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Abstract
Catalan functions, the graded Euler characteristics of certain vector bundles on the
flag variety, are a rich class of symmetric functions which include k-Schur functions
and parabolic Hall-Littlewood polynomials. We prove that Catalan functions indexed
by partition weight are the characters of Uq(̂sl�)-generalized Demazure crystals as
studied by Lakshmibai-Littelmann-Magyar and Naoi. We obtain Schur positive for-
mulas for these functions, settling conjectures of Chen-Haiman and Shimozono-
Weyman. Our approach more generally gives key positive formulas for graded Euler
characteristics of certain vector bundles on Schubert varieties by matching them to
characters of generalized Demazure crystals.

1 Introduction

The Kostka-Foulkes polynomials Kλμ(q) originated in the character theory of
GL�(Fq) and their study has since flourished. They express the modified Hall-
Littlewood polynomials in the Schur basis of the ring of symmetric functions,
Hμ(x;q) = ∑

λ Kλμ(q) sλ(x), and are q-weight multiplicities defined via a q-analog
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of Kostant’s partition function P :

Kλμ(q) =
∑

w∈S�

sgn(w)Pq(w(λ + ρ) − (μ + ρ))

for
∏

α∈�+

1

(1 − qxα)
=

∑

γ∈Z�

Pq(γ )xγ .

The positivity property, Kλμ(q) ∈ Z≥0[q], has deep geometric and combinatorial
significance: Kλμ(q) are affine Kazhdan-Lusztig polynomials [65, 66], give char-
acters of cohomology rings of Springer fibers [30, 84], record the Brylinski filtra-
tion of weight spaces [14], and are sums over tableaux weighted by the Lascoux-
Schützenberger charge statistic [56].

A broader framework has emerged over the last decades. Broer [13] and
Shimozono-Weyman [82], in their study of nilpotent conjugacy class closures, re-
placed the set of all positive roots �+ by a parabolic subset—the roots �(η) ⊂ �+
above a block diagonal matrix. Panyushev [74] and Chen-Haiman [16] went fur-
ther, taking any one of Catalan many upper order ideals 	 ⊂ �+. The associated
symmetric Catalan functions, H(	;μ)(x;q) = ∑

λ K	
λμ(q) sλ(x), indexed by 	 and

partition μ, are graded Euler characteristics of vector bundles on the flag variety.
The broader scope deepened ties to Kazhdan-Lusztig theory, advanced by the dis-

covery of LLT polynomials [24, 39, 59, 60], and inspired a generalization of Jing’s
Hall-Littlewood vertex operators [83]. Catalan functions were connected to spaces of
coinvariants of fusion products in the WZW theory [20, 21], k-Schur functions and
Gromov-Witten invariants [10, 11, 49, 51], and affine crystals [61, 70, 78, 80]. Posi-
tivity remained a central theme; extending earlier work of Broer, Chen-Haiman [16]
posed

Conjecture 1.1 The Catalan functions H(	;μ) are Schur positive: K	
λμ(q) ∈

Z≥0[q].
The picture in the dominant rectangle case, when 	 = �(η) and μ is constant

on parabolic blocks, is beautifully complete. These Catalan functions were equated
with characters of Uq(̂sl�)-Demazure crystals [80], and Schur positive formulas were
established using Kirillov-Reshetikhin (KR) crystals [78, 79] and rigged configura-
tions [40]. The view of Catalan functions as Euler characteristics ties their positivity
to a conjecture on higher cohomology vanishing, first posed by Broer in the parabolic
case and later extended by Chen-Haiman [16] to arbitrary 	 and partition μ; it was
settled by Broer [13] in the dominant rectangle case.

The cohomology of vector bundles associated to Catalan functions, particularly
for 	 = �+, has been extensively studied [12–14, 26, 28, 43, 69, 74]. Hague [26]
extended Broer’s cohomology vanishing result to some other classes of weights in
the parabolic case, using Grauert-Riemenschneider vanishing and Frobenius splitting
results of Mehta and van der Kallen [69]. Panyushev [74] established higher coho-
mology vanishing for a large subclass of Catalan functions; it includes the case μ is
strictly decreasing and 	 arbitrary. Nonetheless, for arbitrary partitions μ, the van-
ishing conjecture remains open even for parabolic 	 .
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The gold standard is to settle Conjecture 1.1 with a manifestly positive formula.
Many attempts to extend the Lascoux-Schützenberger charge formula for Kostka-
Foulkes polynomials were made. Shimozono-Weyman [82] conjectured such a for-
mula for the parabolic Catalan functions H(�(η);μ), hinging on an intricate tableau
procedure called katabolism. Soon after, katabolism led to the origin of k-Schur func-
tions [52], and more recently, Chen-Haiman [16] proposed a variant of katabolism to
solve Conjecture 1.1 completely. However, katabolism offered no traction for proofs.

We are now able to paint the picture in its entirety by moving to a larger framework
of tame nonsymmetric Catalan functions H(	;μ;w), depending on an additional
input w ∈ S�; they are Euler characteristics of vector bundles on Schubert varieties
and specialize to Catalan functions when w = w0. Our findings include

(1) Tame nonsymmetric Catalan functions are characters of Uq(̂sl�)-generalized De-
mazure crystals, certain subsets of tensor products of Uq(̂sl�)-highest weight
crystals. Lakshmibai-Littelmann-Magyar [46] introduced these crystals in their
study of Bott-Samelson varieties.

(2) Tame nonsymmetric Catalan functions are key positive, implying and generaliz-
ing Conjecture 1.1. By the powerful theory of Demazure crystals [32, 35, 46, 64],
Uq(̂sl�)-generalized Demazure crystals restrict to disjoint unions of Uq(sl�)-
Demazure crystals, implying that their characters are key positive.

(3) Positive combinatorial formulas for the key coefficients of (2). We draw on tech-
niques of Naoi [71] to match generalized Demazure crystals with a family of
DARK crystals, Demazure-like subsets of tensor products of KR crystals. Ex-
plicit katabolism combinatorics arises naturally from this point of view.

(4) A katabolism tableau formula for Catalan functions. In the parabolic case, it agrees
with and settles the Shimozono-Weyman conjecture.

(5) A conjectural module-theoretic strengthening of (2), generalizing the earlier
higher cohomology vanishing conjectures of Broer and Chen-Haiman.

(6) The t = 0 nonsymmetric Macdonald polynomials Eα(x;q,0) are tame nonsym-
metric Catalan functions. Dating back to Sanderson [77], the Eα(x;q,0) are char-
acters of certain Uq(̂sl�)-Demazure crystals. This topic has recently regained
popularity [1, 2, 4–6, 62, 63, 73], and in particular Assaf-Gonzalez [5, 6] gave a
key positive formula for Eα(x;q,0). Our results yield a different key positive for-
mula, which generalizes Lascoux’s tableau formula for cocharge Kostka-Foulkes
polynomials [53].

2 Main results

The basic approach of [11] is to open the door to powerful inductive techniques by re-
alizing k-Schur functions as a subclass of (symmetric) Catalan functions. In a similar
spirit, our inductive approach here depends crucially on viewing the Catalan func-
tions as a subclass of a larger family of nonsymmetric Catalan functions.

Nonsymmetric Catalan functions are Euler characteristics of vector bundles on
Schubert varieties and can be defined by a Demazure operator formula. Fix � ∈ Z≥0.
The symmetric group S� acts on Z[q][x] = Z[q][x1, . . . , x�] by permuting the xi ; let
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si ∈ S� denote the simple transposition which swaps i and i +1. Let H� denote the 0-
Hecke monoid of S� with generators s1, . . . , s�−1. It is obtained from S� by replacing
the relations s2

i = id with s2
i = si . For i ∈ [� − 1] := {1,2, . . . , � − 1}, the Demazure

operator πi is the linear operator on Z[q][x] defined by

πi(f ) = xif − xi+1si(f )

xi − xi+1
. (2.1)

More generally, for any w ∈ H�, let w = si1si2 · · · sim and define the associated De-
mazure operator by πw := πi1πi2 · · ·πim ; this is well defined as the πi satisfy the
0-Hecke relations.

A root ideal is an upper order ideal of the poset �+ = �+
� := {(i, j) | 1 ≤ i < j ≤

�
}

with partial order given by (a, b) ≤ (c, d) when a ≥ c and b ≤ d . A labeled root
ideal of length � is a triple (	,γ,w) consisting of a root ideal 	 ⊂ �+

� , a weight
γ ∈ Z

�, and w ∈H�.

Definition 2.1 The nonsymmetric Catalan function associated to the labeled root
ideal (	,γ,w) of length � is

H(	;γ ;w)(x;q) := πw

(

poly
(

∏

(i,j)∈	

(

1 − qxi/xj

)−1xγ
))

∈ Z[q][x], (2.2)

where poly denotes the polynomial truncation operator, defined by its action on key
polynomials: poly(κα) = κα for α ∈ Z

�
≥0 and poly(κα) = 0 for α ∈ Z

� \Z�
≥0 (see §5).

In the case w = w0, the longest element in H�, we recover the (symmetric) Catalan
functions studied in [10, 11, 16, 74]. See §5 for more on the nonsymmetric Catalan
functions, Fig. 1 (the second and third to last rows) for some examples, and [11,
Example 4.5] for an example of a symmetric Catalan function explicitly expanded
out as a sum of Schur functions starting from (2.2).

2.1 The rotation theorem

For a root ideal 	 ⊂ �+
� , define the tuple n(	) = (n(	)1, . . . ,n(	)�−1) ∈ [�]�−1 by

n(	)i := ∣

∣

{

j ∈ {i, i + 1, . . . , �} : (i, j) /∈ 	
}∣

∣. (2.3)

For example, for the root ideal 	 = {(1,2), (1,3), (1,4), (2,4)} ⊂ �+
4 illustrated be-

low in red (with matrix-style coordinates), n(	) = (1,2,2) counts the number of
light blue boxes in each row.

	 = , n(	) = (1,2,2). (2.4)

Definition 2.2 A labeled root ideal (	,γ,w) of length � is tame if the right descent
set {i ∈ [� − 1] | wsi = w} of w contains n(	)1 + 1,n(	)1 + 2, . . . , � − 1; note that
n(	)1 + 1,n(	)1 + 2, . . . , � are the column indices j for which (1, j) lies in 	 ,
and being tame is equivalent to w having a reduced expression which ends in the
long word for this interval. We also say that the associated nonsymmetric Catalan
function is tame.
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For example, for 	 as in (2.4) and any γ ∈ Z
�, exactly 4 of the 24 elements w ∈H4

make (	,γ,w) tame, namely, s3s2s3, s1s3s2s3, s2s1s3s2s3, and s3s2s1s3s2s3.
Define the Z[q]-algebra homomorphism � of Z[q][x] by

�(xi) = xi+1 for i ∈ [� − 1], �(x�) = qx1. (2.5)

A crucial finding of this paper is the following operator formula for tame nonsym-
metric Catalan functions.

Theorem 2.3 For any tame labeled root ideal (	,γ,w) with γ ∈ Z
�
≥0,

H(	;γ ;w) = πw x
γ1
1 �πs(n1)x

γ2
1 �πs(n2)x

γ3
1 · · · �πs(n�−1)x

γ�

1 , (2.6)

where (n1, . . . , n�−1) = n(	) and s(d) := s�−1s�−2 · · · sd ∈H� for d ∈ [�].
Its proof requires an in-depth understanding of polynomial truncation and is given

in Sect. 5. The operator � arises in a recurrence for nonsymmetric Macdonald poly-
nomials, and we will see in Sect. 8 that its appearance here is no coincidence.

2.2 Affine generalized Demazure crystals and key positivity

Theorem 2.3 allows us to connect tame nonsymmetric Catalan functions with affine
Demazure crystals. We describe this connection here, but defer a thorough treatment
of crystals to Sect. 4.

Let Uq(g) be the quantized enveloping algebra of a symmetrizable Kac-Moody
Lie algebra g (as in [37]). Among the data specifying a Uq(g)-crystal B are maps
f̃i : B � {0} → B � {0} for i ranging over the Dynkin node set I . For a subset S of B

and i ∈ I , define

Fi S := {f̃ m
i b | b ∈ S,m ≥ 0} \ {0} ⊂ B.

For a dominant integral weight  ∈ P +, let B() denote the highest weight Uq(g)-
crystal of highest weight  and u its highest weight element.

Definition 2.4 A Uq(g)-Demazure crystal is a subset of a highest weight Uq(g)-
crystal B() of the form Fi1 · · ·Fik {u}.

Now specialize to g = ̂sl�, our focus here. The associated data includes Dynkin
nodes I = Z/�Z = {0,1, . . . , � − 1}, fundamental weights {i | i ∈ I }, weight lattice
P = ∑

i∈I Zi ⊕Z
δ
2�

, and dominant weights P + = ∑

i∈I Z≥0i +Z
δ
2�

⊂ P . Let τ

denote the Dynkin diagram automorphism I → I , i 	→ i + 1. Let ˜S� denote the ex-
tended affine symmetric group and ˜H� its 0-Hecke monoid. The generators of ˜H� are
denoted τ and si (i ∈ I ), and relations include τsiτ

−1 = sτ(i) = si+1, braid relations,
and s2

i = si .

Definition 2.5 Let D(̂sl�) be the set of all subsets S ⊂ B such that B is a tensor prod-

uct of highest weight Uq(̂sl�)-crystals and the image of S under B
∼=−→ ⊔

∈M B()

is a disjoint union of Uq(̂sl�)-Demazure crystals. Here, M is a multiset of elements
of P +.
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For  ∈ P +, define the bijection of sets Fτ : B() → B(τ()) by
f̃

d1
j1

· · · f̃ dk

jk
(u) 	→ f̃

d1
τ(j1)

· · · f̃ dk

τ (jk)
(uτ()), for any j1, . . . , jk ∈ I and di ∈ Z≥0; we

also denote by Fτ the bijection B(1) ⊗ · · · ⊗ B(p)
Fτ ⊗···⊗Fτ−−−−−−→ B(τ(1)) ⊗ · · · ⊗

B(τ(p)), for 1, . . . ,p ∈ P +. We can regard Fi (i ∈ I ) and Fτ as operators on
D(̂sl�) and as such they satisfy the relations of ˜H� (by [35, 71]—see §4.7). This
yields a well-defined operator Fw : D(̂sl�) → D(̂sl�) for any w ∈ ˜H�. For  ∈ P +
and w ∈ ˜H�, denote by Bw() = Fw{u} the associated Uq(̂sl�)-Demazure crystal.

Theorem 2.6 (Combinatorial Excellent Filtration [32, 46]) For any 1,2 ∈ P + and
w ∈ ˜H�, Bw(2) ⊗ u1 is isomorphic to a disjoint union of Uq(̂sl�)-Demazure crys-
tals.

A Uq(̂sl�)-generalized Demazure crystal is a subset of a tensor product of highest
weight crystals of the form Fw1

(

Fw2

( · · ·Fwp−1

(

Fwp {up } ⊗ up−1

) · · · ⊗ u2

) ⊗
u1

)

for some 1, . . . ,p ∈ P + and w1, . . . ,wp ∈ ˜H�. Theorem 2.6 and the well-
definedness of Fw on D(̂sl�) show that these are well-defined and yield the following
corollary (this argument is essentially due to [46], with the extended affine setup
treated carefully in [71]).

Corollary 2.7 Any Uq(̂sl�)-generalized Demazure crystal is isomorphic to a disjoint
union of Uq(̂sl�)-Demazure crystals.

Our focus is on the following subclass of Uq(̂sl�)-generalized Demazure crystals:
for w = (w1,w2, . . . ,wp) ∈ (H�)

p and a partition μ = (μ1 ≥ · · · ≥ μp ≥ 0), define
the associated affine generalized Demazure (AGD) crystal by

AGD(μ;w)

:= Fw1

(

Fτw2

( · · ·Fτwp−1

(

Fτwp {uμp1} ⊗ uμp−11

) · · · ⊗ uμ21

) ⊗ uμ11

)

⊂ B(μpp) ⊗ · · · ⊗ B(μ11) , (2.7)

where μi = μi − μi+1, with μp+1 := 0.
Let Z[P ] denote the group ring of P with Z-basis {eλ}λ∈P . The character of

a Uq(̂sl�)-crystal G is char(G) := ∑

g∈G ewt(g) ∈ Z[P ]. Define the ring homomor-
phism ζ by

ζ : Z[q][x] → Z[P ], xi 	→ ei−i−1+ �+1−2i
2�

δ , q 	→ e−δ. (2.8)

Let n(	) be as in (2.3) and s(d) = s�−1s�−2 · · · sd . For a root ideal 	 , set

s(	) := (s(n(	)1), . . . , s(n(	)�−1)) ∈ (H�)
�−1. (2.9)

Theorem 2.8 Tame nonsymmetric Catalan functions of partition weight are char-
acters of AGD crystals: for any tame labeled root ideal (	,μ,w) of length � with
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partition μ,

ζ(H(	;μ;w)) = e−μ10+n�(μ)δ char
(

AGD(μ; (w, s(	)))
)

, (2.10)

where n�(μ) = |μ|(�−1)
2�

− 1
�

∑�
i=1(i − 1)μi .

Proof sketch From Corollary 2.7 and Kashiwara’s results on Demazure crystals [35],
one readily obtains a Demazure operator formula for the character of AGD(μ;
(w, s(	))), which is not difficult to connect to the rotation Theorem 2.3. �

It can further be shown that the Uq(sl�)-restriction of a Uq(̂sl�)-Demazure crys-
tal is isomorphic to a disjoint union of Uq(sl�)-Demazure crystals (Theorem 4.1).
Combining this with Corollary 2.7 and Theorem 2.8 proves that

Corollary 2.9 The tame nonsymmetric Catalan functions are key positive.

More detailed versions of Theorem 2.8 and Corollary 2.9—Theorem 7.5 and
Corollary 7.15—are stated and proved in Sect. 7. They include explicit positive for-
mulas for the key expansions.

2.3 DARK crystals

To extract key positive formulas from Theorem 2.8, we use a technique of Naoi [71]
to match generalized Demazure crystals with subsets of tensor products of KR crys-
tals, termed DARK crystals; the latter appears to have simpler combinatorics and,
remarkably, exactly matches the katabolism combinatorics conjectured in [82].

Let B1,s denote the single row KR crystal; it is a seminormal crystal for the
subalgebra U ′

q(̂sl�) ⊂ Uq(̂sl�) (see §4.4). Its elements are labeled by weakly in-
creasing words of length s in the alphabet [�]. For μ = (μ1 ≥ · · · ≥ μp ≥ 0), set
Bμ = B1,μp ⊗ · · · ⊗ B1,μ1 .

Definition 2.10 The Kirillov-Reshetikhin affine Demazure (DARK) crystal associated
to μ = (μ1 ≥ · · · ≥ μp ≥ 0) and w = (w1, . . . ,wp) ∈ (H�)

p , is the following subset
of Bμ:

Bμ;w := Fw1

(

FτFw2

( · · ·FτFwp−1

(

FτFwp {bμp } ⊗ bμp−1

) · · · ⊗ bμ2

) ⊗ bμ1

)

,

(2.11)

where bs ∈ B1,s is the element labeled by the word 1s , Fτ : B1,μp ⊗ · · · ⊗ B1,μj →
B1,μp ⊗ · · ·⊗B1,μj is given by adding 1 (mod �) to each letter and then sorting each
tensor factor to be weakly increasing (see Proposition 6.12), and Fwi

= Fj1 · · ·Fjk

for any chosen expression wi = sj1 · · · sjk
(i ∈ [p]); the right side of (2.11) does not

depend on these choices by [9, Theorem 3.7]. See §2.7 for examples.

The following modification of [71, Proposition 5.16] allows us to port results in
crystal theory from AGD to DARK crystals.
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Theorem 2.11 ([9, Corollary 3.11]) Let w, μ, μi be as in (2.7). There is a strict em-
bedding of U ′

q(̂sl�)-seminormal crystals (see §4.1)

�μ : Bμ ⊗ B(μ10) ↪→ B(μpp) ⊗ · · · ⊗ B(μ11);
it is an isomorphism from the domain onto a disjoint union of connected components
of the codomain. And under this map, �μ(Bμ;w ⊗ uμ10) = AGD(μ;w). Here, the
B(si) are regarded as U ′

q(̂sl�)-seminormal crystals by restriction—see §4.4.

Remark 2.12 This article makes important use of the U ′
q(̂sl�)-crystal structures of

Bμ ⊗ B(μ10) and B(μpp) ⊗ · · · ⊗ B(μ11), but not of Bμ—it does not seem
to be the right object for the combinatorics of interest here. However, the Uq(sl�)-
restriction of Bμ, being isomorphic to that of Bμ ⊗ B(μ10), is of interest and will
be frequently used.

2.4 Katabolism and Schur positive formulas

We establish the Schur positivity of Catalan functions in the strongest possible terms
with a streamlined tableau formula. It arises naturally from DARK crystals by un-
raveling the Fwi

, Fτ , and tensor operations in their construction (in the spirit of
[45, 46]).

Given a weak composition α = (α1, . . . , α�) ∈ Z
�
≥0, the diagram of α consists

of a left justified array of boxes with αi boxes in row i (rows are allowed to be
empty). A tabloid T of shape α is a filling of the diagram of α with weakly increasing
rows, drawn in English notation with rows labeled 1,2, . . . , � from the top down. Set
shape(T ) = α. The content of T is the vector (c1, . . . , cp), where ci is the number of
times letter i appears in T .

Let Tabloids� denote the set of tabloids of any shape α ∈ Z
�
≥0, and Tabloids�(μ) ⊂

Tabloids� the subset with fixed content μ. Let SSYT�(μ) denote the subset of
Tabloids�(μ) which are tableaux, tabloids with partition shape and where entries
strictly increase down columns. Given a tabloid T , let T i denote the i-th row of
T and T [i,j ] the subtabloid of T consisting of the rows in the interval [i, j ] :=
{i, i + 1, . . . , j}; set T [j ] = T [1,j ].

Definition 2.13 (Partial insertion) For T ∈ Tabloids� such that T [i,�−1] is a tableau,
define Pi,�(T ) ∈ Tabloids� to be the tabloid obtained by column inserting the �-th
row of T into T [i,�−1] and leaving rows 1 through i − 1 of T fixed. (There is a way
to extend this definition to any tabloid T but this simpler version is all we need for
the results of this section—see Definition 6.8 and Remark 6.16.)

Example 2.14 Let � = 5. We compute P2,�(T ) for the T ∈ Tabloids�(4,3,3,3,2) be-
low:

T =
1 1 1 1 4 5

2 3

3 4

2 2 3 4 5

P2,�(T ) =
1 1 1 1 4 5

2 2 2 3 3

3 4

4 5

shape(T ) = (6,2,2,0,5) shape(P2,�(T )) = (6,5,2,2,0)
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Definition 2.15 (Katabolism) For T ∈ Tabloids�, define kat(T ) ∈ Tabloids� as fol-
lows: remove all 1’s from T and left justify rows, then remove the first (top) row and
add it as the new �-th row, and finally subtract 1 from all letters.

Let n = (n1, . . . , np−1) ∈ [�]p−1 and μ ∈ Z
p

≥0 for some p ∈ Z≥1. A tableau T ∈
SSYT�(μ) is n-katabolizable if, for all i ∈ [p−1], the tabloid Pni,� ◦kat◦ · · ·◦Pn2,� ◦
kat◦Pn1,� ◦ kat(T ) has all its 1’s on the first row.

Example 2.16 For � = 5 and n = (3,2,2,1), the tableau below (left) is n-kataboliza-
ble:

1 1 1 1 4 4

2 2 2 2 5

3 3 3

4 5 5

kat−−→
1 1 1 1 4

2 2 2

3 4 4

3 3

P3,5−−−→
1 1 1 1 4

2 2 2

3 3 3 4 4
kat−−→

1 1 1

2 2 2 3 3

3

P2,5−−−→
1 1 1

2 2 2 3 3

3
kat−−→

1 1 1 2 2

2 P2,5=id−−−−−→ kat−−→
1

1 1

P1,5−−−→
1 1 1

In contrast, the following tableau is not n-katabolizable:

1 1 1 1 4 4

2 2 2 2 5

3 3 3 4

5 5

kat−−→
1 1 1 1 4

2 2 2 3

4 4

3 3

P3,5−−−→
1 1 1 1 4

2 2 2 3

3 3 4 4
kat−−→

1 1 1 2

2 2 3 3

3

P2,5−−−→
1 1 1 2

2 2 3 3

3
kat−−→

1 1 2 2

2

1

P2,5−−−→
1 1 2 2

1 2

See also Example 6.18.

The elements of Bμ are naturally labeled by biwords whose top word is
pμp · · ·2μ21μ1 and whose bottom word is weakly increasing on the intervals with

constant top word. Define the bijection inv : Bμ
∼=−→ Tabloids�(μ) as follows: for all

i, the i-th row of inv(b) is obtained by sorting the letters above the i’s in the bottom
word of b ∈ Bμ. For example, with � = 4 and μ = (4,3,1),

(

3 222 1111
2 144 1114

)

inv−→
1 1 1 2

3

1 2 2

. (2.12)

The bijection inv is essentially the well-known inverse map on biwords generalizing
the inverse of a permutation. See §6.4 for more details.

Katabolism exactly characterizes the image of DARK crystals under inv.

Theorem 2.17 For a partition μ and root ideal 	 , the map inv gives a bijection

Bμ;(w0,s(	)) inv−→ {

T ∈ Tabloids�(μ) | P(T ) is n(	)-katabolizable
}
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which takes content to shape. Here, P(T ) denotes the insertion tableau of the row
reading word T � · · ·T 1 of T .

We settle Conjecture 1.1 with a manifestly positive formula.

Theorem 2.18 For any root ideal 	 ⊂ �+
� and partition μ = (μ1 ≥ · · · ≥ μ� ≥ 0),

the associated Catalan function has the following Schur positive expression:

H(	;μ;w0)(x;q) =
∑

U∈SSYT�(μ)
U is n(	)-katabolizable

qcharge(U)sshape(U)(x) . (2.13)

Proof sketch (details in §7.3) Combine Theorems 2.17, 2.8, and 2.11 and select the
tabloids which are inv of the Uq(sl�)-highest weight elements of Bμ;(w0,s(	)). �

See Example 7.16. When 	 = �+, every U ∈ SSYT�(μ) is (n(	) =) 1-
katabolizable and this is the Lascoux-Schützenberger [56] charge formula for the
modified Hall-Littlewood polynomial Hμ(x;q) = ∑

λ Kλμ(q)sλ(x).
Theorem 2.18 resolves the Shimozono-Weyman conjecture [82, Conjecture 27]

for the generalized Kostka polynomials K
�(η)
λμ (q). Indeed, Proposition 7.7 confirms

that Shimozono-Weyman katabolizability agrees with n(	)-katabolizability for the
parabolic root ideal 	 = �(η), defined for η ∈ Z

r≥0 by

�(η) := {

α ∈ �+
|η| above the block diagonal with block sizes η1, . . . , ηr

}

. (2.14)

For example, �(1,3,2) = .

This gives the first proof of positivity for the Catalan functions and generalized
Kostka polynomials in the parabolic case.

Remark 2.19 Shimozono [79] and Schilling-Warnaar [78] give a positive formula
for the dominant rectangle Catalan functions H(�(η);μ;w0) (i.e., μ = a

η1
1 · · ·aηr

r ,
a1 ≥ · · · ≥ ar ) using tensor products of arbitrary KR crystals in type A. Included
in Theorem 2.18 is a different formula addressing this case, using subsets of tensor
products of single row KR crystals. Conjecture 10 of [39] proposes a map to reconcile
these two different formulas.

We further obtain a positive combinatorial formula for the key expansion of any
tame nonsymmetric Catalan function of partition weight by similar methods (Corol-
lary 7.15).

2.5 Consequences for t = 0 nonsymmetric Macdonald polynomials

A deep theory of nonsymmetric Macdonald polynomials has developed over the last
30 years, beginning with the work of Opdam-Heckman [72], Macdonald [68], and
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Cherednik [17]. Our results apply to the type A nonsymmetric Macdonald polyno-
mials at t = 0, Eα(x;q,0), a nonsymmetric generalization of the modified Hall-
Littlewood polynomials. They were connected to affine Demazure characters by
Sanderson [77] and the subject of recent results and conjectures on key positivity
[1, 2, 4–6]. The t = 0 nonsymmetric Macdonald polynomials in other types have also
received considerable attention [31, 62, 63, 73]. Our results yield the following.

Theorem 2.20 For any α ∈ Z
�
≥0, Eα(x;q,0) is (1) the character of a Uq(̂sl�)-

Demazure crystal, and (2) key positive with key expansion

Eα(x;q,0) =
∑

q
∑

i

(αi
2

)−charge(P (T ))κshape(T )(x), (2.15)

where the sum is over tabloids T satisfying the katabolizability conditions in Corol-
lary 8.4/ Definition 7.12. Further, up to a specialization x�+1 = · · · = xm = 0 when
m = |α| > �, Eα(x;q,0) is (3) a tame nonsymmetric Catalan function, and (4) the
Euler characteristic of a vector bundle on a Schubert variety.

Proof Statement (1) is due to Sanderson [77], and we also recover it as a special
case of our character formula (7.8) for AGD crystals (see Theorem 8.3). Statement
(2) is proved in Corollary 8.4, (3) in Theorem 8.11, and (4) follows from (3) and
Theorem 3.2. �

The formula (2.15) generalizes Lascoux’s formula for cocharge Kostka-Foulkes
polynomials [53], answering a call put out in [2, Conjecture 15], [55, p. 267-268] for
a description of the key coefficients of Eα(x;q,0) in this style. Assaf-Gonzalez [5, 6]
studied the problem from a different point of view and realized the coefficients in
terms of crystals on nonattacking fillings with no coinversion triples (objects defined
in [25]). See also Remark 8.6.

2.6 Consequences for k-Schur functions

The k-Schur functions are a family of symmetric functions over Q(q) which arose
in the study of Macdonald polynomials [52]; many conjecturally equivalent candi-
dates for k-Schur functions have been proposed over the years. At q = 1, most of the
different candidates were proven to be equal, and this case was connected to Gromov-
Witten invariants and affine Schubert calculus [47, 50, 51].

For μ = (k ≥ μ1 ≥ · · · ≥ μ� ≥ 0), define the k-Schur Catalan function by

s
(k)
μ (x;q) := H(�k(μ);μ;w0)(x;q),

where the root ideal �k(μ) is determined by

n(�k(μ))i = min{k − μi + 1, � − i + 1} for all i ∈ [�].
It was established in [10, 11] that these Catalan functions agree with several of the
(generic q) k-Schur candidates including one involving chains in Bruhat order on
̂Sk+1 [48] and one involving Jing operators [49]. It then follows from [47, 48, 50]
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that the q = 1 specializations {s(k)
μ (x;1)} match two other candidates for k-Schur

functions which have no q parameter; in particular, they represent Schubert classes
in the homology of the affine Grassmannian GrSLk+1 .

A combinatorial formula for the Schur expansion of s(k)
μ (x;q) was given in [11]

in terms of chains in Bruhat order on the affine symmetric group ̂Sk+1 and the spin
statistic. Theorem 2.18 yields a very different formula:

Corollary 2.21 The k-Schur function s
(k)
μ has the following Schur positive expansion:

s
(k)
μ (x;q) =

∑

T ∈SSYT�(μ)

T is n(�k(μ))-katabolizable

qcharge(T )sshape(T )(x). (2.16)

Namely, T occurs in the sum as follows: remove the μ1 1’s from the first row of T

and column insert the remainder of row 1 into rows larger than min{k − μ1, � − 1};
remove μ2 2’s from first row and column insert its remainder into rows larger than
min{k − μ2, � − 2}; continue until reaching an i such that there are not μi i’s in the
first row; T survives if no such i occurs.

Example 7.16 illustrates (2.16) for s(3)
22211. This formula has the same spirit as the

original definition of k-Schur functions [52], which expressed them in terms of sets of
tableaux called super atoms A(k)

μ , constructed using Shimozono-Weyman katabolism
and crystal reflection operators.

Conjecture 2.22 The set of tableaux appearing in (2.16) is equal to the super atom
A

(k)
μ .

2.7 Examples

We provide several examples for reference throughout the article.
Figure 1 (fifth column) depicts the DARK crystal Bμ;w for � = 3, μ = (2,1,1),

w = (id, s2s1, s2s1); it can be constructed step by step using the Fi , Fτ , and tensor
operations as illustrated.

The first two lines in Figure 1 give two different names for each DARK crystal.
The connected components of solid edges decompose them into Uq(sl�)-Demazure
crystals, each of which has character equal to a key polynomial; the key expansions of
their charge weighted characters (see §7) are given in the third to last line, written so
that reading left to right gives the components top to bottom, e.g., {3211} has charac-
ter κ211 = x2

1x2x3. By Corollary 7.15, these characters are tame nonsymmetric Cata-
lan functions (second to last line), though this requires rewriting the DARK crystals
appropriately (last line), e.g., Fs1(FτFs2s1(b1)⊗b1) = Fs1s2(FτFs2s1(FτFs2s1(b0)⊗
b1)⊗b1) = B(1,1,0);(s1s2,s2s1,s2s1). Here, bs denotes the element of B1,s labeled by 1s ,
with b0 the empty word (see §6.1).

The dashed arrows are the f̃0-edges of Bμ;w ⊗ u20 (technically this is just a sub-
set of the U ′

q(̂sl�)-seminormal crystal Bμ ⊗B(20) but we often think of it as coming

with the edges f̃i , ẽi (i ∈ I ) which have both ends in the subset). By Theorem 2.11,
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Fig. 2 The image under inv of the crystals in the fourth and fifth columns of Fig. 1

AGD(μ;w) = �μ(Bμ;w ⊗u20), which is isomorphic to a disjoint union of Uq(̂sl�)-
Demazure crystals; the corresponding decomposition of Bμ;w is given by the com-
ponents of dashed and solid edges (in the crystal in the fifth column). Here there
are two such components, so AGD(μ;w) is not a single Uq(̂sl�)-Demazure crys-
tal; this demonstrates a fundamental difference between this work and earlier work
[44, 77, 80] relating generalizations of Kostka-Foulkes polynomials to Demazure
crystals, where only single Uq(̂sl�)-Demazure crystals were used.

Figure 2 depicts the tabloids obtained by applying inv to the two DARK crys-
tals in fourth and fifth columns of Fig. 1. By Theorem 6.20 (the full version of
Theorem 2.17), the tabloids on the right are also the T ∈ Tabloids�(211) which
are w-katabolizable in the sense of Definition 6.14; the ones on the left are the
T ∈ Tabloids�(11) which are (s2s1, s2s1)-katabolizable. The bold tabloids, by read-
ing off their shapes and charges, give the key expansions in the fourth and fifth
columns of Fig. 1; this will be explained in Corollary 7.15.

Figure 3 depicts the tensor product of KR crystals Bμ = B1,1 ⊗ B1,1 ⊗ B1,1,
which is also the DARK crystal Bμ;w for μ = (1,1,1) and w = (s2s1, s2s1, s2s1). Its
charge weighted character is the modified Hall-Littlewood polynomial H111(x;q) =
s111 + (q + q2)s21 + q3s3 = κ111 + (q + q2)κ012 + q3κ003. Horizontal and verti-
cal arrows give the f̃1, f̃2 edges, respectively. The dashed arrows are the f̃0-edges of
Bμ⊗B(0) which have both ends in Bμ;w ⊗u0 ⊂ Bμ⊗B(0). Since μ is constant,
the corresponding generalized Demazure crystal AGD(μ;w) = �μ(Bμ;w ⊗u0) (via
Theorem 2.11) is an actual affine Demazure crystal, namely Fs2s1τs2s1τs2s1{u1} ⊂
B(0). Shown bold is the DARK crystal Bμ;v = (

FτFs2s1(FτFs2s1(b1) ⊗ b1)
)⊗b1,

for μ = (1,1,1), v = (id, s2s1, s2s1), which has charge weighted character κ111 +
q κ102 + q2κ201 + q3κ300, also equal to the t = 0 nonsymmetric Macdonald poly-
nomial Ẽ300(x;q) and the nonsymmetric Catalan function H(�+;μ; s2). Again,
the corresponding generalized Demazure crystal AGD(μ;v) = �μ(Bμ;v ⊗ u0) =
Fτs2s1τs2s1{u1} ⊂ B(0) is an affine Demazure crystal.
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Fig. 3 The tensor product of KR crystals B1,1 ⊗ B1,1 ⊗ B1,1 and, in bold, the DARK crystal Bμ;v for
μ = (1,1,1), v = (id, s2s1, s2s1)

3 Higher cohomology vanishing and nonsymmetric Catalan
functions

This section uses notation in §1, (2.1)–(2.2), and Definition 5.1, but is otherwise
notationally independent from the remainder of the paper.

Let G = GL�(C) and B ⊂ G the standard upper triangular Borel subgroup. For
w ∈ S�, let Xw = B · wB ⊂ G/B denote the Schubert variety. Given a B-module N ,
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let G ×B N denote the homogeneous G-vector bundle on G/B with fiber N above
B ∈ G/B , and let L (N) denote the locally free OG/B -module of its sections. We
also denote by L (N) = L (N)|Xw the restriction of L (N) to Xw .

Consider the adjoint action of B on the Lie algebra u of strictly upper triangular
matrices. The B-stable (or “ad-nilpotent”) ideals of u are in bijection with root ideals
via the map sending the root ideal 	 to the B-submodule, call it u	 , of u with weights
{εi − εj | (i, j) ∈ 	}.

The character of a B-module N is char(N) = ∑

α∈Z� dim(Nα)xα , where Nα =
{v ∈ N | diag(x1, . . . , x�)v = xαv} is the α-weight space of N and xα := x

α1
1 · · ·xα�

� .
Let d be the Z-linear operator on Z[x±1

1 , . . . , x±1
� ] satisfying d(xα) = x−α , so

that char(N∗) = d(char(N)); extend it to an operator on Z[x±1
1 , . . . , x±1

� ][[q]] by
d(

∑

d≥0 fdqd) = ∑

d≥0 d(fd)qd .
For γ ∈ Z

�, let Cγ denote the one-dimensional B-module of weight γ .
We need the following result of Demazure [18, §5.5] (this assumes G is semisim-

ple; see also [15, II.14.18 (a)] where reductive G are allowed).

Theorem 3.1 For any weight γ ∈ Z
� and w ∈ S�,

d ◦ πw ◦ d(xγ ) =
∑

i≥0

(−1)i charHi
(

Xw,L (Cγ )
)

.

Nonsymmetric Catalan functions appear naturally as graded Euler characteristics,
extending a description of the Catalan functions in [16, 74]:

Theorem 3.2 For any labeled root ideal (	,γ,w),

H(	;γ ;w) = poly◦d
(

∑

i,j≥0

(−1)iqj charHi
(

Xw,L (Sj
u

∗
	 ⊗C

∗
γ )

)

)

, (3.1)

where Sju∗
	 denotes the j -th symmetric power of the B-module u∗

	 .

Proof The series d
(∏

(i,j)∈	

(

1 − qxi/xj

)−1xγ
)

gives the character of
⊕

j Sju∗
	 ⊗

C
∗
γ where q keeps track of the grading. Each homogeneous component Sju∗

	 ⊗ C
∗
γ

has a B-module filtration into one-dimensional weight spaces. Then by the additivity
of the Euler characteristic and Theorem 3.1,

∑

i,j≥0

(−1)iqj charHi
(

Xw,L (Sj
u

∗
	 ⊗C

∗
γ )

)

= d ◦ πw ◦ d ◦ d
(

∏

(i,j)∈	

(

1 − qxi/xj

)−1xγ
)

.

Applying poly◦d to both sides, the right side becomes the nonsymmetric Catalan
function H(	;γ ;w) from Definition 2.1 after using poly◦πw = πw ◦ poly (Propo-
sition 5.5 (i)). �
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Remark 3.3 A version of (3.1) holds for any B-module N , with the product over
	 in the definition of H(	;γ ;w) replaced by a product over the multiset of
weights of N . However, restricting to the u	 is natural from the geometric per-
spective of [74], e.g., for w = w0 and 	 = �+, Hi(G/B,L (

⊕

j Sju∗ ⊗ C
∗
γ )) ∼=

Hi(T ∗(G/B), θ∗L (C∗
γ )), where T ∗(G/B) is the cotangent bundle of the flag vari-

ety and θ : T ∗(G/B) → G/B the projection.

For ν = (ν1 ≥ · · · ≥ ν�) ∈ Z
�, let V (ν) be the irreducible G-module of highest

weight ν. Let α ∈ Z
� and α+ be the weakly decreasing rearrangement of α. The

Demazure module D(α) ⊂ V (α+) is the B-module Buα , where uα is an element of
the (one-dimensional) α-weight space of V (α+). The Demazure atom module D̂(α)

is the quotient of D(α) by the sum of all Demazure modules properly contained
in D(α). The characters κα(x) = char(D(α)) and κ̂α(x) = char(D̂(α)) are the key
polynomial and Demazure atom, respectively which will be discussed further in §4.8
and §5.2.

As in [85, §2.3], say a B-module N has an excellent filtration (resp. relative Schu-
bert filtration) if its dual N∗ has a B-module filtration whose subquotients are iso-
morphic to Demazure modules (resp. Demazure atom modules).

Conjecture 3.4 Let (	,μ,w) be a labeled root ideal with partition μ and j ≥ 0.

(i) The nonsymmetric Catalan function H(	;μ;w) is a positive sum of Demazure
atoms, i.e., H(	;μ;w)(x;q) = ∑

α K	,w
α,μ (q) κ̂α(x) with K	,w

α,μ (q) ∈ Z≥0[q].
(ii) Hi(Xw,L (Sju∗

	 ⊗C
∗
μ)) = 0 for i > 0.

(iii) H 0(Xw,L (Sju∗
	 ⊗C

∗
μ)) has a relative Schubert filtration.

(iv) H 0(Xw,L (Sju∗
	 ⊗C

∗
μ)) has an excellent filtration when (	,μ,w) is tame.

For tame (	,μ,w), Corollary 2.9 implies (i), while conjectures (ii) and (iv) con-
stitute a module-theoretic strengthening of this corollary. Similarly, (ii) and (iii) give
a module-theoretic strengthening of (i).

In this paragraph we discuss the w = w0 (Xw = G/B) case of Conjecture 3.4. First
note that the cohomology groups are G-modules, so (iii)–(iv) hold and (ii) implies (i).
Conjecture (ii) was posed by Chen-Haiman [16, Conjecture 5.4.3]; this generalized
a conjecture of Broer for parabolic 	 , which he settled in the dominant rectangle
case [13, Theorem 2.2]. Hague [26, Theorems 4.15 and 4.23] extended this result to
some other classes of weights (still parabolic 	). Panyushev proved that (ii) holds
when the weight μ − ρ + ∑

(i,j)∈�+\	 εi − εj is weakly decreasing, where ρ =
(�−1, �−2, . . . ,0). Frobenius splitting methods [43] give another proof of a subcase
of Broer’s result; this method has the advantage of applying to G over algebraically
closed fields of prime characteristic.

When 	 = ∅, H 0(Xw,L (C∗
μ))∗ = D(wμ) (implying (iii)-(iv)) and the coho-

mology vanishing (ii) are results of Demazure [18, 19]; a gap in [18] is bypassed by
another proof method of Andersen [3, §4.3]; see also II.14.18 (b) and II.14.15 (e)
of [15].

For non-tame (	,μ,w), (i) does not seem amenable to the methods of this paper.
The main barrier is that we do not know an analog of the rotation theorem (Theo-
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rem 2.3) in this setting. Also, since the H(	;μ;w) are only conjecturally atom pos-
itive and not key positive in general, realizing them as characters of crystals is more
difficult—for instance, they cannot be characters of generalized Demazure crystals.

4 Background on crystals

We begin by reviewing crystals for any symmetrizable Kac-Moody Lie algebra g and
prove that restrictions of Demazure crystals are disjoint unions of Demazure crystals.
We then fix notation and conventions for g = ̂sl� following Naoi [71] and Kac [33];
note that the notation I , P , P +, αi , α∨

i is for general g in §4.1–4.2 and for ̂sl� from
§4.3 through the remainder of the paper.

4.1 Uq(g)-(seminormal) crystals

The quantized enveloping algebra Uq(g) is specified by a Dynkin node set I ,
coweight lattice P ∗, weight lattice P = HomZ(P ∗,Z), simple coroots {α∨

i }i∈I ⊂ P ∗,
simple roots {αi}i∈I ⊂ P , and a symmetric bilinear form (·, ·) : P × P → Q subject
to several conditions (see [37, §2.1]). This data given, a Uq(g)-seminormal crys-
tal is a set B equipped with a weight function wt : B → P and crystal operators
ẽi , f̃i : B � {0} → B � {0} (i ∈ I ) such that for all i ∈ I and b ∈ B , there holds
ẽi (0) = f̃i (0) = 0 and

wt(ẽib) = wt(b) + αi whenever ẽib �= 0, and

wt(f̃ib) = wt(b) − αi whenever f̃ib �= 0;
εi(b) := max{k ≥ 0 | ẽk

i b �= 0} < ∞, φi(b) := max{k ≥ 0 | f̃ k
i b �= 0} < ∞;

〈α∨
i ,wt(b)〉 = φi(b) − εi(b);

f̃i (ẽib) = b whenever ẽib �= 0, and ẽi (f̃ib) = b whenever f̃ib �= 0.

This agrees with the notion of a seminormal crystal in [37, §7], the notion of a crystal
in [71], and the notion of a P -weighted I -crystal in [80].

A strict embedding of Uq(g)-seminormal crystals B , B ′ is an injective map
	 : B � {0} → B ′ � {0} such that 	(0) = 0 and 	 commutes with wt, εi , φi , ẽi ,
and f̃i for all i ∈ I . It is necessarily an isomorphism from B onto a disjoint union of
connected components of B ′.

For Uq(g)-seminormal crystals B1 and B2, their tensor product B1 ⊗ B2 =
{b1 ⊗ b2 | b1 ∈ B1, b2 ∈ B2} is the Uq(g)-seminormal crystal with weight function
wt(b1 ⊗b2) = wt(b1)+ wt(b2) and crystal operators (we use the convention opposite
Kashiwara’s)

ẽi (b1 ⊗ b2) =
{

ẽib1 ⊗ b2 if εi(b1) > φi(b2),

b1 ⊗ ẽib2 if εi(b1) ≤ φi(b2),
(4.1)

f̃i (b1 ⊗ b2) =
{

f̃ib1 ⊗ b2 if εi(b1) ≥ φi(b2),

b1 ⊗ f̃ib2 if εi(b1) < φi(b2).
(4.2)
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Assume for this paragraph that the roots and coroots are linearly independent.
Let Oint(g) denote the category whose objects are the Uq(g)-modules isomorphic
to a direct sum of integrable highest weight Uq(g)-modules (see, e.g., [37, §2.4]).
Any M in Oint(g) has a unique local crystal basis (L,B) up to isomorphism [34],
and extracting the associated combinatorial data yields a Uq(g)-seminormal crystal
(see [37, §4.2, §7.5]). We define a Uq(g)-crystal to be a Uq(g)-seminormal crystal
arising in this way. For  ∈ P + = {λ ∈ P | 〈α∨

i , λ〉 ≥ 0}, the highest weight Uq(g)-
crystal B() is the Uq(g)-crystal arising from the local crystal basis of the irreducible
highest weight module V () in Oint(g). So with this notation, any Uq(g)-crystal is a
disjoint union of highest weight Uq(g)-crystals by [34].

4.2 Restricting Demazure crystals

Let Uq(g), P ∗, P , {α∨
i }i∈I , {αi}i∈I be as in §4.1. Let J ⊂ I and P̂ ∗ ⊂ P ∗ be such that

{α∨
i }i∈J ⊂ P̂ ∗. As P = HomZ(P ∗,Z), restricting maps from P ∗ to P̂ ∗ yields a pro-

jection z : P → P̂ := HomZ(P̂ ∗,Z). Assume that the sets {α∨
i }i∈I , {αi}i∈I , {α∨

i }i∈J ,
{z(αi)}i∈J are linearly independent. The algebra Uq(g) has generators ei , fi , i ∈ I ,
and qh, h ∈ P ∗. Let Uq(gJ ) ⊂ Uq(g) be the subalgebra generated by ei , fi , i ∈ J ,
and qh, h ∈ P̂ ∗; it is a quantized enveloping algebra and its defining data includes
J, {α∨

i }i∈J ⊂ P̂ ∗, {z(αi)}i∈J ⊂ P̂ .
It is straightforward to verify that for any M in Oint(g), the local crystal basis

(L,B) of M is also a local crystal basis of the Uq(gJ )-restriction of M and so is
isomorphic to the direct sum of local crystal bases of highest weight Uq(gJ )-modules
by [34] (see [37, §4.6] for a similar result). Moreover, the associated Uq(g)-crystal
B of (L,B) and Uq(gJ )-crystal B̂ of ResUq(gJ )(L,B) are related as follows: B̂ is

obtained from B by replacing its weight function with z ◦ wt : B → P̂ and taking
only the crystal operators ẽi , f̃i for i ∈ J . We say B̂ is the Uq(gJ )-restriction of B

and denote it ResJ B or similar—see §4.4.
The following crystal restriction theorem will be important for obtaining key pos-

itivity results. Its proof was communicated to us by Peter Littelmann, and we are also
grateful to Wilberd van der Kallen who pointed us to his module-theoretic version
[85, Theorem 6.3.1]. A more general module-theoretic version was recently given in
[6, Appendix A].

Theorem 4.1 Let Uq(gJ ) ⊂ Uq(g) be as above. For any Uq(g)-Demazure crystal S,
ResJ S is isomorphic to a disjoint union of Uq(gJ )-Demazure crystals.

Here, S = Fi1 · · ·Fik {u} ⊂ B() for some highest weight Uq(g)-crystal B()

(as in Definition 2.4) and ResJ S denotes the set S regarded as a subset of ResJ B(),
which is isomorphic to a disjoint union of highest weight Uq(gJ )-crystals by the
discussion above.

Proof As {α∨
i }i∈I is linearly independent, we can choose {j }j∈I ⊂ P such that

〈α∨
i ,j 〉 = mδij for i, j ∈ I and m ∈ Z≥1. Set J̄ = I \ J and ρJ̄ = ∑

i∈J̄ i . Put
c = 1 + max{εi(b) | b ∈ S}. Consider the Uq(g)-crystal B(cρJ̄ ) with highest weight
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element ucρJ̄
. Since φi(ucρJ̄

) = 〈α∨
i , cρJ̄ 〉 = cm for i ∈ J̄ , the tensor product rule

(4.2) implies

f̃i (b ⊗ ucρJ̄
) /∈ S ⊗ ucρJ̄

for all i ∈ J̄ and b ∈ S. (4.3)

By [32, §2.11], S ⊗ ucρJ̄
is a disjoint union of Uq(g)-Demazure crystals, each of

the form Fi1 · · ·Fim{b ⊗ ucρJ̄
} for some b ∈ S and, by (4.3), we must have ij ∈ J ;

moreover, Fi1 · · ·Fim{b ⊗ ucρJ̄
} = (Fi1 · · ·Fim{b}) ⊗ ucρJ̄

, which follows from (4.2)
and φi(ucρJ̄

) = 〈α∨
i , cρJ̄ 〉 = 0 for i ∈ J . Thus S is a disjoint union of sets of the form

Fi1 · · ·Fim{b}, and these are Uq(gJ )-Demazure crystals as ẽi (b ⊗ ucρJ̄
) = 0 implies

ẽi (b) = 0 for i ∈ J . �

Remark 4.2 Let Uq(gJ ) ⊂ Uq(g) be as above and assume J = I . Then a subset S of a
Uq(g)-crystal B is isomorphic to a disjoint union of Uq(g)-Demazure crystals if and
only if ResJ S is isomorphic to a disjoint union of Uq(gJ )-Demazure crystals. This
is immediate from the definitions since B and ResJ B have the same f̃i -edges for all
i ∈ J = I .

4.3 The affine Lie algebra ̂sl�

Let ̂sl� be the complex affine Kac-Moody Lie algebra of type A
(1)
�−1, with associ-

ated Dynkin nodes I = Z/�Z = {0,1, . . . , � − 1} and Cartan matrix A = (aij )i,j∈I .
Let h ⊂ ̂sl� be the Cartan subalgebra, which has a basis consisting of the simple co-
roots {α∨

i | i ∈ I } ⊂ h together with the scaling element d ∈ h. We have the simple
roots {αi | i ∈ I } ⊂ h∗, with pairings 〈α∨

i , αj 〉 = aij and 〈d,αi〉 = δi0 (i, j ∈ I ). The
fundamental weights {i | i ∈ I } ⊂ h∗ are defined by 〈α∨

i ,j 〉 = δij for i, j ∈ I ,
〈d,0〉 = 0, and

〈d,i − i−1〉 = 2i − 1 − �

2�
for i ∈ [�]. (4.4)

The {i | i ∈ I } together with the null root δ = ∑

i∈I αi form a basis for h∗; note that
〈α∨

i , δ〉 = 0 for i ∈ I and 〈d, δ〉 = 1. The convention (4.4) is implicit in [71]; it en-
sures that the extended affine Weyl group acts on the αi and i by permutating them
cyclically (see §4.5), which has an important consequence for crystals (see §4.6).

Let P = ⊕

i∈I Zi ⊕ Z
δ
2�

⊂ h∗ be the weight lattice and P + = ∑

i∈I Z≥0i +
Z

δ
2�

the dominant weights. Let cl : h∗ → h∗/Cδ be the canonical projection, and set
Pcl = cl(P ) = ⊕

i∈I Z cl(i). Let aff : h∗/Cδ → h∗ be the section of cl satisfying
〈d, aff(λ)〉 = 0 for all λ ∈ h∗/Cδ. Set �i = aff(cl(i − 0)) for i ∈ I (hence �0 =
0).

Let sl� ⊂ ̂sl� be the simple Lie subalgebra with Dynkin nodes I \ {0} = [� − 1],
Cartan subalgebra h̊ = ⊕

i∈[�−1]Cα∨
i ⊂ h, and fundamental weights {�̊i | i ∈ [� −

1]} ⊂ (h̊)∗. The associated weight lattice P̊ = ⊕

i∈[�−1]Z�̊i is naturally viewed as

the image of P under the projection h∗ → h∗/(Cδ ⊕ C0) = (h̊)∗; moreover, �i

maps to �̊i and
⊕

i∈[�−1]Z�i ⊂ h∗ maps isomorphically onto P̊ ⊂ (h̊)∗.
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4.4 Type A crystals

Let Uq(̂sl�) be the quantized enveloping algebra specified by the data I,P ∗ =
HomZ(P,Z),P, {α∨

i }i∈I , {αi}i∈I above and the symmetric bilinear form (·, ·) : P ×
P → Q defined by (αi, αj ) = aij , (αi,0) = δi0, (0,0) = 0. The subalgebra
Uq(sl�) ⊂ Uq(̂sl�) fits the form in §4.2, with Dynkin node subset [� − 1] ⊂ I ,
coweight lattice

⊕

i∈[�−1]Zα∨
i , and weight lattice P̊ . Let Uq(gl�) be as in [37, §5];

data includes Dynkin nodes [� − 1], weight lattice Z
�, and roots {εi − εi+1}i∈[�−1].

Let U ′
q(̂sl�) ⊂ Uq(̂sl�) be the subalgebra generated by ei , fi , i ∈ I , and qh,

h ∈ P ∗
cl = ⊕

i∈I Zα∨
i ; it can be considered a quantized enveloping algebra with

data I, {α∨
i }i∈I ⊂ P ∗

cl, {cl(αi)}i∈I ⊂ Pcl (it fits the form in [37, Definition 2.1]), but
note that the roots are not linearly independent. For U ′

q(̂sl�), we work with U ′
q(̂sl�)-

seminormal crystals so that we can work with both KR crystals and restrictions of
Uq(̂sl�)-crystals and treat them uniformly, while for g = sl�, gl�, or ̂sl� we only need
Uq(g)-crystals.

We fix some notation for restricting crystals and specify the projection z of weight
lattices (as in (4.2)) for each case. For a Uq(gl�)-crystal (resp. Uq(̂sl�)-crystal) B , its
Uq(sl�)-restriction Ressl� B has edges ẽi , f̃i , i ∈ [� − 1], and z is the canonical pro-
jection Z

� → Z
�/Z(1, . . . ,1) ∼= P̊ , εi 	→ �̊i − �̊i−1 (resp. P → P̊ ). For a U ′

q(̂sl�)-

seminormal crystal B , its Uq(sl�)-restriction Ressl� B has edges ẽi , f̃i , i ∈ [� − 1],
and z is the canonical projection Pcl → P̊ (this does not fit the form in §4.2 and
it need not yield a Uq(sl�)-crystal, but it does so for all U ′

q(̂sl�)-seminormal crys-

tals considered in this paper). For a Uq(̂sl�)-crystal B , its U ′
q(̂sl�)-restriction has the

same edges as B and z is cl : P → Pcl (it is easily verified that this always yields a
U ′

q(̂sl�)-seminormal crystal).

4.5 The affine symmetric group and 0-Hecke monoid

The extended affine symmetric group ˜S� is the group generated by τ and si (i ∈ I )

with relations

s2
i = id, (4.5)

sisj = sj si if aij = 0 (equivalently, i /∈ {j − 1, j + 1}), (4.6)

sisi+1si = si+1sisi+1, (4.7)

τsi = si+1τ, (4.8)

τ � = id. (4.9)

Here, i, j denote arbitrary elements of I = Z/�Z. The affine symmetric group ̂S� is
the subgroup of ˜S� generated by the si for i ∈ I , and the symmetric group S� is the
subgroup generated by si for i ∈ [� − 1]. We have ˜S� = � � ̂S�, where � = {τ i |
i ∈ [�]} ∼= Z/�Z; as in §2.2, we also denote by τ the Dynkin diagram automorphism
I → I , i 	→ i + 1, so that τsiτ

−1 = sτ(i).
Following the conventions of [71], ˜S� is also naturally realized as a subgroup of

GL(h∗): for i ∈ I , si acts by si(λ) = λ − 〈α∨
i , λ〉αi for λ ∈ h∗, and τ ∈ GL(h∗) is
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determined by τ(i) = i+1 for i ∈ I and τ(δ) = δ. Another useful description of
� ⊂ ˜S� is as the subgroup of ˜S� ⊂ GL(h∗) which takes the set {αi | i ∈ I } to itself;
moreover, σ(αi) = ασ(i) for all σ ∈ �, i ∈ I .

The 0-Hecke monoid ˜H� of ˜S� is the monoid generated by τ and si (i ∈ I ) with
relations (4.6)–(4.9) (with si ’s in place of si ’s) together with

s2
i = si (4.10)

for i ∈ I . The 0-Hecke monoid H� of S� is the submonoid of ˜H� generated by si for
i ∈ [� − 1].

The length of w ∈ ̂S�, denoted length(w), is the minimum m such that w =
si1si2 · · · sim for some ij ∈ I . For w ∈ ˜S�, we can write w = τ iv, v ∈ ̂S�; define
length(w) = length(v). An expression for w ∈ ˜S� as a product of τ ’s and si ’s is re-
duced if it uses length(w) si ’s. Length and reduced expressions for elements of ˜H�

are defined similarly.

4.6 Dynkin diagram automorphisms and crystals

Any σ ∈ �, viewed as an element of GL(h∗), satisfies σ(P ) = P and since σ(δ) = δ,
it also yields an element of GL(h∗/Cδ) which satisfies σ(Pcl) = Pcl; hence σ yields
automorphisms of P and Pcl.

For σ ∈ � and Uq(̂sl�)-crystals (resp. U ′
q(̂sl�)-seminormal crystals) B , B ′, a bi-

jection of sets θ : B → B ′ is a σ -twist if

σ(wt(b)) = wt(θ(b)), and

θ(ẽib) = ẽσ (i)θ(b), θ(f̃ib) = f̃σ (i)θ(b) for all i ∈ I , where θ(0) := 0.

For any  ∈ P +, there is a unique σ -twist F
σ : B() → B(σ()), which fol-

lows from σ(αi) = ασ(i) and the uniqueness of local crystal bases of highest weight
modules [34].

It is easily verified that if θ1 : B1 → B ′
1 and θ2 : B2 → B ′

2 are σ -twists, then so is
θ1 ⊗ θ2 : B1 ⊗ B2 → B ′

1 ⊗ B ′
2. Thus the tensor product of maps

F1

σ ⊗ · · · ⊗Fp

σ : B(1) ⊗ · · · ⊗ B(p) → B(σ(1)) ⊗ · · · ⊗ B(σ(p))

is the natural choice of σ -twist from any tensor product B(1) ⊗ · · · ⊗ B(p) of
highest weight Uq(̂sl�)-crystals, 1, . . . ,p ∈ P +. We let Fτ denote the operator on

D(̂sl�) (see Definition 2.5) which takes S ⊂ B(1) ⊗ · · · ⊗ B(p) to F1

τ ⊗ · · · ⊗
Fp

τ (S). This agrees with and explains the definition of Fτ in §2.2. Similarly, there
is a unique τ -twist of U ′

q(̂sl�)-seminormal crystals Fτ : Bμ → Bμ, explained in §6.6.

4.7 Uq(̂sl�)-Demazure crystals

Recall that for a subset S of a seminormal crystal B and i ∈ I , FiS = {f̃ k
i b | b ∈

S, k ≥ 0} \ {0} ⊂ B .
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Proposition 4.3 The operators Fi (i ∈ I ) and Fτ take Uq(̂sl�)-Demazure crystals to
Uq(̂sl�)-Demazure crystals. Hence they can be regarded as operators on D(̂sl�) and
as such they satisfy the 0-Hecke relations (4.6)–(4.10) of ˜H�.

Proof This follows from [71, Lemma 4.3] and its proof (which is largely based on
[35]). �

Thus for any w ∈ ˜H�, we can define Fw : D(̂sl�) →D(̂sl�) by

Fw = Fc1Fc2 · · ·Fcm,

where w = c1 · · · cm with each cj ∈ {si | i ∈ I } � {τ } and Fsi
:= Fi , and this is

independent of the chosen expression for w. Recall that for  ∈ P + and w ∈
˜H�, Bw() := Fw{u}. We thus have Fw′Bw() = Fw′Fw{u} = Fw′w{u} =
Bw′w() for any  ∈ P + and w,w′ ∈ ˜H�.

4.8 Uq(gl�)-Demazure crystals and key polynomials

The symmetric group S� acts on Z
� by permuting coordinates. It is also convenient

to define an action of H� on Z
� by

si α =
{

si α if αi ≥ αi+1,

α if αi ≤ αi+1.
(4.11)

Let Bgl(ν) denote the highest weight Uq(gl�)-crystal and uν its highest weight el-
ement, parameterized by ν ∈ {λ ∈ Z

� | λ1 ≥ · · · ≥ λ�}, the dominant integral weights
for Uq(gl�). Definition 2.4 defines Uq(gl�)-Demazure crystals but let us make this
more explicit. They are indexed by elements of Z

�. Let α ∈ Z
�. Denote by α+

the weakly decreasing rearrangement of α and p(α) ∈ H� the shortest element
such that p(α)α+ = α. Define the Uq(gl�)-Demazure crystal indexed by α to be
BD(α) = Fp(α){uα+} ⊂ Bgl(α+).

Remark 4.4 Analogous results to §4.7 hold for Uq(gl�)-Demazure crystals. In partic-
ular, the Fi (i ∈ [�−1]) can be regarded as operators on the set of Uq(gl�)-Demazure
crystals and as such satisfy the 0-Hecke relations (4.6), (4.7), (4.10) of H�.

Consider the group ring of the gl�-weight lattice Z[Z�] = Z[x±1
1 , . . . , x±1

� ]. It has
the monomial basis xα := x

α1
1 x

α2
2 · · ·xα�

� , as α ranges over Z�. Recall from (2.1) that
the Demazure operators πi are given by πi = xi−xi+1si

xi−xi+1
for i ∈ [� − 1]. They were

defined as operators on Z[q][x], but we will also regard them as operators on (Z[x±1
1 ,

. . . , x±1
� ])[[q]] or A[x±1

1 , . . . , x±1
� ] for a ground ring A, given by the same formula.

They satisfy the 0-Hecke relations (4.6), (4.7), (4.10) of H� (see e.g. [75]). Thus, just
as we discussed for Fw in §4.7, πw makes sense for any w ∈ H� and πwπw′ = πww′
for all w,w′ ∈H�.
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Definition 4.5 For α ∈ Z
�, define the key polynomial or Demazure character by

κα = πp(α)xα+
. (4.12)

If α ∈ Z
� is weakly decreasing, then κα is simply the monomial xα , while if α is

weakly increasing, then κα is the Schur function sα+(x) = sα+(x1, x2, . . . , x�).
We record several facts about key polynomials for later use. First, it follows from

πsi
πw′ = πsiw

′ for all w′ ∈ H�, that

πi κα = κsiα, (4.13)

where siα is as in (4.11).
Next, note that for f ∈ Z[x±1

1 , . . . , x±1
� ], si(f ) = f if and only if πi(f ) = f

if and only if f is symmetric in xi , xi+1. Further, for f,g ∈ Z[x±1
1 , . . . , x±1

� ] with
si(f ) = f ,

πi(fg) = f πi(g). (4.14)

It is immediate from Definition 4.5 and (4.14) that

(x1 · · ·x�)
dκα = κα+(d,...,d) for all d ∈ Z and α ∈ Z

�. (4.15)

Proposition 4.6 The key polynomials {κα | α ∈ Z
�
≥0} form a basis for Z[x1, . . . , x�]

and {κα | α ∈ Z
�} form a basis for Z[x±1

1 , . . . , x±1
� ].

Proof The first holds by [75, Corollary 7], and the second then follows from (4.15).
�

Remark 4.7 We caution that though the key polynomials κα , α ∈ Z
�
≥0, have the gl∞-

stability property κα = κ(α,0) = κ(α,0,0) = · · · , this is not so for the κβ with β ∈ Z
� \

Z
�
≥0.

The character of a subset S of a Uq(gl�)-crystal is chargl(S) = ∑

b∈S xwt(b) ∈
Z[x±1

1 , . . . , x±1
� ].

Proposition 4.8 The characters of Uq(gl�)-Demazure crystals are key polynomials:
for any α ∈ Z

�,

chargl(BD(α)) =
∑

b∈BD(α)

xwt(b) = κα(x1, . . . , x�). (4.16)

Proof This is a consequence of [35]. Note that the setup of [35] encompasses the gl�
case with weight lattice Z� (see [37, §5]), and the Demazure operators defined therein
match the πi in the definition of key polynomials. �
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5 The rotation theorem for tame nonsymmetric Catalan functions

We give the proof of the rotation Theorem 2.3, which requires Demazure operator
identities and an in-depth study of polynomial truncation. Interestingly, the expres-
sion it gives for tame nonsymmetric Catalan functions is automatically polynomially
truncated, whereas we had to explicitly add the truncation in our definition of these
functions.

Definition 5.1 The polynomial truncation operator, denoted poly, is the linear oper-
ator on Z[x±1

1 , . . . , x±1
� ] determined by its action on the basis {κα | α ∈ Z

�}:

poly(κα) =
{

κα if α ∈ Z
�
≥0 ,

0 otherwise.

We extend this in the natural way to a linear operator on Z[x±1
1 , . . . , x±1

� ][[q]] by
poly(

∑

d≥0 fdqd) = ∑

d≥0 poly(fd)qd for any fd ∈ Z[x±1
1 , . . . , x±1

� ].

5.1 Root expansion

A straightforward yet surprisingly powerful recursion played an important role for
the Catalan functions in [11]. This is easily generalized to the nonsymmetric setting.
For a root ideal 	 , we say α ∈ 	 is a removable root of 	 if 	 \α is a root ideal. For
α = (i, j) ∈ �+

� , write εα = εi − εj ∈ Z
�.

Proposition 5.2 Let (	,γ,w) be a labeled root ideal. For any removable root α of
	 ,

H(	;γ ;w) = H(	 \ α;γ ;w) + qH(	;γ + εα;w). (5.1)

Proof Apply the linear operator πw ◦ poly to the following identity of series:

∏

(i,j)∈	

(

1 − qxi/xj

)−1xγ = (

1 − qxεα
)−1 ∏

(i,j)∈	\α

(

1 − qxi/xj

)−1xγ

= (

1 + qxεα
(

1 − qxεα
)−1) ∏

(i,j)∈	\α

(

1 − qxi/xj

)−1xγ

=
∏

(i,j)∈	\α

(

1 − qxi/xj

)−1xγ

+ q
∏

(i,j)∈	

(

1 − qxi/xj

)−1xγ+εα .
�

5.2 Polynomial truncation

Polynomial truncation is better understood using the following symmetric bilinear
form which comes from Macdonald theory and was given a self-contained treatment
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by Fu and Lascoux [22]. For f,g ∈ Z[x±1
1 , . . . , x±1

� ], define

(f, g) = CT

(

f (x1, . . . , x�)g(x−1
� , . . . , x−1

1 )
∏

(i,j)∈�+
�

(1 − xi/xj )

)

,

where CT denotes taking the constant term.
For α ∈ Z

�, define the Demazure atom by κ̂α = π̂p(α)xα+
. Here, π̂i := πi − 1 and

π̂w := π̂i1 · · · π̂im , where w = si1 · · · sim is a reduced expression; this is well defined
since the π̂i satisfy the braid relations.

Theorem 5.3 ([22, Theorem 15]) The key polynomials and Demazure atoms are dual
bases with respect to (·, ·): for α,β ∈ Z

�, (κα, κ̂w0β) = δα,β , where δ is the Kronecker
delta and w0 is the longest permutation in S�.

Proof The statement in [22, Theorem 15] is for α,β ∈ Z
�
≥0, and this yields

the statement for α,β ∈ Z
� too since it implies that for d sufficiently large,

(κα, κ̂w0β) = ((x1 · · ·x�)
dκα, (x1 · · ·x�)

d κ̂w0β) = (κα+(d,...,d), κ̂w0β+(d,...,d)) =
δα+(d,...,d),β+(d,...,d)=δα,β . �

Hence, letting cα,β ∈ Z≥0 denote the atom to monomial expansion coefficients,
i.e., κ̂α = ∑

β∈Z� cα,βxβ , the coefficient of κα in the key expansion of any f ∈
Z[x±1

1 , . . . , x±1
� ] is given by

CT

(

f
∏

(i,j)∈�+
(1 − xi/xj )κ̂w0α(x−1

� , . . . , x−1
1 )

)

=
∑

β∈Z�

cw0α,β CT

(

f
∏

(i,j)∈�+
(1 − xi/xj )x−rev(β)

)

=
∑

β∈Z�

cw0α,β

(

coef. of xrev(β) in the monomial expansion of f
∏

(i,j)∈�+
(1 − xi/xj )

)

,

where rev(β) := (β�, . . . , β1) denotes the reverse of any β = (β1, . . . , β�) ∈ Z
�. We

package this into the following corollary:

Corollary 5.4 For f ∈ Z[x±1
1 , . . . , x±1

� ],

f =
∑

α,β∈Z�

cw0α,β

(

coefficient of xrev(β) in f
∏

(i,j)∈�+
(1 − xi/xj )

)

κα, (5.2)

poly(f ) =
∑

α,β∈Z�≥0

cw0α,β

(

coefficient of xrev(β) in f
∏

(i,j)∈�+
(1 − xi/xj )

)

κα. (5.3)
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Proposition 5.5 Let γ ∈ Z
� and w ∈H� be arbitrary.

(i) For any f ∈ Z[x±1
1 , . . . , x±1

� ][[q]], poly(πi(f )) = πi(poly(f )).
(ii) For any α ∈ Z

�
≥0, poly(xα) = xα .

(iii) If
∑�

a=k γa < 0 for some k ∈ [�], then poly(xγ ) = 0.
(iv) If

∑�
a=k γa < 0 for some k ∈ [�], then H(	;γ ;w) = 0 for any root ideal 	 ⊂

�+
� .

(v) If γm+1 = · · · = γ� = 0, then H(	;γ ;w) = H(	 ′;γ ;w) for any 	,	 ′ ⊂ �+
�

such that 	 ∩ �+
m = 	 ′ ∩ �+

m.

Proof Statement (i) is immediate from the definition of polynomial truncation and
(4.13). Both {xα | α ∈ Z

�
≥0} and {κα | α ∈ Z

�
≥0} are Z-bases for Z[x1, . . . , x�] (Propo-

sition 4.6). Since poly acts as the identity on the latter basis by definition, (ii) follows.
To prove (iii), by (5.3), it suffices to show that for any term cxζ in the monomial

expansion of xγ
∏

(i,j)∈�+(1 − xi/xj ), we have ζ /∈ Z
�
≥0. Indeed, for such a term we

must have
∑�

a=k ζa ≤ ∑�
a=k γa < 0 as needed.

To prove (iv), recall H(	;γ ;w) = πw

(

poly
(

xγ
∏

(i,j)∈	

(

1 + qxi/xj +
q2(xi/xj )

2 + · · · ))) from Definition 2.1. Any term cxζ = ∏

(i,j)∈	 qdij (xi/xj )
dij

arising in the expansion of the product over 	 satisfies
∑�

a=k ζa ≤ 0, so
∑�

a=k(γ +
ζ )a < 0 and πw(poly(c xγ+ζ )) = 0 by (iii). Thus H(	;γ ;w) = 0. Statement (v) fol-
lows similarly from the observation that any term cxζ = ∏

(i,j)∈	 qdij (xi/xj )
dij with

dij > 0 for some root (i, j) with j > m, satisfies
∑�

a=j (γ + ζ )a < 0. �

Corollary 5.6 The nonsymmetric Catalan functions lie in (Z[q])[x1, . . . , x�] rather
than the larger (Z[x1, . . . , x�])[[q]], i.e., they are finite sums of key polynomials κα ,
α ∈ Z

�
≥0, with coefficients which are polynomials in q with integer coefficients.

Proof Similar to the proof of (iv) above, one checks that in computing H(	;γ ;w),
any term qd xζ = ∏

(i,j)∈	 qdij (xi/xj )
dij with d > �|γ | satisfies

∑�
a=k(γ + ζ )a < 0

for some k ∈ [�]. �

5.3 Identities for Demazure operators and polynomial truncation

Recall from (2.5) that � is the operator on Z[q][x] given by �(f ) = f (x2, . . . , x�,

qx1); here we will regard it as an operator on Z[q, q−1][x±1
1 , . . . , x±1

� ].

Proposition 5.7 For any f ∈ Z[q, q−1][x±1
1 , . . . , x±1

� ],
πi+1�(f ) = �πi(f ) for i = 1, . . . , � − 2.

Thus, recalling that τsiτ
−1 = si+1, we have

πτvτ−1�(f ) = �πv(f ) for any v ∈H�−1 ×H1 ⊂ H�.

Proof This is a direct computation from the definition of the Demazure operator πi :

�(πi(f )) = �
(xif − xi+1si(f )

xi − xi+1

)

= xi+1�(f ) − xi+2si+1(�(f ))

xi+1 − xi+2
= πi+1(�(f )).

�
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Lemma 5.8 For any f ∈ Z[x±1
1 , . . . , x±1

�−1] and a ≥ 0, poly(xa
1 �(f )) =

xa
1 �(poly(f )).

Proof Since poly and � are linear operators, it is enough to prove this for f rang-
ing over the Z-basis {κζ | ζ ∈ Z

�−1} of Z[x±1
1 , . . . , x±1

�−1]. In light of Remark 4.7,
computing poly(κζ ) is nontrivial as we have defined polynomial truncation with re-
spect to the basis {κα | α ∈ Z

�} of Z[x±1
1 , . . . , x±1

� ]. However, we can use Demazure
operators: write κζ = πvx(μ,0) with μ = ζ+ ∈ Z

�−1 and v = p(ζ ) ∈ H�−1 as in Defi-
nition 4.5 but for � − 1 in place of �. Then

xa
1 �(poly(πvx(μ,0))) = πτvτ−1x

a
1 �(poly(x(μ,0))) =

{

πτvτ−1 x(a,μ) if μ ∈ Z
�−1
≥0 ,

0 otherwise,

where the first equality is by Propositions 5.5 (i) and 5.7 and then (4.14); the second
equality uses Proposition 5.5 (ii) for the top line and Proposition 5.5 (iii) for the
bottom line (μ weakly decreasing implies μ�−1 < 0 if μ /∈ Z

�−1
≥0 ).

On the other hand, there holds

poly(xa
1 �(πvxμ)) = πτvτ−1 poly(xa

1 �(xμ)) = πτvτ−1 poly(x(a,μ))

=
{

πτvτ−1 x(a,μ) if μ ∈ Z
�−1
≥0 ,

0 otherwise.

The justification is just as in the previous paragraph (the last equality uses a ≥ 0). �

Lascoux [55, §4.1] gives a partial description of a Monk’s rule for key polynomi-
als, i.e. xiκα expanded in key polynomials. The computations therein are similar to
the next three lemmas, which we need for polynomial part computations. Recall that
π̂i = πi − 1.

Lemma 5.9 For any f ∈ Z[x±1
1 , . . . , x±1

� ],
xi+1πi(f ) = π̂i(xif ) for i ∈ [� − 1], (5.4)

x−1
i πi(f ) = π̂i(x

−1
i+1f ) for i ∈ [� − 1], (5.5)

x−1
i πi−1(f ) = πi−1(x

−1
i−1f ) + x−1

i f for 2 ≤ i ≤ �. (5.6)

Proof The identity (5.4) is proved by direct computation:

π̂i(xif ) = xi(xif ) − xi+1si(xif )

xi − xi+1
− (xi − xi+1)xif

xi − xi+1

= xi+1xif − x2
i+1si(f )

xi − xi+1
= xi+1πi(f ).

Multiplying both sides by x−1
i x−1

i+1 (which commutes with πi ) yields (5.5), and (5.6)
is a rearrangement of (5.4). �
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Lemma 5.10 Let f ∈ Z[x±1
1 , . . . , x±1

� ] such that si(f ) = f for a < i ≤ � − 1. Then

x�π�−1π�−2 · · ·πa(f ) = π̂�−1π̂�−2 · · · π̂a(xaf ) = π̂�−1π�−2 · · ·πa(xaf ). (5.7)

Proof Applying (5.4) repeatedly yields the first equality of (5.7). For the second
equality, we use that π̂i (f ) = 0 for i > a and π̂iπj = πj π̂i for i > j +1, and compute
as follows:

π̂�−1 · · · π̂a(xaf ) = π̂�−1 · · · π̂a+1πa(xaf ) − π̂�−1 · · · π̂a+1(xaf )

= π̂�−1 · · · π̂a+1πa(xaf ) = π̂�−1 · · · π̂a+2πa+1πa(xaf ) − π̂�−1 · · · π̂a+2πa(xaf )

= π̂�−1 · · · π̂a+2πa+1πa(xaf ) = · · · = π̂�−1π�−2 · · ·πa(xaf ). �

Lemma 5.11 For i ∈ [�] and α ∈ Z
�,

x−1
i κα ∈ Z

{

κβ | β+ = α+ − εj for some j ∈ [�]}.
Proof Write κα = πvxμ with μ = α+ and v = p(α) as in Definition 4.5. The proof is
by induction on length(v). For the base case v = id , let z be the index such that μi =
μi+1 = · · · = μz > μz+1 (interpret μ�+1 = −∞ so that z = � if μi = · · · = μ�). Then
x−1
i xμ = π̂i π̂i+1 · · · π̂z−1x

−1
z xμ, which belongs to Z{κβ | β+ = μ − εz} by (4.13).

Now suppose v �= id . Choose a length additive factorization v = sj u. Using (5.5)
and (5.6) we obtain

x−1
i πvxμ = x−1

i πjπuxμ =

⎧

⎪

⎨

⎪

⎩

πjx
−1
i−1πuxμ + x−1

i πuxμ if j = i − 1,

π̂j x
−1
i+1πuxμ if j = i,

πjx
−1
i πuxμ otherwise.

By the inductive hypothesis, x−1
i−1πuxμ, x−1

i πuxμ, and x−1
i+1πuxμ belong to Z{κβ |

β+ = μ − εj for some j ∈ [�]}. Hence the result follows from (4.13). �

Lemma 5.12 For any f ∈ Z[x±1
1 , . . . , x±1

� ], x� poly(x−1
� π̂�−1(f )) = poly(π̂�−1(f )).

Proof It is enough to prove this identity for f ranging over a Z-basis of Z[x±1
1 , . . . ,

x±1
� ]. We choose the basis {xγ | γ ∈ Z

�
≥0}�{κα | α ∈ Z

� \Z�
≥0}. First consider f = xγ

with γ ∈ Z
�
≥0; set c = γ�−1, d = γ�. Then

π̂�−1xγ =

⎧

⎪

⎨

⎪

⎩

x
γ1
1 · · ·xγ�−2

�−2 (xc−1
�−1xd+1

� + xc−2
�−1xd+2

� + · · · + xd
�−1x

c
�) if c > d,

0 if c = d,

−x
γ1
1 · · ·xγ�−2

�−2 (xc
�−1x

d
� + xc+1

�−1xd−1
� + · · · + xd−1

�−1 xc+1
� ) if c < d.

Since x� appears with a positive power in each summand, we have
x� poly(x−1

� π̂�−1xγ ) = π̂�−1xγ = poly(π̂�−1xγ ) by Proposition 5.5 (ii).
Now consider α ∈ Z

� \ Z�
≥0. Since π̂�−1κα is a sum of key polynomials indexed

by rearrangements of α (by (4.13)), poly(π̂�−1κα) = 0. By Lemma 5.11, x−1
� π̂�−1κα

lies in Z
{

κβ | β+ = α+ − εj for some j ∈ [�]}, so poly(x−1
� π̂�−1κα) = 0 as well. �
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Let w[i,j) ∈H� be the longest element of the submonoid generated by si , . . . , sj−1,
i.e., the element of H� corresponding to the permutation which reverses the interval
[i, j ]; we will also use the shorthand w�a := w[a,�).

Corollary 5.13 For any g ∈ Z[x±1
1 , . . . , x±1

� ] and a ∈ [� − 1],
poly(π�−2π�−3 · · ·πaπw �a+1

(xag)) + x� poly(πw�a (g)) = poly(πw�a (xag)). (5.8)

Proof Rewriting the right side of (5.8) using πw�a = π�−1 · · ·πaπw �a+1
, we obtain the

equivalent statement

x� poly(πw�a (g)) = poly(π̂�−1π�−2 · · ·πaπw �a+1
(xag)).

To prove this, we compute

x� poly(πw�a (g)) = x� poly
(

x−1
� x�π�−1π�−2 · · ·πa(πw �a+1

g)
)

= x� poly
(

x−1
� π̂�−1π�−2 · · ·πa(xaπw �a+1

g)
)

by Lemma 5.10

= poly
(

π̂�−1π�−2 · · ·πa(xaπw �a+1
g)

)

by Lemma 5.12

= poly
(

π̂�−1π�−2 · · ·πaπw �a+1
(xag)

)

by (4.14). �

5.4 Proof of Theorem 2.3

The next theorem shows how to express a tame nonsymmetric Catalan function
H(	;γ ;w �a+1) in terms of a smaller one H(R(	);R(γ );w�a) by peeling off its first
row, which we can then iterate to unravel it one row at a time and obtain the desired
expression involving πi ’s and �’s.

Theorem 5.14 Let γ ∈ Z
� and 	 be a root ideal of length �. Let R(γ ) = (γ2, . . . , γ�,

0) and R(	) ⊂ �+
� be R(	) := {(i − 1, j − 1) | (i, j) ∈ 	, i > 1} � {(i, �) | i ∈ [� −

1]}; this is the root ideal obtained from 	 by removing its first row, shifting what
remains up 1 and left 1, and adding a full column of roots on the right. Set a = n(	)1.
If γ1 ≥ 0, then

H(	;γ ;w �a+1) = x
γ1
1 �

(

H(R(	);R(γ );w�a)
)

. (5.9)

Remark 5.15 The last column of roots in R(	) is just a place holder to make the right
side a length � nonsymmetric Catalan function: since R(γ )� = 0, by Proposition 5.5
(v), H(R(	);R(γ );w�a) = H(	 ′;R(γ );w�a) for any 	 ′ ⊂ �+

� with 	 ′ ∩ �+
�−1 =

R(	) ∩ �+
�−1.

Example 5.16 Let us verify Theorem 5.14 for � = 2, γ = (3,2), 	 = �+. Then a = 1,
w �a+1 = id , w�a = s1, R(γ ) = (2,0), R(�+) = �+. We compute both sides of (5.9):

H(�+;γ ;w �a+1) = poly
(

x3
1x2

2(1 − qx1/x2)
−1)

= poly
(

x3
1x2

2 + qx4
1x2 + q2x5

1 + q3x6
1x−1

2 + · · · ) = x3
1x2

2 + qx4
1x2 + q2x5

1 .
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x
γ1
1 �

(

H(R(�+);R(γ );w�a)
) = x

γ1
1 �π1 poly

(

x2
1(1 − qx1/x2)

−1) = x
γ1
1 �π1(x

2
1)

= x
γ1
1 �

(

x2
1 + x1x2 + x2

2

) = x3
1(x2

2 + qx1x2 + q2x2
1) = x3

1x2
2 + qx4

1x2 + q2x5
1 .

Example 5.17 Let � = 3, γ = 211, and 	 = �+. Then a = 1 and Theorem 5.14 yields
H(�+;211; s2) = x2

1�(H(�+;110;w0)). This can be viewed (via Corollary 7.15)
as the identity of characters corresponding to going from the fourth to fifth crystal in
Fig. 1.

Proof of Theorem 5.14 The proof is by induction on
∑�

j=2
∑�

i=j γi and |	|. The
former quantity is not bounded below, so to make this induction valid we first
handle the following “base case”: suppose

∑�
i=j γi < 0 for some 2 ≤ j ≤ �.

Thus
∑�

i=j−1 R(γ )i < 0, and so by Proposition 5.5 (iv), H(	;γ ;w �a+1) = 0 =
x

γ1
1 �

(

H(R(	);R(γ );w�a)
)

.
Next, the base case |	| = 0 holds by Lemma 5.8 (it is here we need γ1 ≥ 0):

H(∅;γ ; id) = poly(xγ ) = poly(x
γ1
1 �(xR(γ ))) = x

γ1
1 �(poly(xR(γ )))

= x
γ1
1 �

(

H(R(∅);R(γ ); id)
);

we have also used Remark 5.15 for the last equality.
We may assume from now on that |	| > 0 and

∑�
i=j γi ≥ 0 for j ≥ 2. If there is

a removable root α of 	 not in the first row, then

H(	;γ ;w �a+1)

= H(	 \ α;γ ;w �a+1) + qH(	;γ + εα;w �a+1)

= x
γ1
1 �

(

H(R(	 \ α);R(γ );w�a)
) + qx

γ1
1 �

(

H(R(	);R(γ + εα);w�a)
)

= x
γ1
1 �

(

H(R(	);R(γ );w�a
)

,

where the first and third equalities are by Proposition 5.2 and the second is by the
inductive hypothesis.

Now we may assume 	 consists of a single nonempty row. Hence we can expand
on the only removable root (1, a + 1) (Proposition 5.2) to obtain the first equality
below:

H(	;γ ;w �a+1)

= H(	 \ (1, a + 1);γ ;w �a+1) + qH(	;γ + ε1 − εa+1;w �a+1)

= π�−1π�−2 · · ·πa+1H(	 \ (1, a + 1);γ ;w �a+2) + qH(	;γ + ε1 − εa+1;w �a+1)

= π�−1π�−2 · · ·πa+1x
γ1
1 �

(

H(∅;R(γ );w �a+1)
) + qx

γ1+1
1 �

(

H(∅;R(γ ) − εa;w�a)
)

= π�−1π�−2 · · ·πa+1x
γ1
1 �πw �a+1

poly(xR(γ )) + qx
γ1+1
1 �πw�a poly(xR(γ )−εa )

= x
γ1
1 �

(

π�−2π�−3 · · ·πaπw �a+1
poly(xR(γ )) + x�πw�a poly(xR(γ )−εa )

)
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= x
γ1
1 �πw�a poly(xR(γ ))

= x
γ1
1 �

(

H(R(∅);R(γ );w�a)
)

.

The second equality is by πw �a+1
= π�−1π�−2 . . . πa+1πw �a+2

and Definition 2.1, the
third is by the inductive hypothesis and Remark 5.15 (note that we have the first part
of γ + ε1 − εa+1 is still ≥ 0), the fifth is by Proposition 5.7, (4.14), and �(x�) = qx1,
and the sixth is by Corollary 5.13 with g = xR(γ )−εa and Proposition 5.5 (i). �

Proof of Theorem 2.3 Our goal is to prove (2.6), reproduced here for convenience:

H(	;γ ;w) = πwx
γ1
1 �πs(n1)x

γ2
1 �πs(n2)x

γ3
1 · · ·�πs(n�−1)x

γ�

1 .

We proceed by induction on m, the minimum index such that γm = γm+1 = · · · =
γ� = 0 (set m = � + 1 if γ� �= 0). The base case m = 1, γ = 0 holds since
H(	;γ ;w) = 1 by Proposition 5.5 (v). Now assume m > 1. By the tameness as-
sumption, w has a length additive factorization w = v w �n1+1. Thus Theorem 5.14
gives

H(	;γ ;w) = πv H(	;γ ;w �n1+1) = πv x
γ1
1 �

(

H(R(	);R(γ );w �n1)
)

.

Applying the inductive hypothesis to H(R(	);R(γ );w �n1), we obtain

πv x
γ1
1 �

(

H(R(	);R(γ );w �n1)
)

= πv x
γ1
1 �πw �n1

x
γ2
1 �πs(n2)x

γ3
1 · · ·�πs(n�−1)x

γ�

1 �πs(1)x
0
1

= πv πw �n1+1
x

γ1
1 �πs(n1) x

γ2
1 �πs(n2)x

γ3
1 · · ·�πs(n�−1)x

γ�

1 ,

giving the desired (2.6); for the second equality, we have used the operator identity

x
γ1
1 �πw �n1

= x
γ1
1 �πw[n1,�−1)

πs(n1) = πw �n1+1
x

γ1
1 �πs(n1),

where the last equality is by Proposition 5.7 and (4.14). �

6 DARK crystals and katabolism

We show that for any DARK crystal Bμ;w, katabolism is exactly the condition on
Tabloids�(μ) which detects membership in inv(Bμ;w). A connection between KR
crystals and Catalan functions in the dominant rectangle case has been well estab-
lished (see Remark 2.19). One of our key insights is that to go beyond this case,
DARK crystals are needed rather than full tensor products of KR crystals.

6.1 Single row Kirillov-Reshetikhin crystals

We will only need an explicit description of the KR crystals B1,s in type A. For
any positive integer s, the U ′

q(̂sl�)-seminormal crystal B1,s consists of all weakly
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Fig. 4 For � = 3, the KR crystal B1,2 (left) and Ressl� B(2,1) = Ressl� B1,1⊗B1,2 (right)

increasing words of length s in the alphabet [�], with weight function wt : B1,s → Pcl
given by

wt(b) = cl
(

c1(1 − 0) + c2(2 − 1) + · · · + c�(0 − �−1)
)

,

for b = 1c12c2 · · ·�c� (6.1)

(i.e., b is the weakly increasing word with content (c1, . . . , c�)), and crystal operators
defined as follows: for i ∈ [�− 1] and b ∈ B1,s , ẽi (b) is obtained from b by changing
its leftmost i + 1 to an i, and f̃i (b) by changing its rightmost i to an i + 1; if there are
no i + 1’s, ẽi (b) = 0, and if there are no i’s, f̃i (b) = 0. The element ẽ0(b) is obtained
from b by removing a letter 1 from the beginning and adding a letter � to the end,
and f̃0(b) is obtained by removing a letter � from the end and adding a letter 1 to the
beginning; if there are no 1’s, ẽ0(b) = 0, and if there are no �’s, f̃0(b) = 0. See Fig. 4.

We also define B1,0 = {b0} to be the trivial U ′
q(̂sl�)-seminormal crystal, i.e.,

wt(b0) = 0 and ẽi (b0) = f̃i (b0) = 0 for all i ∈ I , and view b0 as the empty word.

6.2 Products of KR crystals

We now describe in detail the crystals Bμ which were briefly introduced in §2.3.

Definition 6.1 A biword is a pair of words b =
(

v1 v2 · · · vm

w1 w2 · · · wm

)

with vi,wi ∈
Z≥1, such that for i < j , vi > vj or (vi = vj and wi ≤ wj ). Define top(b) :=
v1 · · ·vm, the top word of b, and bottom(b) := w1 · · ·wm, the bottom word of b. The
i-th block of b, denoted bi , is the (contiguous) subword of w1 · · ·wm below the letters
i in v1 · · ·vm. Thus a pair of words b is a biword if and only if top(b) is weakly de-
creasing and its blocks are weakly increasing. The content of b, denoted content(b),
is the vector (c1, c2, . . . , c�), where ci is the number of occurrences of the letter i in
bottom(b).

Recall that for a partition μ = (μ1 ≥ · · · ≥ μp ≥ 0), we let Bμ = B1,μp ⊗ · · · ⊗
B1,μ1 , a U ′

q(̂sl�)-seminormal crystal. We identify its elements with the biwords
whose bottom word has letters in [�] and whose top word is pμp · · ·2μ21μ1 (see Ex-
ample 6.6); we use a biword b interchangeably with its bottom word when the crystal
Bμ it belongs to is clear.
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Remark 6.2 We can also regard Bμ as a Uq(gl�)-crystal (temporarily denote it Bμ

gl
)

with weight function Bμ

gl
→ Z

�, b 	→ content(b) and the same edges as Ressl� Bμ

(the restriction from U ′
q(̂sl�) to Uq(sl�)); moreover, Ressl� B

μ

gl
= Ressl� Bμ by (6.1).

From now on we write Bμ for both the U ′
q(̂sl�)-seminormal and Uq(gl�)-crystal, and

will clarify when necessary.

The crystal operators ẽi and f̃i on Bμ are determined by the above description
of ẽi and f̃i on B1,s and the tensor product rule (4.1)–(4.2). For i ∈ [� − 1], they
have the following streamlined description. Let b ∈ Bμ. Place a left parenthesis “(”
below each letter i + 1 in b and a right parenthesis “)” below each letter i. Match
parentheses in the usual way. The unmatched parentheses correspond to a subword
consisting of i’s followed by i + 1’s. Then ẽi (b) is obtained from b by changing the
leftmost unmatched i +1 to an i, and f̃i (b) by changing the rightmost unmatched i to
an i + 1; if there are no unmatched i + 1’s, ẽi (b) = 0, and if there are no unmatched
i’s, f̃i (b) = 0.

Example 6.3 We illustrate the parentheses matching rule for computing ẽ2 and f̃2 of
the element b ∈ B554 below, with the unmatched letters in bold.

b = 2234 22333 11122
) ) ( ) ) ( ( ( ) )

ẽ2(b) = 2234 22233 11122
f̃2(b) = 2234 23333 11122

6.3 RSK and crystals

We review the beautiful connection between Uq(gl�)-crystals and classical tableau
combinatorics, which may be attributed to Kashiwara-Nakashima [38], and Lascoux-
Schützenberger [57] who anticipated much of the combinatorics before the develop-
ment of crystals. Other good references include [81] and [29, Chap. 7].

The crystals Bμ are compatible with the following variant of the Robinson-
Schensted-Knuth correspondence described in [23, A.4.1, Proposition 2]. Let b be
a biword. The insertion tableau P(b) of b is the ordinary insertion tableau of the
word bottom(b). It can be obtained by applying the Schensted row insertion algo-
rithm to the letters of bottom(b) from left to right or by column inserting each letter
from right to left. The recording tableau Q(b) of b is obtained by column inserting
the bottom word of b from right to left and recording each newly added box with
the corresponding top letter. More precisely, Q(b) is the tableau with the same shape
as P(b) such that the skew shape shape(P (bibi−1 · · ·b1))/ shape(P (bi−1 · · ·b1)) is
filled with i’s for all i.

Recall from §2.4 that SSYT�(μ) denotes the subset of Tabloids�(μ) consisting
of tabloids with partition shape whose columns strictly increase from top to bottom.
(This is the set of semistandard Young tableaux of content μ with at most � rows,
but with the fine print that we regard them as having � rows some of which may be
empty.)
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Theorem 6.4 (see [81, Theorem 3.6]) The decomposition of the Uq(gl�)-crystal Bμ

into highest weight Uq(gl�)-crystals is given by

Bμ =
⊔

U∈SSYT�(μ)

CU , where CU := {b ∈ Bμ | Q(b) = U} ∼= Bgl(shape(U)). (6.2)

Here, Bgl(ν) denotes the highest weight Uq(gl�)-crystal of highest weight ν.

6.4 The inv bijection and RSK

A biword can be thought of as a sequence of biletters (v1
w1

)(v2
w2

) · · · (vm
wm

) which is weakly

decreasing for the order (v
w) ≥ (v′

w′) if and only if v > v′ or (v = v′ and w ≤ w′). Then,
for a biword b, define inv(b) to be the result of exchanging the top and bottom words
of b and then sorting biletters to be weakly decreasing.

It is natural to regard inv as an involution on the set of biwords. However, as
discussed in Remark 6.7 below, we prefer to think of inv as a bijection between bi-
words and tabloids, which we can do since biwords and tabloids may be naturally
identified by equating blocks with rows (see the right side of (6.3)). Since the con-
tents of the top and bottom words are exchanged by inv, it restricts to a bijection

inv : Bμ
∼=←→ Tabloids�(μ), which takes content to shape (we gave a direct description

of the map Bμ → Tabloids�(μ) in §2.3).

Proposition 6.5 ([23, A.4.1, Symmetry Theorem B]) The insertion (P ) and record-
ing (Q) tableaux are exchanged by inv. In particular, for a biword b ∈ Bμ, Q(b) =
P(inv(b)) and for a tabloid T ∈ Tabloids�(μ), P(T ) = Q(inv(T )).

Example 6.6 For the following biword b ∈ B554, we compute inv(b) and Q(b):

b =
(

3333 22222 11111
2234 13334 11222

)

inv−→
(

44 3333 22222 111
23 2223 11133 112

)

=
1 1 2

1 1 1 3 3

2 2 2 3

2 3

= T , (6.3)

Q(b) = P(T ) =
1 1 1 1 1 2 3

2 2 2 2 3 3

3

.

Remark 6.7 Though it is possible to define a two-sided crystal structure on biwords
in which crystal operators act on both a biword and its inverse, this is not the per-
spective we take here. Instead, we break the symmetry between the two sides by
adopting the following conventions: crystal operators act only on the Bμ side and
not the Tabloids�(μ) side; we are mainly interested in Q(b), not P(b), for b ∈ Bμ,
and P(T ), not Q(T ), for T ∈ Tabloids�(μ) as these are the ones which identify inv
of the highest weight element of a Uq(gl�)-component. Further, elements of Bμ will
be written as biwords and never tabloids; their inverses will be written as tabloids,
though occasionally thought of as biwords for the purposes of computing inv.
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6.5 Partial insertion and ẽmax
i

In the remainder of Sect. 6, we match operations on the tabloids side with ones on
the crystal side. The material in this subsection is similar to [82, §3.5], [54, §2] and
perhaps can be considered folklore.

For an element b of a Uq(gl�)-crystal, define

ẽmax
i (b) = ẽ

ε(b)
i (b), (6.4)

i.e., the last element in the list b, ẽi(b), ẽ2
i (b), . . . which is not 0. For example, in the

crystal B432, ẽmax
1 (12 122 1222) = 12 112 1111. More generally, for w ∈ H�, let w =

si1 · · · sim be any expression for w as a product of sj ’s; define ẽmax
w = ẽmax

i1
· · · ẽmax

im
;

by Proposition 6.11 (ii) below, this is independent of the chosen expression for w.
Recall that T i denotes the i-th row of a tabloid T .

Definition 6.8 (Partial insertion) Given a tabloid T , Pi(T ) is the tabloid obtained
from T by replacing rows i and i + 1 of T by the tableau P(T i+1T i) (if P(T i+1T i)

has only one row, then the i + 1-st row of Pi(T ) is empty). More generally, for
w = si1 · · · sim ∈ H�, define Pw = Pi1 · · ·Pim ; by Proposition 6.11 (iii) below, this is
independent of the chosen expression for w. For how this is related to Definition 2.13,
see Remark 6.16.

For example, P2

(

1 1 2 2

1 2 3 3 4

1 1 2 2 2 3

2 3 4

)

=
1 1 2 2

1 1 1 2 2 2 3 3 4

2 3

2 3 4

.

The following commutative diagrams give a summary of §6.4–6.5 (the left holds
by Proposition 6.9 and the right by Propositions 6.5, 6.9, and 6.11 (iv)).

Bμ

ẽ max
i

inv
Tabloids�(μ)

Pi

Bμ

inv
Tabloids�(μ)

Bμ

ẽ max
w0

inv

Q

Tabloids�(μ)

P =Pw0

Bμ

inv
Tabloids�(μ)

Proposition 6.9 For any biword b ∈ Bμ and i ∈ [� − 1], ẽmax
i (b) = inv(Pi(inv(b))).

Proof Set T = inv(b). Recall from §6.2 that ẽmax
i (b) is obtained by viewing i + 1’s

and i’s as left and right parentheses and then changing all unmatched i+1’s to i’s. We
claim that inv(Pi(inv(b))), computed using the row bumping algorithm, is obtained
by the same rule except with the following greedy parentheses matching in place
of the ordinary one: read “)”s from right to left and match each with the rightmost
unmatched “(”. To see this, first note that the letters in top(b) above the i’s (resp.
i + 1’s) in bottom(b) are the values of T i (resp. T i+1). The row bumping algorithm
computes Pi(T ) by processing the letters of T i from left to right; each letter x of
T i bumps the smallest entry of T i+1 greater than x not already bumped (if it exists).
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Each bump corresponds to a greedy-matched pair in b and the unmatched i + 1’s of b

correspond to the entries of T i+1 not bumped, which are exactly the ones that move
from T i+1 to (Pi(T ))i in computing Pi(T ).

It remains to show that, given a string w1 · · ·wm in the letters “(” and “)”, the or-
dinary and greedy matching rules produce the same unmatched “(”s. We proceed by
induction on m. Consider the subword wi · · ·wm where wi is the rightmost matched
“(”; it must look like ()) · · · )(· · · (. Let (wi,wj ) (resp. (wi,wi+1)) be the greedy (resp.
ordinary) matched pair in this subword. Though these pairs typically differ, deleting
the greedy-matched pair yields the same string as deleting the ordinary matched pair.
Since the position of the “(” in both pairs is the same, the result follows by the induc-
tive hypothesis. �

Proposition 6.10 Let b ∈ Bμ and set T = inv(b) ∈ Tabloids�(μ). Then b is a Uq(gl�)-
highest weight element if and only if any of the following equivalent conditions holds:

(a) ẽi (b) = 0 for all i ∈ [� − 1],
(b) Pi(T ) = T for all i ∈ [� − 1],
(c) T is a tableau, i.e., T ∈ SSYT�(μ).

Proof Condition (a) is the definition of b being a Uq(gl�)-highest weight element.
The equivalence (a) ⇐⇒ (b) is by Proposition 6.9, and (b) ⇐⇒ (c) is clear from
computing P(T i+1T i) by column insertion. �

Proposition 6.11 Let Bgl(ν), ν = (ν1 ≥ · · · ≥ ν�), be a highest weight Uq(gl�)-
crystal and uν its highest weight element. Then

(i) Fw0{uν} = Bgl(ν).
(ii) The operators ẽmax

1 , . . . , ẽmax
�−1 on Bgl(ν) satisfy the 0-Hecke relations of H�

((4.6), (4.7), and (4.10)).
(iii) The operators P1, . . . ,P�−1 on Tabloids� satisfy the 0-Hecke relations of H�.
(iv) ẽmax

w0
(b) = uν for any b ∈ Bgl(ν) and Pw0(T ) = P(T ) for any T ∈ Tabloids�.

Proof Statement (i) is well known; it can be deduced, for instance, from Remark 4.4
using that Bgl(ν) is finite. Statement (iii) holds by (ii) and Proposition 6.9. For
(ii), the ẽmax

i clearly satisfy the relations (4.10); we now verify that they satisfy the
braid relations (4.7) and omit the similar argument for (4.6). Let b ∈ Bgl(ν). Let
Uq(gJ ) ⊂ Uq(gl�) be the subalgebra isomorphic to Uq(gl3) associated to Dynkin
node subset J = {i, i + 1} ⊂ [� − 1]. The component B ′ of ResJ Bgl(ν) containing
b is isomorphic to a highest weight Uq(gl3)-crystal (see §4.2); let u ∈ B ′ be its high-
est weight element. By (i) and Remark 4.4, B ′ = F1F2F1{u} = F2F1F2{u}; hence
ẽmax
i ẽmax

i+1 ẽmax
i (b) = u = ẽmax

i+1 ẽmax
i ẽmax

i+1 (b).
For (iv), ẽmax

w0
(b) = uν holds by (i). Next, let U = P(T ) and CU be the Uq(gl�)-

crystal component containing inv(T ). By Proposition 6.10, the set inv(CU) = {S ∈
Tabloids�(μ) | P(S) = U} has a unique element fixed by Pi for all i ∈ [�−1]. Both U

and Pw0(T ) satisfy this property by Proposition 6.10 and (iii), hence P(T ) = Pw0(T ).
�
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6.6 The kat and kat′ operators and the automorphism τ

Recall from §4.6 that for σ ∈ � = {τ j | j ∈ [�]} and U ′
q(̂sl�)-seminormal crystals B ,

B ′, a σ -twist is a bijection B → B ′ taking i-edges to σ(i)-edges. For a word w, let
sort(w) denote its weakly increasing rearrangement. For m ∈ Z, let mod�(m) be the
unique i ∈ {1,2, . . . , �} such that i ≡ m mod �.

Proposition 6.12 ([71, Proposition 5.5]) There is a unique σ -twist Fσ : Bμ → Bμ for
any σ ∈ �. The τ−1-twist Fτ -1 has the following explicit description: first, for v =
v1 · · ·vs ∈ B1,s , Fτ -1(v1 · · ·vs) = sort

(

mod�(v1 − 1) · · ·mod�(vs − 1)
)

. Then for a
biword b ∈ Bμ with blocks bp, . . . , b1, bottom(Fτ -1(b)) = Fτ -1(bp) · · ·Fτ -1(b1) and
top(Fτ -1(b)) = top(b).

For example, with � = 4 and b = 233 1124 12223 ∈ B543, Fτ -1(b) =
122 1344 11124.

For b ∈ Bμ, with blocks denoted bp, . . . , b1 as usual, define

kat′(b) = Fτ -1(b
p · · ·b2) ∈ B(μ2,...,μp). (6.5)

In other words, kat′(b) is obtained from the biword b as follows: remove the right-
most block of b, subtract 1 from all bottom letters, turn any 0’s into �’s, sort each
block, and finally subtract 1 from all top letters to obtain a biword in B(μ2,...,μp).

For example, with � = 4 and b =
(

444 3333 22222 111111
233 1124 12223 111111

)

∈ B6543, kat′(b) =
(

333 2222 11111
122 1344 11124

)

∈ B543.

Recall from Definition 2.15 that for T ∈ Tabloids�, kat(T ) is defined as follows:
remove all 1’s from T and left justify rows, then shift rows up by one cycling the first
row to become the �-th row, and finally subtract 1 from all letters. The operators kat
and kat′ are conjugate under inv:

Proposition 6.13 For any T ∈ Tabloids�, inv(kat(T )) = kat′(inv(T )).

Proof For j > 1, let a1 · · ·am be the row indices of the letters j in T , in weakly
increasing order, which is also the block inv(T )j . Since kat rotates rows, these j ’s
(which become j − 1’s in kat(T )) appear in rows mod�(a1 − 1) · · ·mod�(am − 1) of
kat(T ). Thus

(inv(kat(T )))j−1 = sort
(

mod�(a1 − 1) · · ·mod�(am − 1)
) = (kat′(inv(T )))j−1,

where the second equality is by Proposition 6.12 (j − 1 appears on the right and not
j because of the final step in the computation of kat′). The result follows. �

6.7 Katabolism

Definition 6.14 Let w = (w1, . . . ,wp) ∈ (H�)
p . We say T ∈ Tabloids� is w-

katabolizable if all the 1’s of P
w−1

1
(T ) lie in its first row and kat(P

w−1
1

(T )) is

(w2, . . . ,wp)-katabolizable. For w the empty sequence, the only w-katabolizable
tabloid is the empty one.
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The streamlined version of katabolism from Definition 2.15 agrees with this one
in the setting of Theorem 2.18, as we now verify.

Proposition 6.15 Let μ ∈ Z
p

≥0 and n = (n1, . . . , np−1) ∈ [�]p−1 satisfy ni+1 ≥ ni − 1
for all i ∈ [p − 2]. A tableau U ∈ SSYT�(μ) is n-katabolizable in the sense of Defi-
nition 2.15 if and only if it is (id, s(n1), . . . , s(np−1))-katabolizable.

Proof We first verify the following claim: for any tabloid T such that its subtabloid
T [i,�−1] is a tableau, Pi · · ·P�−1(T ) can be obtained by column inserting T � into
T [i,�−1], i.e., Pi · · ·P�−1(T ) = Pi,�(T ) in the notation of Definition 2.13. To ease
notation, assume i = 1, as this easily implies the general case. We have P1,�(T ) =
P(T ), the unique tableau with reading word Knuth equivalent to that of T . Then
by Proposition 6.11 (iv), P1,�(T ) = P(T ) = Pw0(T ) = P1 · · ·P�−1Pw[1,�−1)

(T ) =
P1 · · ·P�−1(T ), where the last equality uses that T [�−1] is a tableau.

Let us now see that the tabloids produced in computing the two versions
of katabolism are the same: set U̇ = kat(U). Since U̇ [�−1] is a tableau, Pn1 · · ·
P�−1(U̇ ) = Pn1,�(U̇ ) by the claim. Since (Pn1,�(U̇ ))[n1,�] is a tableau, so is
Ü [n1−1,�−1], for Ü := kat(Pn1,�(U̇ )). As n2 ≥ n1 − 1, Ü [n2,�−1] is also a tableau.
Hence Pn2 · · ·P�−1(Ü) = Pn2,�(Ü ) again by the claim, and so on. �

Remark 6.16 With the assumption of Proposition 6.15, Pni,�(T ) = Ps(ni )
−1(T ) =

Pni
· · ·P�−1(T ) at every step of the katabolism algorithm, so in this sense the partial

insertion of Definition 6.8 generalizes that of Definition 2.13. We caution however,
that without this assumption, only Definition 6.14 should be used and not Defini-
tion 2.15.

Example 6.17 The following tabloid from Fig. 2 (§2.7) is (id, s2s1, s2s1)-kataboliza-
ble:

1 1 2

3

kat−−→ 2

1

P2−→ 1 2
P1−→

1 2 kat−−→
1

P2−→ 1
P1−→

1 kat−−→ ∅

Example 6.18 Let � = 7, μ = 4333332, and 	 be the root ideal in red ; �+ \ 	

is shown in blue . We have n(	) = (2,2,3,3,2,1). We can visualize s(	) =
(s(n(	)1), . . . , s(n(	)�−1)) partially overlaid on the root ideal, so that row i read
right to left is s(	)i .

The following computation shows the tableau U below to be n(	)-katabolizable
or equivalently (id, s(	))-katabolizable (see Proposition 6.15). So this gives one
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term qcharge(U)sshape(U) = q14s876 of the Schur expansion of H(	;μ;w0) from The-
orem 2.18.

U =

1 1 1 1 4 4 4 6

2 2 2 5 5 5 7

3 3 3 6 6 7 kat−−→

1 1 1 4 4 4 6

2 2 2 5 5 6

3 3 3 5

P2,7−−−→

1 1 1 4 4 4 6

2 2 2 5 5 5 6

3 3 3 kat−−→

1 1 1 4 4 4 5

2 2 2

3 3 3 5

P2,7−−−→

1 1 1 4 4 4 5

2 2 2 5

3 3 3 kat−−→

1 1 1 4

2 2 2

3 3 3 4

P3,7−−−→

1 1 1 4

2 2 2

3 3 3 4 kat−−→

1 1 1

2 2 2 3

3

P3,7−−−→

1 1 1

2 2 2 3

3

kat−−→

1 1 1 2

2

P2,7−−−→

1 1 1 2

2

kat−−→

1

1

P1,7−−−→

1 1

kat−−→ ∅.

In contrast, the tableau U ′ below is not n(	)-katabolizable since the katabolism al-
gorithm produces a tabloid with a 1 outside its first row just after an application of
Pn(	)i ,�.

U ′ =

1 1 1 1 4 4 4 7

2 2 2 5 5 5 6

3 3 3 6 6 7 kat−−→

1 1 1 4 4 4 5

2 2 2 5 5 6

3 3 3 6

P2,7−−−→

1 1 1 4 4 4 5

2 2 2 5 5 6

3 3 3 6 kat−−→

1 1 1 4 4 5

2 2 2 5

3 3 3 4

P2,7−−−→

1 1 1 4 4 5

2 2 2 4 5

3 3 3 kat−−→

1 1 1 3 4

2 2 2

3 3 4

P3,7−−−→

1 1 1 3 4

2 2 2

3 3 4 kat−−→

1 1 1

2 2 3

2 3

P3,7−−−→

1 1 1

2 2 3

2 3

kat−−→

1 1 2

1 2

P2,7−−−→

1 1 2

1 2

not katabolizable.

Remark 6.19 Let μ = (μ1 ≥ · · · ≥ μ� ≥ 0) and w = (w1, . . . ,w�) = (w1, s(	)) ∈
(H�)

� for a root ideal 	 ⊂ �+
� which is empty in rows ≥ r . Then T ∈ Tabloids�(μ)

is w-katabolizable ⇐⇒ T is (w1, . . . ,wr, id, . . . , id)-katabolizable ⇐⇒ for i ∈
[r − 1], the tabloid Ui has all its 1’s on the first row, and Ur is the superstandard
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tableau of shape and content (μr, . . . ,μ�), where Ui := P
w−1

i
◦ kat◦ · · · ◦ kat◦P

w−1
2

◦
kat◦P

w−1
1

(T ).

Theorem 6.20 For μ = (μ1 ≥ · · · ≥ μp ≥ 0) and w = (w1, . . . ,wp) ∈ (H�)
p , inv

gives a bijection

{

T ∈ Tabloids�(μ) | T is w-katabolizable
} inv−→ Bμ;w (6.6)

which takes shape to content.

Proof We must show that for any T ∈ Tabloids�(μ), T is w-katabolizable if and
only if inv(T ) ∈ Bμ;w. We prove this by induction on p + ∑

i length(wi). The
base case p = 1, w1 = id is clear. Now suppose w1 �= id . We can write Bμ;w =
Fw1(Bμ;(id,w2,...,wp)) and then

inv(T ) ∈ Bμ;w

⇐⇒ ẽmax
w−1

1
(inv(T )) ∈ Bμ;(id,w2,...,wp)

⇐⇒ inv
(

ẽmax
w−1

1

(

inv(T )
)) = P

w−1
1

(T ) is (id,w2, . . . ,wp)-katabolizable

⇐⇒ T is (w1,w2, . . . ,wp)-katabolizable,

where the second equivalence uses Proposition 6.9 and the inductive hypothesis.
Next suppose p > 1 and w1 = id . Note that Bμ;w = (Fτ B(μ2,...,μp);(w2,...,wp)) ⊗

bμ1 . Then inv(T ) ∈ Bμ;w if and only if (1) the rightmost block of inv(T ) is bμ1 = 1μ1

and (2) b′ ∈ Fτ B(μ2,...,μp);(w2,...,wp), where b′ is the biword obtained from inv(T ) by
removing this block of 1’s and subtracting 1 from its top letters. By (6.5), condition
(2) is equivalent to kat′(inv(T )) = Fτ -1(b′) ∈ B(μ2,...,μp);(w2,...,wp); by the inductive
hypothesis and Proposition 6.13, this is equivalent to kat(T ) = inv(kat′(inv(T ))) be-
ing (w2, . . . ,wp)-katabolizable. Hence, noting that (1) is equivalent to T having no
1’s outside its first row, we conclude that (1) and (2) are equivalent to T being w-
katabolizable. �

Theorem 6.21 Let μ and w = (w1, . . . ,wp) be as in Theorem 6.20, but now with the
additional assumption w1 = w0. Then the DARK crystal Bμ;w (regarded as a subset
of the Uq(gl�)-crystal Bμ) is a disjoint union of highest weight Uq(gl�)-crystals, with
decomposition given by

Bμ;w =
⊔

U∈SSYT�(μ)
U is (id,w2, . . . ,wp)-katabolizable

CU , where CU = {b ∈ Bμ | Q(b) = U}. (6.7)

Proof This follows from Theorems 6.4 and 6.20, using that, when w1 = w0, T ∈
Tabloids�(μ) is w-katabolizable if and only if P(T ) = Pw−1

0
(T ) is (id,w2, . . . ,wp)-

katabolizable. �
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Let us now also prove Theorem 2.17: apply Theorem 6.20 with w = (w0, s(	)),
then the “if and only if” statement in the proof of Theorem 6.21, and then Proposi-
tion 6.15.

7 Schur and key positivity

We connect charge to ̂sl�-weights and then combine the results of Sect. 6 with Corol-
lary 2.7 and Theorem 2.11 to give several character formulas for DARK and AGD
crystals; this yields our katabolism formula Theorem 2.18 upon combining with the
rotation theorem. Stronger key positivity results are then obtained via the restriction
Theorem 4.1.

7.1 Characters

Let Z[P ] denote the group ring of P with Z-basis {eλ}λ∈P . The ̂sl�-Demazure oper-
ators are linear operators Di on Z[P ] defined for each i ∈ I by

Di(f ) = f − e−αi · si(f )

1 − e−αi
,

where si acts on Z[P ] by si(e
λ) = esi (λ) (see §4.5). The action of � = {τ i | i ∈ [�]}

on P yields an action on Z[P ] given by σ(eλ) = eσ(λ) for σ ∈ �. Then τ and the
Di (i ∈ I ) satisfy the 0-Hecke relations (4.6)–(4.10) of ˜H� (it is well known that they
satisfy (4.6), (4.7) [42, Corollary 8.2.10] and the others are easily checked). Thus, just
as we discussed for Fw in §4.7, Dw makes sense for any w ∈ ˜H� and DwDw′ = Dww′
for all w,w′ ∈ ˜H�.

The character of a subset S of a Uq(̂sl�)-crystal is char(S) := ∑

b∈S ewt(b) ∈ Z[P ].
Kashiwara [35] gave a Demazure operator formula for the character of any Demazure
crystal, and Naoi extended this to encompass the action of �, as follows:

Corollary 7.1 ([71, Corollary 4.6]) For any w ∈ ˜H� and S ∈ D(̂sl�) (see Defini-
tion 2.5),

char(Fw(S)) = Dw(char(S)).

Set A = Z[q1/2�, q−1/2�]. Define the ring homomorphism ζ by

ζ : A[x±1
1 , . . . , x±1

� ] → Z[P ], xi 	→ e�i−�i−1 , q1/2� 	→ e−δ/2�. (7.1)

It is S�-equivariant (si acts on A[x±1
1 , . . . , x±1

� ] by permuting the variables) and has
kernel (x1 · · ·x� − 1). It is an extension of the map ζ from (2.8) to a larger domain.

We wish to recover an element of A[x±1
1 , . . . , x±1

� ] given its image under ζ ,
and this is possible if we know it to be homogenous of a given degree. Accord-
ingly, let Xm ⊂ A[x±1

1 , . . . , x±1
� ] denote the homogeneous component of x-degree

m. The restricted map ζ : Xm → Z[P ] is injective; let ζ(Xm) denote the image and

Zm : ζ(Xm)
∼=−→ Xm the inverse of this restriction of ζ (which is only a Z-linear map).
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Let μ be a partition and set m = |μ|. Suppose G is a Uq(̂sl�)-crystal such that
e−μ10 char(G) ∈ ζ(Xm) (by the proof of Theorem 7.5 below, this holds for G =
AGD(μ;w), our main case of interest). We define the x-character of G by

charx;μ(G) =
∑

g∈G

Zm(ewt(g)−μ10) ∈ Xm . (7.2)

In other words, if we find f ∈ Xm such that ζ(f ) = char(G)e−μ10 , then f =
charx;μ(G).

We will need two facts which relate πi and Di , and � and τ via ζ . First, it is
straightforward to show from the S�-equivariance of ζ that

ζ(πi(f )) = Di(ζ(f )) for i ∈ [� − 1]. (7.3)

Second, we claim that for any f ∈ Xm,

ζ(�(f )) = e−mδ/�τ (ζ(f )). (7.4)

Since ζ, τ , and � are ring homomorphisms, it is enough to prove ζ(�(xi)) =
e−δ/�τ (ζ(xi)). This is readily verified from the computation

τ(ζ(xi)) = τ(e�i−�i−1) = e�i+1−�i+δ(mi+1−mi−(mi−mi−1))

=
{

e�i+1−�i+δ/� if i ∈ [� − 1],
e�i+1−�i+δ/�−δ if i = �,

where mi := 〈d,i〉 and the last equality is by (4.4).

7.2 Charge and ̂sl�-weights

The pairing 〈d, ·〉 on ̂sl�-weights gives a statistic on Uq(̂sl�)-crystal elements, which
is not available for U ′

q(̂sl�)-seminormal crystals. Naoi [71] showed that the strict
embedding �μ matches this statistic to energy, thereby effectively allowing the full
information of ̂sl�-weights to be seen on the DARK side. Since energy on Bμ matches
charge on Tabloids�(μ) = inv(Bμ) [70], the charge and 〈d, ·〉 statistics agree.

Remark 7.2 It is actually more natural to connect charge and 〈d, ·〉 directly as they
both essentially measure the number of f̃0-edges required to construct the crystal
element, whereas energy is a more complicated statistic. In the interest of space, we
just give the idea: for b = f̃

a1
i1

· · · f̃ ak

ik
u ∈ Fi1 · · ·Fik {u} with ij ∈ I , 〈−d,wt(b) −

wt(u)〉 is the number of f̃0’s appearing in f̃
a1
i1

· · · f̃ ak

ik
. A similar statement can be

made for AGD crystals. Charge also has a similar flavor since f̃0-edges are related to
property (C3) below by the inv map—see [80, §4.2].

Charge is a statistic on words of partition content which is commonly defined by
a circular-reading procedure (see, e.g., [82, §3.6]). We prefer to take the following
theorem of Lascoux and Schützenberger as its definition.
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Theorem 7.3 ([57], see [82, Theorem 24]) Charge is the unique function from words
of partition content to Z≥0 satisfying

(C1) Charge of the empty word is 0.
(C2) For a word of partition content λ and of the form u = v1λ1 , charge(u) =

charge(v−), where v− is obtained from v by subtracting 1 from all its letters.
(C3) For a word of partition content and of the form u = vx with x �= 1 a letter,

charge(vx) = charge(xv) + 1.
(C4) Charge is constant on Knuth equivalence classes.

We will view charge as a statistic on tabloids by setting charge(T ) =
charge(T � · · ·T 2T 1) for any T ∈ Tabloids�, where the concatenation T � · · ·T 2T 1

is the row reading word of T .

Corollary 7.4 Let μ be a partition and �μ : Bμ ⊗ B(μ10) ↪→ B(μpp) ⊗ · · · ⊗
B(μ11) the strict embedding of U ′

q(̂sl�)-seminormal crystals from Theorem 2.11.
For any b ∈ Bμ,

wt
(

�μ(b ⊗ uμ10)
) = μ10 + aff(wt(b)) − δ

(

charge(inv(b)) + n�(μ)
)

, (7.5)

ζ
(

qcharge(inv(b))+n�(μ)xcontent(b)
) = e−μ10+wt(�μ(b⊗uμ10 )), (7.6)

where n�(μ) := |μ|(�−1)−2n(μ)
2�

, a variant of the well-known statistic n(μ) :=
∑p

i=1(i − 1)μi .

Proof As wt(b) ∈ Pcl is given by (6.1), ζ(xcontent(b)) = eaff wt(b); hence (7.5) im-
plies (7.6).

We now prove (7.5). Set mi = 〈d,i〉 for i ∈ I . Since �μ commutes with the
Pcl-valued weight functions, cl(wt�μ(b ⊗ uμ10)) = cl(μ10) + wt(b). Thus (7.5)
is equivalent to

μ1m0 + 〈−d,wt�μ(b ⊗ uμ10)〉 − charge(inv(b)) = n�(μ). (7.7)

By [71, Theorem 7.1], 〈−d,wt�μ(b ⊗ uμ10)〉 = D(b) + C, where D(b) is the
energy of b and C is a constant that depends on μ and � but not b. Further,
D(b) = charge(inv(b)) by [70] (see also [81, Proposition 4.25]). Hence, to pin down
the constant, we need only verify (7.7) for a single b ∈ Bμ. We choose bhw :=
Fτ

( · · ·Fτ (Fτ bμp ⊗ bμp−1) · · · ⊗ bμ2

) ⊗ bμ1 , the element satisfying �μ(uhw) =
bhw ⊗ uμ10 for uhw := uμpp ⊗ · · · ⊗ uμ11

, as can be seen from the proof of
[9, Theorem 3.7]. We compute

μ1m0 + 〈−d,wt(uhw)〉 − charge(inv(bhw))

= μ1m0 −
p

∑

i=1

μimi − charge(inv(bhw))

= −
p

∑

i=1

μi(mi − mi−1) − charge(inv(bhw))
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= −
p

∑

i=1

μi
2 mod�(i)−1−�

2�
− ∑p

i=1� i−1
�

�μi

= |μ|(�−1)
2�

− 1
�

∑p

i=1(i − 1)μi = n�(μ),

where {mod�(i)} = (i + �Z) ∩ [�]. The third equality is by (4.4) and a direct com-
putation of the charge of inv(bhw), the tabloid of content μ with all letters i in row
mod�(i). �

7.3 A Schur positive formula for Catalan functions: proof of Theorem 2.18

Theorem 7.5 Let w = (w1,w2, . . . ,wp) ∈ (H�)
p and μ = (μ1 ≥ · · · ≥ μp ≥ 0) be

a partition; set μi = μi − μi+1, where μp+1 := 0. The x-character of the crystal
AGD(μ;w) agrees with the charge weighted character of the DARK crystal Bμ;w
and these have an explicit description in terms of πi and �:

πw1 x
μ1
1 �πw2 x

μ2
1 �πw3 x

μ3
1 · · ·�πwp x

μp

1 = q−n�(μ) charx;μ(AGD(μ;w)) (7.8)

=
∑

b∈Bμ;w
qcharge(inv(b))xcontent(b) =

∑

T ∈ Tabloids�(μ)
T is w-katabolizable

qcharge(T )xshape(T ) , (7.9)

where n�(μ) = |μ|(�−1)
2�

− 1
�

∑p

i=1(i − 1)μi as in Corollary 7.4.

Proof The first equality of (7.9) follows from Theorem 2.11 and (7.6), and the second
holds by Theorem 6.20. We will establish (7.8) by proving e−μ10 char(AGD(μ;
w)) = e−δ n�(μ)ζ(πw1 x

μ1
1 �πw2 x

μ2
1 · · ·�πwp x

μp

1 ). By Corollaries 2.7 and 7.1,

char(AGD(μ;w)) = Dw1

(

eμ11 · τDw2

(

eμ21 · τDw3 · · · τDwp(eμp1)
))

. (7.10)

(A similar character formula is proved in [71, §7] with this argument.) Using the
operator identities e1τ = τe0 and e0Di = Die

0 for i ∈ [� − 1], we compute

e−μ10 char(AGD(μ;w))

= e−μ10Dw1

(

eμ11 · τDw2

(

eμ21 · · · τDwp(eμp1)
))

= Dw1

(

eμ1(1−0)−μ21 · τDw2

(

eμ21 · · · τDwp(eμp1)
))

= Dw1

(

eμ1(1−0) · τDw2

(

e−μ20eμ21 · · · τDwp(eμp1)
))

= Dw1

(

eμ1(1−0) · τDw2

(

eμ2(1−0)−μ31 · · · τDwp(eμp1)
))

= · · ·
= Dw1

(

eμ1(1−0) · τDw2

(

eμ2(1−0) · · · τDwp(eμp(1−0))
))

= e−δ n�(μ)ζ
(

πw1 x
μ1
1 �πw2 x

μ2
1 · · ·�πwp x

μp

1

)

.
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The last equality follows from (7.3) and (7.4); in particular, the constant n�(μ) ap-
pears since, as we pull ζ to the right through the operators, we pick up a factor

e− δ
�

∑p
i=1(i−1)μi for converting �’s to τ ’s and a factor eδ|μ| �−1

2� for converting mul-

tiplication by x1 to multiplication by e1−0 since ζ(x1) = e�1 = eδ �−1
2� e1−0 by

(4.4). �

Corollary 7.6 In the case w1 = w0 (the longest element in H�), the characters in
Theorem 7.5 have the following Schur positive expansion:

πw1 x
μ1
1 �πw2 x

μ2
1 �πw3 x

μ3
1 · · ·�πwp x

μp

1 = q−n�(μ) charx;μ(AGD(μ;w))

=
∑

b∈Bμ;w
qcharge(inv(b))xcontent(b) =

∑

U∈SSYT�(μ)
U is (id,w2, . . . ,wp)-katabolizable

qcharge(U)sshape(U)(x).

Proof Combine Theorems 6.21 and 7.5, noting that each component CU of the
Uq(gl�)-crystal Bμ;w contributes qcharge(U) times

∑

b∈CU
xcontent(b) =

∑

b∈Bgl(shape(U)) xwt(b) = sshape(U)(x) to the left side of (7.9); this last (well-known)
equality follows from Proposition 4.8. �

Combining Corollary 7.6, Theorem 2.3, and Proposition 6.15 yields Theo-
rem 2.18. This proves the katabolism conjecture of Shimozono-Weyman [82, Con-
jecture 27] upon verifying that our katabolism Definition 2.15 agrees with that of [82]
in the parabolic case:

Proposition 7.7 When 	 is the parabolic root ideal �(η) for some composition η of
� (see (2.14)), a tableau T of partition content μ is n(	)-katabolizable if and only if
it is R(η,μ)-katabolizable in the sense of [82, §3.7].

Proof Checking whether T is n(	)-katabolizable begins with the computation U =
P1,� ◦ kat · · ·Pη1−1,� ◦ kat◦Pη1,� ◦ kat(T ). The key observation is that each row
T 1, T 2, . . . , T η1 of T is never touched by the column insertions until it is rotated
to become the new �-th row. Hence the computation of U amounts to the following:
check whether T 1 contains μ1 1’s, remove these 1’s, then column insert the result into
T [η1+1,�] to obtain a new tableau V , then check whether T 2 contains μ2 2’s, remove
these 2’s, column insert the result into V , and so on. These checks are equivalent to
checking whether T contains the superstandard tableau Z of shape (μ1, . . . ,μη1).
Thus, T is not rejected in this computation if and only if T contains Z, and if so,
U is obtained by column inserting T [η1] \ Z into T [η1+1,�] one row at a time, which
is the same as the rectification of the skew tableau formed by placing T [η1] \ Z and
T [η1+1,�] catty-corner. This is exactly the first step in the katabolism algorithm of
[82]. Continuing in this way with η2, η3, . . . gives the result. �

7.4 Key positivity

We generalize the results above to key positive formulas for characters of AGD and
DARK crystals and tame nonsymmetric Catalan functions. To do this, we address the
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algorithmic problem of obtaining explicit key expansions for characters of subsets
which we know to be disjoint unions of Uq(gl�)-Demazure crystals; some of this
material, in particular Proposition 7.9, is similar in spirit to [5, §4].

Let B be a Uq(gl�)-crystal. The weight function takes values in Z
� and we write

wt(b) = (wt1(b), . . . ,wt�(b)) for the entries of wt(b). The crystal reflection operators
Si : B → B , i ∈ [� − 1], are given by

Si(b) =
{

f̃
wti (b)−wti+1(b)

i (b) if wti (b) ≥ wti+1(b),

ẽ
−wti (b)+wti+1(b)

i (b) if wti (b) ≤ wti+1(b).

Note that si(wt(b)) = wt(Si(b)). The operators Si were first studied by Lascoux and
Schützenberger [57], and later generalized by Kashiwara [36]. They satisfy the braid
relations and therefore generate an action of S� on B . For 1 ≤ i < j ≤ �, let sij =
sisi+1 · · · sj−2sj−1sj−2 · · · si ∈ S� denote the transposition swapping i and j , and
Sij = SiSi+1 · · ·Sj−2Sj−1Sj−2 · · ·Si the corresponding reflection operator.

We define Bruhat order on Z
� by α < β if and only if α+ = β+ and p(α) < p(β)

in Bruhat order on S�, where α+ denotes the weakly decreasing rearrangement of α

and p(α) ∈ S� the shortest element such that p(α)α+ = α.

Proposition 7.8 The relation β > α is a covering relation in Bruhat order on Z
� if and

only if there exist 1 ≤ i < k ≤ � such that α = si k β with αi > αk , and αj /∈ [αi,αk]
for all j ∈ [i + 1, k − 1].

Proof For permutations α and β , this is a well-known combinatorial description of
the Bruhat order covering relations of S� (see, e.g., [7, Lemma 2.1.4]). The general
case can be deduced from this one by a standardization argument and the fact that any
covering relation in the Bruhat order poset restricted to minimal coset representatives
is actually a covering relation in the full Bruhat poset (by, e.g., [7, Theorem 2.5.5]).

�

For example, β = 32812852 > 52812832 = α is a covering relation and α = s17β .
The next proposition is motivated by the following algorithmic problem: suppose

we have access to the elements of a Uq(gl�)-Demazure crystal G and want to deter-
mine the γ ∈ Z

� for which G = BD(γ ) (see §4.8 for the definition of BD(γ )).

Proposition 7.9 Let G be a Uq(gl�)-Demazure crystal. There is a unique element
ulw ∈ G such that, setting γ = wt(ulw), (1) γ + is the highest weight of G, and (2)
Sij (ulw) /∈ G for all covering relations γ < sij γ in Bruhat order on Z

�. Moreover,
G = BD(γ ).

Proof Consider a highest weight Uq(gl�)-crystal Bgl(ν). For each weight α in the
orbit S� · ν, there is a unique element uα ∈ Bgl(ν) of weight α; it belongs to BD(β),
β ∈ S� · ν, if and only if α ≤ β in Bruhat order on Z

�. It follows that if G = BD(γ̃ ),
then uγ̃ ∈ Bgl(γ̃ +) is the unique element ulw ∈ G satisfying (1) and (2), and G =
BD(wt(ulw)). �
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Definition 7.10 A tabloid T is row-frank if shape(T ) is a rearrangement of
shape(P (T )). Let RowFrank�(μ) = {T ∈ Tabloids�(μ) | T is row-frank}. This is also
the set of inverses of the extremal weight elements of the crystal Bμ.

Remark 7.11 Row-frank tabloids are essentially in bijection with row-frank words
in the sense of [58]: a word w is defined to be row-frank in [58] if shape(P (w)) is a
rearrangement of (|w1|, . . . , |wk|), where w = w1 · · ·wk is the factorization of w into
weakly increasing contiguous subwords of maximal length. The map from row-frank
tabloids with � rows to words given by T 	→ T � · · ·T 1 has image the row-frank words
having a factorization w = w1 · · ·wk as above with k ≤ �, and the fiber of such a w

consists of all tabloids with rows w1, . . . , wk appearing in that order from bottom to
top and � − k empty rows interspersed arbitrarily between them.

For a tabloid T ∈ Tabloids�(μ) and i ∈ [� − 1], define S′
i := inv◦Si ◦ inv(T )

and S′
ij = inv◦Sij ◦ inv(T ). Since shape(S′

i (T )) = si(shape(T )) for any T ∈
RowFrank�(μ), the S′

i and S′
ij preserve the set RowFrank�(μ). This also gives a

simple description of S′
ij (T ) for T ∈ RowFrank�(μ): S′

ij (T ) is the unique row-frank
tabloid Knuth equivalent to T with shape obtained from shape(T ) by exchanging the
i-th and j -th parts.

Definition 7.12 A tabloid T ∈ RowFrank�(μ) is extreme w-katabolizable if T is w-
katabolizable and S′

ij (T ) is not w-katabolizable for all i < j such that shape(T ) <

sij (shape(T )) is a covering relation in Bruhat order on Z
�.

Theorem 7.13 The DARK crystal Bμ;w is isomorphic to a disjoint union of Uq(gl�)-
Demazure crystals, with decomposition given by

Bμ;w =
⊔

T ∈RowFrank�(μ)
T is extreme w-katabolizable

C̃T ,

where C̃T = {b ∈ Bμ;w | Q(b) = P(T )} ∼= BD(shape(T )).

Proof By Corollary 2.7 and Theorem 4.1, the Uq(sl�)-restriction of AGD(μ;w) is
isomorphic to a disjoint union of Uq(sl�)-Demazure crystals. So the same is true
of Bμ;w ⊗ uμ10 (by Theorem 2.11) and therefore Bμ;w as well. Hence by Re-
mark 4.2, Bμ;w is isomorphic to a disjoint union of Uq(gl�)-Demazure crystals;
this decomposition can be written as Bμ;w = ⊔

CU ∩ Bμ;w, where CU ranges over
the Uq(gl�)-components of Fw0Bμ;w (see Theorem 6.21). Then by Proposition 7.9
and Theorem 6.20, each set inv(CU ∩ Bμ;w) contains a unique T ∈ RowFrank�(μ)

which is extreme w-katabolizable, and CU ∩ Bμ;w = {b ∈ Bμ;w | Q(b) = U} = C̃T
∼=

BD(shape(T )). �
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Corollary 7.14 The characters in Theorem 7.5 are key positive with key expansion

πw1 x
μ1
1 �πw2 x

μ2
1 �πw3 x

μ3
1 · · ·�πwp x

μp

1 = q−n�(μ) charx;μ(AGD(μ;w))

=
∑

b∈Bμ;w
qcharge(inv(b))xcontent(b) =

∑

T ∈ RowFrank�(μ)
T is extreme w-katabolizable

qcharge(T )κshape(T )(x).

Proof Combine Theorems 7.13 and 7.5; each Uq(gl�)-Demazure crystal C̃T con-
tributes

∑

b∈C̃T
qcharge(T )xcontent(b) = ∑

b∈BD(shape(T )) q
charge(T )xwt(b) =

qcharge(T )κshape(T )(x) to the left side of (7.9), where we have used Proposition 4.8
for the second equality. �

Combining Corollary 7.14 and Theorem 2.3 yields a positive combinatorial for-
mula for the key expansions of tame nonsymmetric Catalan functions, generalizing
Theorem 2.18:

Corollary 7.15 Let (	,μ,w) be a tame labeled root ideal of length � with partition
μ. Set w = (w, s(	)) ∈ (H�)

� with s(	) as in (2.9). The associated nonsymmetric
Catalan function has the key positive expansion

H(	;μ;w)(x;q) =
∑

T ∈ RowFrank�(μ)
T is extreme w-katabolizable

qcharge(T )κshape(T )(x) (7.11)

and is the character of a AGD crystal and DARK crystal:

H(	;μ;w)(x;q) = q−n�(μ) charx;μ(AGD(μ;w))

=
∑

b∈Bμ;w
qcharge(inv(b))xcontent(b). (7.12)

See the last three lines of Fig. 1 (§2.7). The bold tabloids in Fig. 2 are the ex-
treme v-katabolizable tabloids, for v = (s1s2s1, s2s1, s2s1) (left), v = (s2, s2s1, s2s1)

(right); reading off their shapes and charges yields the key expansions in the fourth
and fifth columns of Fig. 1.

Example 7.16 Let � = 5, μ = 22211, and 	 be the root ideal defined by n(	) =
(2,2,2,2). Let w = s3s4s3. Then w = (w, s(	)) = (s3s4s3, s4s3s2, s4s3s2, s4s3s2,

s4s3s2). Figure 5 (right) depicts the set of T in RowFrank�(μ) such that T is ex-
treme w-katabolizable. By (7.11), reading off their shapes and charges yields the key
positive expansion

H(	;μ;w) = κ22112 + qκ32111 + qκ22013 + q2κ33011 + q2κ32012 + q2κ23003

+ q2κ42011 + q3κ42011 + q3κ43001 + q3κ42002 + q3κ33002 + q4κ43001

+ q4κ52001 + q5κ53000.
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2 2 4

1 1 3 3 5
2 2 4

Fig. 5 The tabloids in RowFrank5(22211) which are extreme w-katabolizable (right) and their insertion
tableaux (left), as explained in Example 7.16

On the left of Fig. 5 are the inverses of the Uq(gl�)-highest weight elements of
Bμ;w obtained by computing P(T ) of the tabloids on the right. This is also the
set of U ∈ SSYT�(μ) which are (id, s(	))-katabolizable (= n(	)-katabolizable),
providing an example of Theorem 2.18 and Corollary 7.6 as well: reading off their
shapes and charges yields the following Schur positive expression for H(	;μ;w0) =
∑

b∈Bμ;(w0,s(	)) qcharge(inv(b))xcontent(b).

H(	;μ;w0) = s22211 + qs32111 + qs3122 + q2s3311 + q2s3221 + q2s332

+ q2s4211 + q3s4211 + q3s431 + q3s422 + q3s332 + q4s431

+ q4s521 + q5s53.

Let us check that the tabloid T =
1 1 3 4

2 2

3

5

is extreme w-katabolizable. First, the

following computation shows it is w-katabolizable:
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1 1 3 4

2 2

3

5

Ps3s4s3−−−−→
1 1 3 4

2 2

3

5

kat−→
1 1

2

4

2 3

Ps2s3s4−−−−→
1 1

2 2 4

3
kat−→

1 1 3

2

Ps2s3s4−−−−→
1 1 3

2 kat−→
1

2

Ps2s3s4−−−−→
1

2 kat−→
1

Ps2s3s4−−−−→
1

kat−→∅.

We must also show that S′
ij (T ) is not w-katabolizable for all covering relations

shape(T ) < sij (shape(T )). We have shape(T ) = 42011, and there are three covering
relations corresponding to (i, j) = (1,2), (2,3), and (2,4).

S′
12(T ) =

1 1

2 2 3 4

3

5

Ps3s4s3−−−−→
1 1

2 2 3 4

3

5

kat−→
1 1 2 3

2

4

Ps2s3s4−−−−→
1 1 2 3

2

4

kat−→
1

3

1 2

Ps2s3s4−−−−→
1

1 2 3
not katabolizable,

S′
23(T ) =

1 1 3 4

2 2

3

5

Ps3s4s3−−−−→
1 1 3 4

2 2

3

5

kat−→ 1 1

2

4

2 3

Ps2s3s4−−−−→ 1 1 4

2 2

3

not katabolizable,

S′
24(T ) =

1 1 3 4

2

2 3

5

Ps3s4s3−−−−→
1 1 3 4

2

2 3

5

kat−→
1

1 2

4

2 3

Ps2s3s4−−−−→
1

1 2 4

2 3 not katabolizable.

8 Consequences for t = 0 nonsymmetric Macdonald polynomials

We show that the t = 0 specialized nonsymmetric Macdonald polynomials are char-
acters of AGD crystals and equal to certain nonsymmetric Catalan functions. We
thus obtain a key positive formula for these polynomials as a special case of Corol-
lary 7.14.

The Knop-Sahi recurrence [41, 76] determines the nonsymmetric Macdonald
polynomials Eα(x;q, t) = Eα(x1, . . . , x�;q, t) for all weak compositions α ∈ Z

�
≥0.

At t = 0, the recurrence becomes

E(0,...,0)(x;q,0) = 1, (8.1)

Esiα(x;q,0) = πi(Eα(x;q,0)), (8.2)

E(α�+1,α1,...,α�−1)(x;q,0) = qα�x1Eα(x2, . . . , x�, x1/q;q,0), (8.3)

which determines the specializations Eα(x;q,0). We have adopted the notation of
[27, Equations (40)–(42)], except that in (8.2) we have used the action of H� on Z

�
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from (4.11) to put what are often two equations into one. For this paper, it is more
convenient to work with a renormalization of the Eα(x;q,0), denoted Ẽα = Ẽα(x;q)

and defined by

Ẽ(0,...,0) = 1, (8.4)

Ẽsiα = πi(Ẽα), (8.5)

Ẽ(α�+1,α1,...,α�−1) = x1Ẽα(x2, . . . , x�, qx1) = x1�(Ẽα). (8.6)

The two versions are related by Eα(x;q,0) = q
∑

i

(αi
2

)

Ẽα(x;q−1); note that the expo-
nent of q here is also n(η) = ∑

i (i − 1)ηi for η = (α+)′ the conjugate partition of α+
(recall that α+ denotes the weakly decreasing rearrangement of α). In addition, our
notation Eα(x;q, t) agrees with that of [5, 25, 27], while the version used by Sander-
son [77], call it ES

α , is related by ES
α(x1, . . . , x�;q, t) = E(α�,...,α1)(x�, . . . , x1;q, t).

We suggest that on a first reading of this section, the reader focus on the case
|α| = �, as it captures the main ideas but with fewer technical details.

8.1 Sanderson’s theorem and key positivity

Recall from §4.5 that ˜S� ⊂ GL(h∗). Set y1 = τs�−1 · · · s1 and yi = si−1 · · · s1y1s1 · · ·
si−1 for i = 2, . . . , �. These elements commute pairwise and satisfy only one ad-
ditional relation y1 · · ·y� = id ; hence they generate a subgroup of translations T ,

with T
∼=−→ Z

�/Z(1, . . . ,1)
∼=−→ ⊕

i∈I Z�i via yi 	→ εi 	→ �i − �i−1. Write yλ ∈ T

for the element mapping to λ ∈ ⊕

i∈I Z�i , so that y�i = y1 · · ·yi . These sat-
isfy yλyμ = yλ+μ and wyλw−1 = yw(λ) for λ,μ ∈ ⊕

i∈I Z�i and w ∈ S�. Hence
˜S� = S� � T . One can check that yλ ∈ GL(h∗) is the same as the tλ defined in [33,
Equation 6.5.2], which is one way to verify the above facts about the yi and T and
matches our notation with [33, 71].

Lemma 8.1 View a translation yλ ∈ ˜S� as an element of the 0-Hecke monoid ˜H� by
taking any reduced expression for it. Let d, d ′ ∈ [�]. The following hold in ˜H�:

(i) si commutes with τs(d) for d < i ≤ � − 1.
(ii) (τs(d))d is a reduced expression for y�d in ˜S�, and thus y�d = (τs(d))d in ˜H�.

(iii) For weights λ,μ ∈ ∑

i∈I Z≥0�i , yλyμ = yλ+μ = yμyλ.
(iv) (τs(d))d commutes with (τs(d ′))d ′

.

Proof For (i), we compute using the relations (4.6)–(4.8):

si (τs�−1 · · · sd) = τsi−1s�−1 · · · sd = τs�−1 · · · si+1si−1sisi−1si−2 · · · sd

= τs�−1 · · · si+1sisi−1sisi−2 · · · sd = (τs�−1 · · · sd)si .

Statement (ii) can be proved using the description of ˜S� as certain permutations of Z;
see, for instance, (15), (18), (19), and Proposition 4.1 of [8]. For λ,μ ∈ ∑

i∈I Z≥0�i ,
length(yλ) + length(yμ) = length(yλ+μ) (see, e.g., [27, §4.1]), which gives (iii).
Statement (iv) is immediate from (ii) and (iii). �
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We will need the observation that affine generalized Demazure crystals
AGD(μ;w) for constant μ are just affine Demazure crystals.

Proposition 8.2 Suppose μ = (am,0p−m) for a ∈ Z>0 and w = (w1,w2, . . . ,wp) ∈
(H�)

p . Then AGD(μ;w) = Fw1τw2···τwm{ua1} = Bw1τw2···τwm(a1) ⊂ B(am).
Further, Bw1τw2···τwm(a1) = Bw1τw2···τwmτw(a0) for any w ∈H�.

Proof As μi = 0 for i �= m, the first statement is immediate from the definition of
AGD(μ;w) in (2.7). The second follows from the fact that f̃i ua0 = 0 for i ∈ [�-1].

�

Recall from (7.2) the definition of the x-character of a crystal. The next re-
sult is partially a restatement of Sanderson’s theorem [77] (specifically, Ẽα =
q

p(p−�)
2� charx;μ(Bv(0))). However, we now have the advantage of seeing it as part

of the more general Theorem 7.5 and can make it combinatorially explicit in a way
which encompasses earlier work of Lascoux [53] and Shimozono-Weyman [82] on
cocharge Kostka-Foulkes polynomials.

Theorem 8.3 The t = 0 nonsymmetric Macdonald polynomials are x-characters of
affine Demazure crystals: let α ∈ Z

�
≥0 and η = (η1, . . . , ηk) = (α+)′ be the conjugate

of α+. Let z ∈ H� be any element satisfying zα+ = α. Set p = |α| and μ = 1p . Then

Ẽα(x;q) = πz (x1�πs(ηk))
ηk · · · (x1�πs(η1))

η1 · 1 (8.7)

= q
p(p−�)

2� charx;μ(Bv(0)) =
∑

b∈Bμ;w
qcharge(inv(b))xcontent(b), (8.8)

where v = z(τs(ηk))
ηk (τs(ηk−1))

ηk−1 · · · (τs(η1))
η1 = zy�η1+···+�ηk ∈ ˜H�, and

w = (

z, s(ηk), . . . , s(ηk)
︸ ︷︷ ︸

ηk times

, . . . , s(η2), . . . , s(η2)
︸ ︷︷ ︸

η2 times

, s(η1), . . . , s(η1)
︸ ︷︷ ︸

η1−1 times

)

.

Proof First, using (8.5), we obtain Ẽα = πzẼα+ . Let β = α+ − εηk
be the re-

sult of subtracting 1 from the rightmost occurrence of the largest part of α+; by
(8.5)–(8.6), Ẽα+ = x1�πs(d)(Ẽβ) for any d such that βd = (α+)1 −1, which is equiv-
alent to ηk ≤ d ≤ ηk−1. The same argument shows that Ẽβ = x1�πs(d ′)(Ẽβ−εηk−1)

for any ηk − 1 ≤ d ′ ≤ ηk−1. Repeating this ηk − 2 more times, we obtain Ẽα+ =
(x1�πs(ηk))

ηk (Ẽα+−(ε1+···+εηk
)). Continuing in this way we obtain (8.7).

By Theorem 7.5, the right side of (8.7) is equal to
∑

b∈Bμ;w qcharge(inv(b)) ×
xcontent(b) = q

p(p−�)
2� charx;μ(AGD(μ;w)), and this is also equal to

q
p(p−�)

2� charx;μ(Bv(0)) by Proposition 8.2. Finally, the two descriptions of v are
equal by Lemma 8.1 (ii)–(iii). �
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Combining (8.7) with Corollary 7.14 we obtain

Corollary 8.4 Maintain the notation of Theorem 8.3. The t = 0 nonsymmetric Mac-
donald polynomials are key positive with key expansion given by

q
∑

i

(αi
2

)

Eα(x;q−1,0) = Ẽα(x;q)

=
∑

T ∈ RowFrank�(μ)
T is extreme w-katabolizable

qcharge(T )κshape(T )(x). (8.9)

Example 8.5 We illustrate Corollary 8.4 for � = 4, α = 0302. We have α+ = 3200,
η = (α+)′ = 221, μ = 15, and w = (s1s3s2, s3s2s1, s3s2, s3s2, s3s2).

T ∈ RowFrank�(μ)

T is extreme w-katabolizable

1

2

3

4 5

1

2 4

3 5

1

2 4

3

5

1 3

4

2 5

1 4 5

2

3

1 3 5

2 4

Ẽ0302 = qκ1112 + q2κ0122 + q2κ1211 + q3κ0212 + q3κ0311 + q4κ0302

Here are the corresponding inverses of highest weight elements obtained by com-
puting P(T ) of these tabloids. This is also the subset of tableaux in the Las-
coux/Shimozono-Weyman formula for ωH̃η with at most � rows (see Theorems 8.7
and 8.15). Taking

∑

U qcharge(U)sshape(U) over these tableaux gives the symmetriza-
tion of Ẽ0302.

U∈SYT|α|
�

U is n(�(η))-katabolizable

1 5

2

3

4

1 4

2 5

3

1 4

2

3

5

1 3

2 4

5

1 4 5

2

3

1 3 5

2 4

πw0 Ẽ0302 = Ẽ0023 = qs2111 + q2s221 + q2s2111 + q3s221 + q3s311 + q4s32

Remark 8.6 Another key positive formula for the t = 0 nonsymmetric Macdonald
polynomials was given by Assaf and Gonzalez in [5, 6]. Their approach also uses
crystals but their indexing combinatorial objects are rather different—compare Ex-
ample 8.5 with [5, Fig. 31]. An interesting problem is to find an explicit bijection
between the two objects.

Let us now explain how Corollary 8.4 is a nonsymmetric generalization of Las-
coux’s formula for the cocharge Kostka-Foulkes polynomials K̃λμ(q). For partition
μ, let H̃μ(x1, x2, . . . ;q) = ∑

λ K̃λμ(q)sλ be the cocharge variant modified Hall-
Littlewood polynomial; it equals qn(μ)Q′

μ(x1, x2, . . . ;q−1) in the notation of [67, p.
234], specializes to the homogeneous symmetric function hμ at q = 1, and the coeffi-
cient of sμ is qn(μ). Lascoux [53] gave a formula for H̃μ in terms of a function kattype
from standard tableaux to partitions (see [82, §4.1]); this version of katabolism was
shown [82, §4] to agree with a special case of the Shimozono-Weyman version de-
spite its somewhat different looking definition. We assemble these results as follows:
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Theorem 8.7 (Shimozono-Weyman [82, §4], Lascoux [53]) Let η be a partition of �.
Recall that �(η) is the parabolic root ideal with blocks given by η (see (2.14)). Then

ωH̃η =
∑

U

qcharge(U)sshape(U)(x) = H(�(η);1�;w0)(x;q), (8.10)

where the sum is over the set of standard tableaux U which are R(η,1�)-katabolizable
in the sense of [82, §3.7], and, moreover, this set equals {U | kattype(Ut ) � η}, where
Ut denotes the transpose of U , and � denotes dominance order on partitions. Here,
x = (x1, . . . , x�) and ω denotes the Z[q]-algebra homomorphism from symmetric
functions in x1, x2, . . . to Z[q][x]S� which satisfies ω(sλ(x1, x2, . . . )) = sλ′(x).

We have not defined either notion of katabolism appearing here, but by Proposi-
tion 7.7, R(η,1�)-katabolizability agrees with n(�(η))-katabolizability of standard
tableaux.

For � ≥ |η|, define ��(η) ⊂ �+
� to be the root ideal �(η)�{(i, j) ∈ �+

� | j > |η|}.
This is just a convenient way to extend �(η) to length �—see Proposition 5.5 (v).
Our key positive formula (8.9) “symmetrizes” to the Lascoux/Shimozono-Weyman
formula (8.10) in the following sense:

Theorem 8.8 Maintain the notation of Theorem 8.3; also set m = p = |α| and assume
m ≤ �. Let SYTm = SSYT�(μ), the standard Young tableaux with m boxes. Then

πw0Ẽα(x;q) = H(��(η);μ;w0)(x;q)

=
∑

U∈SYTm

U is n(��(η))-katabolizable

qcharge(U)sshape(U)(x). (8.11)

Moreover, Fw0Bμ;w = Bμ;(w0,s(��(η))) as Uq(gl�)-crystals, and so

{P(T ) | T ∈ RowFrank�(μ) is extreme w-katabolizable} = (8.12)

{U ∈ SYTm | U is n(��(η))-katabolizable} = {U ∈ SYTm | kattype(Ut ) � η}.
The proof is given in §8.3, along with a similar result for m > �.

8.2 Connection to nonsymmetric Catalan functions

For α ∈ Z
�
≥0, define p̃(α) ∈H� to be the longest element such that p̃(α)α+ = α. This

choice of z in Theorem 8.3 will be important below.
We now show that the Ẽα can be realized as certain tame nonsymmetric Catalan

functions. Note that this is not immediate from Theorem 8.3 as typically ηk + 1 does
not lie in the right descent set of p̃(α) and so (8.7) does not match a tame nonsymmet-
ric Catalan function via Theorem 2.3. However, there is a way to rewrite (8.7) which
does the job. This adds to the list of interesting functions which are encompassed
in the nonsymmetric Catalan functions, proves that the Ẽα are Euler characteristics
of vector bundles on Schubert varieties (see Theorem 2.20), and is important in the
proofs of Theorems 8.8 and 8.15.
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Definition 8.9 For a partition η = (η1, . . . , ηk) of m, let �′(η) ⊂ �+
m be the root ideal

determined by

n(�′(η)) = (

(η1)
η2, η1, η1 − 1, η1 − 2, . . . , η2 + 1, (η2)

η3 , η2, η2 − 1, η2 − 2, . . . ,

η3 + 1, . . . , (ηk−1)
ηk , ηk−1, ηk−1 − 1, . . . , ηk + 1, ηk, ηk − 1, . . . ,2

)

,

where (η1)
η2 indicates that η1 appears in the list η2 times, and similarly for (η2)

η3 ,
etc. Informally, �′(η) is obtained from the parabolic root ideal �(η) by removing
trapezoids between consecutive blocks. For � ≥ m = |η|, we also define �′

�(η) ⊂ �+
�

to be the root ideal �′(η) � {(i, j) ∈ �+
� | j > |η|}.

Example 8.10 For η = 732, we have depicted �′(η) in red , �+ \�(η) in light blue
, and �(η) \ �′(η) in blue (the two trapezoidal regions).

�′(η) =

Theorem 8.11 Let α ∈ Z
�
≥0 and set η = (α+)′. Set m = |α| and put μ = 1m0�−m if

m ≤ � and μ = 1m otherwise. The t = 0 nonsymmetric Macdonald polynomials agree
with certain nonsymmetric Catalan functions:

Ẽα(x1, . . . , x�;q)

=
{

H(�′
�(η);μ; p̃(α))(x1, . . . , x�;q) if m ≤ �,

H(�′(η);μ; p̃(α,0m−�))(x1, . . . , xm;q)|x�+1=···=xm =0 if m > �.
(8.13)

Proof First assume m ≤ �. The labeled root ideal (�′
�(η),μ, p̃(α)) is tame because

the � − η1 0’s in α+ ensure that η1 + 1, . . . , � − 1 is contained in the right descent set
of p̃(α). Hence by (7.12) and then Proposition 8.2,

H(�′
�(η);μ; p̃(α)) = q−n�(μ) charx;μ(AGD(μ;w)) = q−n�(μ) charx;μ(Bw(0)),

where w = (p̃(α), s(�′
�(η))), w = p̃(α)τs(n1)τs(n2) · · · τs(nm−1)τs(nm) ∈ ˜H�,

(n1, . . . , n�−1) = n(�′
�(η)), and nm := 1 (if m < � this was already true other-

wise we define it); the s(nm) here (allowed by Proposition 8.2) makes w end in
τs(ηk)τs(ηk − 1) · · · τs(1), enabling the parts of η to be handled uniformly below.
Thus by Theorem 8.3, to prove the top case of (8.13) it suffices to show Bw(0) =
Bv(0), where v = p̃(α)(τs(ηk))

ηk (τs(ηk−1))
ηk−1 · · · (τs(η1))

η1 as in Theorem 8.3
with z = p̃(α). Since Fw0{u0} = {u0}, it is enough to show ww0 = vw0 in the
0-Hecke monoid ˜H�.

For an interval [i, j ] ⊂ [m], set w[i,j ] = τs(ni)τs(ni+1) · · · τs(nj ), so that w =
p̃(α)w[m]. By definition of �′

�(η), w[η1] = (τs(η1))
η2τs(η1)τs(η1 − 1)τs(η1 −
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2) · · · τs(η2 + 1). By Lemma 8.1 (i), for j ∈ [m] and nj < i ≤ � − 1, siw
[j,m]w0 =

w[j,m]siw0 = w[j,m]w0. Hence

w[m]w0 = (τs(η1))
η2+1τs(η1 − 1)τs(η1 − 2) · · · τs(η2 + 1)w[η1+1,m]w0

= (τs(η1))
η2+2τs(η1 − 2) · · · τs(η2 + 1)w[η1+1,m]w0

= · · · = (τs(η1))
η1w[η1+1,m] w0.

In Example 8.12, this amounts to removing the triangle as the first step in going

from the left to middle diagram. Repeating this for the other parts of η we obtain

ww0 = p̃(α)(τs(η1))
η1 · · · (τs(ηk))

ηk w0 = p̃(α)(τs(ηk))
ηk · · · (τs(η1))

η1 w0

= vw0, (8.14)

as desired. Here, we have used Lemma 8.1 (iv) for the second equality.
Now to handle the case m > �, we use the following stability property of

the t = 0 nonsymmetric Macdonald polynomials which is straightforward to ver-
ify from the Haglund-Haiman-Loehr formula [25, Theorem 3.5.1]: for any β ∈
Z

�
≥0, E(β,0)(x1, . . . , x�+1;q,0)|x�+1=0 = Eβ(x1, . . . , x�;q,0). Thus we also have

Ẽ(β,0)(x1, . . . , x�+1;q)|x�+1=0 = Ẽβ(x1, . . . , x�;q). Applying this to Ẽ(α,0m−�)(x1,

. . . , xm;q) = H(�′(η);1m; p̃(α,0m−�))(x1, . . . , xm;q), which holds by the top case
of (8.13), yields the bottom case of (8.13). �

Example 8.12 We assemble several expressions for Ẽα for α = 3221110000 (� = 10).
We have η = (α+)′ = 631 and �′(η) is indicated by the red squares in the left
diagram below. Let μ = 1� and note that p̃(α) = s2 s4s5s4 s7s8s9s8s7s8.

Ẽα = x1�πs(1)(x1�πs(3))
3(x1�πs(6))

6 · 1 (8.15)

= charx;μ
(

Bτs(1)(τs(3))3(τs(6))6(0)
)

(8.16)

= charx;μ
(

B(τs(6))6(τs(3))3(τs(1))1(0)
)

(8.17)

= charx;μ
(

B(τs(6))4τs(5)τs(4)τs(3)τs(3)τs(2)τs(1)(0)
)

(8.18)

= H(�′(η);μ; p̃(α)) (8.19)

= πp̃(α)(x1�πs(6))
4x1�πs(5)x1�πs(4)x1�πs(3)x1�πs(3)x1�πs(2)x1�πs(1) · 1.

(8.20)
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The formulas (8.15)–(8.19) come from (8.7), (8.8), (8.14), (8.14), and (8.13), re-
spectively; the last equality holds by Theorem 2.3. The left diagram below gives a
way of visualizing (8.18)–(8.20) (in the style of Example 6.18), the middle diagram
corresponds to (8.17), and the right to (8.15)–(8.16).

8.3 Symmetrization to the Lascoux/Shimozono-Weyman formula

Proof of Theorem 8.8 By Theorem 8.11 and Definition 2.1, πw0Ẽα = πw0H(�′
�(η);

μ; p̃(α)) = H(�′
�(η);μ;w0). Hence the first equality of (8.11) will follow from

H(�′
�(η);μ;w0) = H(��(η);μ;w0). (8.21)

This identity can be seen by starting with �′
�(η) and filling in the trapezoidal re-

gions of ��(η) \ �′
�(η) one root at a time, using [10, Lemma 8.9] to show that the

corresponding Catalan functions remain the same (this is essentially the same ar-
gument used to prove [10, Lemma 10.1]). The second equality of (8.11) holds by
Theorem 2.18.

Now to prove Fw0Bμ;w = Bμ;(w0,s(��(η))), we first apply Proposition 8.2 to ob-
tain AGD

(

μ; (w0, s(�′
�(η)))

) = Bw(0) and AGD
(

μ; (w0, s(��(η)))
) = By(0),

where

w := w0τ s(�′
�(η))1 · · · τ s(�′

�(η))m−1τ,

y := w0τ s(��(η))1τ s(��(η))2 · · · τ s(��(η))m−1τ.

Considering the given expressions for w and y as words in the si ’s and τ , we see
the expression for w is a subword of that of y, and hence Bw(0) = Fw{u0} ⊂
Fy{u0} = By(0). But we also have charx;μ(Bw(0)) = charx;μ(By(0)) by
Corollary 7.15 and (8.21). So equality Bw(0) = By(0) holds.

Let v and w be as in Theorem 8.3 with z = p̃(α). Then w0 vw0 = ww0 by (8.14),
and hence Fw0Bv(0) = Bw(0) = By(0) (by Proposition 4.3). By Theorem 2.11,
the equality of AGD crystals Fw0Bv(0) = By(0) implies that the corresponding
DARK crystals are equal (as subsets of Bμ): Fw0Bμ;w = Bμ;(w0,s(��(η))). Equating
the Uq(gl�)-highest weights of these crystals then gives the first equality of (8.12)
(with the help of Proposition 6.15); the connection to kattype follows from Proposi-
tion 7.7 and Theorem 8.7. �

The companion result to Theorem 8.8 for m > � is more technical and requires a
crystal version of setting x�+1 = · · · = xm = 0, which we now describe.

Let B be a Uq(glm)-crystal which is a isomorphic to a disjoint union of highest
weight crystals Bgl(ν) for ν = (ν1 ≥ · · · ≥ νm ≥ 0). The weight function takes values
in Z

m
≥0 and we write wt(b) = (wt1(b), . . . ,wtm(b)) for the entries of wt(b). Let S ⊂ B
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be isomorphic to a disjoint union of Uq(glm)-Demazure crystals. Let ResJ B denote
the Uq(gl�)-restriction of B corresponding to Dynkin node subset J = [�−1] ⊂ [m−
1] (see §4.2). By Theorem 4.1 ResJ S is isomorphic to a disjoint union of Uq(gl�)-
Demazure crystals. Define

Rm
� S = {

b ∈ S | wti (b) = 0 for all i ∈ [� + 1,m]} ⊂ ResJ S. (8.22)

Since f̃j , j ∈ [� − 1], fixes wti for i > �, Rm
� S is also a disjoint union of Uq(gl�)-

Demazure crystals and its character is obtained from that of S by setting x�+1 = · · · =
xm = 0.

Below we work with Hm and its submonoid H� generated by s1, . . . , s�−1 (� ≤
m); denote by ι : H� ↪→ Hm the inclusion and w[1,m) and w[1,�) their longest ele-
ments.

Lemma 8.13 Let m ≥ � and S ⊂ B as above. Then

Rm
� Fw[1,m)

S = Fw[1,�)
Rm

� S. (8.23)

Proof Let si1 · · · sik be a reduced word for w[1,m). For any b ∈ B ,
∑m

i=�+1wti (f̃�(b))>
∑m

i=�+1 wti (b) and for j �= �,
∑m

i=�+1 wti (f̃j (b)) = ∑m
i=�+1 wti (b); also,

∑m
i=�+1 wti (b) = 0 implies f̃j (b) = 0 for j > �. It follows that an arbitrary element

f̃
ai1
i1

· · · f̃ aik

ik
(b) of Fw[1,m)

S lies in Rm
� Fw[1,m)

S if and only if b ∈ Rm
� S and aij = 0

whenever ij ≥ �. Hence Rm
� Fw[1,m)

S = FvRm
� S where v is the product of the sij with

ij < �. Since si1 · · · sik contains a reduced word for w[1,�), it follows from Remark 4.4
that FvRm

� S = Fw[1,�)
Rm

� S. �

Lemma 8.14 Given n = (n1, . . . , np−1) ∈ [�]p−1 and z ∈ H�, define the tuples w =
(z, s�−1 · · · sn1, . . . , s�−1 · · · snp−1) ∈ (H�)

p and w̃ = (ι(z), sm−1 · · · sn1, . . . , sm−1 · · ·
snp−1) ∈ (Hm)p . Then for any partition μ = (μ1, . . . ,μp), Rm

� Bμ;w̃ = Bμ;w.

Proof By Theorem 6.20, this is equivalent to showing that T ∈ Tabloids� is w-
katabolizable if and only if ˜T is w̃-katabolizable, where ˜T is the same as T but
regarded as an element of Tabloidsm. One checks easily by induction that these
two katabolism computations are essentially identical, the only difference being that
whenever kat is applied in the w-katabolism algorithm, it matches the application
of Ps�···sm−1 ◦ kat in the w̃-katabolism algorithm; this holds because at every step
(in either algorithm) just before kat is applied, the input tabloid is empty in rows
� + 1, . . . ,m. �

Theorem 8.15 Maintain the notation of Theorem 8.3; also set m = p = |α| and as-
sume m > �. Let SYTm

� = SSYT�(μ), the SYT with m boxes and at most � rows.
Then

πw[1,�)
Ẽα = H(�(η);μ;w[1,m))|x�+1 =···=xm=0

=
∑

U∈SYTm
�

U is n(�(η))-katabolizable

qcharge(U)sshape(U)(x1, . . . , x�). (8.24)
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Moreover, Fw[1,�)
Bμ;w = Rm

� Bμ;(w[1,m),s(�(η))) as Uq(gl�)-crystals, and so

{P(T ) | T ∈ RowFrank�(μ) is extreme w-katabolizable} = (8.25)

{U ∈ SYTm
� | U is n(�(η))-katabolizable} = {U ∈ SYTm

� | kattype(Ut ) � η}.

Proof By Theorem 8.8, applied with m in place of � and (α,0m−�) in place of α,
Fw[1,m)

Bμ;w̃ = Bμ;(w[1,m),s(�(η))) as Uq(glm)-crystals, where w̃ = (ι(z), sm−1 · · · sn1 ,

. . . , sm−1 · · · snp−1) ∈ (Hm)p with n = η
ηk

k · · ·ηη2
2 η

η1−1
1 . (Here z is one of the inputs

to Theorem 8.15, which can be any element of H� satisfying zα+ = α. In this appli-
cation of Theorem 8.8 we must choose a z̃ ∈ Hm such that z̃(α,0m−�)+ = (α,0m−�);
we choose z̃ = ι(z).) Applying Rm

� to both sides and then using Lemmas 8.13 and
8.14 yields the “moreover” statement:

Rm
� Bμ;(w[1,m),s(�(η))) = Rm

� Fw[1,m)
Bμ;w̃ = Fw[1,�)

Rm
� Bμ;w̃ = Fw[1,�)

Bμ;w,

and the consequence (8.25) follows much like the proof of (8.12). Next, it fol-
lows from Theorem 8.3 that the charge weighted character of Fw[1,�)

Bμ;w is

πw[1,�)
Ẽα and that of Rm

� Fw[1,m)
Bμ;w̃ is (πw[1,m)

Ẽ(α,0m−�))|x�+1 =···=xm=0. Hence
(

πw[1,m)
Ẽ(α,0m−�)

)|x�+1 =···=xm=0 = πw[1,�)
Ẽα . This fact given, (8.24) is obtained by

applying Theorem 8.8 (specifically (8.11)), with (α,0m−�) in place of α and then
setting x�+1 = · · · = xm = 0. �

Index of notation

Root systems and Weyl groups

H� 0-Hecke monoid of S� with generators si for
i ∈ [� − 1]

§2, §4.5

˜H� 0-Hecke monoid of ˜S�, generators τ and si for
i ∈ Z/�Z

§2.2, §4.5

w0, w0 longest element of S� and H�, respectively §2
w[i,j) w[i,j) ∈H� corresp. to permutation reversing

{i, . . . , j}
§5.3

w�a w[a,�) ∈ H� §5.3
I , P Dynkin nodes, weight lattice for general g §4.1
I , P Dynkin nodes I = Z/�Z, weight lattice for ̂sl� §2.2, §4.3
h Cartan subalgebra h ⊂ ̂sl� §4.3
d scaling element d ∈ h §4.3
i fundamental weights i ∈ h∗ (i ∈ I ) for ̂sl� §4.3
δ null root δ = ∑

i∈I αi ∈ h∗ §4.3
cl projection from h∗ to h∗/Cδ §4.3
aff section of cl satisfying 〈d, aff(λ)〉 = 0 §4.3
�i aff(cl(i − 0)) §4.3
τ Dynkin diagram automorphism, element of ˜H�

and ˜S�

§4.5



Schur positivity of Catalan functions 543

Crystals

FiS {f̃ k
i b | b ∈ S, k ≥ 0} \ {0} ⊂ B for a subset S of a

crystal B

§2.2, §4.7

Fτ bijection B() → B(τ()), or Bμ → Bμ §2.2, §4.6, §6.6
AGD(μ;w) affine generalized Demazure crystal (2.7)
B1,s single row KR crystal §6.1
Bμ B1,μp ⊗ · · · ⊗ B1,μ1 §2.3, §6.2
Bμ;w DARK crystal Def 2.10
Bgl(ν) highest weight Uq(gl�)-crystal §4.8
BD(α) Uq(gl�)-Demazure crystal §4.8
u highest weight element of the crystal with highest

weight 

§2.2

bs element of B1,s labeled by 1s , with b0 the empty
word

§2.3

wt weight function B → P of a Uq(g)-seminormal
crystal B

§4.1, (6.1)

ẽmax
i (b) the last element in the crystal string

b, ẽi(b), ẽ2
i (b), . . .

§6.5

charx;μ(G) variant of the character of a crystal G (7.2)

Words and tableaux

Tabloids�(μ) tabloids with � rows and content μ §2.4
T i i-th row of a tabloid T §2.4
T [i,j ] subtabloid of T consisting of rows

{i, i + 1, . . . , j}
§2.4

biword biwords with top word pμp · · ·2μ21μ1 are labels
of Bμ

§2.4, Def 6.1

inv bijection from Bμ to Tabloids�(μ) (2.12), §6.4
Pi,�, Pi partial insertion, acting on tabloids Defs 2.13, 6.8
P(T ) insertion tableau of T � · · ·T 1, for a tabloid T Thm 2.17
Q(b) recording tableau of a biword b §6.3
kat operation on tabloids used in the definition of

katabolism
Def 2.15, §6.6

katabolism n-katabolizable for n = (n1, . . . , np−1) ∈ [�]p−1 Def 2.15
w-katabolizable for w = (w1, . . . ,wp) ∈ (H�)

p Def 6.14
extreme w-katabolizable Def 7.12

α+ the weakly decreasing rearrangement of α §3, §4.8
p(α), p̃(α) shortest and longest element z ∈ H� such that

zα+ = α

§4.8, §8.2

charge integer statistic on words and tabloids Def 7.3
row-frank tabloid T such that shape(T ) rearranges to

shape(P (T ))

Def 7.10
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Polynomials

H(	;γ ;w) nonsymmetric Catalan function Def 2.1
� operator given by �(xi) = xi+1 for i ∈ [� − 1],

�(x�) = qx1

(2.5), §5.3

πi Demazure operator πi(f ) = xif −xi+1si (f )

xi−xi+1
(2.1), §4.8

πw πi1πi2 · · ·πim for w = si1 · · · sim ∈ H� §2, §4.8
π̂i πi − 1 §5.2
κα key polynomial or Demazure character,

κα = πp(α)xα+
§3, Def 4.5

κ̂α Demazure atom, κ̂α = π̂p(α)xα+
§3, §5.2

poly polynomial truncation Def 5.1

Root ideals

root ideal upper order ideal of the poset
�+

� = {(i, j) | 1 ≤ i < j ≤ �
}

§2

(	,γ,w) labeled root ideal, with 	 ⊂ �+
� , γ ∈ Z

�, w ∈ H� §2
n(	) n(	) ∈ Z

�−1 with
n(	)i := ∣

∣

{

j ∈ {i, . . . , �} | (i, j) /∈ 	
}∣

∣

(2.3)

s(d) s�−1s�−2 · · · sd ∈ H� Thm 2.3
s(	) (s(n(	)1), . . . , s(n(	)�−1)) ∈ (H�)

�−1 (2.9)
�(η) parabolic root ideal with block sizes η (2.14)
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