also know that X� is locally CAT(−1).
In particular M is a closed and locally convex subspace in the CAT(0) space ˜X� .
Therefore it is convex (again by [13, Theorem 1.6,1.10], or [62, Theorem 1.1]). �

3.5 Stratification of ˜X�

In this section we use the collection M of mirrors, introduced in §3.4, to define a
stratification of ˜X� . The open k–stratum �k of ˜X� is the subspace consisting of
points that fold into the interior of a k-face of �n via the map ˜f = f ◦gX ◦π : ˜X� →
X� → X → �n, or equivalently to the interior of a k–cube of X via the map g̃X =
π ◦ gX : ˜X� → X� → X (see Fig. 15). Notice that �k is a locally closed subspace.
An open k–cell is a connected component of �k . A k–cell is the closure of an open
k–cell. We say that a cell σ folds to the face F = ˜f (σ ) ⊆ �n and to the cube C =
g̃X(σ ) ⊆ X. The integer k will be referred to as the dimension of a k–cell. An (n −
k)–cell is a proper subset of the intersection of k mirrors. In particular 0–cells are
points, and n-cells are tiles (as defined in §3.3). We call 0–cells vertices, and 1–cells
edges of the stratification.

Remark 3.15 (Cellular structure) We explicitly observe that this choice of strata does
not define a stratified space structure on ˜X� in the sense of [11, Definition II.12.1].
Moreover, the decomposition of ˜X� into cells does not turn it into a genuine cell
complex, as defined in §2.1. Indeed, while an open k-cell is homeomorphic to an open
disk of dimension k, a k-cell is not homeomorphic to a closed disk of dimension k as
soon as k ≥ 2. Its boundary in ˜X� consists of an infinite union of lower–dimensional
cells, so it is neither connected nor compact. For instance, an n–cell (i.e. a tile) is
isometric to a �–cell (see Fig. 11).
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Nevertheless, we can still recover a lot of the classical behavior and tools, by
observing that cells are convex and that the link of cells and points can be defined in
analogy to the classical case (see §2.1.3). We gather here preliminary results about
this, that will be useful in the following. For the sake of clarity, we emphasize that in
our terminology cells are closed.

Lemma 3.16 Let σ ⊆ ˜X� be a cell. Then σ is convex.

Proof Let C = g̃X(σ ) ⊆ X be the cube of X to which σ folds. By (2) in Proposi-
tion 3.5, we know g−1

X (C) is locally convex in X� . Since σ is by definition a con-
nected component of π−1(g−1

X (C)) and π is a local isometry, we can conclude that
it is a locally convex subspace of ˜X� . Arguing similarly to previous proofs of con-
vexity, we can conclude that σ is convex, because it is closed and locally convex in
the CAT(0) space ˜X� (see (3) in Proposition 3.5 and [13, Theorem 1.6,1.10], or [62,
Theorem 1.1]). �

We now proceed to the study of links. Consider the universal covering map π :
˜X� → X� . By Proposition 3.5, X� is a piecewise hyperbolic cell complex, so the link
of points and cells in X� is well–defined (see §2.1.3). Since π is a local isometry, we
can just identify the link of points and cells in ˜X� with the links of the corresponding
points and cells in X� .

Lemma 3.17 Let σ ⊆ ˜X� be a cell.

(1) Let C = g̃X(σ ) ⊆ X be the cube to which it folds. Then g̃X induces an isomor-
phism between lk

(

σ, ˜X�

)

and lk (C,X).
(2) Let σ be contained in another cell τ . Let F = ˜f (σ ), E = ˜f (τ) ⊆ �n be the

faces to which they fold. Then ˜f induces an isomorphism between lk (σ, τ ) and
lk (F,E).

(3) Let σ be a k–cell. Then lk
(

σ, ˜X�

)

is a piecewise spherical simplicial complex
with vertices given by the (k +1)–cells containing σ , and in which m+1 vertices
span an m–simplex if and only if the corresponding (k + 1)–cells are contained
in a (k + m + 1)–cell.

Proof The map g̃X : ˜X� → X is the composition of the map π : ˜X� → X� , which
preserves links because it is a covering map, and the map gX : X� → X, which pre-
serves links thanks to (1) in Proposition 3.5. This proves (1).

To prove (2) we argue similarly. The map ˜f : ˜X� → �n is the composition of the
map g̃X : ˜X� → X, which preserves links by (1), and the folding map f : X → �n.
By definition of folding, f is a combinatorial isomorphism on each cube of X. If B

is the cube to which τ folds, the folding induces an isomorphism between lk (C,B)

and lk (F,E).
Finally, (3) follows from (1), the fact that g̃X : ˜X� → X maps cells of ˜X� to

cubes of X preserving inclusion relations, and the fact that the link of a cell in a
cubical complex carries a piecewise spherical simplicial structure as described in the
statement. �
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Lemma 3.18 Let σ1, σ2 ⊆ ˜X� be two cells. Then either σ1 ∩σ2 is empty or it is a cell.

Proof Let σ1 ∩ σ2 be non empty. If it contains either a single vertex, or a single edge,
then we are done. So let us assume that it contains at least two edges. Also note that,
since cells are convex by Lemma 3.16, the intersection σ1 ∩ σ2 is convex. Therefore,
if there are several edges then they cannot all be disjoint.

Let v ∈ σ1 ∩σ2 be a vertex, and let e, e′ be two edges of σ1 ∩σ2 meeting at v. Note
that by Lemma 3.17 links in ˜X� are isomorphic to the corresponding links in X. In
particular, e and e′ are edges of the cell σ1 meeting at a vertex, so there is a 2–face
τ1 ⊆ σ1 containing both e and e′. Analogously, we get a 2–face τ2 ⊆ σ2 with the same
property. Since these links are simplicial, necessarily we have τ1 = τ2, otherwise we
would see a bigon in the link of v. In particular, τ1 = τ2 ⊆ σ1 ∩σ2. This shows that any
two edges of σ1 ∩ σ2 meeting at v are adjacent in lk (v, σ1 ∩ σ2). By Lemma 3.17 we
know that lk

(

v, ˜X�

) ∼= lk (g̃X(v),X), and this is a flag simplicial complex because X

is non–positively curved (see Lemma 2.2). The same holds for lk (v, σ1 ∩ σ2) because
σ1 ∩ σ2 is convex in ˜X� . In particular, all the edges of σ1 ∩ σ2 that contain v are
actually contained in a unique cell of minimal dimension in σ1 ∩ σ2; we denote this
cell by σv . Now, if v, w are adjacent vertices of σ1 ∩ σ2, then by uniqueness we have
σv = σw . Finally, by connectedness of σ1 ∩ σ2, it follows that all vertices of σ1 ∩ σ2
are contained in a single cell. �

Lemma 3.19 Let {σj | j ∈ J } be a collection of cells of ˜X� . Then the following state-
ments hold.

(1) If σ = ⋂

j∈J

σj is not empty, then σ is the unique cell of maximal dimension con-

tained in σj for all j ∈ J .
(2) If

⋃

j∈J

σj is contained in a single cell, then there exists a unique cell σ of minimal

dimension containing σj for all j ∈ J .

We refer to the cell in (1) (respectively (2)) of Lemma 3.19 as the lower cell
(respectively upper cell) of the collection {σj | j ∈ J }.

Proof Since X is finite–dimensional and locally compact, if J is infinite, then σ =
⋂

j∈J

σj is empty. So let us assume that J is finite. By Lemma 3.18 the intersection of

finitely many cells is either empty or made of a single cell. This proves (1). To prove
(2), assume by contradiction that there are two different cells of minimal dimension
σ , σ ′ containing each σj . Then σ ∩σ ′ is a proper union of cells, against Lemma 3.18.

�

Lemma 3.20 Let τ ⊆ ˜X� be a cell. Let σ1, σ2 ⊆ τ be cells of lower dimension, and
let F1,F2 ⊆ �n be the faces to which they fold. If F1 = F2, then σ1, σ2 are either
disjoint or equal.

Proof Assume that σ1, σ2 are not disjoint, and let v ∈ σ1 ∩σ2 be a vertex. Let E ⊆ �n

be the face to which τ folds. We have that ˜f (σ1) = F1 = F2 = ˜f (σ2), and by (2) in
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Lemma 3.17 (with σ = v) the map ˜f induces an isomorphism between lk (v, τ ) and
lk

(

˜f (v),E
)

. Therefore, σ1 = σ2. �

Lemma 3.21 Let M be a mirror and let τ be a k–cell of ˜X� not entirely contained
in M . If M ∩ τ 
= ∅, then M ∩ τ is a (k − 1)–cell.

Proof First we show that M ∩ τ is a union of (k − 1)–cells. Then we show that the
union actually consists of a single cell.

Let ˜f = f ◦ gX ◦ π : ˜X� → X� → X → �n be the map that folds ˜X� to �n, and
let F ⊆ �n be the codimension–1 face to which M folds (i.e. F = ˜f (M)). Similarly,
let E ⊆ �n be the k–face to which τ folds (i.e. E = ˜f (τ)). Since τ � M we have
E � F , and therefore E ∩ F is a (k − 1)–face of �n. Let p ∈ M ∩ τ be an arbitrary
point. By Lemma 3.20, among the (k − 1)–cells of τ that contain p, there is exactly
one that folds to E ∩ F ; denote it by σp . Clearly σp ⊆ τ . Moreover, since σp and
M are non–disjoint, both fold into F , and M is a mirror, we also have σp ⊆ M .
Therefore we have M ∩ τ = ⋃

p∈M∩τ σp , i.e. M ∩ τ is a union of (k − 1)–cells that
fold to E ∩ F .

To see that M ∩ τ actually consist of only one cell, assume by contradiction that
M ∩ τ contains two distinct (k − 1)–cells σ1, σ2. Let pi ∈ σi and let γ = [p1,p2]
be the unique geodesic between them. Since M and τ are both convex (by Proposi-
tion 3.14 and Lemma 3.16 respectively), we have that γ ⊂ τ ∩ M . Hence we find a
path of cells in the boundary of τ that all fold to E ∩ F . But this is absurd because
different boundary cells of τ folding to the same face of �n are necessarily disjoint,
again by Lemma 3.20. �

3.6 Graph of spaces decomposition for ˜X�

Our goal in §3.7 will be to prove that mirrors in ˜X� enjoy a strong separation property.
Our strategy will be to exploit a certain graph of spaces decomposition for ˜X� (in the
sense of [69]), which we introduce in this section, using the foldability of X (see
[4, 76] for analogous constructions).

Recall from §3.4 that ˜X� is equipped with a collection M of closed convex sub-
spaces called mirrors. For each i = 1, . . . , n, let Mi be the collection of mirrors of
˜X� that fold to one of the two parallel ith faces of �n = [0,1]n, i.e. {xi = 0} and
{xi = 1}. Notice that by construction any two elements of Mi are disjoint, and even
have disjoint ε–neighborhoods for ε sufficiently small (because � is cocompact).

Let Ci be the collection of connected components of ˜X� \ ∪M∈Mi
M . For each

mirror M ∈ Mi and for each component C ∈ Ci , consider the following equidistant
space, obtained by pushing the mirror M into the component C (see Fig. 16).

Eε
M,C = {x ∈ C | d(x,M) = ε}.

Notice that while we know M is convex by Proposition 3.14, it is not clear whether
C is convex. A priori, C could meet M on more than one side, i.e. the closure of C

could contain a piece of M in its interior. We will see this is not the case by consid-
ering a suitable graph of spaces decomposition of ˜X� . Our first step is to show that
Eε

M,C is simply connected; in the process, we actually show it is a CAT(k)–space
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Fig. 16 Some examples of equidistant spaces in dimension 2 and 3. Left: an equidistant space relative
to a mirror M in the vicinity of the intersection with two other mirrors. Here dimX = 3, and all mirrors
are locally Euclidean. Right: three equidistant spaces relative to the same mirror M but three different
complementary components, in the vicinity of the intersection with another mirror. Here dimX = 2, and
the mirrors branch, i.e. are not locally Euclidean

Fig. 17 Equidistant surface
from a hyperplane

for some k ∈ (−1,0). The idea for this can be summarized as follows: inside each
tile, Eε

M,C looks like an equidistant hypersurface from a hyperplane in H
n, and this

is a non–positively curved hypersurface in H
n (see Fig. 17). Then contribution from

different tiles come together in a way that does not introduce any positive curvature
along mirrors. We start from a preliminary lemma from classical hyperbolic geome-
try. Recall that a hyperplane in H

n is a totally geodesic copy of Hn−1.

Lemma 3.22 Let V ⊆ H
n be a hyperplane, and let πV :Hn → V be the nearest point

projection to V . Let ε > 0 and Sε
V = {x ∈ H

n | d(x,V ) = ε}. Then the following
hold.

(1) Sε
V is a smooth (n − 1)–dimensional submanifold of Hn.

(2) For each p ∈ Sε
V , the geodesic [p,πV (p)] is orthogonal to V and Sε

V .
(3) For every other hyperplane W , if V ∩ W 
= ∅, then Sε

V ∩ W 
= ∅.
(4) For every hyperplane W , W is orthogonal to Sε

V if and only if W is orthogonal
to V .

(5) πV : Sε
V → V is a cosh2(ε)–conformal diffeomorphism.

(6) The induced metric on Sε
V has constant sectional curvature −1

cosh2(ε)
.

Proof The first five statements can be proved by explicit computations in the upper
half–space model of Hn, normalizing so that V is a vertical hyperplane (see Fig. 17).
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The computation for dimension n = 3 is carried out in detail in [27, IV.5, page 58],
and readily generalizes to higher dimensions. Finally, (6) follows from (5) and the
general formula for the behavior of the sectional curvatures under rescaling. �

For the next lemma, recall from §3.3 that tiles are closed by definition, and that a
developing map is an isometric embedding of a tile into H

n as a �–cell.

Lemma 3.23 Let M ∈ Mi and C ∈ Ci . Then for ε > 0 small enough the following
hold.

(1) For every mirror N ∈ M, if Eε
M,C ∩ N 
= ∅ then M ∩ N 
= ∅ and C ∩ N 
= ∅.

(2) For every tile τ , if Eε
M,C ∩ τ 
= ∅ then M ∩ τ 
= ∅ and C ∩ τ 
= ∅.

(3) For every tile τ such that Eε
M,C ∩ τ 
= ∅, and any developing map ϕ : τ → H

n, ϕ

induces an isometry between Eε
M,C ∩τ and Sε

V ∩ϕ(τ), where V is the hyperplane
containing ϕ(M ∩ τ).

(4) For every mirror N ∈ M, if Eε
M,C ∩ N 
= ∅ then Eε

M,C is orthogonal to N .

Proof To prove (1) note that if Eε
M,C ∩N 
= ∅, then in particular C ∩N 
= ∅. Since �

is cocompact, there is a uniform lower bound D > 0 on the distance between disjoint
mirrors. But Eε

M,C ∩ N 
= ∅ means that N comes ε close to M . By choosing ε < D

we can force N to actually intersect M .
The proof of (2) is analogous to that of (1). Suppose Eε

M,C ∩ τ 
= ∅. Then clearly
C ∩ τ 
= ∅. Moreover, a point in Eε

M,C ∩ τ witnesses that d(M,τ) < ε, and by choos-
ing ε small enough we can ensure that this forces an intersection, again by cocom-
pactness of �.

Now we consider (3). Suppose that Eε
M,C ∩ τ 
= ∅. Then by (2) we know that

M ∩ τ 
= ∅ and C ∩ τ 
= ∅. In particular M appears as an (n − 1)–cell in the bound-
ary of τ thanks to Lemma 3.21. If we pick a developing map ϕ for τ , then ϕ(τ) is a
�–cell, and ϕ(M) is some hyperplane V on its boundary (see Lemma 3.11 and Re-
mark 3.12). Then the statement follows from the fact that ϕ is an isometric embedding
of τ into H

n.
Finally, to prove (4), suppose that Eε

M,C ∩ N 
= ∅. Then by (1) we know that
N ∩ M 
= ∅. In particular by construction N is orthogonal to M . Then the statement
follows from (3), together with (4) in Lemma 3.22. �

Next, our goal is to prove that equidistant spaces are negatively curved. In order to
do this, we will study the geometry of links of points in ˜X� , along various subspaces
(we refer the reader to §3.5 for definitions). Recall that the link of a point in ˜X� is
identified to the link of its projection to X� .

Remark 3.24 All the subspaces of ˜X� considered here (such as a mirror M , and the
induced space Eε

M,C ) carry a natural locally finite cellular structure induced by that of
˜X� . Even if they are not genuine cell complexes (as in Remark 3.15), their projections
to X� are, and links can be defined in analogy to the classical case.

For a mirror M we denote by πM : ˜X� → M the nearest point projection. This is
well–defined because ˜X� is CAT(0) and M is convex by Proposition 3.14.
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Fig. 18 Links of points along various subspaces in the proof of Lemma 3.25. Here p is contained in
four tiles and sits on the intersection of two mirrors M ′ , M ′′ . The vertical projection is the nearest point
projection πM : Eε

M,C
→ M

Lemma 3.25 Let M ∈ Mi , C ∈ Ci , p ∈ Eε
M,C . Then for ε > 0 small enough the

following holds. Let τ1, . . . , τm be the collection of tiles containing p, and let
T = τ1 ∪ · · · ∪ τm. Then the following hold.

(1) lk (πM(p),M ∩ T ) is CAT(1).

(2) πM : Eε
M,C → M induces an isometry λp : lk

(

p,Eε
M,C

)

→ lk (πM(p),M ∩ T ).

(3) lk
(

p,Eε
M,C

)

is CAT(1).

Proof Of course, (3) follows from (1) and (2). For convenience, let us denote L =
lk

(

πM(p), ˜X�

)

, LT = lk (πM(p),T ), and LM∩T = lk (πM(p),M ∩ T ). We have
LM∩T ⊆ LT ⊆ L. Equip LM∩T and LT with the induced length metric. Let −→

p ∈ LT

be the direction at πM(p) pointing to p (see Fig. 18).
We start by proving (1). Since ˜X� is negatively curved, L is CAT(1). In par-

ticular, balls of radius at most π/2 are π -convex and CAT(1). Since ˜X� is piece-
wise hyperbolic, L is piecewise spherical. Moreover, all the mirrors containing p

intersect M orthogonally by construction. Therefore, L has a natural structure of all-
right spherical complex in which −→

p is a vertex (possibly up to subdivision if πM(p)

is not a vertex). In particular, we have natural identifications LT = B
(−→
p , π

2

)

and
LM∩T = ∂B

(−→
p , π

2

)

.
Let C1(Y ) denote the spherical cone over a space Y , and denote the cone point

by 0. Since L is an all-right spherical complex, we have a natural isometry

ϕ : C1

(

∂B
(−→

p ,
π

2

))

→ B
(−→

p ,
π

2

)
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defined as follows: ϕ(0) = −→
p , and for each −→

q ∈ ∂B
(−→
p , π

2

)

and 0 < t ≤ π
2 let

ϕ(t,
−→
q ) be the point at distance t from −→

p along the geodesic [−→p ,
−→
q ]. As a re-

sult, C1(LM∩T ) = C1
(

∂B
(−→
p , π

2

))

is CAT(1). By Berestovskii’s Theorem (see [11,
II.3.14]) we conclude that LM∩T is CAT(1) as desired.

To prove (2) we argue as follows. By (3) in Lemma 3.23 and (5) in Lemma 3.22
we know that within each tile τk the projection πM is a conformal diffeomorphism,

so it induces an isometry λ
τk
p : lk

(

p,Eε
M,C ∩ τk

)

→ Lk = lk (πM(p),M ∩ τk). This

is enough in the case m = 1, i.e. when p is contained in a single tile. When m ≥ 2, by

gluing together the maps λ
τk
p , we obtain a map λp : lk

(

p,Eε
M,C

)

→ L1 ∪ · · ·∪Lm =
LM∩T . Notice that shooting geodesic rays from πM(p) into T along directions in LT

provides an isometry

ψ : lk
(−→
p ,LT

) → lk
(

p,Eε
M,C

)

.

Combining this with the natural isometry

r : lk
(−→

p ,B
(−→

p ,
π

2

))

→ ∂B
(−→

p ,
π

2

)

and using the aforementioned identifications, we obtain the desired isometry

lk
(

p,Eε
M,C

) ψ−1

→ lk
(−→
p ,LT

) = lk

(

−→
p ,B

(−→
p ,

π

2

)

)

r→ ∂B
(−→

p ,
π

2

)

= LM∩T . �

Remark 3.26 Note that, in the notation of Lemma 3.25, LM∩T = lk (πM(p),M ∩ T )

is a closed subspace of lk (πM(p),M) which is possibly proper. Indeed, πM(p) might
live on a lower dimensional cell, where M might branch off away from T , as in
Fig. 19. However, all the branches make an angle of at least π with each other, be-
cause M is convex.

Lemma 3.27 Let M ∈ Mi and C ∈ Ci . Then for ε > 0 small enough there is k ∈
(−1,0) such that the following hold.

(1) The metric induced on Eε
M,C is locally CAT(k).

(2) The nearest point projection πM : Eε
M,C → M maps non–constant local geode-

sics to non–constant local geodesics.
(3) The metric induced on Eε

M,C is CAT(k).

Proof To prove (1) we argue as follows. By (3) in Lemma 3.23, we know that, away
from the intersection with mirrors, Eε

M,C is locally isometric (via a developing map)
to an equidistant hypersurface in H

n. Such a hypersurface is a manifold of nega-
tive curvature k ∈ (−1,0) by (5) in Lemma 3.22. By Remark 3.24, Eε

M,C is essen-
tially a cell complex, so by [11, Theorem II.5.2] Eε

M,C is locally CAT(k) if and only
if the link of every vertex is a CAT(1) space. This condition is verified by (3) in
Lemma 3.25.

Now we consider (2). By (3) in Lemma 3.23 and (5) in Lemma 3.22, we know
that in the interior of each tile πM is a conformal diffeomorphism with constant
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Fig. 19 A mirror M branching
away from T , the union of tiles
containing p (other mirrors not
displayed)

conformal factor. Therefore it sends a local geodesic on Eε
M,C to a piecewise lo-

cal geodesic on M , possibly broken at points where two or more tiles meet. To take
care of those possibly singular points, we invoke (2) in Lemma 3.25, which guaran-
tees that πM induces an isometric embedding of links also at those points. Indeed,
if p ∈ Eε

M,C is such a break point, and c is a geodesic on Eε
M,C through p, then

the incoming and outgoing directions are at distance D ≥ π in lk
(

p,Eε
M,C

)

. Let

c′ = πM(c). Then c′ is a piecewise geodesic in M through πM(p). With the nota-
tions of Lemma 3.25, the distance in lk (πM(p),M ∩ T ) between the incoming and
outgoing directions is the same D ≥ π . The distance in the full lk (πM(p),M) is not
smaller, as lk (πM(p),M) does not contain geodesic loops shorter than 2π by con-
vexity. So, c′ is a local geodesic in M at πM(p). Moreover if c is non-constant then
c′ is non–constant because πM is locally injective.

To conclude, we prove (3). By (1) we know that Eε
M,C is locally CAT(k),

so we only need to prove that it is also simply connected. By contradiction, let
γ ∈ π1(E

ε
M,C) be a non–trivial homotopy class. Since Eε

M,C is complete and non–
positively curved, γ is represented by a unique non–constant local geodesic cγ . By
(2) πM(cγ ) is a non–constant local geodesic on M . Since M is complete and non–
positively curved, πM(cγ ) is not nullhomotopic, which contradicts the fact that M is
contractible. �

Remark 3.28 Note that if for a mirror M and a tile τ the intersection M ∩τ was lower–
dimensional, then the equidistant space would develop to an equidistant hypersurface
from a lower–dimensional totally geodesic subspace of Hn, which has some positive
curvature. So, Lemma 3.21 (establishing that if a mirror intersects a tile then the
intersection is a codimension-1 cell) is a key tool to prove that edge spaces are non–
positively curved.

Proposition 3.29 ˜X� admits the structure of a graph of spaces, with underlying graph
a connected tree.
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Fig. 20 The graph of spaces decomposition of ˜X�

Proof We define a graph Ti as follows (see Fig. 20). Vertices come in two differ-
ent families, namely a vertex vM for each mirror M ∈ Mi and a vertex vC for each
component C ∈ Ci . Then we place one edge eM,C between vM and vC whenever
M intersects the closure of C. Vertex and edge spaces are defined as follows: we
associate M to vM , C to vc, and Eε

M,C to the edge eM,C between them.
The edge maps to the two types of vertices are respectively given by the nearest

point projection πM : Eε
M,C → M and the natural inclusion i : Eε

M,C ↪→ C. Note
that i is an embedding, and that by (5) in Lemma 3.22 we know that the restriction
of the projection πM to each tile is an embedding too. Moreover, edge spaces are
contractible by (3) in Lemma 3.27, so the gluing maps are automatically injective on
fundamental groups.

Recall that by construction any two mirrors from Mi are disjoint, and even have
disjoint ε–neighborhoods for ε sufficiently small (because � is cocompact). Sim-
ilarly, any two components from Ci are disjoint. Moreover, ˜X� \ ⊔

M∈Mi
M =

⊔

C∈Ci
C and the boundary of a component consists of a disjoint union of closed

subspaces, each of which sits inside a different mirror from Mi . The resulting graph
of spaces is homeomorphic to ˜X� .

We are left to show that Ti is a connected tree. Connectedness of Ti follows di-
rectly from that of X. There is a natural map ri : ˜X� → Ti obtained by collapsing all
the vertex spaces to points and all the cylinders over edge spaces to edges. Notice that
ri is a retraction and ˜X� is contractible, which forces Ti to be simply connected. �

Remark 3.30 In this graph of spaces decomposition all the spaces involved are non–
positively curved, but the edge maps are not local isometries. Moreover, further
pathological behavior can arise depending on the structure of the mirrors, as we now
discuss. Note that the following phenomena already arise in the setting of cubical
complexes, i.e. are not introduced by the hyperbolization procedure.

On one hand, if the mirror M branches (i.e. has non–locally Euclidean points)
in such a way that different branches meet the closure of different complementary
components, then the nearest point projections πM : Eε

M,C → M from the individual
edge spaces fail to be surjective.

On the other hand, if the mirror M is such that a complementary component C

wraps around M and meets it on different sides, then the map πM : Eε
M,C → M fails

to be injective. This would be the case for a mirror that separates locally but not glob-
ally, e.g. one that is contained in the closure of a single complementary component.
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In this case the corresponding vertex would be a boundary vertex for the tree Ti . We
will see in §3.7 that this failure of injectivity does not occur in our setting.

Remark 3.31 (A graph of groups decomposition for �X) Note that �X = π1(X�)

acts on ˜X� sending mirrors to mirrors and preserving the coloring, i.e. each family
Mi . In particular it preserves this graph of spaces decomposition, hence it acts on
the underlying graph, which has been seen to be a tree. The action is without global
fix points and without inversions. This realizes �X = π1(X�) as a graph of groups.
It is worth noticing that combination theorems are available in the literature, which
provide a way to construct a cubulation of a group expressed as a graph of cubulated
groups, when certain conditions are met (see for instance [40, 43, 75]). In our context,
the vertex groups are given by the fundamental groups of the mirrors from Mi and the
components from Ci . While it is reasonable to expect that the former are cubulated
(e.g. arguing by induction on dimension), it is not at all clear that the latter should be.
The guiding idea for the rest of the paper is that nevertheless those components can
be further decomposed into tiles. The fundamental group of a tile can be shown to be
cubulated (see Lemma 5.12), and the results of Groves and Manning from [35] then
provide a way to combine the cubulation from each tile into a global cubulation.

3.7 Mirrors: separation

In this section we will prove a strong separation property for mirrors in ˜X� . In order
to obtain convexity of the mirrors, in the proof of Proposition 3.14 we have used the
fundamental fact that in a CAT(0) space local convexity implies global convexity.
The same local–to–global property fails for separation, as shown by the following
example.

Example 3.32 Consider the square complex Y in the center of Fig. 21. Consider the
subcomplex Z consisting of the central thick (red) edge. The subspace Z is locally
separating in Y , in the sense that for any z ∈ Z and any arbitrarily small neighborhood
Uz of z in Y , Uz \ Z is disconnected. However, Z is not separating, i.e. Y \ Z is
connected. Notice that Y is a CAT(0) and foldable cubical complex, but Z is not a
full connected component of the preimage of a codimension-1 face, i.e. not a mirror.

In this example both Y and Z have boundary, but it can be modified to obtain an
example without boundary. We start by attaching eight more squares following the
pattern in Fig. 21, and extending Z with two more edges. In the resulting complex, no
edge meeting Z is a boundary edge, so we can keep adding squares (and extending
Z) to get an admissible complex which displays the same pathology as the original
one.

Fig. 21 A locally separating but not separating subcomplex in a CAT(0) square complex



966 J.-F. Lafont, L. Ruffoni

Fig. 22 A framing for a cube F

on a mirror M

When Y is a homogeneous cubical complex of dimension n, every k–cube F of
Y is contained in some n-cell. When Y has no boundary, F is contained in at least
two distinct n-cubes. This motivates the following definition. Let M be a mirror of Y

and let F be a k–cube of M . A framing for F is a choice of two n–cubes {C1,C2}
of Y such that F ⊆ C1 ∩ C2 ⊆ M . We note explicitly that this definition is relative
to the fixed mirror M . For the next proof, we will make use of some properties of
hyperplanes in CAT(0) cubical complexes. We refer the reader to [65, Theorem 4.10]
or [39, Example 3.3.(3), Lemma 13.3] for details and proofs.

Lemma 3.33 Let Y be a CAT(0) admissible cubical complex. Then each mirror sep-
arates Y . More precisely, let M ⊆ Y be a mirror, let F ⊆ M be a k–cube, and let
{C1,C2} be a framing for F . Then C1, C2 are contained in the closure of two distinct
connected components of Y \ M .

Proof Let v be a vertex on F , let ei be the edge of Ci with starting point v

and endpoint in Ci \ M (see Figure 22). Note that this edge exists because Ci is
n–dimensional, while M is (n − 1)–dimensional and convex, so that M ∩ Ci is some
(n − 1)–dimensional face Ei of Ci , by an argument similar to that of Lemma 3.21.
Also note that by definition of framing, C1 ∩ C2 ⊆ M , and therefore e1 
= e2. Let Hi

be the hyperplane of Y dual to ei . In particular this means that Hi meets Ci in the
midcube orthogonal to ei . Since Y is CAT(0), Y is special in the sense of [39]. Since
foldability of Y prevents e1, e2 from being contained in the same square, we then
get that H1 
= H2 (hyperplanes do not self-osculate) and H1 ∩ H2 = ∅ (hyperplanes
do not inter-osculate). Moreover, Hk ∩ M = ∅ and Y \ Hk consists of exactly two
components, one containing M and one not containing M .

The carrier of a hyperplane H in a CAT(0) is isomorphic to H ×[0,1]. By defini-
tion of mirror, if M contains an (n − 1)-cube of H × {0} then actually H × {0} ⊆ M .
Since M contains the (n−1)–cell Ei = Ci ∩M of Ci , and Ei ⊆ Hi ×{0} by construc-
tion, we can conclude that M contains Hi × {0} for i = 1,2. It follows that any path
from H1 to H2 must intersect M . In particular, M separates Y in at least two compo-
nents, one containing H1 and one containing H2. The closures of such components
contain C1 and C2 respectively. �

We want to extend this result to mirrors in ˜X� . To do this, we introduce the fol-
lowing terminology, in analogy with the cubical case. Let M be a mirror of ˜X� , and
let σ be a k–cell of M . A framing for σ is the choice of two distinct n–cells τ1, τ2

such that σ ⊆ τ1 ∩ τ2 ⊆ M . We begin by obtaining a weak separation property.
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Lemma 3.34 Let M ∈ Mi , let σ ⊆ M be a k–cell, and let {τ1, τ2} be a framing for σ .
Then there exist two different components C1,C2 ∈ Ci whose closure contain τ1, τ2

respectively.

Proof The map gX : X� → X lifts to a map α : ˜X� → ˜X between the universal cov-
ers. Note that it sends mirrors to mirrors. In particular we obtain a mirror α(M) and
a k–cube α(σ) ⊆ α(M) with a framing {α(τ1), α(τ2)}. By Lemma 3.33 we can con-
clude that α(τ1) and α(τ2) are separated by α(M) in ˜X. This implies that α−1(α(τ1))

and α−1(α(τ2)) are separated in ˜X� by α−1(α(M)), i.e. the full preimage of the
mirror α(M) in ˜X� . Note that α−1(α(M)) consist of infinitely many mirrors from
Mi : indeed, recall from Lemma 3.21 that disjoint (n − 1)–cells of a tile belong to
different mirrors. A fortiori, τ1 and τ2 are separated by the entire collection Mi . In
particular, there exists two different components C1,C2 ∈ Ci whose closure contain
τ1, τ2 respectively, as desired. �

Remark 3.35 Observe that in the proof of Lemma 3.34, it is not clear whether the
framing is separated by M itself. While the entire collection of mirrors Mi discon-
nects ˜X� into a collection of complementary components, it is not a priori clear that
any single mirror separates ˜X� .

Recall from Proposition 3.29 that ˜X� admits the structure of a graph of spaces
over a connected tree Ti , and that there is a natural retraction ri : ˜X� → Ti obtained
by collapsing all the vertex spaces to points and all the cylinders over edge spaces to
edges.

Lemma 3.36 The tree Ti has no boundary.

Proof It is enough to show that each vertex has at least two neighboring vertices.
Vertices of Ti are either associated to mirrors from Mi or to components from Ci .
We analyze the two different cases separately. Let vC be the vertex associated to a
component C ∈ Ci . Then vC has infinitely many edges coming into it, because C has
infinitely many mirrors from Mi on its boundary (this is already true for a single tile:
by Lemma 3.21, disjoint (n − 1)–cells in the boundary of a tile belong to different
mirrors).

Now let vM be the vertex associated to a mirror M ∈Mi . Let σ ⊆ M be an (n−1)-
cell on it, and pick a framing {τ1, τ2}. By Lemma 3.34, there exist two different com-
ponents C1,C2 ∈ Ci whose closure contain τ1, τ2 respectively. The corresponding
vertices vC1 , vC2 in Ti are both adjacent to the vertex vM corresponding to M , as
desired. �

The next result is the analogue of Lemma 3.33 from the cubical case.

Proposition 3.37 Each M ∈Mi separates ˜X� . More precisely, let M ∈Mi be a mir-
ror, let σ ⊆ M be a k–cell, and let {τ1, τ2} be a framing for σ . Then τ1, τ2 are
contained in the closure of two distinct connected components of ˜X� \ M .



968 J.-F. Lafont, L. Ruffoni

Proof For the first statement, consider the natural retraction ri : ˜X� → Ti . Note that
for each mirror M ∈ Mi there is a corresponding vertex vM ∈ Ti , and M = r−1

i (vM).
By Lemma 3.36 we know that Ti is a tree with no boundary, hence any of its vertices
disconnects it. Therefore M = r−1

i (vM) disconnects ˜X� .
For the second statement, we fix a k–cell σ ⊆ M and a framing {τ1, τ2}. By

Lemma 3.34 we get two components C1,C2 ∈ Ci containing τ1, τ2 in their closures.
Note that these are complementary components of the entire collection of mirrors
Mi , not complementary components of the mirror M . The corresponding vertices
vC1 , vC2 in Ti are both adjacent to the vertex vM corresponding to M , and are sep-
arated by vM in Ti , since Ti is a tree (see Proposition 3.29). Arguing as above via
the natural retraction ri : ˜X� → Ti , we can conclude that τ1, τ2 are separated by M

in ˜X� . �

We conclude this section with some remarks about the construction that we have
described.

Remark 3.38 (Foldability is key) Foldability of X has played the role of some sort of
combinatorial completeness, as it guarantees that if a mirror M intersects a tile T ,
then M goes across T along a top dimensional subcomplex of the boundary. This
has provided both features of non–positive curvature (see Remark 3.28) and separa-
tion properties (as in the proof of Lemma 3.33). Example 3.32 shows that neither is
available if foldability is not taken into account in the definition of mirrors (even on
a foldable complex).

Remark 3.39 (Complexes with boundary) The construction from §3.6 can be gener-
alized to cubical complexes that have enough good mirrors (i.e. mirrors that admit
a cell which locally separates a framing), and keeping track only of such mirrors in
the construction of the tree of spaces. For instance, one could drop the assumption
that X is without boundary, and ignore the mirrors that are entirely contained in the
boundary. One still gets a decomposition as a graph of spaces over a tree without
boundary. Indeed, vertices associated to good mirrors still have degree at least 2. One
may worry about vertices associated to components. Even if there is a cube of X

with only one face F contained in a good mirror, each of the components C ∈ Ci of
˜X� arising from it still has infinitely many boundary cells corresponding to F . This
guarantees that the vertices of the tree which are associated to components in Ci still
have infinite degree.

Alternatively, one can work with a relative version of the Charney-Davis hyper-
bolization procedure that is designed to hyperbolize complexes with boundary with-
out altering the boundary components (see [9, 14]). We consider the problem of cubu-
lating the resulting relatively hyperbolic groups in [36].

4 The dual cubical complex

We define a cubical complex associated to the stratification of ˜X� introduced in §3.5,
and prove that it is a CAT(0) cubical complex (see Theorem 4.29). Recall that X is



Special cubulation of strict hyperbolization 969

Fig. 23 The dual cubical complex C(˜X�) superimposed on the stratification of ˜X� ; compare Fig. 13. (In
this picture the dimension is n = 2. Key: �, �, and � denote a vertex of height 0, 1, 2 respectively)

assumed to be an admissible cubical complex (as defined at the beginning of §3).
Let n = dim(X) be its dimension. The dual cubical complex is denoted C(˜X�) and
defined as follows.

• Vertices are given by all the k-cells in ˜X� for k = 0, . . . , n.
• Two vertices corresponding to cells σ and τ are connected by an edge if and only

if |dim(σ ) − dim(τ )| = 1, and either σ ⊆ τ or τ ⊆ σ .
• For k > 1, we attach one k-dimensional cube whenever we see its 1-skeleton.

The resulting cell complex C(˜X�) is a cubical complex (see Fig. 23). Moreover, we
can label its 0–skeleton by integers 0 ≤ k ≤ n: if v is a vertex dual to a k–cell σ , then
we define the height of v to be h(v) = dim(σ ) = k.

Note that if one applies this construction to the standard n-simplex, one obtains a
natural cubulation of the n-simplex by n + 1 cubes of the same dimension. However,
it is not clear when this construction preserves asphericity. For instance, applying this
construction to a solid octahedron results in a cube complex with non–trivial π2.

In this section we study the combinatorial geometry of C(˜X�), by analyzing cubes
and links in §4.1, some notions of complexity for edge–paths in §4.2 and §4.3, and
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how to use them to prove that C(˜X�) is simply connected in §4.4. Before starting, the
following two remarks address the relation between C(˜X�) and other natural combi-
natorial structures associated to ˜X� and its collection of mirrors M.

Remark 4.1 (The associated graded poset) The set of cells in ˜X� can be partially
ordered by inclusion. The result is a graded poset, whose rank function is given by
the dimension of the corresponding cell. The height we just defined is induced by
this rank function. One could construct the order complex of such a poset, by taking
a simplex for every chain. This would result in a simplicial complex, and is not what
we are considering here.

Remark 4.2 (The associated wallspace) Since mirrors are separating subspaces (see
Proposition 3.37), the collection of mirrors can be used to define a wallspace structure
(˜X�,M) on ˜X� , and one could consider the dual CAT(0) cubical complex C(˜X�,M)

associated to this wallspace by Sageev’s construction. We refer the reader to [38, 42,
65] for details about this construction, and we only review the main ingredients here.
Given a mirror M , any partition of the complementary components into two classes
is called a wall associated to M . An orientation of a wall is a choice of one of the
two classes. A vertex of C(˜X�,M) can then be described as a consistent choice of
orientation for each mirror.

When X and all mirrors are homeomorphic to manifolds, each mirror of ˜X� has
exactly two complementary components. In this quite restrictive case, an orientation
of a wall is just a choice of one of the two complementary components. Therefore
vertices of C(˜X�,M) correspond to tiles (i.e. n–cells) in the stratification of ˜X� ,
and two vertices are connected by an edge when the corresponding tiles are adjacent
along a mirror. In particular, C(˜X�,M) is an n–dimensional cubical complex that can
be subdivided to recover C(˜X�). However, if there are mirrors which have more than
two complementary components (such as in Figs. 14 and 23), then we find vertices
in C(˜X�,M) which do not correspond to tiles from the stratification of ˜X� (they
are not canonical vertices, in the terminology of [42]). As a result, the dimension of
C(˜X�,M) is usually higher than that of X, and it is more challenging to relate the
actions of �X on ˜X� and on C(˜X�,M).

4.1 Cubes and links

In this section we explore basic facts about the cubical geometry of C(˜X�). While
this complex is not locally compact (see Remark 4.8), its dimension is the same as
that of X (see Lemma 4.5), and the links of vertices are flag complexes (see Proposi-
tion 4.10).

The first two lemmas show that squares and cubes in C(˜X�) admit unique vertices
of minimum and maximum height. Recall that the height of a vertex is the dimension
of its dual cell, and notice that, by definition of C(˜X�), if u, v are adjacent vertices,
then |h(u) − h(v)| = 1.

Lemma 4.3 Let S be a square of C(˜X�). Let v1, v2, v3, v4 be its vertices, with v2 and
v4 non-adjacent in S. If h(v2) = h(v4), then |h(v1) − h(v3)| = 2. In particular there
is a unique vertex of maximal (respectively minimal) height, and the cell dual to it
contains (respectively is contained in) each of the cells dual to the other vertices.
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Fig. 24 A square in C(˜X�)

Proof Let h = h(v2) = h(v4) be the common value of the height of v2 and v4. Since
v1 is adjacent to v2 and v4, we have h(v1) = h ± 1, and similarly for v3 (see Fig. 24).
In particular |h(v1) − h(v3)| is either 0 or 2. By contradiction let us assume that
|h(v1) − h(v3)| = 0, i.e. h(v1) = h(v3) = h ± 1. Without loss of generality we can
assume that h(v1) = h(v3) = h + 1. (The case h(v1) = h(v3) = h − 1 is completely
analogous, via a dual argument). For j = 1,2,3,4, let σj be the cell of ˜X� dual to the
vertex vj . Since v1 is adjacent to v2 and v4, and has higher height, σ1 contains σ2 and
σ4; the same holds for σ3. So σ1 ∩ σ3 contains σ2 ∪ σ4, contradicting Lemma 3.18.

To prove the final statement, let us assume without loss of generality that v1 is the
vertex of maximal height and v3 is the one of minimal height, i.e. h(v1) − 1 = h =
h(v3) + 1. Then we have that σ3 ⊆ σ2, σ4 ⊆ σ1. �

In the next lemma we extend this result to higher dimensional cubes of C(˜X�). By
an edge–path in C(˜X�) we will mean a continuous path which is entirely contained in
the 1–skeleton (i.e. is a sequence of edges). If an edge–path p goes through vertices
v0, . . . , vs of C(˜X�), we will write p = (v0, . . . , vs); note that the sequence of vertices
completely determines the sequence of edges, hence the path. We call p an edge–
loop if it is a closed loop, i.e. v0 = vs . For an edge–path p = (v0, . . . , vs) we define
�(p) = s to be the length of p, i.e. the number of edges in it. We also define the height
of p to be h(p) = max{h(v0), . . . ,h(vs)}. Notice that along each edge of p the height
must increase or decrease exactly by 1.

Lemma 4.4 Let Q be a cube of C(˜X�). Then the following hold.

(1) There is a unique vertex v ∈ Q of minimal height. The cell dual to it is contained
in each of the cells dual to the vertices of Q.

(2) There is a unique vertex w ∈ Q of maximal height. The cell dual to it contains
each of the cells dual to the vertices of Q.

Proof We prove the first statement; the second is obtained by an analogous argument.
Let k be the minimal height of vertices of Q, and assume by contradiction that there is
at least a pair of vertices of Q of height k. Consider an edge–path p = (v0, . . . , vs) in
Q such that h(v0) = h(vs) = k, v0 
= vs , and such that p is an edge–path of minimal
height among all edge–paths in Q joining a pair of vertices of height k. This is well–
defined since the height of such a path can only be an integer between 0 and n. Let
h(p) = h be the height of p.

Let vj be a vertex of p of maximal height h(vj ) = h = h(p). Then h(vj±1) = h−1
(notice that k ≥ 0 and h ≥ k + 1 ≥ 1). Since (vj−1, vj , vj+1) is part of the cube Q,
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Fig. 25 Lowering a vertex of
maximal height on a path in
C(˜X�)

Fig. 26 Walking backwards
along a path in C(˜X�) to find a
vertex vj that can be lowered,
and then walking forward to
lower vertices until the
exceptional endpoint vs

it must be contained in a square, i.e. there exists a vertex uj of Q (not necessarily
on p), such that {vj−1, vj , vj+1, uj } span a square in Q. Lemma 4.3 implies that
h(uj ) = h−2. We can construct a new path in Q starting from the path p by lowering
the vertex of maximal height, i.e. by replacing vj with uj (see Fig. 25). We repeat the
same operation on all vertices of height h along the path, and let p′ be the resulting
path in Q. We have that h(p′) = h − 1 < h = h(p), contradicting the minimality of
the height of p. This concludes the proof by contradiction, and proves the uniqueness
of a vertex v of minimal height k in Q.

We are left to show that the cell σ dual to v is contained in all the cells dual to the
other vertices of Q. By contradiction suppose there are vertices in Q whose dual cells
do not contain σ ; call such vertices exceptional. Let p = (v0, . . . , vs) be an edge–path
in Q with v0 = v, vs an exceptional vertex, and having minimal length among all
edge–paths of Q between v and an exceptional vertex. We have h(vs−1) = h(vs)± 1.
If h(vs−1) = h(vs) − 1, then the cell dual to vs−1 is contained in the cell dual to vs .
By minimality of p, we have that vs−1 is not exceptional, so the cell dual to vs−1
contains σ , and hence vs cannot be exceptional. Therefore h(vs−1) = h(vs) + 1 (as
in Fig. 26).

We keep walking backwards along p until we find a triple of vertices {vj−1, vj ,

vj+1} such that h(vj ) = h(vj±1) + 1 (notice j is well defined and positive, since v is
the unique vertex of minimal height in the whole Q). Arguing as before we complete
to a square in Q with vertices {vj−1, vj , vj+1, uj }; again by Lemma 4.3 we have
h(uj ) = h(vj ) − 2 (see Fig. 26). By minimality of p, uj must be non–exceptional,
and so we can change p by replacing vj with uj , without changing its length. Walking
forward along p, we can keep changing the path without changing its length, until
we are able to complete {vs−1, vs} to a square {us−2, vs−1, vs, us−1} in Q with us−1
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non-exceptional and with height h(us−1) = h(vs−1) − 2 = h(vs) − 1 (once again,
see Fig. 26). In particular, the cell dual to us−1 contains σ and is contained in the
cell dual to vs , which contradicts the fact that the last vertex vs was chosen to be
exceptional. �

As a consequence, we obtain the following statement.

Lemma 4.5 The complex C(˜X�) has dimension dimC(˜X�) = dimX = n.

Proof If τ is a tile of ˜X� and x one of its vertices, then the collection of cells contain-
ing x and contained in τ provides a cube of dimension exactly n, so dimC(˜X�) ≥ n,
so we focus on the other inequality.

Let Q be a cube of C(˜X�), and let vmin be the vertex of minimal height in Q (see
Lemma 4.4). We claim that for each vertex v ∈ Q we have

h(v) = h(vmin) + dQ(vmin, v)

where dQ(vmin, v) is the distance in Q of v from vmin. Since the height can take
values only between 0 and n = dimX, this directly implies that

dimQ = max{dQ(vmin, v)} = max{h(v) − h(vmin)} ≤ n.

In order to prove the claim, pick a vertex v ∈ Q, and let p = (v0, . . . , vs) be an
edge–path of minimal length s = dQ(vmin, v) in Q from v0 = vmin to vs = v. Since
the height can at most increase by 1 along each edge of p, we have the inequality
h(v) ≤ h(vmin) + dQ(vmin, v). Assume by contradiction that the inequality is strict.
Then the height is not monotonically increasing along p. Let vk be the first vertex of p

which is a local maximum for the height function. Arguing as above via Lemma 4.3,
we look at the triple vk−1, vk , vk+1, and complete it to a square with a fourth vertex uk

such that h(uk) = h(vk)−2. We can even assume without loss of generality that k = 2
(otherwise we proceed as in the proof of Lemma 4.4 and change p along squares
walking backwards towards vmin). But then h(u2) = h(v2)− 2 = h(vmin). Minimality
of vmin implies u2 = vmin, and therefore we get that v3 was already adjacent to vmin.
This provides a path from vmin to v of length at most dQ(vmin, v) − 2, which is a
contradiction. �

We now turn to the study of links of vertices of C(˜X�). Recall that C(˜X�) is a
cubical complex, hence its links are simplicial complexes (see §2.1.3). In particular, if
v ∈ C(˜X�) is a vertex, then vertices in lk

(

v,C(˜X�)
)

correspond to vertices in C(˜X�)

which are adjacent to v. We begin with the following combinatorial characterization
of simplices in the link of a vertex.

Lemma 4.6 Let σ be a k-cell of ˜X� , and let v be the dual vertex in C(˜X�). Let
v0, . . . , vm be a collection of vertices of C(˜X�) adjacent to v, and let τ0, . . . , τm be
the dual cells in ˜X� . Then v0, . . . , vm induce a simplex in lk

(

v,C(˜X�)
)

if and only if
the following two conditions are satisfied

(↓) there exists a cell λ of ˜X� such that λ ⊆ τj , j = 0, . . . ,m,
(↑) there exists a cell μ of ˜X� such that τj ⊆ μ, j = 0, . . . ,m.
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Proof First of all, note that since C(˜X�) is a cubical complex, the vertices v0, . . . , vm

induce a simplex in lk
(

v,C(˜X�)
)

if and only if there exists a cube Q of C(˜X�)

containing v, v0, . . . , vm.
Assume that they induce a simplex, and let Q be the corresponding cube. From

Lemma 4.4 we know that Q has a unique vertex of minimal height, and a unique
vertex of maximal height. Let λ, μ be the dual cells. Lemma 4.4 then implies that λ,
μ satisfy the conditions (↓) and (↑) in the statement.

Vice versa suppose that the conditions (↓) and (↑) are satisfied. Notice that we
have λ ⊆ τj ⊆ μ for all j = 0, . . . ,m. Let Cλ = g̃X(λ) and Cμ = g̃X(μ) be the cor-
responding cubes of X, under the map g̃X = gX ◦ π : ˜X� → X� → X. Notice that
lk (λ,μ) ∼= lk

(

Cλ,Cμ

)

by Lemma 3.17. In particular, we see that in ˜X� there is a col-
lection of cells containing λ and contained in μ (among which we find the cells τj )
that gives rise to a cube Q in C(˜X�) containing the vertices v, v0, . . . , vm. Therefore
v0, . . . , vm induce a simplex in lk

(

v,C(˜X�)
)

, as desired. �

Remark 4.7 When the conditions (↓) and (↑) from Lemma 4.6 are satisfied, the cells
λ, μ can be chosen to be the lower and upper cell provided by Lemma 3.19.

Remark 4.8 A cell of dimension at least 2 in ˜X� always admits infinitely many
codimension-1 cells (see Fig. 11). Lemma 4.6 implies that the link of the dual ver-
tex is neither compact nor connected. In particular the cubical complex C(˜X�) is not
locally compact. As a result, even though C(˜X�) is constructed as a sort of dual cu-
bical barycentric subdivision with respect to the combinatorial decomposition of ˜X�

into cells, C(˜X�) is not homeomorphic to ˜X� . Namely, ˜X� is locally compact, while
C(˜X�) is not locally compact.

As recalled above, if v ∈ C(˜X�) is a vertex, then the vertices appearing in
lk

(

v,C(˜X�)
)

correspond to vertices of C(˜X�) that are adjacent to v, and these ver-
tices have height equal to h(v)± 1. We find it useful to decompose lk

(

v,C(˜X�)
)

into
two subcomplexes: we denote by lk↓

(

v,C(˜X�)
)

the full subcomplex of lk
(

v,C(˜X�)
)

generated by vertices of height h(v) − 1, and by lk↑ (

v,C(˜X�)
)

the full subcomplex
of lk

(

v,C(˜X�)
)

generated by vertices of height h(v)+1. As we will see, their geom-
etry is controlled respectively by a certain Helly property for orthogonal hyperplanes
in H

n, and by the non–positive curvature of X. The following statement provides
the Helly property. Notice that orthogonality is a key feature here: without the or-
thogonality requirement, the statement already fails for three geodesics in H

2. On the
other hand, the interested reader will notice that the argument generalizes to a collec-
tion of pairwise orthogonal and totally geodesic hypersurfaces in a simply connected
complete manifold of non–positive curvature. We will not need this generality in this
paper.

Lemma 4.9 (Helly property for orthogonal hyperplanes in H
n) Let V be a collection

of pairwise orthogonal hyperplanes in H
n. Then |V| ≤ n, and for all k ∈ {2, . . . , n}

all the k–fold intersections are non-empty.

Proof We begin with some preliminary observation about orthogonal subspaces. Let
V1, . . . , Vk ∈ V be a collection of hyperplanes from V, and let N = ∩k

j=1Vj be their
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Fig. 27 The Helly property in
Lemma 4.9

intersection. For x ∈ N , let Tx(H
n) denote the tangent space of H

n at x, and let
vj ∈ Tx(H

n) be a unit vector orthogonal to Vj (i.e. to all vectors in the tangent space
Tx(Vj )). The fact that Vi and Vj are orthogonal hyperplanes means that vi and vj are
orthogonal vectors for all i 
= j . Then a direct computation shows that if {n1, . . . , nm}
is an orthonormal basis for the tangent space of Tx(N), then {n1, . . . , nm, v1, . . . , vk}
is an orthonormal basis for Tx(H

n). This shows in particular that k ≤ n.
To prove the statement about non–emptiness of intersections, we notice that the

case k = 2 is exactly the hypothesis that any pair of hyperplanes from V intersect. For
k ≥ 3, we argue that if all the h–fold intersections of elements from {V1, . . . , Vk} are
non–empty for all h < k, then the k–fold intersection is non–empty too.

Let Nj = ∩i 
=jVi . By assumption we have Nj 
= ∅. Assume by contradiction that
V1 ∩· · ·∩Vk = ∅. Then for any choice of indices j1 
= j2 we have that Nj1 ∩Nj2 = ∅.
In particular, N2 and N3 are non–empty disjoint subspaces of V1 (see Fig. 27). Let
γ1 be the common perpendicular between them in V1, and let xk ∈ Nk be its endpoint
for k = 2,3. Now in the tangent space Tx2(H

n) we consider an orthonormal basis
{n1, . . . , nm, v1, v3, . . . , vk} constructed as above by adding to an orthonormal basis
{n1, . . . , nm} for Tx2(N2) unit vectors v1, v3, . . . , vk orthogonal to V1,V3, . . . , Vk . If
w denotes a tangent vector at x2 along γ1, then a direct computation shows that w is
orthogonal to {n1, . . . , nm}, because γ1 is orthogonal to N2, and it is also orthogonal
to v1, because γ1 ⊆ V1. Therefore w is in the subspace of Tx2(H

n) generated by
v3, . . . , vk . If we define W2 = ∩k

j=3Vj , then this means that γ1 is orthogonal to W2
at x2. Arguing in the same way at the point x3, we find that γ1 is orthogonal at x3 to
the subspace W3 = ∩k

j=2,j 
=3Vj . Note that W2 ∩ W3 = ∩k
j=2Vj = N1 is non–empty.

Moreover, as observed above, it is disjoint from N2 and from N3. Therefore we can
connect x2 (respectively x3) to a point x1 in N1 with a geodesic arc γ2 contained
in W2 (respectively γ3 contained in W3). Since all the spaces involved are totally
geodesic, the arcs γ1, γ2, γ3 are geodesic arcs in H

n, so we have obtained a geodesic
triangle with two right angles, which leads to the desired contradiction. �

The next statement completes our investigation of the combinatorial geometry of
C(˜X�). Thanks to Gromov’s link condition (see Lemma 2.2), it already implies that
C(˜X�) is locally CAT(0). We will show in Theorem 4.29 that it is actually CAT(0).

Proposition 4.10 Let σ be a k-cell of ˜X� , and let v be the dual vertex in C(˜X�). Then
the following hold:
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(1) lk↓
(

v,C(˜X�)
)

is a flag simplicial complex.
(2) lk↑ (

v,C(˜X�)
)

is a flag simplicial complex.
(3) lk

(

v,C(˜X�)
)

is a flag simplicial complex.

Proof Throughout this proof, wj will denote a vertex in lk
(

v,C(˜X�)
)

, vj the cor-
responding vertex of C(˜X�) adjacent to v, and τj the cell of ˜X� dual to vj . Notice
that two vertices wi , wj are adjacent in lk

(

v,C(˜X�)
)

precisely when v, vi , vj are
contained in a square of C(˜X�).

We first prove (1). Let w0, . . . ,wp be pairwise adjacent vertices in lk↓
(

v,C(˜X�)
)

.
Notice that τ0, . . . , τp are all cells of codimension 1 in the boundary of σ . For each
i 
= j , v, vi , vj are contained in a square of C(˜X�). By Lemma 4.3, the fourth ver-
tex of the square is dual to a cell contained in τi ∩ τj . This shows that the cells τj

intersect pairwise. We claim that actually τ0 ∩ · · · ∩ τp 
= ∅. To see this, embed σ

into a hyperbolic space of dimension dimσ (as in §3.3). The family of hyperplanes
V0, . . . , Vp supporting the cells τ0, . . . , τp is a collection of pairwise orthogonal hy-
perplanes, and the boundary of the cell τj in Vj is given by subspaces that are or-
thogonal to the other Vi ’s. Note that by Lemma 4.9 we know that V0 ∩ · · · ∩ Vp 
= ∅.
Arguing by induction on p, we can assume that τ0 ∩ · · · ∩ τp−1 
= ∅, and then we
can leverage the orthogonality structure as in the proof of Lemma 4.9 to obtain that
∅ 
= τ0 ∩ · · · ∩ τp−1 ∩ Vp ⊆ τ0 ∩ · · · ∩ τp , which proves the claim. Since the latter
intersection is non-empty, by Lemma 3.19, it consists of a single cell λ ⊆ τj . We use
Lemma 4.6 with this cell λ and μ = σ to conclude that w0, . . . ,wk span a simplex.

We argue via a dual argument to prove (2). Let w0, . . . ,wp be pairwise adjacent
vertices in lk↑ (

v,C(˜X�)
)

. Notice that τ0, . . . , τp are cells containing σ as a cell of
codimension 1 in their boundary. For each i 
= j , v, vi , vj are contained in a square of
C(˜X�). By Lemma 4.3, the fourth vertex of the square is dual to a cell containing τi ∪
τj . So τi , τj are adjacent in lk

(

σ, ˜X�

)

. By (1) in Lemma 3.17 this link is isomorphic
to the link of the corresponding cube in X. Since X is non-positively curved, this
link is a flag simplicial complex. Therefore there is a cell μ containing all the cells
τj ; this can actually be taken to be the upper cell provided by Lemma 3.19. We use
Lemma 4.6 with this cell μ and λ = σ to conclude that w0, . . . ,wk span a simplex.

Finally, in order to prove (3), let w0, . . . ,wp be pairwise adjacent vertices in
lk

(

v,C(˜X�)
)

, ordered so that for some m we have w0 . . . ,wm ∈ lk↓
(

v,C(˜X�)
)

and
wm+1 . . . ,wp ∈ lk↑ (

v,C(˜X�)
)

. By (1) we know that w0 . . . ,wm span a simplex,
hence by Lemma 4.6 there exists a cell λ in ∩m

j=0τj . Similarly, by (2) we know
that wm+1 . . . ,wp span a simplex, hence by Lemma 4.6 there exists a cell μ con-
taining τm+1, . . . , τp . Notice that λ ⊆ τi ⊆ σ ⊆ τj ⊆ μ for all i = 0, . . . ,m and
j = m + 1, . . . , p. In particular we have λ ⊆ τj ⊆ μ for all j = 0, . . . , p. Using
Lemma 4.6 again we obtain that w0, . . . ,wp spans a simplex. �

4.2 Efficiency

In this section we study a notion of complexity for edge–paths in C(˜X�), which is
based on the height function, and use it to find suitable representatives of homo-
topy classes of edge–paths and edge–loops. Recall that if p is an edge–path in the
1–skeleton of a cubical complex, an elementary homotopy of p is a homotopy which
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Fig. 28 A dual tile in C(˜X�),
and a long edge–path that stays
in a tile

is contained in the 2–skeleton and is obtained by a finite sequence of the following
two moves:

• remove a backtracking subpath, i.e. replace (v1, v2, v1) with v1;
• slide across a square, i.e. replace (v1, v2, v3) with (v1, v4, v3) if v1, v2, v3, v4 ap-

pear in this order on the boundary of a square (as in Fig. 24).

An edge–path p = (v0, . . . , vs) is said to be efficient if ∃ k ∈ {0, . . . , s} such that
the height strictly increases from v0 to vk and strictly decreases from vk to vs , i.e. vk

is the unique point of maximum for the height along p. We allow k = 0 or k = s, i.e.
that the height is strictly monotone along p. In any case, h(p) = h(vk), and the cell
dual to vk contains the cells dual to all the other vertices of p. This implies that an
efficient edge–path is contained in the union of at most two cubes which share at least
a vertex. In particular, an efficient edge–loop is entirely contained in a single cube.
These observations motivate the following definitions and constructions.

If τ is a tile of ˜X� , we define the dual tile C(τ ) to be the full subcomplex of
C(˜X�) whose vertices are dual to the cells of τ . If v is the vertex of C(˜X�) which is
dual to τ , then C(τ ) consists of all the cubes of C(˜X�) that contain v, i.e. C(τ ) is the
combinatorial 1–neighborhood of v. Notice that v is the only vertex of height n in
C(τ ) (see Fig. 28). We say that an edge–path p in C(˜X�) stays in a tile if there exists
a tile τ of ˜X� such that p ⊆ C(τ ).

Lemma 4.11 Let p be an edge–path in C(˜X�). If p stays in a tile, then there is an
elementary homotopy relative to endpoints between p and an efficient path.

Proof Let p = (v0, . . . , vs). First of all, notice that if s = 0,1 then p is already ef-
ficient. Moreover, by an elementary homotopy relative to endpoints, we can assume
that p has no backtracking subpath. Since p stays in a tile, p goes through at most
one vertex of height n (possibly several times, possibly at the endpoints v0, vs ).

For 0 < j < s, we say vj is a local minimum (with respect to the height function
along p) if h(vj±1) = h(vj ) + 1, and we consider the following quantity

h(p) = min{h(vj ) | vj is a local minimum}.
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If there is no local minimum, set h(p) = ∞; in this case p is already efficient.
So let us assume that there are some local minima, i.e. h(p) < ∞. Notice that h(p)

is in general larger than the minimum of the height along p. If h(p) = n then p is
constant, hence efficient. If h(p) = n−1, then p has a backtracking subpath, because
p goes through at most one vertex of height n. By an elementary homotopy relative
to endpoints we can remove this local minimum. Repeating this process, we obtain a
path p′ with h(p′) = n, and we reduce to the previous case. So let us assume in the
following that h(p) ≤ n − 2.

We now claim that, by deforming p locally at local minima, we can produce an
elementary homotopy relative to endpoints to a path p′ such that h(p′) ≥ h(p)+1. To
prove the claim, let vj be a local minimum, and let its height be h(pj ) = hj for some
0 < j < s. Consider the subpath (vj−1, vj , vj+1), and note that the cells dual to vj−1,
vj+1 meet along the cell dual to vj . Since p stays in a tile, there is a cell containing all
these cells, namely the tile itself. By Lemma 4.6 we get that (vj−1, vj , vj+1) is part
of a square in C(˜X�), whose fourth vertex is some v′

j , of height h(v′
j ) = hj +2. Then

we can homotope (vj−1, vj , vj+1) to the other side (vj−1, v
′
j , vj+1) of the square

via an elementary homotopy relative to endpoints (see Lemma 4.3). This process
can be applied to all local minima at the same time, since no two local minima can
be adjacent along p. Then we remove all backtracking subpaths, if needed, keeping
endpoints fixed. The result is an elementary homotopy relative to endpoints between
p and an edge–path p′ with h(p′) ≥ h(p) + 1. It is even possible that h(p′) = ∞ but
in any case this proves the claim.

We repeat this process of elevating local minima, and after a finite number of
steps we obtain a path p′′ with h(p′′) ≥ n − 1 (again, possibly h(p′′) = ∞). Hence,
we reduce to the previously discussed cases to conclude that p′′ (hence p) admits an
elementary homotopy relative to endpoints to an efficient path. �

In the previous lemma we allow p to be an edge–loop, i.e. v0 = vs . All the ho-
motopies in it are relative to the base point v0 = vs . In the following statement we
consider free homotopies, i.e. homotopies that are not required to fix any point.

Corollary 4.12 Let p be an edge–loop in C(˜X�). If p stays in a tile, then there is an
elementary homotopy between p and a constant path.

Proof Pick a basepoint v0 on p to be a vertex of maximal height on p, and write
p = (v0, . . . , vs), for v0 = vs . Apply the previous argument (from Lemma 4.11) to p.
At every iteration we allow ourselves to change the basepoint on p to always be a
vertex of maximal height. At the end there can be no local minimum, hence the path
is constant. �

A simple way for an edge-loop to satisfy the condition of Corollary 4.12 is to be
short. Recall from §4.1 that the length �(p) of an edge–path p is defined to be the
number of edges of p.

Corollary 4.13 Let p be an edge–loop in C(˜X�). Then �(p) is even. Moreover, if
�(p) ≤ 4 then p stays in a tile, and there is an elementary homotopy between p and
a constant path.
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Proof The first statement follows from the fact that if an edge e has endpoints v, w

then |h(v) − h(w)| = 1, so if an edge–path has odd length then the endpoints have
different height.

Suppose now �(p) ≤ 4. If �(p) = 2 then p = (v,w,v) for two adjacent vertices
v, w. In particular the cell dual to v contains the one dual to w, or vice versa. If
�(p) = 4 then p is the boundary path of a square. It follows from Lemma 4.3 that
p contains a unique point of maximal height, and that the cell dual to it contains
every other cell. In either case, there is a cell containing all the cells dual to the
vertices of p. If τ is a tile of ˜X� containing that cell, then p is entirely contained in
C(τ ) by construction. In particular, p stays in a tile, so the statement follows from
Corollary 4.12. �

Remark 4.14 From now on, our main goal in this section will be to show that every
edge–loop in C(˜X�) can be written as a product of nullhomotopic edge–loops, i.e.
C(˜X�) is simply connected. A naive approach would consist in splitting an edge–loop
along mirrors into shorter edge–paths, until they are short enough to be contracted (in
the sense of Corollary 4.12). However, there are arbitrarily long edge–paths that stay
in a tile (see Fig. 28). Therefore, an inductive argument based on length alone would
not suffice, and this idea requires some additional tools which we develop in §4.3,
before returning to the problem of simple connectedness of C(˜X�) in §4.4.

Remark 4.15 Given two cells σ , σ ′ contained in the same tile τ , let μ = μ(σ,σ ′)
be their upper cell (i.e. the smallest cell that contains both of them, as defined in
Lemma 3.19). If v, v′ and w are the vertices dual to σ , σ ′ and μ respectively, then
an edge–path of minimal length in C(˜X�) from v to v′ can be obtained as an efficient
path p in C(τ ) going through w. Such an efficient edge–path is not unique, but the
length of any such path is given by

�(p) = 2 h(w) − h(v) − h(v′) = 2 dimμ − dimσ − dimσ ′.

It should be noted that if μ � τ then there are edge–paths from v to v′ which are
strictly longer than p but still efficient.

4.3 Mirror complexity

Here we define an additional notion of complexity for an edge–path, based on the
relative position in ˜X� between mirrors and the cells dual to the vertices of the edge–
path. We start with the following definition, in analogy to that of a dual tile. If M is
a mirror of ˜X� , we define the dual mirror C(M) to be the full subcomplex of C(˜X�)

whose vertices are dual to the cells of M . Since we have not proved yet that C(˜X�) is
simply connected, a priori it is not clear that a dual mirror enjoys properties reminis-
cent of those of a mirror of ˜X� ; for instance, it is not clear yet whether it is convex.
Nevertheless, we can obtain the following statement about separation (analogous to
Proposition 3.37).

Lemma 4.16 Let M be a mirror of ˜X� and let C(M) be the dual mirror in C(˜X�).
Let z1, z2 be two points in ˜X� \ M , let σ1, σ2 be cells in ˜X� such that zk ∈ σk , and
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let vk be the vertex of C(˜X�) dual to σk . Then M separates z1 and z2 if and only if
C(M) separates v1 and v2. In particular, C(M) separates C(˜X�).

Proof Suppose M separates z1 and z2, and assume by contradiction that there is an
edge–path p in C(˜X�) from v1 to v2 avoiding C(M). Then the union of the cells dual
to the vertices of p contains a path–connected subspace of ˜X� \M that contains both
z1 and z2. This is in contradiction with the fact that M separates z1 from z2.

Vice versa, suppose C(M) separates v1 and v2, and assume by contradiction that
there is a path γ in ˜X� from z1 to z2 avoiding M . By a small perturbation, we can
assume that γ intersects the strata of ˜X� in such a way that the sequence of the
minimal cells that it visits gives rise to an edge–path in C(˜X�) (i.e. their dimension
jumps by 1 at a time along γ ). By construction, such an edge–path connects v1 to v2
in the complement of C(M), which is not possible.

In particular, it follows that C(M) separates C(˜X�), because M separates ˜X� by
Proposition 3.37. �

This provides a correspondence between complementary components of a mirror
M in ˜X� and complementary components of the dual mirror C(M) in C(˜X�).

4.3.1 Crossings

Let p = (v0, . . . , vs) be an edge–path (possibly an edge–loop) in C(˜X�), and let
σ0, . . . , σs be the cells of C(˜X�) dual to its vertices. Let M be a mirror in ˜X� , and let
C(M) be the dual mirror in C(˜X�). Recall from Lemma 4.16 that C(˜X�) \ C(M) is
disconnected. We say that p crosses M if p ∩ C(M) 
= ∅ and there are at least two
connected components C1, C2 of C(˜X�) \ C(M) such that p ∩ Ck 
= ∅. This means
that among the cells σ0, . . . , σs , some are contained in M , but at least two of them
are such that their interiors are contained in different complementary components
of M . (Recall that in our setting cells are closed and complementary components
of mirrors are open.) Let q = (vj , . . . , vj+m) be a subpath of p. We say that q is a
(p, M)–crossing if vj , . . . , vj+m ∈ C(M), but vj−1 and vj+m+1 lie in different con-
nected components of C(˜X�)\C(M). (See Fig. 29 for some examples.) We denote by
m(p,M) the number of (p, M)–crossings. The mirror complexity of p is defined by
taking into account the family M of all mirrors of ˜X� , i.e. by the following formula:

m(p) =
∑

M∈M
m(p,M).

The relevance of this notion of complexity with respect to Remark 4.14 is show-
cased by the following two lemmas.

Lemma 4.17 Let p be an edge–path in C(˜X�). Then p stays in a tile if and only if p

does not cross any mirror.

Proof Suppose that p stays in a tile, i.e. there exists a tile τ such that p ⊆ C(τ ).
Assume by contradiction that p crosses a mirror M . So there are two vertices v1, v2
of p which are separated by C(M). Let σk be the cell dual to vk . By Lemma 4.16 M
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Fig. 29 An edge–path p in C(˜X�) crossing some mirrors. Mirror crossings are highlighted. We have
m(p,M) = 2, m(p,N1) = 1, m(p,N2) = 3, and m(p,N3) = 3. In particular, notice that even if p inter-
sects C(N1) twice, there is only one (p,N1)-crossing

separates the interior of σ1 from the interior of σ2. In particular, there is no tile of ˜X�

that contains both of them, which contradicts the hypothesis that p stays in a tile.
Vice versa, suppose p does not cross any mirror, and assume by contradiction that

there are two vertices v1, v2 on p such that the dual cells are not contained in the
same tile. Let τ1, τ2 be different tiles containing them. Up to choosing v1, v2 closer
to each other along p, we can assume that the tiles are adjacent, i.e. τ1 ∩ τ2 
= ∅.
In particular, σ = τ1 ∩ τ2 is a cell and it is contained in some mirror M . Then p

intersects M between v1 and v2. Moreover the tiles τ1, τ2 provide a framing in the
sense of §3.7. Proposition 3.37 implies that the interiors of τ1, τ2 are separated by
M . The same holds for the interiors of the cells dual to v1, v2. So by Lemma 4.16 we
have that v1, v2 are separated by C(M), i.e. p crosses M , a contradiction. �

Lemma 4.18 Let p be an edge–path in C(˜X�), and let M be a mirror in ˜X� . Then
the following hold.

(1) m(p,M) = 0 if and only if p does not cross M .
(2) m(p) = 0 if and only if p stays in a tile.
(3) If p is a loop and m(p,M) ≥ 1, then m(p,M) ≥ 2.
(4) If p has finite length, then m(p,M) and m(p) are finite.

Proof For (1), note that m(p,M) is by definition the number of (p, M)-crossings.
For (2), note that m(p) is a sum of non-negative numbers, so it is zero if and only if
m(p,M) = 0 for every mirror M . By (1) this is equivalent to saying that p does not
cross any mirror. Then the statement follows from Lemma 4.17. To prove (3), note
that if p is a loop that crosses M at least once, then it must cross it at least twice,
because C(M) separates C(˜X�) by Lemma 4.16.

Finally, to prove (4) notice that each (p,M)–crossing contributes to at least one
vertex of p, dual to a cell of M . Since p has finite length, there can be only finitely
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many (p,M)–crossings. Then the finiteness of m(p) follows from the fact that X

(hence the collection of mirrors M) is locally finite. �

Remark 4.19 In this framework, Corollary 4.13 can be restated by saying that �(p) ≤
4 implies m(p) = 0.

4.3.2 Bridges

Let p = (v0, . . . , vs) be an edge–path in C(˜X�), and let σ0, . . . , σs be the cells of
˜X� dual to its vertices. Let M be a mirror in ˜X� , and let C(M) be the dual mirror
in C(˜X�). We say that p is a bridge if there exists a mirror M of ˜X� such that
v0, vs ∈ C(M), but p � C(M). In other words, σ0, σs ⊆ M but some of the other cells
σ1, . . . , σs−1 are not contained in M . In this case, we say that p is supported by M .
We say p is a minimal bridge if none of its subpaths is a bridge (see Fig. 30).

Lemma 4.20 Let p be an edge–path in C(˜X�). If p is a bridge, then there exists a
subpath q ⊆ p that is a minimal bridge.

Proof Let us consider the collection of subpaths of p which are bridges. Notice that
this collection contains p itself, it is partially ordered by inclusion, and it is finite.
Therefore it contains a minimal element. �

Lemma 4.21 Let p be a minimal bridge supported by a mirror M , and let N be a
mirror such that m(p,N) > 0. Then the following hold.

(1) m(p,N) = 1.
(2) C(M) ∩ C(N) 
= ∅ and M ∩ N 
= ∅.

Proof The assumption that m(p,N) > 0 means that p crosses N at least once. If
p crossed N twice, then any subpath between two consecutive (p,N)-crossings
would be a bridge supported by N . But this would contradict minimality, hence
m(p,N) = 1, which proves (1). In particular the endpoints of p lie in different con-
nected components of C(˜X�) \ C(N). Since they also live on the same dual mirror

Fig. 30 A bridge p supported by a mirror M , with subpaths q and q ′ which are bridges supported by the
mirrors N and N ′ respectively. Notice that only q is a minimal bridge
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C(M), which is connected, and dual mirrors separate by Lemma 4.16, we can con-
clude that C(M) ∩ C(N) 
= ∅. Finally, the cell dual to a vertex in their intersection is
contained in M ∩ N , hence we obtain (2). �

Recall that for a mirror M in ˜X� we have a nearest point projection πM : ˜X� →
M , as discussed in §3.6. If p is a minimal bridge supported on M , then we can use
πM to induce a projection of p to C(M), as established by the next results.

Lemma 4.22 Let M , N be mirrors in ˜X� and let τ be a tile in ˜X� .

(1) If M ∩ N 
= ∅, then πM(N) = M ∩ N .
(2) If M ∩ τ 
= ∅, then πM(τ) = M ∩ τ .

Proof We start by proving πM(N) ⊆ M ∩N . By contradiction, let x ∈ N be such that
πM(x) /∈ N . Let y = πM∩N(x) ∈ M ∩N , where πM∩N denotes the nearest point pro-
jection to the closed convex subspace M ∩N . Since πM(x) /∈ N , we have y 
= πM(x),
so we can consider the geodesic triangle with vertices x, πM(x) and y. By convexity
of M , the geodesic [πM(x), y] is contained in M . By convexity of N , the geodesic
[x, y] is contained in N . Moreover, since πM is the nearest point projection to M ,
the angle between [x,πM(x)] and [πM(x), y] at πM(x) is at least π

2 . Analogously,
the angle between [x, y] and any geodesic in M ∩ N at y is at least π

2 too, and since
N meets M orthogonally, this is enough to ensure that the angle between [x, y] and
[πM(x), y] at y is at least π

2 too. We obtained a geodesic triangle with two angles at
least π

2 , which is impossible in the CAT(0) space ˜X� . Vice versa, if x ∈ M ∩ N , then
x = πM(x), so x ∈ πM(N) already.

The second statement can be obtained via an analogous argument. Indeed, recall
that τ is isometric to a convex subset of Hn bounded by orthogonal hyperplanes (see
Lemma 3.11). In particular, the nearest point projection to a boundary face of τ is
entirely contained in τ . �

The next lemma is a combinatorial statement about the stratification of ˜X� intro-
duced in §3.5, and will be needed in the following lemma.

Lemma 4.23 Let τ , τ ′ be non-disjoint tiles of ˜X� . Let W1, . . . ,Wq be the collection
of mirrors of ˜X� that separate τ and τ ′. Then we have that

(1) W1, . . . ,Wq coincides with the collection of mirrors of ˜X� that contain τ ∩ τ ′.
(2) τ ∩ W1 ∩ · · · ∩ Wq = τ ∩ τ ′ = τ ′ ∩ W1 ∩ · · · ∩ Wq .

Proof First of all, notice that the collection of mirrors is not empty since τ and τ ′ are
different tiles. We start by proving (1). Let W be a mirror containing τ ∩ τ ′. Then
the two tiles provide a framing for the cell τ ∩ τ ′. In particular we get from Proposi-
tion 3.37 that W separates the two tiles, hence W is in the collection {W1, . . . ,Wq}.
Conversely, if τ ∩ τ ′ was not inside one Wi , then we could connect the two tiles with
a path that goes through the intersection but avoids Wi , contradicting the fact that Wi

separates them.
To prove (2) we argue as follows. By (1) we know that τ ∩ τ ′ ⊆ W1 ∩ · · · ∩ Wq ,

so we have that τ ∩ τ ′ ⊆ τ ∩ W1 ∩ · · · ∩ Wq . Now note that, by definition of the
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stratification, if τ ∩ τ ′ is a k-cell, then it must be contained in n − k mirrors, so
q = n − k. But then the two sides of the inclusion are cells of the same dimension
k, so they must be equal. Switching the roles of τ and τ ′ proves the second equality
in (2). �

Lemma 4.24 Let τ be a tile and M be a mirror in ˜X� , such that M ∩ τ 
= ∅. Let σ

be a cell of τ , and let N1, . . . ,Nr 
= M be all the mirrors containing σ and such that
M ∩ Nj 
= ∅ for j = 1, . . . , r . (Possibly r = 0 if there are no such mirrors.) Then the
following hold.

(1) τ ∩ M ∩ N1 ∩ · · · ∩ Nr is an (n − 1 − r)–cell that contains πM(σ).
(2) The cell τ ∩ M ∩ N1 ∩ · · · ∩ Nr only depends on σ and M .

Proof We start by proving (1). It follows from Lemma 4.22 that πM(σ) ⊆ τ ∩M ∩Nj

for each j = 1, . . . , r . So, we obtain that πM(σ) ⊆ τ ∩ M ∩ N1 ∩ · · · ∩ Nr . To show
that this intersection is a cell, note that τ is an n–cell. So, by Lemma 3.21 we have
that M ∩ τ is an (n − 1)–cell and then for each j = 1, . . . , r we have that τ ∩ M ∩
N1 ∩ · · · ∩ Nj is an (n − 1 − j)–cell.

To prove (2) we argue as follows. Suppose τ ′ is another tile as in the statement,
i.e. σ ⊆ τ ′ and M ∩ τ ′ 
= ∅. Let W1, . . . ,Wq be the collection of mirrors of ˜X� that
separate τ and τ ′. (Note that this collection depends on τ and τ ′, while the collection
N1, . . . ,Nr only depends on σ and M .) Since σ ⊆ τ ∩ τ ′, we also have that σ is
contained in each Wi thanks to (1) in Lemma 4.23. We now claim that each Wi

meets M . This is clear if σ ⊆ M . On the other hand, if σ is not inside M , then we can
take an efficient edge–path p in C(˜X�) from the vertex dual to σ to the vertex dual to
M ∩ τ which is contained in C(τ ) and meets C(M) only at the endpoint M ∩ τ . Take
an analogous path p′ in C(τ ′), and concatenate p and p′ to obtain a minimal bridge
p̂ supported on M . Since Wi separates τ and τ ′, we see that p̂ crosses Wi . So by (2)
in Lemma 4.21 we conclude that M ∩ Wi 
= ∅, which proves the claim.

As a result, we have that the collection {W1, . . . ,Wq} is a subcollection of
{M,N1, . . . ,Nr}. (Note that M could be one of the mirrors separating τ and τ ′, but
Ni 
= M by definition.) In particular, using (2) from 4.23, we obtain that

τ ∩ M ∩ N1 ∩ · · · ∩ Nr ⊆ τ ∩ W1 ∩ · · · ∩ Wr
4.23= τ ∩ τ ′ ⊆ τ ′.

Therefore it follows that τ ∩M ∩N1 ∩ · · · ∩Nr ⊆ τ ′ ∩M ∩N1 ∩ · · · ∩Nr . Reversing
the roles of τ and τ ′ provides the other inclusion, and shows that the cell defined in
(1) does not depend on the choice of the tile. �

In the notation and setting of Lemma 4.24, if v ∈ C(˜X�) is the vertex dual to σ ,
then we denote by πM(v) the vertex dual to the cell constructed in (1) of the lemma,
and call it the projection of v to C(M). This is well defined by (2) in the same lemma.
Note that in general 0 ≤ r ≤ n − dimσ , as σ could be contained in some mirrors that
are disjoint from M . Nevertheless, this provides the desired projection to C(M) for
vertices of C(˜X�) which are contained in the cubical 2–neighborhood of C(M), i.e.
the union of all the dual tiles corresponding to all the tiles that intersect M in ˜X� .
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The content of the next two lemmas is that a minimal bridge supported by a mirror
M is completely contained in such a neighborhood of C(M) (see Lemma 4.25), so
we can define a projection of a minimal bridge to C(M) (see Lemma 4.26). We note
that the minimality assumption is necessary, see the difference between q and q ′ in
Fig. 30.

Lemma 4.25 Let p be a minimal bridge supported on a mirror M . Then for each
vertex v of p there exists a tile τ such that v ∈ C(τ ) and τ ∩ M 
= ∅.

Proof Let p = (v0, . . . , vs), let σk be the cell of ˜X� dual to vk , and assume by con-
tradiction that some vertices do not satisfy the statement. Let vk be the first one.
Since p is a bridge, its endpoints are on C(M), so k 
= 0, s. Let τ± be tiles such that
vk−1 ∈ C(τ−) and vk ∈ C(τ+). In particular this means that σk−1 ⊆ τ− and σk ⊆ τ+.
By construction, we can choose τ− so that τ− ∩ M 
= ∅, while necessarily τ+ is
disjoint from M . Moreover, if we had σk ⊆ σk−1 then we would have vk ∈ C(τ−),
against the choice of vk . But since vk−1 and vk are adjacent in C(˜X�), this forces
σk−1 ⊆ σk . In particular, the intersection τ− ∩ τ+ is non empty: it contains at least the
cell σk−1.

Consider the cell σ = τ− ∩ τ+. For any mirror N containing σ , we claim that N

must intersect M . Indeed, the tiles τ± form a framing for σ in the sense of §3.7. By
Proposition 3.37 we know that τ± belong to the closure of distinct complementary
components of N . In particular, a maximal subpath of p ∩ C(N) whose vertices are
dual to cells contained in σ gives rise to a (p,N)-crossing, hence m(p,N) > 0. By
(2) in Lemma 4.21 we know M ∩ N 
= ∅, as claimed.

Let N1, . . . ,Nr be the collection of all mirrors containing σ . Since σ is a cell of
τ−, we can write σ = τ− ∩ N1 ∩ · · · ∩ Nr . Using (1) in Lemma 4.24, we have that

πM(σ) ⊆ τ− ∩ M ∩ N1 ∩ · · · ∩ Nr =

= (M ∩ τ−) ∩ (τ− ∩ N1 ∩ · · · ∩ Nr) ⊆ M ∩ σ ⊆ M ∩ τ+.

This contradicts the fact that τ+ is disjoint from M . �

In the next lemma we finally obtain a projection of a minimal bridge to a sup-
porting mirror. As it might be expected, such a projection is length–decreasing (see
Fig. 31).

Lemma 4.26 Let p be a minimal bridge supported on a mirror M . Then there exists
an edge–path pM ⊆ C(M), such that pM has the same endpoints as p and �(pM) ≤
�(p) − 2.

Proof Let p = (v0, . . . , vs), and let σ0, . . . , σs be the cells dual to its vertices. Since
p is a minimal bridge supported on M , by Lemma 4.25 we know that for each vertex
vk there exists a tile τk of ˜X� such that vk ∈ C(τk) and τk ∩M 
= ∅. Let wk = πM(vk)

be the projection of vk to C(M), constructed in Lemma 4.24. We claim that for each
k the vertices wk−1 and wk are either the same vertex or adjacent vertices.
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Fig. 31 Projection of the minimal bridge p to C(M), for a supporting mirror M

To see this, consider two vertices vk−1 and vk adjacent along p. Without loss of
generality (i.e., possibly reversing the orientation of p) we can assume that σk−1 is a
cell of codimension 1 in σk . In particular, we can take τk−1 = τk , and there is exactly
one mirror ̂Nk that contains σk−1 but not σk . Let {N1, . . . ,Nr} be the collection of
all the mirrors that contain σk and intersect M , but are different from M . Then the
analogous collection for σk−1 consists of the same mirrors, possibly with the addition
of ̂Nk . (Note that since p is a minimal bridge supported on M , any mirror containing
σ1, . . . , σs−1 is guaranteed to be different from M , while ̂Nk = M for k = 1.) By
(1) in Lemma 4.24 we have that πM(σk) ⊆ τk ∩ M ∩ N1 ∩ · · · ∩ Nr and that either
πM(σk−1) ⊆ τk ∩M ∩N1 ∩ · · · ∩Nr or πM(σk−1) ⊆ τk ∩M ∩N1 ∩ · · · ∩Nr ∩ ̂Nk . In
the first case we have that πM(σk−1) and πM(σk) are contained in the intersection of
the same mirrors, hence wk−1 = wk ; in the second case τk ∩ M ∩ N1 ∩ · · · ∩ Nr ∩ ̂Nk

is a codimension-1 cell of τk ∩ M ∩ N1 ∩ · · · ∩ Nr , hence wk−1 is adjacent to wk .
This proves the claim.

Notice in particular that in the case k = 1 we have ̂Nk = M , so we have proved
that w0 = w1. Analogously, we also have ws = ws−1. As a result, (w0, . . . ,ws) is
an edge–path in C(M). Let pM be the edge–path obtained from (w0, . . . ,ws) by
removing all backtracking subpaths and repeated vertices. In particular, since w0 =
w1 and ws = ws−1, we have that �(pM) ≤ s − 2 = �(p) − 2. Moreover, since p is
a bridge supported on M , we have that σ0, σs ⊆ M , so that v0 = w0, vs = ws , i.e. p

and pM have the same endpoints. �

4.4 Surgeries on edge–loops

We are now ready to apply the above technology to the study of edge–loops in C(˜X�).
The goal is to show that C(˜X�) is simply connected. The strategy will be to reduce
the length and mirror complexity of an edge–loop enough to ensure that it stays in a
tile, so that Corollary 4.12 can be applied. The following statement is the key surgery
step. Roughly speaking, we chop an edge–loop p along a mirror M that it crosses,
use the projection pM of p to M to introduce a shortcut along M and obtain two
edge–loops p1, p2 such that p and p1p2 are elementary homotopic, and finally then
check that the lengths have dropped.
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Fig. 32 The surgery in Proposition 4.27. Note that all the minimal bridges in p are supported on M but p

does not cross M , hence the need to first split p into q and q ′ , and then into q1 and q2

Proposition 4.27 Let p be an edge–loop in C(˜X�). If m(p) > 0, then there exist two
edge–loops p1, p2 in C(˜X�) such that �(p1), �(p2) < �(p), and there is an elemen-
tary homotopy between p and p1p2

Proof By assumption, there is a mirror M0 that is crossed by p, so m(p,M0) ≥ 1,
hence by (3) in Lemma 4.18 we have that m(p,M0) ≥ 2, i.e. p crosses M0 at least
twice. It follows from the definitions that any subarc of p between any two (p,M0)-
crossings is a bridge supported by M0.

Choose a (p,M0)–crossing and a bridge q supported by M0 (in general this cannot
be chosen to be minimal, see Fig. 32). Let q ′ be the complement of q in p, i.e. the
edge–path such that p = qq ′. Of course we have

�(q) + �(q ′) = �(p). (4.1)

Moreover, without loss of generality we can assume that

�(q) ≤ �(q ′). (4.2)

By Lemma 4.20 we can find a minimal bridge q1 ⊆ q ⊆ p. In particular we have

�(q1) ≤ �(q). (4.3)

Let q2 be the complement of q1 in p, i.e. the edge–path such that p = q1q2. We can
compute that

�(q2) = �(p) − �(q1)
(4.3)≥ �(p) − �(q)

(4.1)= �(q ′)
(4.2)≥ �(q)

(4.3)≥ �(q1). (4.4)
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Let M be a mirror supporting the minimal bridge q1, and let qM
1 be the projection

of q1 to C(M), i.e. the edge–path obtained in Lemma 4.26. In particular we have

�(qM
1 ) ≤ �(q1) − 2 < �(q1). (4.5)

Define the edge–loops p1 = q1q
M
1 and p2 = qM

1 q2, where qM
1 denotes the edge–

path qM
1 with the opposite orientation. There is an elementary homotopy between the

edge–loops p = q1q2 and p1p2 = q1q
M
1 qM

1 q2, obtained by removing the backtrack-

ing subpath qM
1 qM

1 . We can compute the desired inequality on the length of p1 and
p2 as follows:

�(p1) = �(q1) + �(qM
1 )

(4.5)
< �(q1) + �(q1)

(4.4)≤ �(q1) + �(q2) = �(p).

�(p2) = �(qM
1 ) + �(q2)

(4.5)
< �(q1) + �(q2) = �(p). �

Remark 4.28 Note that it is possible to have an edge–loop p for which the surgery
from Proposition 4.27 strictly reduces the mirror complexity for only one subloop.
For an example see Fig. 32, where the mirror complexity of the loop p2 is the same
as that of the original loop p.

We are now ready to prove the main result of this section.

Theorem 4.29 The complex C(˜X�) is a connected CAT(0) cubical complex.

Proof By construction, the complex C(˜X�) is a cubical complex. Moreover, Gro-
mov’s link condition from Lemma 2.2 implies that C(˜X�) is non–positively curved,
since the link of any vertex is a flag simplicial complex by Proposition 4.10.

Next, C(˜X�) is path–connected because ˜X� is path–connected. Indeed, let v, w

be vertices in C(˜X�), and let σv , σw be the dual cells. Pick any continuous path η

connecting the two cells in ˜X� , and keep track of the list of cells that are intersected
by η. By isotoping η into lower-dimensional cells, we can ensure that the difference
between the dimension of two consecutive cells in this list is exactly 1. The dual
vertices in C(˜X�) give rise to an edge–path from v to w.

To conclude, we need to show that C(˜X�) is simply connected. To do this, we
argue that edge–loops are nullhomotopic by induction on their length. Let p be an
edge–loop in C(˜X�), homotopically non–trivial and of minimal length. If p does not
cross any mirror, then by Lemma 4.17 p stays in a tile. Hence by Corollary 4.12
there is an elementary homotopy between p and a constant path. So let us assume
that m(p) > 0. Then by Proposition 4.27 there exist two edge–loops p1, p2 in C(˜X�)

such that p is homotopic to p1p2 and �(p1), �(p2) < �(p). By minimality, both p1

and p2 are homotopically trivial, and so is p. �

We conclude this section by noting that the action of the hyperbolized group �X =
π1(X�) on ˜X� induces an action on the dual cubical complex C(˜X�).
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Lemma 4.30 The group �X = π1(X�) acts on C(˜X�) by cubical isometries. More-
over, if X is compact, then the action is cocompact.

Proof The group �X acts on ˜X� preserving the family of mirrors, hence the stratifi-
cation defined in §3.5. The action permutes the cells, so �X acts on vertices of the
dual cubical complex C(˜X�) described in §4. Moreover, the action of �X on ˜X� pre-
serves the incidence relations between cells, hence we can extend the action of �X

on vertices to a combinatorial action of �X on the entire C(˜X�). Since �X acts on
C(˜X�) combinatorially, it preserves the standard cubical metric.

When X is compact, X� is compact as well, by (3) in Lemma 2.5. The action of
�X on ˜X� has finitely many orbits of cells, so its action on C(˜X�) has finitely many
orbits of vertices. Since C(˜X�) is finite-dimensional (see Lemma 4.5), the quotient
has finitely many cubes, so it is compact. �

5 Special cubulation

The purpose of this section is to study the action of the hyperbolized group �X =
π1(X�) on the dual cubical complex C(˜X�) (see Lemma 4.30), and prove that the
group �X is virtually compact special in the sense of [39]. When X is compact and
admissible, �X is a Gromov hyperbolic group and C(˜X�) is a CAT(0) cubical com-
plex (see (4) in Proposition 3.5, and Theorem 4.29). Therefore, one could hope to
obtain virtual specialness directly from Agol’s result from [2]. However, the action
of �X on C(˜X�) is not proper (see Remark 5.3). To remedy this, we will use a result
of Groves and Manning from [35, Theorem D] that deals with improper actions. This
requires a study of stabilizers of cubes.

In §5.1 we show that cube stabilizers for the action of �X on C(˜X�) coincide with
cell stabilizers for the action of �X on ˜X� . Then in §5.2 we show that such stabilizers
are quasiconvex and virtually compact special. The complex X is always assumed to
be admissible in the sense of §3. In some statements (such as Theorem 5.15) we also
assume that it is compact.

Remark 5.1 (Why we consider the action on C(˜X�) instead of ˜X) It is worth noting
that when X is admissible, ˜X is already a CAT(0) cube complex. Moreover the map
gX : X� → X from Proposition 3.5 induces a surjection �X → π1(X) that can be
used to obtain an action of �X on ˜X. However, this action has a very large kernel.
For example, in the case in which X is already simply connected the map �X →
π1(X) is trivial, but �X is an infinite group; indeed, it retracts to ��n , as discussed
in Remark 3.9.

5.1 Cube stabilizers for the action of �X on C(˜X�)

In this section we relate the cube stabilizers for the action of �X on C(˜X�) to the cell
stabilizers for the action of �X on ˜X� .

Lemma 5.2 The stabilizer of a vertex in C(˜X�) coincides with the stabilizer of its
dual cell in ˜X� .
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Remark 5.3 It follows from Lemma 5.2 that the action of �X on C(˜X�) is in general
not proper. Namely, the stabilizer of a vertex dual to a cell of dimension at least 2 is
infinite (compare Remark 4.8 and Fig. 11).

We now proceed to the study of stabilizers of higher–dimensional cubes for the
action of �X on C(˜X�). Recall that the dual cubical complex C(˜X�) is equipped with
a �X-invariant height function: the vertex dual to a k-cell has height k. We proved in
Lemma 4.4 that every cube in C(˜X�) has a unique vertex of minimal height.

Lemma 5.4 The stabilizer of a cube in C(˜X�) coincides with the stabilizer of its vertex
of minimal height in ˜X� .

Proof Let C be a cube in C(˜X�), let v be its vertex of minimal height, and let σ be the
dual cell in ˜X� . Let g ∈ �X be an element that stabilizes C. Since the height function
is invariant, g must fix v, by uniqueness of the vertex of minimal height.

Conversely let g fix v. By Lemma 5.2 we get that g stabilizes σ , i.e. g.σ = σ .
Let w be another vertex of C and let τ be the dual cell. By Lemma 4.4, we have
that σ ⊆ τ . It follows that σ = g.σ ⊆ g.τ , so that both τ and g.τ appear in the
link of σ in the combinatorial structure of ˜X� (see (3) in Lemma 3.17). Since the
covering projection π : ˜X� → X� induces isomorphisms on links, if τ and g.τ were
distinct, then in X� we would see a tile π(τ) = π(g.τ ) isometric to a copy of �n

� with
some identification along the boundary (namely along the subspace corresponding to
π(σ)). However, by (1) in Lemma 2.5 we know that tiles of X� are embedded copies
of �n

� , so we must have g.τ = τ . By Lemma 5.2, this means g.w = w. Therefore g

fixes C pointwise. �

Remark 5.5 In the proof of Lemma 5.4 we established that the stabilizer of a cell in
C(˜X�) actually fixes the cell pointwise.

5.2 Cell stabilizers are quasiconvex and virtually compact special

The goal of this section is to study the stabilizers of cells for the action of �X on
˜X� by covering transformations. In particular, note that by Lemma 3.11 stabilizers
of tiles (i.e. top–dimensional cells) are isomorphic to the fundamental group of the
hyperbolizing cube ��n = π1(�n

�). More precisely, our goal is to show that cell
stabilizers for the action of �X on ˜X� are quasiconvex in �X , and virtually compact
special.

5.2.1 Quasiconvexity

In the following we say that an action of a group on a metric space is geometric if it
is proper, cocompact and isometric. We will make use of the following standard fact.

Lemma 5.6 Let Z be a proper Gromov hyperbolic geodesic space, and let Y ⊆ Z be
a quasiconvex subset. Let G be a finitely generated group acting geometrically on
Z, and let H be the stabilizer of Y in G. If H acts cocompactly on Y , then H is
quasiconvex in G.
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We apply this lemma to the cases G = �X , H = ��n and G = �, H = ��n . As
noted, �X is a Gromov hyperbolic group when X is compact. In both cases, before
using the lemma we need to ensure that H is a subgroup of G. This is not obvious,
because a priori H is just defined as the fundamental group of the hyperbolizing
cube �n

� .

Lemma 5.7 Let X be compact. Then ��n is a quasiconvex subgroup of �X .

Proof By Lemma 2.5, we know that a hyperbolized complex retracts to each of its
tiles, each of which is homeomorphic to the hyperbolizing cell. In our setting this
means that X� retracts to �n

� , so in particular the inclusion �n
� ↪→ X� as a tile in-

duces an injection ��n ↪→ �X . Since X is compact, the group �X acts geometrically
on ˜X� . Moreover, the subgroup ��n acts geometrically on a tile, which is a closed
convex subspace by Lemma 3.16. Therefore ��n is quasiconvex by Lemma 5.6. �

Lemma 5.8 The group ��n is a quasiconvex subgroup of �.

Proof First of all we will prove that ��n naturally injects in �, by showing that there
exists a (normal) cover Y� of M� = H

n/� which retracts to �n
� (see Fig. 33). This

would provide the desired injection

��n = π1(�n
�) ↪→ π1(Y�) ↪→ π1(M�) = �.

To construct this cover, consider the cubical complex Y given by the standard
cubulation of Rn with vertices on Z

n. Notice that Y admits a standard folding f :
Y → �n, and that Y is an admissible cubical complex. Therefore we can consider the
hyperbolized complex Y� . As in the proof of Lemma 5.7, Lemma 2.5 implies that Y�

retracts onto any of its tiles, hence ��n injects in π1(Y�).
We now claim that Y� is a (normal) covering space of M� . For each i = 1, . . . , n

consider the mirror of Y given by Mi = {yi = 0}, and the hyperplane of Y given by
Hi = {yi = 1

2 }. Let mi and hi be the reflections in Mi and Hi respectively, i.e.

mi : Y → Y,mi(y1, . . . , yi, . . . , yn) = (y1, . . . ,−yi, . . . , yn),

hi : Y → Y,hi(y1, . . . , yi, . . . , yn) = (y1, . . . ,1 − yi, . . . , yn).

For each i = 1, . . . , n, the group Di = 〈mi,hi〉 is an infinite dihedral group of cubi-
cal isometries of Y . The group D = 〈m1, h1, . . .mn,hn〉 is isomorphic to the direct

Fig. 33 Y� as a covering space
of M� that retracts to �n

� Y�

Y �n

�n
�

(S1)n

M�

f�

f

ggYg0

μ�

μ
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product D1 × · · · × Dn, and admits a representation into the group Bn of Euclidean
isometries of the standard cube �n, in which mi acts trivially and hi acts as the stan-
dard reflection of �n in the i–th coordinate. By Lemma 3.1 we have an action of
Bn on �n

� by isometries, hence we can induce an action of D on �n
� by isometries

such that the Charney–Davis map g : �n
� → �n is equivariant. Moreover, the stan-

dard folding f : Y → �n is clearly D–equivariant too, because it can be obtained by
reflecting in the mirrors of Y . Since the two maps in the pullback square defining Y�

are D–equivariant (see Fig. 33), we obtain an action of D on Y� by isometries.
Note that ti = himi is the unit integer translation of Y in the ith direction. As a

result, D contains a (normal) subgroup T isomorphic to the group of integer transla-
tions Zn. The action of D on Y� restricts to a free and properly discontinuous action
of T on Y� . A fundamental domain for this action is given by a single tile. Each tile is
isometric to a hyperbolizing cube �n

� , and the induced action identifies correspond-
ing cells on opposite mirrors, recovering M� (see §3.1.1 for more details about the
construction of �n

� .) In particular μ� : Y� → Y�/T ∼= M� realizes the desired cover-
ing map, which covers the standard universal covering map μ : Y = R

n → (S1)n (see
Fig. 33).

Finally, let us prove that ��n is quasiconvex in �. We know � acts geometri-
cally on H

n, permuting the stratification induced by the coordinate mirrors and their
translates. The subgroup ��n stabilizes a �–cell, i.e. the closure of a connected com-
ponent of the complement of such collection. This is a closed convex subspace, on
which ��n acts geometrically (see §3.3 for details). In particular ��n is quasiconvex
in � by Lemma 5.6. �

Remark 5.9 In Lemma 5.8 we have constructed a normal covering space of M� by
producing an action of T = Z

n by deck transformations on the hyperbolization Y�

of the standard integral cubulation of Rn. This covering space can also be defined
as the covering space of M� corresponding to the kernel of the homomorphism � =
π1(M�) → Z

n induced by the collapse map g0 : M� → (S1)n obtained by applying
the Pontryagin–Thom construction to M� with respect to suitable codimension–1
submanifolds (see §3.1.1 for details, and Fig. 33). Compact quotients of Y� , provide
examples of closed hyperbolized manifolds which are finite covers of M� . These are
all genuine arithmetic hyperbolic manifolds.

5.2.2 Virtual specialness

A cubical complex is special if it admits a local isometry into the Salvetti complex
of a right-angled Artin group (see [39]). A group G is virtually compact special if
there exist a finite index subgroup G′ ⊆ G and a compact special cubical complex
B such that G′ = π1(B). This property passes from a Gromov hyperbolic group to
its quasiconvex subgroups, as established in the following statement. This kind of
arguments has appeared in the literature (see for instance [39, Corollary 7.8]). We
include a proof for the reader’s convenience.

Lemma 5.10 Let G be a Gromov hyperbolic group, and let H be a quasiconvex sub-
group. If G is virtually compact special, then so is H .
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Proof Let G′ be a finite index subgroup of G and B a compact special cubical com-
plex such that G′ = π1(B). By [39, Remark 3.4, Lemma 3.13] we can assume with-
out loss of generality that B is also non–positively curved. The universal cover ˜B is
a CAT(0) cubical complex. It is finite dimensional, uniformly locally finite, and Gro-
mov hyperbolic, because G′ acts geometrically on it by covering transformations.

Let H ′ = H ∩ G′. This is a finite–index subgroup of H , and a quasiconvex sub-
group of G′. Since G′ is Gromov hyperbolic and acts geometrically on ˜B , it follows
that H ′–orbits are quasiconvex. By [37, Theorem H, or Corollary 2.29] or [67, The-
orem 1.2], there exists a cocompact convex core for H ′, i.e. a convex subcomplex
˜Y ⊆ ˜B on which H ′ acts cocompactly. Moreover, H ′ acts by deck transformations,
and the quotient Y = ˜Y/H ′ is a compact non–positively curved cubical complex with
π1(Y ) = H ′. The convex embedding ˜Y ↪→ ˜B descends to a local isometry Y → B .
Since B is special, by [39, Corollary 3.9] we obtain that Y is special too. Therefore
H is virtually compact special, as desired. �

Remark 5.11 In the previous proof we have the Gromov hyperbolic group H ′ acting
geometrically on the CAT(0) cubical complex ˜Y , so the fact that H ′ is virtually com-
pact special also follows from the celebrated theorem of Agol in [2]. However here
everything happens inside the special group G′, so one does not need Agol’s result.

We now apply the previous lemma to the cell stabilizers for the action of �n
� on

˜X� , starting with the stabilizer of a tile.

Lemma 5.12 The group ��n is virtually compact special.

Proof ��n is a quasiconvex subgroup of � by Lemma 5.8 and � is virtually com-
pact special by [40, Theorem 1.6]. Indeed, it is an arithmetic lattice in SO0(n,1)

by construction (see §3.1 or [14] for details). The statement then follows from
Lemma 5.10. �

Finally we prove the same result for all cell stabilizers.

Lemma 5.13 Let X be compact. Then the cell stabilizers for the action of �X on ˜X�

are quasiconvex and virtually compact special.

Proof Let σ be a cell in ˜X� and let H be the stabilizer of σ for the action of �X on
˜X� . Since σ is a convex subset of ˜X� and H acts geometrically on it, we conclude
by Lemma 5.6 that H is quasiconvex in �X .

Arguing as in the proof of Lemma 5.4, if τ is a tile containing σ , and K is its
stabilizer, then H ⊆ K . Note that the folding map X� → �n

� provides an isomor-
phism of K ∼= ��n , under which H is isomorphic to a quasiconvex subgroup of ��n

(again by Lemma 5.6). We know that ��n is Gromov hyperbolic (by Lemma 5.7
or Lemma 5.8) and virtually compact special (by Lemma 5.12). So it follows from
Lemma 5.10 that H is virtually compact special too. �
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5.3 Specialization

We are now ready to prove that the fundamental group �X of the hyperbolized com-
plex X� is virtually compact special, when the original cubical complex X is admis-
sible and compact. If the action of �X on C(˜X�) was proper, this would follow from
Theorem 4.29, Lemma 4.30 and Agol’s main result from [2]. However, as observed
in Remark 5.3, the action on C(˜X�) is not proper. We will use a result by Groves and
Manning (see Theorem D in [35]), which is designed to deal with this situation. We
report here their statement for the reader’s convenience.

Theorem 5.14 [35, Theorem D] Suppose that G is a Gromov hyperbolic group acting
cocompactly on a CAT(0) cubical complex so that cell stabilizers are quasiconvex
and virtually compact special. Then G is virtually compact special.

Note that when authors of [35] say “virtually special” they imply that the quotient
is compact (see page 3 in [35]). Also notice that they explicitly do not assume their
complexes to be locally compact (see page 2).

Theorem 5.15 If X is a compact admissible cubical complex and � is a hyperbolizing
lattice, then �X is virtually compact special Gromov hyperbolic group.

Proof First of all, since X is admissible, by Theorem 4.29 the dual cubical complex
C(˜X�) is a CAT(0) cubical complex. Moreover, since X is compact, �X is a Gro-
mov hyperbolic group by (4) in Proposition 3.5. By Lemma 4.30 �X acts on C(˜X�)

cocompactly by isometries.
Let C be a cube in C(˜X�) and let H be its stabilizer. By Lemma 5.4 H coin-

cides with the stabilizer of the vertex of minimal height in C. By Lemma 5.2 this
in turn coincides with the stabilizer of the corresponding dual cell in ˜X� . Therefore
by Lemma 5.13 H is a quasiconvex subgroup of �X and it is also virtually compact
special. Finally, by [35, Theorem D] the group �X is virtually compact special. �
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