Skip to main content
Log in

Scalar curvature rigidity of convex polytopes

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove a scalar curvature rigidity theorem for convex polytopes. The proof uses the Fredholm theory for Dirac operators on manifolds with boundary. A variant of a theorem of Fefferman and Phong plays a central role in our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bär, C., Ballmann, W.: Boundary value problems for elliptic differential operators of first order. In: Surveys in Differential Geometry, vol. 17, pp. 1–78. Intern. Press, Somerville (2012)

    Google Scholar 

  2. Bär, C., Ballmann, W.: Guide to boundary value problems for Dirac-type operators. In: Ballmann, W., et al. (eds.) Arbeitstagung Bonn 2013, Progress in Mathematics, vol. 319, pp. 43–80. Birkhäuser, Basel (2016)

    Chapter  Google Scholar 

  3. Bär, C., Hanke, B., Schick, T.: Remarks on the paper “On Gromov’s dihedral extremality and rigidity conjectures” by Jinmin Wang, Zhizhang Xie, and Guoliang Yu. arXiv:2202.05180

  4. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  Google Scholar 

  5. Fefferman, C., Phong, D.: Lower Bounds for Schrödinger Equations. In: Conference on Partial Differential Equations, Saint Jean de Monts, 1982, Conf. No. 7, pp. 1–7. Soc. Math. France, Paris (1982)

    Google Scholar 

  6. Gromov, M.: Dirac and Plateau billiards in domains with corners. Cent. Eur. J. Math. 12, 1109–1156 (2014)

    MathSciNet  Google Scholar 

  7. Gromov, M.: Four Lectures on Scalar Curvature. arXiv:1908.10612v6

  8. Gromov, M.: Convex Polytopes, dihedral angles, mean curvature, and scalar curvature. arXiv:2207.13346

  9. Gromov, M., Lawson, H.B. Jr.: Spin and scalar curvature in the presence of a fundamental group. Ann. Math. 111, 209–230 (1980)

    Article  MathSciNet  Google Scholar 

  10. Gromov, M., Lawson, H.B. Jr.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. IHÉS 58, 83–196 (1984)

    Article  Google Scholar 

  11. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Grundlehren der Mathematischen Wissenschaften, vol. 256. Springer, Berlin (1998)

    Google Scholar 

  12. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Grundlehren der Mathematischen Wissenschaften, vol. 274. Springer, Berlin (2007)

    Book  Google Scholar 

  13. Lawson, H.B. Jr., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989)

    Google Scholar 

  14. Li, C.: A polyhedron comparison theorem for 3-manifolds with positive scalar curvature. Invent. Math. 219, 1–37 (2020)

    Article  MathSciNet  Google Scholar 

  15. Li, C.: The dihedral rigidity conjecture for \(n\)-prisms. J. Differ. Geom. to appear

  16. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MathSciNet  Google Scholar 

  17. Llarull, M.: Sharp estimates and the Dirac operator. Math. Ann. 310, 55–71 (1998)

    Article  MathSciNet  Google Scholar 

  18. Lott, J.: Index theory for scalar curvature on manifolds with boundary. Proc. Am. Math. Soc. 149, 4451–4459 (2021)

    Article  MathSciNet  Google Scholar 

  19. Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. 1. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  20. Wang, J., Xie, Z., Yu, G.: On Gromov’s dihedral extremality and rigidity conjectures. arXiv:2112.01510

  21. Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381–402 (1981)

    Article  MathSciNet  Google Scholar 

  22. Zhan, X.: Matrix Theory. Graduate Studies in Mathematics, vol. 147. Am. Math. Soc., Providence (2013)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Yipeng Wang and to the referee for helpful comments on an earlier version of this paper. The author was supported by the National Science Foundation under grant DMS-2103573 and by the Simons Foundation. He acknowledges the hospitality of Tübingen University, where part of this work was carried out.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A variant of a theorem of Fefferman and Phong

Appendix: A variant of a theorem of Fefferman and Phong

In this section, we describe a variant of an estimate due to Fefferman and Phong [5], which plays a central role in our argument. Throughout this section, we fix an integer \(n \geq 3\). We denote by \(\mathcal{Q}\) the collection of all \((n-1)\)-dimensional cubes of the form

$$ [2^{m} j_{1},2^{m} (j_{1}+1)] \times \ldots \times [2^{m} j_{n-1},2^{m} (j_{n-1}+1)] \times \{0\}, $$

where \(m \in \mathbb{Z}\) and \(j_{1},\ldots ,j_{n-1} \in \mathbb{Z}\). For abbreviation, we put

$$ \Gamma = \bigcup _{Q \in \mathcal{Q}} \partial Q. $$

If \(Q_{1},Q_{2} \in \mathcal{Q}\) satisfy \(Q_{1} \cap Q_{2} \setminus \Gamma \neq \emptyset \), then \(Q_{1} \subset Q_{2}\) or \(Q_{2} \subset Q_{1}\).

For each \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}\), we denote by \(|Q|\) the \((n-1)\)-dimensional volume of \(Q\).

Theorem A.1

Let us fix an integer \(n \geq 3\) and a real number \(\sigma \in (1,n-1)\). Suppose that \(V\) is a nonnegative continuous function defined on the hyperplane \(\mathbb{R}^{n-1} \times \{0\}\) with the property that

$$ \bigg( |Q|^{-1} \int _{Q} V^{\sigma }\bigg)^{\frac{1}{\sigma}} \leq \operatorname{diam}(Q)^{-1} $$
(14)

for each \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}\). Let \(F\) be a smooth function defined on the half-space \(\mathbb{R}_{+}^{n} = \{x \in \mathbb{R}^{n}: x_{n} \geq 0\}\), and let \(f\) denote the restriction of \(F\) to the boundary \(\partial \mathbb{R}_{+}^{n} = \mathbb{R}^{n-1} \times \{0\}\). Then

$$ \int _{Q} V f^{2} \leq C \int _{Q \times [0,\operatorname{diam}(Q)]} | \nabla F|^{2} + C \, \operatorname{diam}(Q)^{-1} \int _{Q} f^{2}. $$

for each \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}\). The constant \(C\) depends only on \(n\) and \(\sigma \).

The proof of Theorem A.1 is a straightforward adaptation of the arguments of Fefferman and Phong [5]. Let us fix an exponent \(\tau \in (1,\sigma )\). Let \(V: \mathbb{R}^{n-1} \times \{0\} \to \mathbb{R}\) be a nonnegative continuous function satisfying (14). We define a measurable function \(W: \mathbb{R}^{n-1} \times \{0\} \to \mathbb{R}\) by

$$ W(x) = \sup _{Q \in \mathcal{Q}, x \in Q} \bigg( |Q|^{-1} \int _{Q} V^{ \sigma }\bigg)^{\frac{1}{\sigma}} $$

for each point \(x \in \mathbb{R}^{n-1} \times \{0\}\). It follows from (14) that \(W\) is locally bounded. Moreover, \(V \leq W\) at each point in \(\mathbb{R}^{n-1} \times \{0\}\).

Let \(F\) be a smooth function defined on the half-space \(\mathbb{R}_{+}^{n} = \{x \in \mathbb{R}^{n}: x_{n} \geq 0\}\), and let \(f\) denote the restriction of \(F\) to the boundary \(\partial \mathbb{R}_{+}^{n} = \mathbb{R}^{n-1} \times \{0\}\). For each \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}\), we denote by \(f_{Q} = |Q|^{-1} \int _{Q} f\) the mean value of \(f\) over the cube \(Q\).

Lemma A.2

For each \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\), we have

$$ \bigg( |Q_{0}|^{-1} \int _{Q_{0}} W^{\tau }\bigg)^{\frac{1}{\tau}} \leq C \, \sup _{Q \in \mathcal{Q}, Q_{0} \subset Q} \bigg( |Q|^{-1} \int _{Q} V^{\sigma }\bigg)^{\frac{1}{\sigma}}, $$

where \(C\) depends only on \(n\), \(\sigma \), and \(\tau \).

Proof

For abbreviation, let

$$ \Lambda = \sup _{Q \in \mathcal{Q}, Q_{0} \subset Q} \bigg( |Q|^{-1} \int _{Q} V^{\sigma }\bigg)^{\frac{1}{\sigma}}. $$

It follows from (14) that \(\Lambda <\infty \). We define a bounded measurable function \(W_{0}: Q_{0} \to \mathbb{R}\) by

$$ W_{0}(x) = \sup _{Q \in \mathcal{Q}, x \in Q \subset Q_{0}} \bigg( |Q|^{-1} \int _{Q} V^{\sigma }\bigg)^{\frac{1}{\sigma}} $$

for each point \(x \in Q_{0}\). Then

$$ W(x) = \max \{\Lambda ,W_{0}(x)\} $$

for each point \(x \in Q_{0} \setminus \Gamma \). The function \(W_{0}^{\sigma}\) is bounded from above by the maximal function associated with the function \(V^{\sigma }\, 1_{Q_{0}}\). Hence, the weak version of the Hardy-Littlewood maximal inequality (cf. [19], Proposition 2.9 (i)) implies

$$ |Q_{0}|^{-1} \, |\{x \in Q_{0}: W_{0}(x)^{\sigma }> \alpha \}| \leq C \alpha ^{-1} \, |Q_{0}|^{-1} \int _{Q_{0}} V^{\sigma }\leq C \alpha ^{-1} \, \Lambda ^{\sigma }$$
(15)

for all \(\alpha >0\). We multiply both sides of (15) by \(\frac{\tau}{\sigma} \, \alpha ^{\frac{\tau}{\sigma}-1}\) and integrate over \(\alpha \in (\Lambda ^{\sigma},\infty )\). Using Fubini’s theorem, we obtain

$$\begin{aligned} &|Q_{0}|^{-1} \int _{Q_{0}} \max \{W_{0}^{\tau}-\Lambda ^{\tau},0\} \\ &= |Q_{0}|^{-1} \int _{\Lambda ^{\sigma}}^{\infty } \frac{\tau}{\sigma} \, \alpha ^{\frac{\tau}{\sigma}-1} \, |\{x \in Q_{0}: W_{0}(x)^{\sigma }> \alpha \}| \, d\alpha \\ &\leq C \int _{\Lambda ^{\sigma}}^{\infty }\frac{\tau}{\sigma} \, \alpha ^{\frac{\tau}{\sigma}-2} \, \Lambda ^{\sigma }\, d\alpha \\ &= C \, \frac{\tau}{\sigma -\tau} \, \Lambda ^{\tau}. \end{aligned}$$

Putting these facts together, we conclude that

$$ |Q_{0}|^{-1} \int _{Q_{0}} W^{\tau }\leq C \, \Lambda ^{\tau}. $$

This completes the proof of Lemma A.2. □

Lemma A.3

Given a real number \(\varepsilon >0\), we can find a real number \(\delta >0\) (depending only on \(n\), \(\sigma \), and \(\varepsilon \)) with the property that

$$ \int _{A} W \leq \varepsilon \int _{Q_{0}} W. $$

for every \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\) and every measurable set \(A \subset Q_{0}\) satisfying \(|A| \leq \delta \, |Q_{0}|\).

Proof

Using Lemma A.2, we obtain

$$ \bigg( |Q_{0}|^{-1} \int _{Q_{0}} W^{\tau }\bigg)^{\frac{1}{\tau}} \leq C \, \sup _{Q \in \mathcal{Q}, Q_{0} \subset Q} \bigg( |Q|^{-1} \int _{Q} V^{\sigma }\bigg)^{\frac{1}{\sigma}}. $$

Moreover,

$$ \sup _{Q \in \mathcal{Q}, Q_{0} \subset Q} \bigg( |Q|^{-1} \int _{Q} V^{ \sigma }\bigg)^{\frac{1}{\sigma}} \leq \inf _{Q_{0}} W \leq |Q_{0}|^{-1} \int _{Q_{0}} W $$

by definition of \(W\). Putting these facts together, we obtain

$$ \bigg( |Q_{0}|^{-1} \int _{Q_{0}} W^{\tau }\bigg)^{\frac{1}{\tau}} \leq C \, |Q_{0}|^{-1} \int _{Q_{0}} W. $$

Hence, if \(A \subset Q_{0}\) is a measurable set with \(|A| \leq \delta \, |Q_{0}|\), then Hölder’s inequality gives

$$ \int _{A} W \leq |A|^{\frac{\tau -1}{\tau}} \, \bigg( \int _{Q_{0}} W^{ \tau }\bigg)^{\frac{1}{\tau}} \leq \delta ^{\frac{\tau -1}{\tau}} \, |Q_{0}|^{ \frac{\tau -1}{\tau}} \, \bigg( \int _{Q_{0}} W^{\tau }\bigg)^{ \frac{1}{\tau}} \leq C \delta ^{\frac{\tau -1}{\tau}} \int _{Q_{0}} W. $$

Hence, if we choose \(\delta \) to be a small multiple of \(\varepsilon ^{\frac{\tau}{\tau -1}}\), then \(\delta \) has the required property. This completes the proof of Lemma A.3. □

Lemma A.4

For each \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\), we have

$$ |Q_{0}|^{-1} \int _{Q_{0}} W \leq C \, \operatorname{diam}(Q_{0})^{-1}, $$

where \(C\) depends only on \(n\) and \(\sigma \).

Proof

Using Lemma A.2 and Hölder’s inequality, we obtain

$$ |Q_{0}|^{-1} \int _{Q_{0}} W \leq \bigg( |Q_{0}|^{-1} \int _{Q_{0}} W^{ \tau }\bigg)^{\frac{1}{\tau}} \leq C \, \sup _{Q \in \mathcal{Q}, Q_{0} \subset Q} \bigg( |Q|^{-1} \int _{Q} V^{\sigma }\bigg)^{ \frac{1}{\sigma}}. $$

Hence, the assertion follows from (14). □

Lemma A.5

Let us fix an \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\). We define a bounded measurable function \(g: Q_{0} \to \mathbb{R}\) by

$$ g(x) = \sup _{Q \in \mathcal{Q}, x \in Q \subset Q_{0}} |Q|^{-1} \int _{Q} |f-f_{Q}| $$

for each point \(x \in Q_{0}\). Then

$$ \int _{Q_{0}} V \, |f-f_{Q_{0}}|^{2} \leq C \int _{Q_{0}} W g^{2}, $$

where \(C\) depends only on \(n\) and \(\sigma \).

Proof

We define a bounded measurable function \(h: Q_{0} \to \mathbb{R}\) by

$$ h(x) = \sup _{Q \in \mathcal{Q}, x \in Q \subset Q_{0}} |Q|^{-1} \int _{Q} |f-f_{Q_{0}}| $$

for each point \(x \in Q_{0}\). Note that \(V \leq W\) and \(|f-f_{Q_{0}}| \leq h\) at each point in \(Q_{0}\). Hence, it suffices to prove that

$$ \int _{Q_{0}} W h^{2} \leq C \int _{Q_{0}} W g^{2}. $$
(16)

In order to prove the inequality (16), we define \(\alpha _{0} = |Q_{0}|^{-1} \int _{Q_{0}} |f-f_{Q_{0}}|\). For each \(\alpha > \alpha _{0}\), we denote by \(\mathcal{Q}_{\alpha}\) the set of all \((n-1)\)-dimensional cubes \(Q \in \mathcal{Q}\) with the following properties:

  • \(Q \subset Q_{0}\).

  • \(|Q|^{-1} \int _{Q} |f-f_{Q_{0}}| > \alpha \).

  • If \(\tilde{Q} \in \mathcal{Q}\) is an \((n-1)\)-dimensional cube with \(Q \subsetneq \tilde{Q}\) and \(\tilde{Q} \subset Q_{0}\), then \(|\tilde{Q}|^{-1} \int _{\tilde{Q}} |f-f_{Q_{0}}| \leq \alpha \).

It follows from the definition of \(\alpha _{0}\) that \(Q_{0} \notin \mathcal{Q}_{\alpha}\) for each \(\alpha >\alpha _{0}\). It is easy to see that

$$ \alpha < |Q|^{-1} \int _{Q} |f-f_{Q_{0}}| \leq 2^{n-1} \alpha $$
(17)

for each \(\alpha >\alpha _{0}\) and each \(Q \in \mathcal{Q}_{\alpha}\). Moreover,

$$ \{h>\alpha \} = \bigcup _{Q \in \mathcal{Q}_{\alpha}} Q $$
(18)

for each \(\alpha >\alpha _{0}\). Finally, given a real number \(\alpha >\alpha _{0}\) and a point \(x \notin \Gamma \), there is at most one cube \(Q \in \mathcal{Q}_{\alpha}\) that contains the point \(x\).

We next apply Lemma A.3 with \(\varepsilon = 2^{-2n-1}\). Hence, we can find a real number \(\delta \in (0,1)\) such that

$$ \int _{A} W \leq 2^{-2n-1} \int _{Q} W $$
(19)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}\) and every measurable set \(A \subset Q\) satisfying \(|A| \leq 2^{1-n} \, \delta \, |Q|\).

Let us consider a real number \(\alpha >\alpha _{0}\) and an \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). The upper bound in (17) implies \(|f_{Q}-f_{Q_{0}}| \leq 2^{n-1} \alpha \). Using the lower bound in (17), we obtain

$$ 2^{n-1} \alpha \, |\tilde{Q}| \leq \int _{\tilde{Q}} (|f-f_{Q_{0}}| - 2^{n-1} \alpha ) \leq \int _{\tilde{Q}} |f-f_{Q}| $$

for all \((n-1)\)-dimensional cubes \(\tilde{Q} \in \mathcal{Q}_{2^{n} \alpha}\). In the next step, we take the sum over all \((n-1)\)-dimensional cubes \(\tilde{Q} \in \mathcal{Q}_{2^{n} \alpha}\) with \(\tilde{Q} \subset Q\). This gives

$$ 2^{n-1} \alpha \sum _{\tilde{Q} \in \mathcal{Q}_{2^{n} \alpha}, \tilde{Q} \subset Q} |\tilde{Q}| \leq \int _{Q} |f-f_{Q}|. $$
(20)

For each \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\), we have the inclusion

$$ Q \cap \{h > 2^{n} \alpha \} \setminus \Gamma \subset \bigcup _{ \tilde{Q} \in \mathcal{Q}_{2^{n} \alpha}, \tilde{Q} \subset Q} \tilde{Q}. $$
(21)

Combining (20) and (21), we conclude that

$$ 2^{n-1} \alpha \, |Q \cap \{h > 2^{n} \alpha \}| \leq \int _{Q} |f-f_{Q}| $$
(22)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). In particular,

$$ |Q \cap \{h > 2^{n} \alpha \}| \leq 2^{1-n} \, \delta \, |Q| $$

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\) satisfying \(|Q|^{-1} \int _{Q} |f-f_{Q}| \leq \delta \alpha \). Applying (19) with \(A = Q \cap \{h > 2^{n} \alpha \}\) gives

$$ \int _{Q \cap \{h > 2^{n} \alpha \}} W \leq 2^{-2n-1} \int _{Q} W $$
(23)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\) satisfying \(|Q|^{-1} \int _{Q} |f-f_{Q}| \leq \delta \alpha \). On the other hand, if \(Q \in \mathcal{Q}_{\alpha}\) is an \((n-1)\)-dimensional cube satisfying \(|Q|^{-1} \int _{Q} |f-f_{Q}| > \delta \alpha \), then \(g > \delta \alpha \) at each point in \(Q\). Therefore,

$$ \int _{Q \cap \{h > 2^{n} \alpha \}} W \leq \int _{Q \cap \{g > \delta \alpha \}} W $$
(24)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\) satisfying \(|Q|^{-1} \int _{Q} |f-f_{Q}| > \delta \alpha \). Combining (23) and (24), we conclude that

$$ \int _{Q \cap \{h > 2^{n} \alpha \}} W \leq 2^{-2n-1} \int _{Q} W + \int _{Q \cap \{g > \delta \alpha \}} W $$
(25)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). Summation over all \((n-1)\)-dimensional cubes \(Q \in \mathcal{Q}_{\alpha}\) gives

$$ \int _{\{h > 2^{n} \alpha \}} W \leq 2^{-2n-1} \int _{\{h > \alpha \}} W + \int _{\{g > \delta \alpha \}} W $$
(26)

for each \(\alpha >\alpha _{0}\).

We now multiply both sides of (26) by \(2\alpha \) and integrate over \(\alpha \in (2\alpha _{0},\infty )\). Using Fubini’s theorem, we obtain

$$\begin{aligned} &\int _{Q_{0}} W \, \max \{2^{-2n} h^{2} - 4\alpha _{0}^{2},0\} \\ &= \int _{2\alpha _{0}}^{\infty }2\alpha \, \bigg( \int _{\{h > 2^{n} \alpha \}} W \bigg) \, d\alpha \\ &\leq \int _{2\alpha _{0}}^{\infty }2^{-2n} \alpha \, \bigg( \int _{ \{h > \alpha \}} W \bigg) \, d\alpha + \int _{2\alpha _{0}}^{\infty }2 \alpha \, \bigg( \int _{\{g > \delta \alpha \}} W \bigg) \, d \alpha \\ &\leq 2^{-2n-1} \int _{Q_{0}} W h^{2} + \delta ^{-2} \int _{Q_{0}} W g^{2}. \end{aligned}$$

Rearranging terms gives

$$ 2^{-2n-1} \int _{Q_{0}} W h^{2} \leq 4\alpha _{0}^{2} \int _{Q_{0}} W + \delta ^{-2} \int _{Q_{0}} W g^{2}. $$
(27)

On the other hand, \(g \geq |Q_{0}|^{-1} \int _{Q_{0}} |f-f_{Q_{0}}| = \alpha _{0}\) at each point in \(Q_{0}\). Consequently,

$$ 2^{-2n-1} \int _{Q_{0}} W h^{2} \leq (4+\delta ^{-2}) \int _{Q_{0}} W g^{2}. $$
(28)

The inequality (16) follows immediately from (28). This completes the proof of Lemma A.5. □

Lemma A.6

Let us fix an \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\). We define a bounded measurable function \(g: Q_{0} \to \mathbb{R}\) by

$$ g(x) = \sup _{Q \in \mathcal{Q}, x \in Q \subset Q_{0}} |Q|^{-1} \int _{Q} |f-f_{Q}| $$

for each point \(x \in Q_{0}\). Then

$$ \int _{Q_{0}} W g^{2} \leq C \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |\nabla F|^{2}, $$

where \(C\) depends only on \(n\) and \(\sigma \).

Proof

Let \(\alpha _{0} = |Q_{0}|^{-1} \int _{Q_{0}} |f-f_{Q_{0}}|\). For each \(\alpha > \alpha _{0}\), we denote by \(\mathcal{Q}_{\alpha}\) the set of all \((n-1)\)-dimensional cubes \(Q \in \mathcal{Q}\) with the following properties:

  • \(Q \subset Q_{0}\).

  • \(|Q|^{-1} \int _{Q} |f-f_{Q}| > \alpha \).

  • If \(\tilde{Q} \in \mathcal{Q}\) is an \((n-1)\)-dimensional cube with \(Q \subsetneq \tilde{Q}\) and \(\tilde{Q} \subset Q_{0}\), then \(|\tilde{Q}|^{-1} \int _{\tilde{Q}} |f-f_{\tilde{Q}}| \leq \alpha \).

It follows from the definition of \(\alpha _{0}\) that \(Q_{0} \notin \mathcal{Q}_{\alpha}\) for each \(\alpha >\alpha _{0}\). It is easy to see that

$$ \alpha < |Q|^{-1} \int _{Q} |f-f_{Q}| \leq 2^{n} \alpha $$
(29)

for each \(\alpha >\alpha _{0}\) and each \(Q \in \mathcal{Q}_{\alpha}\). Moreover,

$$ \{g>\alpha \} = \bigcup _{Q \in \mathcal{Q}_{\alpha}} Q $$
(30)

for each \(\alpha >\alpha _{0}\). Finally, given a real number \(\alpha >\alpha _{0}\) and a point \(x \notin \Gamma \), there is at most one cube \(Q \in \mathcal{Q}_{\alpha}\) that contains the point \(x\).

Let us consider a real number \(\alpha >\alpha _{0}\) and an \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). Using the lower bound in (29), we obtain

$$ 2^{n+2} \alpha \, |\tilde{Q}| \leq \int _{\tilde{Q}} |f-f_{\tilde{Q}}| \leq 2 \int _{\tilde{Q}} |f-f_{Q}| $$

for all \((n-1)\)-dimensional cubes \(\tilde{Q} \in \mathcal{Q}_{2^{n+2} \alpha}\). In the next step, we take the sum over all \((n-1)\)-dimensional cubes \(\tilde{Q} \in \mathcal{Q}_{2^{n+2} \alpha}\) with \(\tilde{Q} \subset Q\). Using the upper bound in (29), we obtain

$$ 2^{n+2} \alpha \sum _{\tilde{Q} \in \mathcal{Q}_{2^{n+2} \alpha}, \tilde{Q} \subset Q} |\tilde{Q}| \leq 2 \int _{Q} |f-f_{Q}| \leq 2^{n+1} \alpha \, |Q| $$
(31)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). For each \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\), we have the inclusion

$$ Q \cap \{g > 2^{n+2} \alpha \} \setminus \Gamma \subset \bigcup _{ \tilde{Q} \in \mathcal{Q}_{2^{n+2} \alpha}, \tilde{Q} \subset Q} \tilde{Q}. $$
(32)

Combining (31) and (32), we conclude that

$$ 2^{n+2} \alpha \, |Q \cap \{g>2^{n+2} \alpha \}| \leq 2^{n+1} \alpha \, |Q|, $$

hence

$$ |Q \cap \{g \leq 2^{n+2} \alpha \}| \geq \frac{1}{2} \, |Q| $$
(33)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\).

We define a nonnegative function \(\varphi : \mathbb{R}^{n-1} \times \{0\} \to \mathbb{R}\) by

$$ \varphi (x_{1},\ldots ,x_{n-1},0) = \bigg( \int _{0}^{ \operatorname{diam}(Q_{0})} |\nabla F(x_{1},\ldots ,x_{n-1},x_{n})|^{2} \, dx_{n} \bigg)^{\frac{1}{2}}. $$
(34)

Moreover, we define a nonnegative function \(\psi : Q_{0} \to \mathbb{R}\) by

$$ \psi (x) = \sup _{Q \in \mathcal{Q}, x \in Q \subset Q_{0}} |Q|^{-1} \int _{Q} \varphi $$
(35)

for each point \(x \in Q_{0}\). Using the Sobolev trace theorem, we obtain

$$\begin{aligned} \alpha &\leq |Q|^{-1} \int _{Q} |f-f_{Q}| \\ &\leq 2 \, |Q|^{-1} \inf _{a \in \mathbb{R}} \int _{Q} |f-a| \\ &\leq C \, \, |Q|^{-1} \inf _{a \in \mathbb{R}} \bigg( \int _{Q \times [0,\operatorname{diam}(Q)]} |\nabla (F-a)| \\ & \hspace{30mm} + \operatorname{diam}(Q)^{-1} \int _{Q \times [0,\operatorname{diam}(Q)]} |F-a| \bigg) \end{aligned}$$
(36)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). Using (36) and the Poincaré inequality, we conclude that

$$ \alpha \leq C \, |Q|^{-1} \int _{Q \times [0,\operatorname{diam}(Q)]} | \nabla F| $$
(37)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). Using Hölder’s inequality, we deduce that

$$ \alpha \leq C \, \operatorname{diam}(Q)^{\frac{1}{2}} \, |Q|^{-1} \int _{Q} \varphi \leq C \, \operatorname{diam}(Q)^{\frac{1}{2}} \, \inf _{Q} \psi $$
(38)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). Combining (33) and (38) gives

$$\begin{aligned} \alpha ^{2} \, \operatorname{diam}(Q)^{-1} \, |Q| &\leq 2\alpha ^{2} \, \operatorname{diam}(Q)^{-1} \, |Q \cap \{g \leq 2^{n+2} \alpha \}| \\ &\leq C \int _{Q \cap \{g \leq 2^{n+2} \alpha \}} \psi ^{2} \end{aligned}$$
(39)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). Combining the estimate (39) with Lemma A.4, we obtain

$$ \alpha ^{2} \int _{Q} W \leq C \int _{Q \cap \{g \leq 2^{n+2} \alpha \}} \psi ^{2} $$
(40)

for every \((n-1)\)-dimensional cube \(Q \in \mathcal{Q}_{\alpha}\). Summation over all \((n-1)\)-dimensional cubes \(Q \in \mathcal{Q}_{\alpha}\) gives

$$ \alpha ^{2} \int _{\{g > \alpha \}} W \leq C \int _{\{\alpha < g \leq 2^{n+2} \alpha \}} \psi ^{2} $$
(41)

for each \(\alpha >\alpha _{0}\).

We now multiply both sides of (41) by \(2\alpha ^{-1}\) and integrate over \(\alpha \in (2\alpha _{0},\infty )\). Using Fubini’s theorem, we obtain

$$\begin{aligned} \int _{Q_{0}} W \, \max \{g^{2}-4\alpha _{0}^{2},0\} &= \int _{2 \alpha _{0}}^{\infty }2\alpha \, \bigg( \int _{\{g > \alpha \}} W \bigg) \, d\alpha \\ &\leq \int _{2\alpha _{0}}^{\infty }2C \alpha ^{-1} \, \bigg( \int _{ \{\alpha < g \leq 2^{n+2} \alpha \}} \psi ^{2} \bigg) \, d\alpha \\ &\leq 2C \log (2^{n+2}) \int _{Q_{0}} \psi ^{2}. \end{aligned}$$
(42)

On the other hand, the function \(\psi \) is bounded from above by the maximal function associated with the function \(\varphi \, 1_{Q_{0}}\). Hence, the strong version of the Hardy-Littlewood maximal inequality (cf. [19], Proposition 2.9 (ii)) implies

$$ \int _{Q_{0}} \psi ^{2} \leq C \int _{Q_{0}} \varphi ^{2} \leq C \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |\nabla F|^{2}. $$
(43)

Combining (42) and (43) gives

$$ \int _{Q_{0}} W \, \max \{g^{2}-4\alpha _{0}^{2},0\} \leq C \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |\nabla F|^{2}. $$
(44)

Finally, using the Sobolev trace theorem, we obtain

$$\begin{aligned} \alpha _{0} &= |Q_{0}|^{-1} \int _{Q_{0}} |f-f_{Q_{0}}| \\ &\leq 2 \, |Q_{0}|^{-1} \inf _{a \in \mathbb{R}} \int _{Q_{0}} |f-a| \\ &\leq C \, \, |Q_{0}|^{-1} \inf _{a \in \mathbb{R}} \bigg( \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |\nabla (F-a)| \\ & \hspace{30mm} + \operatorname{diam}(Q_{0})^{-1} \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |F-a| \bigg). \end{aligned}$$
(45)

Using (45) and the Poincaré inequality, we conclude that

$$ \alpha _{0} \leq C \, |Q_{0}|^{-1} \int _{Q_{0} \times [0, \operatorname{diam}(Q_{0})]} |\nabla F|. $$
(46)

Using Hölder’s inequality, we deduce that

$$ \alpha _{0}^{2} \, \operatorname{diam}(Q_{0})^{-1} \, |Q_{0}| \leq C \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |\nabla F|^{2}. $$
(47)

Combing the estimate (47) with Lemma A.4 gives

$$ \alpha _{0}^{2} \int _{Q_{0}} W \leq C \int _{Q_{0} \times [0, \operatorname{diam}(Q_{0})]} |\nabla F|^{2}. $$
(48)

The assertion follows by combining (44) and (48). This completes the proof of Lemma A.6. □

After these preparations, we now complete the proof of Theorem A.1. Combining Lemma A.5 and Lemma A.6, we conclude that

$$ \int _{Q_{0}} V \, |f-f_{Q_{0}}|^{2} \leq C \int _{Q_{0} \times [0, \operatorname{diam}(Q_{0})]} |\nabla F|^{2} $$

for every \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\). This implies

$$ \int _{Q_{0}} V f^{2} \leq C \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |\nabla F|^{2} + C \, |Q_{0}|^{-2} \, \bigg( \int _{Q_{0}} V \bigg) \, \bigg( \int _{Q_{0}} |f| \bigg)^{2} $$

for each \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\). Moreover,

$$ |Q_{0}|^{-1} \int _{Q_{0}} V \leq \bigg( |Q_{0}|^{-1} \int _{Q_{0}} V^{ \sigma }\bigg)^{\frac{1}{\sigma}} \leq \operatorname{diam}(Q_{0})^{-1} $$

by (14). Thus, we conclude that

$$ \int _{Q_{0}} V f^{2} \leq C \int _{Q_{0} \times [0,\operatorname{diam}(Q_{0})]} |\nabla F|^{2} + C \, \operatorname{diam}(Q_{0})^{-1} \, |Q_{0}|^{-1} \, \bigg( \int _{Q_{0}} |f| \bigg)^{2} $$

for each \((n-1)\)-dimensional cube \(Q_{0} \in \mathcal{Q}\). This completes the proof of Theorem A.1.

Corollary A.7

Let us fix an integer \(n \geq 3\) and a real number \(\sigma \in (1,n-1)\). Suppose that \(V\) is a nonnegative continuous function defined on the unit sphere \(S^{n-1} \subset \mathbb{R}^{n}\) with the property that

$$ \bigg( r^{\sigma +1-n} \int _{S^{n-1} \cap B_{r}(p)} V^{\sigma } \bigg)^{\frac{1}{\sigma}} \leq 1 $$
(49)

for all points \(p \in \mathbb{R}^{n}\) and all \(0 < r \leq 1\). Let \(F\) be a smooth function defined on the unit ball \(B^{n} = \{x \in \mathbb{R}^{n}: |x| \leq 1\}\), and let \(f\) denote the restriction of \(F\) to the boundary \(\partial B^{n} = S^{n-1}\). Then

$$ \int _{S^{n-1}} V f^{2} \leq C \int _{B^{n}} |\nabla F|^{2} + C \int _{S^{n-1}} f^{2}. $$

The constant \(C\) depends only on \(n\) and \(\sigma \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brendle, S. Scalar curvature rigidity of convex polytopes. Invent. math. 235, 669–708 (2024). https://doi.org/10.1007/s00222-023-01229-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-023-01229-x

Navigation