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Abstract
Let X be a smooth, complex Fano 4-fold, and ρX its Picard number. We show that if
ρX > 12, then X is a product of del Pezzo surfaces. The proof relies on a careful study
of divisorial elementary contractions f : X → Y such that dimf (Exc(f )) = 2, to-
gether with the author’s previous work on Fano 4-folds. In particular, given f : X →
Y as above, under suitable assumptions we show that S := f (Exc(f )) is a smooth
del Pezzo surface with −KS = (−KY )|S .

Mathematics Subject Classification 14J45 · 14J35 · 14E30

1 Introduction

Smooth, complex Fano varieties have been classically intensively studied, and have
attracted a lot of attention also in the last decades, due to their role in the framework
of the Minimal Model Program. The Fano condition is a natural positivity condition
of the tangent bundle, and it ensures a rich geometry, from both the points of view of
birational geometry and of families of rational curves.

It has been known since the 90’s that Fano varieties form a bounded family in each
dimension. Del Pezzo surfaces are known classically, and the classification of Fano
3-folds have been in achieved in the 80’s, there are 105 families.

Starting from dimension 4, there are probably too many families to get a complete
classification; still we aim to better understand and describe the behavior and proper-
ties of these varieties. In this paper we focus on Fano 4-folds X with “large” Picard
number ρX ; let us recall that since X is Fano, ρX is equal to the second Betti number
b2(X). We show the following result.

Theorem 1.1 Let X be a smooth Fano 4-fold with ρX > 12. Then X ∼= S1 ×S2, where
Si are del Pezzo surfaces.
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To the author’s knowledge, all known examples of Fano 4-folds which are not
products of surfaces have ρ ≤ 9, so that we do not know whether the condition ρ > 12
in Theorem 1.1 is sharp. We refer the reader to [7, §6] for an overview of known
Fano 4-folds with ρ ≥ 6; there are few examples and it is an interesting problem to
construct new ones.

As ρS1×S2 = ρS1 + ρS2 , and del Pezzo surfaces have ρ ≤ 9, Theorem 1.1 implies
the following.

Corollary 1.2 Let X be a smooth Fano 4-fold. Then ρX ≤ 18.

Let us note that Theorem 1.1 and Corollary 1.2 generalize to dimension 4 the
analogous result for Fano 3-folds, established by Mori and Mukai in the 80’s:

Theorem 1.3 ([15], Theorem 1.2) Let X be a smooth Fano 3-fold with ρX > 5. Then
X ∼= S × P

1 where S is a del Pezzo surface. In particular ρX ≤ 10.

The proof of Theorem 1.1 relies on a careful study of elementary contractions of
X of type (3,2), together with the author’s previous work on Fano 4-folds. To explain
this, let us introduce some notation.

Let X be a Fano 4-fold. A contraction is a surjective morphism f : X → Y , with
connected fibers, where Y is normal and projective; f is elementary if ρX − ρY = 1.
As usual, an elementary contraction can be of fiber type, divisorial, or small.

We say that an elementary contraction f : X → Y is of type (3,2) if it is divisorial
with dimS = 2, where E := Exc(f ) and S := f (E) ⊂ Y . Such f can have at most
finitely many 2-dimensional fibers; outside the images of these fibers, Y and S are
smooth, and f is just the blow-up of the surface S. If y0 ∈ S is the image of a two-
dimensional fiber, then either Y or S are singular at y0; these singularities have been
described by Andreatta and Wiśniewski, see Theorem 2.1. In any case, Y has at most
isolated locally factorial and terminal singularities, while S can be not normal.

We denote by N1(X) the real vector space of one-cycles with real coefficients,
modulo numerical equivalence; we have dimN1(X) = ρX . For any closed subset
Z ⊂ X, we set

N1(Z,X) := ι∗(N1(Z)) ⊂ N1(X)

where ι : Z ↪→ X is the inclusion, so that N1(Z,X) is the subspace of N1(X) spanned
by classes of curves in Z, and dimN1(Z,X) ≤ ρZ .

We study an elementary contraction f : X → Y of type (3,2) under the hypothesis
that:

dimN1(E,X) ≥ 4.

In particular this implies that Y is Fano too (Lemma 2.3).
We would like to compare (−KY )|S to −KS , but since S may be singular, we con-

sider the minimal resolution of singularities μ : S′ → S and set L := μ∗((−KY )|S), a
nef and big divisor class on S′. We show that KS′ +L is semiample (Proposition 3.1).
Then our strategy is to look for curves in S′ on which KS′ + L is trivial, using other
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elementary contractions of X of type (3,2) whose exceptional divisor intersects E in
a suitable way.

Hence let us assume that X has another elementary contraction g1 of type (3,2)

whose exceptional divisor E1 intersects E, and such that E · �1 = 0 for a curve �1

contracted by g1. Set D := f (E1) ⊂ Y . We show that an irreducible component C1
of D ∩ S is a (−1)-curve contained in the smooth locus Sreg, and such that −KY ·
C1 = 1 (Proposition 3.4, see Figure 1). If C′

1 ⊂ S′ is the transform of C1, we have
(KS′ + L) · C′

1 = 0.
Finally let us assume that X has three elementary contractions g1, g2, g3, all of

type (3,2), satisfying the same assumptions as g1 above. We also assume that E1 ·
�2 > 0 and E1 · �3 > 0, where E1 = Exc(g1) and �2, �3 are curves contracted by
g2, g3 respectively. Then we show that S is a smooth del Pezzo surface with −KS =
(−KY )|S (Propositions 3.7 and 3.9); let us give an overview of the proof.

The previous construction yields three distinct (−1)-curves C′
1,C

′
2,C

′
3 ⊂ S′ such

that (KS′ +L) ·C′
i = 0 and C′

1 intersects both C′
2 and C′

3. This shows that the contrac-
tion of S′ given by KS′ + L cannot be birational, namely KS′ + L is not big. We also
rule out the possibility of a contraction onto a curve, and conclude that KS′ + L ≡ 0.
Finally we show that ωS

∼= OY (KY )|S , where ωS is the dualizing sheaf of S, and
conclude that S is smooth and del Pezzo.

We believe that these results can be useful in the study of Fano 4-folds besides
their use in the present work. It would be interesting to generalize this technique to
higher dimensions.

Let us now explain how we use these results to prove Theorem 1.1. We define the
Lefschetz defect of X as:

δX := max
{
codimN1(D,X) |D ⊂ X a prime divisor

}
.

This invariant, introduced in [3], measures the difference between the Picard number
of X and that of its prime divisors; we refer the reader to [7] for a survey on δX .

Fano 4-folds with δX ≥ 3 are classified, as follows.

Theorem 1.4 ([3], Theorem 3.3) Let X be a smooth Fano 4-fold. If δX ≥ 4, then X ∼=
S1 × S2 where Si are del Pezzo surfaces, and δX = maxi ρSi

− 1.

Theorem 1.5 ([8], Proposition 1.5) Smooth Fano 4-folds with δX = 3 are classified.
They have 5 ≤ ρX ≤ 8, and if ρX ∈ {7,8} then X is a product of surfaces.

Therefore in our study of Fano 4-folds we can assume that δX ≤ 2, that is,
codimN1(D,X) ≤ 2 for every prime divisor D ⊂ X. To prove that ρX ≤ 12, we
look for a prime divisor D ⊂ X with dimN1(D,X) ≤ 10.

To produce such a divisor, we look at contractions of X. If X has an elemen-
tary contraction of fiber type, or a divisorial elementary contraction f : X → Y

with dimf (Exc(f )) ≤ 1, it is not difficult to find a prime divisor D ⊂ X such that
dimN1(D,X) ≤ 3, hence ρX ≤ 5 (Lemmas 2.6 and 2.7).

The case where X has a small elementary contraction is much harder and is treated
in [6], where the following result is proven.
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Theorem 1.6 ([6], Theorem 1.1) Let X be a smooth Fano 4-fold. If X has a small
elementary contraction, then ρX ≤ 12.

We are left with the case where every elementary contraction f : X → Y is of type
(3,2). In this case we show (Theorem 4.1) that, if ρX ≥ 8, we can apply our previous
study of elementary contractions of type (3,2), so that if E := Exc(f ) and S :=
f (E) ⊂ Y , then S is a smooth del Pezzo surface. This implies that dimN1(S,Y ) ≤
ρS ≤ 9, dimN1(E,X) = dimN1(S,Y ) + 1 ≤ 10, and finally that ρX ≤ 12, proving
Theorem 1.1.

The structure of the paper is as follows. In §2 we gather some preliminary results.
Then in §3 we develop our study of elementary contractions of type (3,2), while in
§4 we prove Theorem 1.1.

1.1 Notation

We work over the field of complex numbers.
We will frequently use the definitions and apply the techniques of birational ge-

ometry and the Minimal Model Program, without explicit references. We refer the
reader to [9, 13, 14] for background and details.

Let X be a projective variety.
We denote by N1(X) (respectively, N 1(X)) the real vector space of one-cycles

(respectively, Cartier divisors) with real coefficients, modulo numerical equivalence;
dimN1(X) = dimN 1(X) = ρX is the Picard number of X.

For any closed subset Z ⊂ X, we denote by N1(Z,X) the subspace of N1(X)

spanned by classes of curves in Z.
Let C be a one-cycle of X, and D a Cartier divisor. We denote by [C] (respec-

tively, [D]) the numerical equivalence class in N1(X) (respectively, N 1(X)). We
also denote by D⊥ ⊂ N1(X) the orthogonal hyperplane to the class [D].

The symbol ≡ stands for numerical equivalence (for both one-cycles and divisors),
and ∼ stands for linear equivalence of divisors.

NE(X) ⊂ N1(X) is the convex cone generated by classes of effective curves, and
NE(X) is its closure. An extremal ray R is a one-dimensional face of NE(X). If D

is a Cartier divisor in X, we write D · R > 0, D · R = 0, and so on, if D · γ > 0,
D · γ = 0, and so on, for a non-zero class γ ∈ R. We say that R is K-negative if
KX · R < 0.

A contraction is a surjective morphism, with connected fibers, between normal
projective varieties.

Suppose that X has terminal and locally factorial singularities, and is Fano. Then
NE(X) is a convex polyhedral cone. Given a contraction f : X → Y , we denote by
NE(f ) the convex subcone of NE(X) generated by classes of curves contracted by
f ; we recall that there is a bijection between contractions of X and faces of NE(X),
given by f 
→ NE(f ). Moreover dim NE(f ) = ρX −ρY , in particular f is elementary
(that is, ρX − ρY = 1) if and only if NE(f ) is an extremal ray.

When dimX = 4, we say that an extremal ray R is of type (3,2) if the asso-
ciated elementary contraction f is of type (3,2), namely if f is divisorial with
dimf (Exc(f )) = 2. We also set ER := Exc(f ) and denote by CR ⊂ ER a general
fiber of f|ER

; note that ER · CR = −1 and −KX · CR = 1.
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We will also consider the cones Eff(X) ⊂ N 1(X) of classes of effective divisors,
and mov(X) ⊂ N1(X) of classes of curves moving in a family covering X. Since X

is Fano, both cones are polyhedral; we have the duality relation Eff(X) = mov(X)∨.
If N is a real vector space and S ⊂ N is a subset, we denote by RS the linear span

of S.

2 Preliminaries

In this section we gather some preliminary results that will be used in the sequel.
Andreatta and Wiśniewski have classified the possible 2-dimensional fibers of an

elementary contraction of type (3,2) of a smooth Fano 4-fold. In doing this, they
also describe precisely the singularities both of the target, and of the image of the
exceptional divisor, as follows.

Theorem 2.1 ([1], Theorem on p. 256) Let X be a smooth Fano 4-fold and f : X → Y

an elementary contraction of type (3,2). Set S := f (Exc(f )).
Then f can have at most finitely many 2-dimensional fibers. Outside the images

of these fibers, Y and S are smooth, and f is the blow-up of S.
Let y0 ∈ S ⊂ Y be the image of a 2-dimensional fiber; then one of the following

holds:

(i) S is smooth at y0, while Y has an ordinary double point at y0, locally factorial
and terminal;

(ii) Y is smooth at y0, while S is singular at y0. More precisely either S is not
normal at y0, or it has a singularity of type 1

3 (1,1) at y0 (as the cone over a twisted
cubic).

In particular the singularities of Y are at most isolated, locally factorial, and termi-
nal.

We will need the following elementary estimates on dimN1(Z,X) in terms of a
contraction f : X → Y and of f (Z) ⊂ Y .

Remark 2.2 Let f : X → Y be a contraction between normal projective varieties,
and Z ⊂ X an irreducible closed subset. Consider the pushforward of one-cycles
f∗ : N1(X) → N1(Y ). We have the following:

(a) f∗(N1(Z,X)) = N1(f (Z),Y );
(b) dimN1(Z,X) ≤ ρX − ρY + dimN1(f (Z),Y );
(c) if dimf (Z) ≤ 1, then dimN1(Z,X) ≤ ρX − ρY + 1.

Indeed (a) follows from the definitions and the surjectivity of f , and (b) follows
from (a) because f∗ is a surjective linear map. For (c), we have N1(f (Z),Y ) =
{0} if f (Z) = {pt}, and N1(f (Z),Y ) = R[f (Z)] if f (Z) is a curve; in any case
dimN1(f (Z),Y ) ≤ 1, and we apply (b).

Now we give some simple preliminary results on extremal rays of type (3,2).
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Lemma 2.3 Let X be a smooth Fano 4-fold and f : X → Y an elementary contrac-
tion of type (3,2); set E := Exc(f ). If dimN1(E,X) ≥ 4, then E · R ≥ 0 for every
extremal ray R of X different from NE(f ), and Y is Fano.

Proof It follows from [5, Lemma 2.16 and Remark 2.17] that NE(f ) is the unique
extremal ray of X having negative intersection with E, −KX +E = f ∗(−KY ) is nef,
and (−KX + E)⊥ ∩ NE(X) = NE(f ), so that −KY is ample. �

Lemma 2.4 Let X be a smooth Fano 4-fold and R1, R2 extremal rays of X of type
(3,2) such that dimN1(ER1 ,X) ≥ 4 and ER1 · R2 = 0.

Then ER2 · R1 = 0 and R1 + R2 is a face of NE(X) whose associated contraction
is birational, with exceptional locus ER1 ∪ ER2 .

Proof Let H be a nef divisor on X such that H⊥ ∩ NE(X) = R2, and set H ′ :=
H + (H · CR1)ER1 . Then H ′ · CR1 = H ′ · CR2 = 0, and if R3 is an extremal ray
of NE(X) different from R1 and R2, we have ER1 · R3 ≥ 0 by Lemma 2.3, hence
H ′ · R3 > 0. Therefore H ′ is nef and (H ′)⊥ ∩ NE(X) = R1 + R2 is a face of NE(X).

If � ⊂ X is an irreducible curve with [�] ∈ R1 +R2, then H ′ ·� = 0, so that either
ER1 · � < 0 and � ⊂ ER1 , or H · � = 0, [�] ∈ R2 and � ⊂ ER2 . This shows that the
contraction of R1 + R2 is birational with exceptional locus ER1 ∪ ER2 .

We show that ER2 · R1 = 0. By contradiction, suppose that ER2 · R1 �= 0. If ER2 ·
R1 < 0, then ER1 = ER2 , thus dimN1(ER2 ,X) ≥ 4, contradicting Lemma 2.3.

Suppose that ER2 · R1 > 0, and let fi be the contraction of Ri , i = 1,2. Since
ER2 ·R1 > 0, ER2 meets every non-trivial fiber of f1, and f1(ER1 ∩ER2) = f1(ER1);
let Z be an irreducible component of ER1 ∩ ER2 such that f1(Z) = f1(ER1).

On the other hand ER1 · R2 = 0, thus ER1 ∩ ER2 is a union of fibers of f2, and
dimf2(Z) ≤ 1. This yields dimN1(Z,X) ≤ 2 by Remark 2.2(c).

We also have f1(Z) = f1(ER1), thus (f1)∗(N1(ER1 ,X)) = (f1)∗(N1(Z,X)) by
Remark 2.2(a), and dim(f1)∗(N1(ER1,X)) ≤ dimN1(Z,X) ≤ 2. We deduce that
dimN1(ER1 ,X) ≤ 3 by Remark 2.2(b), against our assumptions. �

Lemma 2.5 Let X be a smooth Fano 4-fold and R1, R2 distinct extremal rays of
X of type (3,2) with dimN1(ERi

,X) ≥ 4 for i = 1,2. If there exists a birational
contraction g : X → Z with R1,R2 ⊂ NE(g), then ER1 · R2 = ER2 · R1 = 0.

Proof We note first of all that ERi
· Rj ≥ 0 for i �= j by Lemma 2.3. Suppose that

ER1 · R2 > 0. Then ER1 · (CR1 + CR2) = ER1 · CR2 − 1 ≥ 0. Moreover ER2 · R1 > 0
by Lemma 2.4, so that ER2 · (CR1 + CR2) ≥ 0. On the other hand for every prime
divisor D different from ER1 , ER2 we have D · (CR1 + CR2) ≥ 0, therefore [CR1 +
CR2] ∈ Eff(X)∨ = mov(X). Since [CR1 + CR2] ∈ NE(g), g should be of fiber type, a
contradiction. �

Lemma 2.6 Let X be a smooth Fano 4-fold with δX ≤ 2, and g : X → Z a contraction
of fiber type. Then ρZ ≤ 4.

Proof This follows from [3]; for the reader’s convenience we report the proof.
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If dimZ ≤ 1, then ρZ ≤ 1. If Z is a surface, take any prime divisor D ⊂ X such
that g(D) � Z, namely dimg(D) ≤ 1. We have dimN1(D,X) ≤ ρX − ρZ + 1 by
Remark 2.2(c), thus codimN1(D,X) ≥ ρZ − 1. Therefore δX ≤ 2 yields ρZ ≤ 3.

Suppose now that dimZ = 3. By [2, Lemma 2.6] we know that Z has some ele-
mentary contraction h : Z → W . If dimW ≤ 2, by applying the first part of the proof
to h ◦ g : X → W , we get ρW ≤ 3 and hence ρZ ≤ 4.

If h is birational and divisorial, then dimh(Exc(h)) ≤ 1, and Remark 2.2(c) yields
dimN1(Exc(h),Z) ≤ 2. Moreover we can take a prime divisor D ⊂ X such that
g(D) ⊆ Exc(h), thus dimN1(g(D),Z) ≤ 2. Reasoning as above we conclude that
codimN1(D,X) ≥ ρZ − 2 and ρZ ≤ 4.

Finally we assume that h is birational and small. Then Exc(h) is a curve in Z, and
N1(Exc(h),Z) = RNE(h) is one-dimensional. We show that there exists a prime
divisor D ⊂ X such that g(D) ⊆ Exc(h). We consider the lifting of h in X (see [2,
§2.5]), which is an elementary contraction h′ : X → W ′ fitting into a commutative
diagram:

X

g

h′
W ′

Z
h

W

and such that g∗(NE(h′)) = NE(h). If F ⊂ X is a non-trivial fiber of h′, then g must
be finite on F and g(F ) ⊆ Exc(h). This implies that h′ is a K-negative birational
elementary contraction with fibers of dimension ≤ 1, therefore it must be of type
(3,2) (see [16, Theorem 1.2]); let D be its exceptional divisor. Then g(D) ⊆ Exc(h).

Hence dimN1(g(D),Z) = 1, and reasoning as above we get codimN1(D,X) ≥
ρZ − 1 and ρZ ≤ 3. �

Lemma 2.7 ([5], Remark 2.17(1)) Let X be a smooth Fano 4-fold. If X has a divisorial
elementary contraction not of type (3,2), then ρX ≤ 5.

3 Showing that S is a del Pezzo surface

In this section we study elementary contractions of type (3,2) of a Fano 4-fold. We
focus on the surface S which is the image of the exceptional divisor; as explained in
the Introduction, our goal is to show that under suitable assumptions, S is a smooth
del Pezzo surface.

Recall that S has isolated singularities by Theorem 2.1.

Proposition 3.1 Let X be a smooth Fano 4-fold and f : X → Y an elementary
contraction of type (3,2). Set E := Exc(f ) and S := f (E), and assume that
dimN1(E,X) ≥ 4.

Let μ : S′ → S be the minimal resolution of singularities, and set L :=
μ∗((−KY )|S). Then KS′ + L is semiample.
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If moreover KS′ + L ≡ 0, then S is a smooth del Pezzo surface, and −KS =
(−KY )|S .

Proof Note that −KY is Cartier by Theorem 2.1, and ample by Lemma 2.3, so that L

is nef and big on S′, and for every irreducible curve � ⊂ S′, we have L · � = 0 if and
only if � is μ-exceptional.

Consider the pushforward of one-cycles f∗ : N1(X) → N1(Y ). Then f∗(N1(E,

X)) = N1(S,Y ), therefore ρS′ ≥ ρS ≥ dimN1(S,Y ) ≥ 3.
Recall that by the Cone Theorem we have:

NE(S′) = NE(S′)KS′≥0 +
∑

i

Ri

where Ri are the KS′ -negative extremal rays of NE(S′) (and they are at most count-
ably many). We show that KS′ + L is nef; for this it is enough to show that it is
non-negative on each summand.

Since L is nef, if γ ∈ NE(S′)KS′≥0, we have (KS′ + L) · γ = KS′ · γ + L · γ ≥ 0.
Suppose now that NE(S′) has a KS′ -negative extremal ray R. The contraction

associated to R can be onto a point (if S′ ∼= P
2), onto a curve (so that ρS′ = 2), or the

blow-up of a smooth point (see for instance [14, Theorem 1-4-8]). Since ρS′ > 2, R

is generated by the class of a (−1)-curve �, that cannot be μ-exceptional, because μ

is minimal. Then L · � > 0 and (KS′ + L) · � = L · � − 1 ≥ 0.
We conclude that KS′ +L is nef on S′, and also semiample by the Base-Point-Free

Theorem.
We assume now that KS′ + L ≡ 0. In particular −KS′ is nef and big, namely S′ is

a weak del Pezzo surface.
Set for simplicity F := OY (KY )|S , invertible sheaf on S, and let ωS be the du-

alizing sheaf of S. We have KS′ ≡ μ∗(F), and since S′ is rational, we also have
OS′(KS′) ∼= μ∗(F). By restricting to the open subset μ−1(Sreg), we conclude that
(ωS)|Sreg

∼= F|Sreg . Now we use the following.

Lemma 3.2 Let S be a reduced and irreducible projective surface with isolated sin-
gularities, and ωS its dualizing sheaf. If there exists an invertible sheaf F on S such
that (ωS)|Sreg

∼= F|Sreg , then S is normal and ωS
∼= F .

This should be well-known to experts, we include a proof for lack of references.
We postpone the proof of Lemma 3.2 and carry on with the proof of Proposition 3.1.

By Lemma 3.2 we have that S is normal and ωS
∼= F , in particular ωS is locally

free. If y0 is a singular point of S, then by Theorem 2.1 y0 is a singularity of type
1
3 (1,1), but this contradicts the fact that ωS is locally free. We conclude that S is
smooth, and finally that −KS = (−KY )|S is ample, so that S is a del Pezzo surface.

�

Remark 3.3 In the setting of Proposition 3.1, when KS′ + L ≡ 0 we cannot conclude
that Y is smooth. A priori Y could have isolated singularities at some y0 ∈ S; by [1]
in this case f −1(y0) ∼= P

2.



Fano 4-folds with b2 > 12 are products 9

Proof of Lemma 3.2 Recall that S has isolated singularities. The surface S is reduced,
thus it satisfies condition (S1), namely

depthOS,y ≥ 1 for every y ∈ S.

Then by [12, Lemma 1.3] the dualizing sheaf ωS satisfies condition (S2):

depthωS,y ≥ 2 for every y ∈ S,

where depthωS,y is the depth of the stalk ωS,y as an OS,y -module.
Then, for every open subset U ⊂ S such that S � U is finite, we have ωS =

j∗((ωS)|U), where j : U ↪→ S is the inclusion. This is analogous to the properties
of reflexive sheaves on normal varieties, see [11, Propositions 1.3 and 1.6] and [12,
Remark 1.8]; for the reader’s convenience, we recall the proof using local cohomol-
ogy [10].

Set {y1, . . . , ym} := S�U . We have depth{y1,...,ym} ωS := mini depthωS,yi
≥ 2 [10,

p. 43]. By [10, Theorem 3.8] this is equivalent to Hi{y1,...,ym}(ωS) = 0 for i = 0,1,

where Hi{y1,...,ym}(ωS) is the ith local cohomology sheaf of S with coefficients in ωS

and supports in {y1, . . . , ym} [10, §1], in particular H 0{y1,...,ym}(ωS) is the subsheaf of
ωS of sections with support contained in {y1, . . . , ym}. There is an exact sequence of
sheaves:

0 −→ H 0{y1,...,ym}(ωS) −→ ωS −→ j∗
(
(ωS)|U

) −→ H 1{y1,...,ym}(ωS) −→ 0

[10, Corollary 1.9], hence Hi{y1,...,ym}(ωS) = 0 for i = 0,1 is in turn equivalent to
ωS = j∗((ωS)|U).

For U = Sreg we have ωS = j∗((ωS)|Sreg). Since F is locally free, we get

ωS = j∗
(
(ωS)|Sreg

) ∼= j∗(F|Sreg) = F ,

in particular ωS is an invertible sheaf and for every y ∈ Y we have ωS,y
∼= OS,y as an

OS,y -module, thus depthOS,y = 2. Therefore S has property (S2), and it is normal
by Serre’s criterion. �

Proposition 3.4 Let X be a smooth Fano 4-fold and f : X → Y an elementary
contraction of type (3,2). Set E := Exc(f ) and S := f (E), and assume that
dimN1(E,X) ≥ 4. Let μ : S′ → S be the minimal resolution of singularities, and
set L := μ∗((−KY )|S).

Suppose that X has an extremal ray R1 of type (3,2) such that:

E · R1 = 0 and E ∩ ER1 �= ∅.

Set D := f (ER1) ⊂ Y .
Then D|S = C1 + · · · + Cr where Ci are pairwise disjoint (−1)-curves contained

in Sreg, ER1 = f ∗(D), and f∗(CR1) ≡Y Ci . Moreover if C′
i ⊂ S′ is the transform of

Ci , we have (KS′ + L) · C′
i = 0 for every i = 1, . . . , r .
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Fig. 1 The varieties in Proposition 3.4.

Proof By Lemma 2.4 we have ER1 · NE(f ) = 0 and NE(f )+R1 is a face of NE(X),
whose associated contraction h : X → Z is birational with Exc(h) = E ∪ ER1 . We
have a diagram (see Figure 1):

X

f
h

Y
g

Z

(3.5)

where g is an elementary, K-negative, divisorial contraction, with Exc(g) = D (recall
that Y is locally factorial by Theorem 2.1, and Fano by Lemma 2.3).

Since ER1 · NE(f ) = E · R1 = 0, E ∩ ER1 is both a union of fibers of f and of
fibers of the contraction of R1. This implies that dimf (E ∩ ER1) ≤ 1, that N1(E ∩
ER1) = kerf∗ ⊕RR1 = kerh∗, and that dimh(E ∩ ER1) = 0.

We also note that both E and ER1 have non-positive intersection with every irre-
ducible curve contracted by h, thus they are both unions of fibers of h, and

E ∩ ER1 = h−1(h(E)
) ∩ h−1(h(ER1)

) = h−1(h(E) ∩ h(ER1)
)
.

Both h(E) and h(ER1) are surfaces in Z, and the general fiber of h over these sur-
faces is one-dimensional. Moreover h(E) ∩ h(ER1) = h(E ∩ ER1) is finite, and the
connected components of E ∩ ER1 are 2-dimensional fibers of h over these points.

Using the classification of the possible 2-dimensional fibers of h in [1], as in [6,
Lemma 4.15] we see that every connected component Ti of E ∩ ER1 (which is non-
empty by assumption) is isomorphic to P

1 × P
1 with normal bundle O(−1,0) ⊕

O(0,−1), for i = 1, . . . , r . Set Ci := f (Ti), so that D ∩ S = f (E ∩ ER1) =
f (∪iTi) = ∪iCi . Then Ci

∼= P
1, Ci ∩ Cj = ∅ if i �= j , and f has fibers of dimen-

sion one over Ci , therefore Ci ⊂ Sreg and Ci ⊂ Yreg by Theorem 2.1.
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Moreover g(D) = h(ER1) is a surface, namely g is of type (3,2), and Ci is a one-
dimensional fiber of g contained in Yreg, hence KY · Ci = D · Ci = −1. We also have
ER1 = f ∗(D) and f∗(CR1) ≡Y Ci .

Since Ci ⊂ Sreg, it is a Cartier divisor in S, and we can write D|S = m1C1 + · · · +
mrCr with mi ∈ Z>0 for every i = 1, . . . , r . In S we have Ci ·Cj = 0 for i �= j , hence
for i ∈ {1, . . . , r} we get

−1 = D · Ci = (m1C1 + · · · + mrCr) · Ci = miC
2
i

and we conclude that mi = 1 and C2
i = −1, so that Ci is a (−1)-curve in S.

Finally −KS · Ci = −KY · Ci = 1, hence if C′
i ⊂ S′ is the transform of Ci , we

have (KS′ + L) · C′
i = 0. �

Corollary 3.6 Let X be a smooth Fano 4-fold and f : X → Y an elementary contrac-
tion of type (3,2). Set E := Exc(f ), and assume that dimN1(E,X) ≥ 4. Suppose
that X has an extremal ray R1 of type (3,2) such that E · R1 = 0.

Then R′
1 := f∗(R1) is an extremal ray of Y of type (3,2), and ER1 = f ∗(ER′

1
).

Proof If E ∩ ER1 �= ∅, we are in the setting of Proposition 3.4; consider the elemen-
tary contraction g : Y → Z as in (3.5). Then NE(g) = f∗(R1) = R′

1 is an extremal
ray of Y of type (3,2), and f ∗(ER′

1
) = ER1 .

If E∩ER1 = ∅, then we still have a diagram as (3.5), where g is locally isomorphic
to the contraction of R1 in X, and the statement is clear. �

Proposition 3.7 Let X be a smooth Fano 4-fold and f : X → Y an elementary
contraction of type (3,2). Set E := Exc(f ) and S := f (E), and assume that
dimN1(E,X) ≥ 4. Let μ : S′ → S be the minimal resolution of singularities, and
set L := μ∗((−KY )|S).

Suppose that X has two extremal rays R1, R2 of type (3,2) such that:

ER1 · R2 > 0 and E · Ri = 0, E ∩ ERi
�= ∅ for i = 1,2.

Then one of the following holds:

(i) KS′ + L ≡ 0;
(ii) there is a contraction g : S′ → B with dimB = 1 such that NE(g) = (KS′ +
L)⊥ ∩ NE(S′), and ER1 · CR2 = ER2 · CR1 = 1.

Proof We apply Proposition 3.4 to f , R1 and to f , R2. Write f (ER1)|S = C1 +· · ·+
Cr , and let �2 be an irreducible component of f (ER2)|S , so that C1, . . . ,Cr ,�2 are
(−1)-curves contained in Sreg, and �2 ≡ f∗(CR2). Then

0 < ER1 · CR2 = f ∗(f (ER1)) · CR2 = f (ER1) · �2 = (C1 + · · · + Cr) · �2, (3.8)

hence Ci ·�2 > 0 for some i, say i = 1. Since C1 cannot be a component of f (ER2)|S ,
we also get ER2 · CR1 = f (ER2)|S · C1 ≥ �2 · C1 > 0.

Let �′
2 and C′

1 in S′ be the transforms of �2 and C1 respectively; then �′
2 and C′

1
are disjoint from the μ-exceptional locus, are (−1)-curves in S′, C′

1 ·�′
2 > 0, and still

by Proposition 3.4 we have (KS′ + L) · C′
1 = (KS′ + L) · �′

2 = 0.
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Recall that KS′ + L is semiample by Proposition 3.1. In particular, the face
(KS′ + L)⊥ ∩ NE(S′) contains the classes of two distinct (−1)-curves which meet.
This means that the associated contraction cannot be birational, and we have two
possibilities: either KS′ + L ≡ 0, or KS′ + L yields a contraction g : S′ → B onto a
smooth curve. We show that this second case yields (ii).

Let F ⊂ S′ be a general fiber F of g, so that −KS′ · F = L · F . Since F is
not μ-exceptional, we have L · F > 0 and hence −KS′ · F > 0. Thus there is
a non-empty open subset B0 ⊆ B such that (−KS′)|g−1(B0)

is g-ample, therefore
g|g−1(B0)

: g−1(B0) → B0 is a conic bundle, F ∼= P
1, and −KS′ · F = 2.

The curves C′
1 and �′

2 are components of the same fiber F0 of g, and −KS′ ·
F0 = 2 = −KS′ · (C′

1 + �′
2). For any irreducible curve C0 contained in F0 we have

−KS′ · C0 = L · C0 ≥ 0, so that if C0 is different from C′
1 and �′

2, we must have
−KS′ ·C0 = L ·C0 = 0 and C0 is μ-exceptional. But C′

1 and �′
2 are disjoint from the

μ-exceptional locus, thus C0 ∩ (C′
1 ∪ �′

2) = ∅. Since F0 is connected, we conclude
that F0 = C′

1 + �′
2 and F0 ⊂ g−1(B0), hence F0 is isomorphic to a reducible conic.

This also shows that C′
i for i > 1 are contained in different fibers of g, so that

C1 · �2 = �2 · C1 = 1 and Ci · �2 = 0 for every i = 2, . . . , r,

and finally using (3.8)

ER1 · CR2 = (C1 + · · · + Cr) · �2 = 1.

Similarly we conclude that ER2 · CR1 = 1. �

Proposition 3.9 Let X be a smooth Fano 4-fold and f : X → Y an elementary
contraction of type (3,2). Set E := Exc(f ) and S := f (E), and assume that
dimN1(E,X) ≥ 4.

Suppose that X has three distinct extremal rays R1, R2, R3 of type (3,2) such
that:

E · Ri = 0, E ∩ ERi
�= ∅ for i = 1,2,3, and ER1 · Rj > 0 for j = 2,3.

Then S is a smooth del Pezzo surface and −KS = (−KY )|S .

Proof We apply Proposition 3.7 to f , R1, R2 and to f , R1, R3; we show that we are
in case (i), which yields the statement by Proposition 3.1.

By contradiction, suppose that we are in case (ii); we keep the same notation as
in the proof of Proposition 3.7. Then KS′ + L yields a contraction g : S′ → B onto a
curve, ER2 · R1 > 0, and ER3 · R1 > 0.

Let C1 ⊂ S be an irreducible component of f (ER1)|S , and C′
1 ⊂ S′ its transform.

For j ∈ {2,3} write f (ERj
)|S = �j1 + · · · + �jrj , and let �′

ji ⊂ S′ be the transform
of �ji .

Using (3.8) as in the proof of Proposition 3.7, we see that (�j1 + · · · + �jrj ) ·
C1 > 0, hence �jaj

· C1 > 0 for some aj ∈ {1, . . . , rj }, and �′
jaj

· C′
1 > 0 in S′.

Then the proof of Proposition 3.7 shows that C′
1 + �′

2a2
and C′

1 + �′
3a3

are both
fibers of g, so they should coincide, but �′

2a2
�= �′

3a3
because R2 �= R3, and we get a

contradiction. �
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Corollary 3.10 Let X be a smooth Fano 4-fold with δX ≤ 2. Suppose that X has four
distinct extremal rays R0, R1, R2, R3 of type (3,2) such that:

ER0 · Ri = 0 for i = 1,2,3, and ER1 · Rj > 0 for j = 2,3.

Then one of the following holds:

(i) dimN1(ERi
,X) ≤ 3 for some i ∈ {0,1,2,3}, in particular ρX ≤ 5;

(ii) dimN1(ER0,X) ≤ 10, in particular ρX ≤ 12. Moreover if f : X → Y is the
contraction of R0 and S := f (ER0), then S is a smooth del Pezzo surface and
−KS = (−KY )|S .

Proof We assume that dimN1(ERi
,X) ≥ 4 for every i = 0,1,2,3, and prove (ii).

We show that ER0 ∩ ERi
�= ∅ for every i = 1,2,3. If ER0 ∩ ERi

= ∅ for some
i ∈ {1,2,3}, then for every curve C ⊂ ER0 we have ERi

·C = 0, so that [C] ∈ (ERi
)⊥,

and N1(ER0 ,X) ⊂ (ERi
)⊥.

Since the classes [ER1], [ER2 ], [ER3] ∈ N 1(X) generate distinct one dimensional
faces of Eff(X) (see [4, Remark 2.19]), they are linearly independent, hence in N1(X)

we have

codim
(
(ER1)

⊥ ∩ (ER2)
⊥ ∩ (ER3)

⊥) = 3.

On the other hand codimN1(ER0,X) ≤ δX ≤ 2, thus N1(ER0,X) cannot be con-
tained in the above intersection. Then N1(ER0,X) �⊂ (ERh

)⊥ for some h ∈ {1,2,3},
hence ER0 ∩ ERh

�= ∅. In particular, since ER0 · Rh = 0, there exists an irreducible
curve C ⊂ ER0 with [C] ∈ Rh.

For j = 2,3 we have ER1 · Rj > 0, and by Lemma 2.4 also ERj
· R1 > 0. This

implies that ER0 ∩ ERi
�= ∅ for every i = 1,2,3. For instance say h = 3: then ER1 ·

R3 > 0 yields ER1 ∩ C �= ∅, hence ER0 ∩ ER1 �= ∅. Then there exists an irreducible
curve C′ ⊂ ER0 with [C′] ∈ R1, and ER2 · R1 > 0 yields ER0 ∩ ER2 �= ∅.

Finally we apply Proposition 3.9 to get that S is a smooth del Pezzo surface
and −KS = (−KY )|S . Therefore dimN1(S,Y ) ≤ ρS ≤ 9 and dimN1(ER0,X) =
dimN1(S,X) + 1 ≤ 10, so we get (ii). �

4 Proof of Theorem 1.1

In this section we show how to apply the results of §3 to bound ρX; the following is
our main result.

Theorem 4.1 Let X be a smooth Fano 4-fold with δX ≤ 2 and ρX ≥ 8, and with no
small elementary contraction.

Then ρX ≤ δX + 10 ≤ 12. Moreover every elementary contraction f : X → Y is
of type (3,2), and S := f (Exc(f )) ⊂ Y is a smooth del Pezzo surface with −KS =
(−KY )|S .

In the proof we will use the following terminology: if R1, R2 are distinct one-
dimensional faces of a convex polyhedral cone C, we say that R1 and R2 are adjacent
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if R1 +R2 is a face of C. A facet of C is a face of codimension one. We will also need
the following elementary fact.

Lemma 4.2 Let C be a convex polyhedral cone not containing non-zero linear sub-
spaces, and R0 a one-dimensional face of C. Let R1, . . . ,Rm be the one-dimensional
faces of C that are adjacent to R0.

Then the linear span of R0,R1, . . . ,Rm is RC.

Proof We can assume that C ⊂ R
n with n = dimC. Since C does not contain non-zero

linear subspaces, there exists an affine hyperplane H ⊂ R
n such that P := H ∩C is an

(n − 1)-dimensional convex polytope, and C is the cone over P . Then vi := Ri ∩ H

is a vertex of P for i = 0,1, . . . ,m, and v1, . . . , vm are the vertices of P that are
adjacent to v0. The claim is that the affine span of v0, v1, . . . , vm is H .

Up to translation we can assume that v0 = 0 in H = R
n−1. Let D ⊂ H be the

convex cone generated by v1, . . . , vm, with vertex v0. Since P is convex, we have P ⊂
D, and dimD = dimP = n− 1. Thus the affine span of v0, v1, . . . , vm has dimension
n − 1, and coincides with H . �

Proof of Theorem 4.1 Let f : X → Y be an elementary contraction; note that ρY =
ρX − 1 ≥ 7. Then f is not of fiber type by Lemma 2.6, and not small by assumption,
so that f is divisorial. Moreover f is of type (3,2) by Lemma 2.7.

Set E := Exc(f ) and S := f (E) ⊂ Y ; we have dimN1(E,X) ≥ ρX − δX ≥ 6,
and if R′ �= NE(f ) is another extremal ray of X, we have E · R′ ≥ 0 by Lemma
2.3. Moreover, if R′ is adjacent to NE(f ), then E · R′ = 0. Indeed the contraction
g : X → Z of the face R′ + NE(f ) cannot be of fiber type by Lemma 2.6, thus it is
birational and we apply Lemma 2.5.

We are going to show that there exists three extremal rays R′
1, R′

2, R′
3 adjacent to

NE(f ) such that ER′
1
· R′

j > 0 for j = 2,3, and then apply Corollary 3.10.
Let us consider the cone NE(Y ). It is a convex polyhedral cone whose extremal

rays R are in bijection with the extremal rays R′ of X adjacent to NE(f ), via R =
f∗(R′), see [2, §2.5].

By Corollary 3.6, R is still of type (3,2), and f ∗(ER) = ER′ . Thus for every
pair R1, R2 of distinct extremal rays of Y , with Ri = f∗(R′

i ) for i = 1,2, we have
ER1 · R2 = ER′

1
· R′

2 ≥ 0.
If R1 and R2 are adjacent, we show that ER1 · R2 = ER2 · R1 = 0. Indeed con-

sider the contraction Y → Z of the face R1 + R2 and the composition g : X → Z,
which contracts R′

1 and R′
2. Again g cannot be of fiber type by Lemma 2.6, thus

it is birational and we apply Lemma 2.5 to get ER′
1

· R′
2 = ER′

2
· R′

1 = 0, thus
ER1 · R2 = ER2 · R1 = 0.

Fix an extremal ray R1 of Y . We show that there exist two distinct extremal rays
R2, R3 of Y with ER1 · Rj > 0 for j = 2,3.

Indeed since ER1 is an effective divisor, there exists some curve C ⊂ Y with ER1 ·
C > 0, hence there exists some extremal ray R2 with ER1 · R2 > 0.

By contradiction, let us assume that ER1 · R = 0 for every extremal ray R of Y

different from R1, R2. This means that the cone NE(Y ) has the extremal ray R1 in
the halfspace N1(Y )ER1 <0, the extremal ray R2 in the halfspace N1(Y )ER1 >0, and all

other extremal rays in the hyperplane (ER1)
⊥.



Fano 4-folds with b2 > 12 are products 15

Fix R �= R1,R2, and let τ be a facet of NE(Y ) containing R and not R1. Note that
Rτ �= (ER1)

⊥, as ER1 and −ER1 are not nef. By Lemma 4.2 the rays adjacent to R in
τ cannot be all contained in (ER1)

⊥. We conclude that R2 is adjacent to R, therefore
ER2 · R = 0, namely R ⊂ (ER2)

⊥.
Summing up, we have shown that every extremal ray R �= R1,R2 of Y is contained

in both (ER1)
⊥ and (ER2)

⊥. On the other hand these rays include all the rays adjacent
to R1, so by Lemma 4.2 their linear span must be at least a hyperplane. Therefore
(ER1)

⊥ = (ER2)
⊥ and the classes [ER1], [ER2 ] ∈ N 1(Y ) are proportional, which is

impossible, because they generate distinct one dimensional faces of the cone Eff(Y )

(see [4, Remark 2.19]).
We conclude that there exist two distinct extremal rays R2, R3 of Y with ER1 ·

Rj > 0 for j = 2,3.
For i = 1,2,3 we have Ri = f∗(R′

i ) where R′
i is an extremal ray of X adjacent to

NE(f ), so that E · R′
i = 0. Moreover for j = 2,3 we have ER′

1
· R′

j = ER1 · Rj > 0.
We apply Corollary 3.10 to NE(f ), R′

1, R′
2, R′

3. We have already excluded (i),
and (ii) yields the statement. �

We can finally prove the following more detailed version of Theorem 1.1.

Theorem 4.3 Let X be a smooth Fano 4-fold which is not a product of surfaces.

Then ρX ≤ 12, and if ρX = 12, then there exist X
ϕ��� X′ g→ Z where ϕ is a finite

sequence of flips, X′ is smooth, g is a contraction, and dimZ = 3.

Proof Since X is not a product of surfaces, we have δX ≤ 3 by Theorem 1.4. More-
over δX = 3 yields ρX ≤ 6 by Theorem 1.5, while δX ≤ 2 yields ρX ≤ 12 by Theo-
rems 1.6 and 4.1.

If ρX = 12, the statement follows from [6, Theorems 2.7 and 9.1]. �
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