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Abstract
Kazhdan and Lusztig identified the affine Hecke algebra H with an equivariant K-
group of the Steinberg variety, and applied this to prove the Deligne-Langlands
conjecture, i.e., the local Langlands parametrization of irreducible representations
of reductive groups over nonarchimedean local fields F with an Iwahori-fixed vec-
tor. We apply techniques from derived algebraic geometry to pass from K-theory
to Hochschild homology and thereby identify H with the endomorphisms of a co-
herent sheaf on the stack of unipotent Langlands parameters, the coherent Springer
sheaf. As a result the derived category of H-modules is realized as a full subcategory
of coherent sheaves on this stack, confirming expectations from strong forms of the
local Langlands correspondence (including recent conjectures of Fargues-Scholze,
Hellmann and Zhu).

In the case of the general linear group our result allows us to lift the local Lang-
lands classification of irreducible representations to a categorical statement: we con-
struct a full embedding of the derived category of smooth representations of GLn(F )

into coherent sheaves on the stack of Langlands parameters.
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1 Introduction

Our goals in this paper are to provide a spectral description of the category of repre-
sentations of the affine Hecke algebra and deduce applications to the local Langlands
correspondence. We begin with a quick review of Springer theory and then discuss
our main results starting in Sect. 1.3.

We will work in the setting of derived algebraic geometry over a field k of charac-
teristic zero, as presented in [45]. In particular all operations, sheaves, categories etc
will be derived unless otherwise noted.

1.1 Springer theory and Hecke algebras

We first review some key points of Springer theory, largely following the perspective
of [34, 48]. Let G denote a complex reductive group with Lie algebra g and Borel
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B ⊂ G. We denote by B � G/B the flag variety, N the nilpotent cone, μ : ˜N =
T ∗B →N the Springer resolution, and Z = ˜N ×N ˜N the Steinberg variety.

The Springer correspondence provides a geometric realization of representations
of the Weyl group W of G. The Weyl group is in bijection with the Bruhat double
cosets B\G/B = G\(B×B), and hence with the conormals to the Schubert varieties,
which form the irreducible components of the Steinberg variety Z . In fact the group
algebra of the Weyl group can be identified with the top Borel-Moore homology of
Z under the convolution product

CW � HBM
d (Z;C),

where d = dim(N ) = dim( ˜N ) = dim(Z). This realization of W can be converted
into a sheaf-theoretic statement. The Springer sheaf

S = μ∗C ˜N [d] ∈ Perv(N /G)

is the equivariant perverse sheaf on the nilpotent cone given by the pushforward of
the (shifted) constant sheaf on the Springer resolution. Thanks to the definition of Z
as the self-fiber-product Z = ˜N ×N ˜N , a simple base-change calculation provides
an isomorphism

HBM
d (Z;C) � EndN /G(S)

between the endomorphisms of S and the top homology of Z , i.e., the group alge-
bra CW . By Lusztig’s generalized Springer correspondence [67, Theorem 6.5] the
abelian category Perv(N /G) is semisimple, thus all objects are projective and we
may interpret this isomorphism as a full embedding of the abelian category of repre-
sentations of W into equivariant perverse sheaves on the nilpotent cone,

Rep(W) = CW -mod � 〈S〉 ⊂ Perv(N /G).

One important role for this embedding is provided by the representation theory of
Chevalley groups. The universal unipotent principal series representation1

CG(Fq) �C[B(Fq)]
has as endomorphism algebra the finite Hecke algebra

Hf = C[B(Fq)\G(Fq)/B(Fq)] = EndG(Fq )(C[G(Fq)/B(Fq)]),
which (after choosing a square root of q) may be identified with CW . Thus Springer
theory provides a full embedding

{unipotent principal series of G(Fq)} � Hf -mod
∼−→ 〈S〉 ⊂ Perv(N /G)

where we say a representation of G(Fq) is in the unipotent principal series if it is
generated by its B(Fq)-invariants.

1Note that the finite Hecke algebra and hence the category of unipotent principal series representations is
insensitive to Langlands duality. From our perspective it is in fact more natural to consider here represen-
tations of the Langlands dual Chevalley group G∨(Fq ).
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1.2 Affine Hecke algebras

We now let G be a reductive group, Langlands dual to a split group G∨(F ) over
a nonarchimedean local field F with ring of integers O and residue field Fq .
We write Ggr = G × Gm as shorthand, which acts on Z by (g, z) · (x,B,B ′) =
(z−1gxg−1, gB,gB ′).

Definition 1.1 Let G be a reductive group with maximal torus T . The (extended)
affine Weyl group of the dual group G∨ is the semidirect product Wa = W �

X•(T ∨) = W � X•(T ) of the finite Weyl group with the cocharacter lattice of T ∨.
The affine Hecke algebra H is a certain q-deformation of the group ring CWa such
that specializing q at a prime power gives the Iwahori-Hecke algebra:

Hq = Cc[I\G∨(F )/I ] = EndRep(G∨(F ))(Cc[G∨(F )/I ])
where I ⊂ G∨(F ) is an Iwahori subgroup. Explicit presentations of the affine Hecke
algebra can be found, for example, in Sect. 7.1 of [34]. Unlike the finite Hecke alge-
bra, Hq �� CWa .

Our starting point is the celebrated theorem of Kazhdan-Lusztig [58] (as later ex-
tended and modified by Ginzburg, see [34] and Lusztig [72]), providing a geometric
realization of the affine Hecke algebra in terms of the Steinberg variety.

Theorem 1.2 [34, 58, 72] Suppose that G has simply connected derived subgroup.
There is an isomorphism of algebras H � K0(Z/Ggr) ⊗Z C, compatible with the

Bernstein isomorphism Z(H) � C[Ggr]Ggr � K
Ggr
0 (pt) ⊗Z C between the center of

H and the ring of equivariant parameters.

Kazhdan and Lusztig famously applied Theorem 1.2 to prove the Deligne-
Langlands conjecture, as refined by Lusztig. The category of representations of
Hq is identified with the “Iwahori block”, the (smooth) representations of G∨(F )

that are generated by their I -invariants (i.e., “appear in the decomposition of
C∞

c (G∨(F )/I ;Q�)”). Equivalently this is the unramified principal series, the repre-
sentations of G∨(F ) appearing in the parabolic induction of unramified characters of
a split torus (i.e., “appear in the decomposition of C∞(G∨(F )/N∨(F )T ∨(O);Q�)”).
The Deligne-Langlands conjecture provides a classification of irreducible represen-
tations in the Iwahori block (i.e. with an Iwahori fixed vector), or equivalently irre-
ducible Hq modules, in terms of Langlands parameters:

Theorem 1.3 [58, 76] The irreducible representations of Hq are in bijection with G-
conjugacy classes of q-commuting pairs of semisimple and nilpotent elements in G

{s ∈ Gss, n ∈N : gng−1 = qn}/G,

together with a G-equivariant local system on the orbit of (s, n) which appears in the
decomposition of a corresponding Springer sheaf.
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For fixed (s, q) the variety N (s,q) of (s, q)-fixed points on the nilpotent cone can
be interpreted as a variety of Langlands parameters. Representations with a fixed
Langlands parameter (s, n) form an L-packet, and are described in terms of irre-
ducible representations of the component group of the stabilizer. These representa-
tions can then be interpreted as equivariant local systems on the orbit of the Langlands
parameter. Indeed general conjectures going back to work of Lusztig [66], Zelevin-
sky [83] and Vogan [82] describe the representation theory of G∨(F ) at a fixed cen-
tral character with the geometry of equivariant perverse sheaves on suitable spaces of
Langlands parameters, generalizing the appearance of N (s,q) above.

However, unlike the classical Springer theory story for Hf
q � CW , the realization

of H by equivariant K-theory in Theorem 1.2 does not immediately lead to a realiza-
tion of H as endomorphisms of a sheaf, and therefore to a sheaf-theoretic description
of the entire category of H-modules. Rather, in applications equivariant K-theory
is used as an intermediate step on the way to equivariant Borel-Moore homology,
which leads back to variants of the Springer correspondence. Namely, by fixing a
central character for H, i.e. a Weyl group orbit of (s, q) ∈ T ×Gm, the central com-
pletions of equivariant K-theory are identified by Lusztig [68, 69] with graded Hecke
algebras, which have a geometric description where we replace the nilpotent cone N ,
Springer resolution ˜N and Steinberg variety Z by their (s, q)-fixed points. For exam-
ple, the Chern character identifies the completion of H at the trivial central character
with the Ggr = G ×Gm-equivariant homology of the Steinberg variety Z . This alge-
bra is identified via Theorem 8.11 of [70] with the full Ext-algebra of the Springer
sheaf in the equivariant derived category

Hgr � HBM• (Z/Ggr;C) = R�(Z/Ggr,ωZ/Ggr) � Ext•N /Ggr
(S).

Moreover, by a theorem of Rider [77] this Ext algebra is formal, hence we obtain a
full embedding

Hgr -mod � 〈S〉 ⊂ Sh(N /Ggr) (1.1)

of representations of Hgr into the equivariant derived category of the nilpotent cone.
More generally, for (s, q) ∈ T ×Gm, we have an identification

Hgr

(s,q) � HBM• (Z(s,q)/G
(s,q)
gr ;C) � Ext•

N (s,q)/G
(s,q)
gr

(S(s,q))

of the corresponding graded Hecke algebra in terms of an (s, q)-variant of the
Springer sheaf. This provides a geometric approach to constructing and studying
modules2 of H, see [34].

These developments give satisfying descriptions of the representation theory of
H at a fixed central character. However there are numerous motivations to seek a
description of families of representations of varying central character, including clas-
sical harmonic analysis (for example in the setting of spherical varieties [78]), K-

2Further if one had an (s, q)-version of Rider’s formality theorem, one could deduce a full embedding
of the corresponding module categories into equivariant derived categories of constructible sheaves on
N (s,q) . See Theorem 3.1 of [57] for an accounting.
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theory and the Baum-Connes conjecture [3], and modular and integral representation
theory [39, 51, 52].

1.3 Coherent Springer theory

In this paper we apply ideas from derived algebraic geometry to deduce from The-
orem 1.2 a different, and in some sense simpler, geometric realization of the affine
Hecke algebra, in which we first replace K-theory by Hochschild homology, and then
derive a description of its entire category of representations as a category of coherent
sheaves (without the need for specifying central characters). For technical reasons,
we will need to replace the nilpotent cone N with its formal completion pN ⊂ g,
and likewise the Steinberg variety Z = ˜N ×g

˜N will be defined via a derived fiber
product. For precise definitions of objects in this context, see Sect. 1.6.3.

Theorem 1.4 (Theorem 2.29, Corollary 2.38) Let k = Q� or C, and G a reductive
algebraic group over k. The trace map from connective K-theory to Hochschild ho-
mology on Coh(Z/Ggr) factors through an isomorphism of K0 and HH• (which is
concentrated in cohomological degree zero):

K•(Coh(Z/Ggr)) ⊗Z k HH•(Coh(Z/Ggr))

�

K0(Coh(Z/Ggr)) ⊗Z k
�

HH0(Coh(Z/Ggr)).

Remark 1.5 Our results also allow for an identification of monodromic variants of the
affine Hecke category. See Remark 2.34 for details.

The Hochschild homology of categories of coherent sheaves admits a description
in the derived algebraic geometry of loop spaces. In particular, we deduce an isomor-
phism of the affine Hecke algebra with volume forms on the derived loop space to
the Steinberg stack,

H � R�(L(Z/Ggr),ωL(Z/Ggr)).

More significantly, the geometry of derived loop spaces provides a natural home for
the entire category of H-modules, without fixing central characters.

Definition 1.6 Let pN ⊂ g be the formal completion3 of the nilpotent cone, ˜N
the usual (reduced) Springer resolution and μ : ˜N → N ↪→ pN the composition
of the Springer resolution with the inclusion. The coherent Springer sheaf SG ∈
3Note that for any formal completion pZ along a closed substack Z ⊂ X, following [45] we define the
category Coh(pZ) so that it is canonically equivalent to the category CohZ(X) of coherent sheaves on the
ambient stack set-theoretically supported at Z. Thus the reader unfamiliar with formal completions may
replace xN with g, and impose nilpotent support conditions on all categories of sheaves.
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Coh(L( pN /Ggr)) (or simply S) is the pushforward of the structure sheaf under the
loop map Lμ : L( ˜N /Ggr) → L( pN /Ggr):

SG = Lμ∗OL( ˜N /Ggr)
∈ Coh(L( pN /Ggr)).

Equivalently, SG is given by applying the parabolic induction correspondence

L(x{0}/T ) L(pn/B) = L(
p

˜N /G) L( pN /G)

to the (reduced) structure sheaf of L({0}/T ).

A priori the coherent Springer sheaf is only a complex of sheaves. However we
show, using the theory of traces for monoidal categories in higher algebra, that its
Ext algebra is concentrated in degree zero, and is identified with the affine Hecke
algebra. This provides the following “coherent Springer correspondence”, realizing
the representations of the affine Hecke algebra as coherent sheaves.

Theorem 1.7 (Theorem 4.12) Let G be a reductive algebraic group over k = Q�

or C.

(1) There is an isomorphism of algebras HG � EndL(xN /Ggr)
(SG) and all other

self-Ext groups of SG vanish.
(2) There is an embedding of dg derived categories

D(HG) 〈SG〉 QC!(L( pN /Ggr)).�
−⊗End(S)SG

(3) The embedding takes the anti-spherical module to the projection of the dualizing
sheaf to the Springer subcategory

D(HG) � IndHHf (sgn) �−→ prSG
(ωL(xN /Ggr)

) ∈ QC!(L( pN /Ggr)).

(4) The embedding is compatible with parabolic induction of affine Hecke algebras,
i.e. if P is a parabolic subgroup of G with Levi quotient M , then there is a
commuting diagram

D(HM) QC!(L( pNM/ ˜M))

D(HG) QC!(L( pNG/Ggr)),

HG⊗HM
− Lμ∗◦Lν∗

where Lμ∗ ◦Lν∗ is the pull-push along the correspondence obtained by applying
L to the usual parabolic induction correspondence

L( pNM/ ˜M) L( pNP /˜P) L( pNG/Ggr).
Lμ Lν

In particular, Lμ∗Lν∗SM � SG.
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One consequence of the theorem is an interpretation of the coherent Springer sheaf
as a universal family of H-modules.

We also conjecture (Conjecture 4.15) – and check for SL2 – that S is actually a
coherent sheaf (i.e., lives in the heart of the standard t-structure on coherent sheaves).
The vanishing of all nonzero Ext groups of S suggests the existence of a natural
“exotic” t-structure for which S is a compact projective object in the heart. For such
a t-structure we would then automatically obtain a full embedding of the abelian
category H-mod into “exotic” coherent sheaves, where one could expect a geometric
description of simple objects.

In [13] we will explain how equivariant localization and Koszul duality patterns in
derived algebraic geometry (as developed in [6, 31, 32]) provide the precise compat-
ibility between this coherent Springer theory and the usual perverse Springer theory,
one parameter at a time.

1.4 Applications to the local Langlands correspondence

We will consider a derived stack L
u
q,G of unipotent Langlands parameters, which

parametrizes the unipotent Weil-Deligne representations for a local field F with
residue field Fq , and whose set of k-points is a variant of the set of Deligne-Langlands
parameters in Theorem 1.3 (with semisimplicity of s dropped). Note that the follow-
ing notions make sense for any q ∈C, with applications to local Langlands when q is
a prime power, and that, in line with expectations, the stack of unipotent Langlands
parameters depends only on the order of the residue field of F .

Definition 1.8 Let q = pr be a prime power.

(1) The stack of unipotent Langlands parameters Lu
q,G = Lq( pN /G) (or simply Lu

q )

is the derived fixed point stack of multiplication by q ∈ Gm on pN /G. Equiva-
lently, it is the fiber of the loop (or derived inertia) stack of the nilpotent cone
over q ∈Gm,

L
u
q,G L( pN /Ggr)

{q} L(pt/Gm) = Gm/Gm.

By Proposition 4.3, the derived inf-stack L
u
q,G has no derived nor infinitesimal

structure, i.e. Lq( pN /G) = Lq(g/G), and by [35] it is reduced, so we may equiv-
alently define Lu

q,G using the classical fiber product of the reduced nilpotent cone
N , i.e.

L
u
q,G � {g ∈ G,n ∈N : gng−1 = qn}/G.

(2) The q-coherent Springer sheaf Sq,G ∈ Coh(Lu
q) (or simply Sq ) is the ∗-

specialization of SG to the fiber Lu
q over q . Equivalently, Sq,G is given by ap-
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plying the parabolic induction correspondence

L
u
q,T L

u
q,B L

u
q,G

to the structure sheaf of Lu
q,T � T × BT .

Specializing Theorem 1.7 to q ∈ Gm we obtain the following. Note that Theo-
rem 2.2, Proposition 2.4 and Corollary 2.5 of [75] apply in the case where q is
specialized away from roots of unity; in particular, Hq,G has finite cohomological
dimension if q is not a root of unity. Thus in the following statement we implicitly
identify the compact objects Dperf (HG) ⊂ D(HG) (i.e. the subcategory of perfect
complexes) with the bounded derived category of coherent complexes.

Theorem 1.9 (Theorem 4.12) Suppose that q = pr is a prime power (or more gen-
erally, q ∈ Gm is not a root of unity), and let G be a reductive algebraic group over
k = Q� or C.

(1) There an isomorphism of algebras Hq,G � EndLq,G
(Sq,G) and a full embedding

Dperf (Hq,G) = Dcoh(Hq,G) 〈Sq,G〉 Coh(Lu
q,G).�

−⊗End(S)Sq,G

In particular, this gives a full embedding of the principal block of G∨(F ) into
coherent sheaves on the stack of unipotent Langlands parameters.

(2) The embedding takes the anti-spherical module to the structure sheaf OL
u
q,G

∈
Coh(Lu

q,G).
(3) The embedding is compatible with parabolic induction, i.e. if P ∨ ⊂ G∨ is a

parabolic with quotient Levi M∨, then we have a commutative diagram

{unramified principal series of M∨(F )} � Dcoh(Hq,M) Coh(Lu
q,M)

{unramified principal series of G∨(F )} � Dcoh(Hq,G) Coh(Lu
q,G),

iG
∨

P∨ (μq)∗◦(νq )∗

where iG
∨

P∨ : Repsm
f.g.(M

∨(F )) → Repsm
f.g.(G

∨(F )) is the parabolic induction

functor from smooth finitely-generated4 reprentations of M∨(F ) to G∨(F ) re-
stricted to the unramified principal series, and the map (μq)∗ ◦ (νq)∗ is the pull-
push along the correspondence obtained by applying taking derived q-invariants
of the usual parabolic induction correspondence

L
u
q,M L

u
q,P L

u
q,G.

μq
νq

In particular, (μq)∗(νq)∗Sq,M � Sq,G.

4I.e. the corresponding modules for Hecke algebras are finitely generated.
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Note that due to Proposition 4.3, in the q-specialized setting of the above theorem
the stack of parameters has no infinitesimal structure, i.e. Lq(g/G) = Lq( pN /G).
This has two consequences: first, due to Proposition 3.12, which does not apply in
the context of Theorem 1.7, we may identify the anti-spherical sheaf at specialized q

with the structure sheaf, which is equivalent to the dualizing sheaf. Second, the anti-
spherical sheaf at specialized q is a compact object in the category, i.e. a coherent
sheaf, whereas the sheaf appearing in Theorem 1.7 is not.

The existence of such an equivalence was conjectured independently by Hellmann
in [50], whose work we learned of at a late stage in the preparation of his paper. In-
deed, the above result resolves Conjecture 3.2 of [50]. Hellmann’s work also gives an
alternative characterization of the (q-specialized) coherent Springer sheaf as the Iwa-
hori invariants of a certain family of admissible representations on L

u
q,G constructed

by Emerton and the third author in [39].
A much more general categorical form of the local Langlands correspondence

is formulated by Fargues-Scholze [41] and Zhu [86], as well as compatibility with
a categorical global Langlands correspondence. In loc. cit. a forthcoming proof by
Hemo and Zhu [53] of a result closely parallel to ours is also announced.

Remark 1.10 The local Langlands correspondence depends on a choice of Whittaker
normalization; that is, a choice of a pair (U,ψ), where U is the unipotent radical
of a Borel subgroup of G∨ and ψ is a generic character of U(F), up to G∨(F )-
conjugacy, and indeed, the conjecture in [50] and the announced result in [53] depend
on such a choice. In the formulation of Theorem 1.9 no such choice appears explicitly,
but instead comes from the integral structure on G∨, which in particular gives us a
distinguished hyperspecial subgroup G∨(O) of G∨(F ).

Indeed, for any unramified group G∨ over F there is a natural bijection between
G∨(F )-conjugacy classes of Whittaker data (U,ψ) for G∨ and G∨(F )-conjugacy
classes of triples (Kx,Ux,ψx), where Kx is a hyperspecial subgroup of G∨(F ), Ux

is the unipotent radical of a Borel subgroup of the reductive quotient G∨
x of Kx , and

ψx is a generic character of Ux . This bijection has the property that if (U,ψ) cor-

responds to (Kx,Ux,ψx), then the summand of the compact induction cIndG∨(F )
U(F )

ψ

corresponding to the unipotent principal series block is isomorphic to cIndG∨(F )
Kx

Stx ,
where Stx denotes the inflation to Kx of the Steinberg representation of the reductive

quotient G∨
x . In particular the “unipotent principal series part” of cIndG∨(F )

U(F ) ψ de-
pends only on the conjugacy class of hyperspecial subgroup associated to (U,ψ), and
not the whole tuple (Kx,Ux,ψx). This means that the restriction of the local Lang-
lands correspondence to the unramified principal series depends only on a choice of
hyperspecial subgroup (which we have fixed).

Note in particular that for any choice of Whittaker datum (U,ψ) compatible with
our hyperspecial subgroup G∨(O), the Hq,G-module associated to the compact in-

duction cIndG∨(F )
U(F )

ψ is precisely the antispherical module, so property (2) of The-
orem 1.9 is consistent with (and indeed, equivalent to) the Whittaker normalization
appearing in [50].

In the case of the general linear group and its Levi subgroups, one can go much fur-
ther. Namely, in Sect. 5 we combine the local Langlands classification of irreducible
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representations due to Harris-Taylor and Henniart with the Bushnell-Kutzko theory
of types and the ensuing inductive reduction of all representations to the principal
block. The result is a spectral description of the entire category of smooth GLn(F )

representations. To do so it is imperative to first have a suitable stack of Langlands
parameters. These have been studied extensively in mixed characteristic, for instance
in [51] in the case of GLn, or more recently in [4, 24], and [35] for more general
groups. Since in our present context we work over C, the results we need are in gen-
eral simpler than the results of the above papers, and have not appeared explicitly in
the literature in the form we need.

Theorem 1.11 ([51]) Let F be a local field with residue field Fq . There is a classical
Artin stack locally of finite type LF,GLn , with the following properties:

(1) The k-points of LF,GLn are identified with the groupoid of continuous n-
dimensional representations of the Weil-Deligne group of F .

(2) The formal deformation spaces of Weil-Deligne representations are identified
with the formal completions of LF,GLn .

(3) The stack L
u
q,GLn

of unipotent Langlands parameters is a connected component
of LF,GLn .

We then deduce a categorical local Langlands correspondence for GLn and its
Levi subgroups as follows:

Theorem 1.12 (Theorems 5.13, 5.15, and 5.17) For each Levi subgroup M of
GLn(F ), there is a full embedding

D(M) ↪→ QC!(LF,M)

of the derived category of smooth M-representations into ind-coherent sheaves on the
stack of Langlands parameters, uniquely characterized by the following properties.

(1) If π is an irreducible cuspidal representation of M , then the image of π under
this embedding is the skyscraper sheaf supported at the Langlands parameter
associated to π .

(2) Let M ′ be a Levi subgroup of G, and let P be a parabolic subgroup of M ′ with
Levi subgroup M . There is a commutative diagram of functors:

D(M) QC!(LF,M)

D(M ′) QC!(LF,M ′)

iM
′

M
μ∗ν∗

in which iM
′

M is the parabolic induction functor and the right-hand map is ob-
tained by applying the correspondence

LF,M LF,P LF,M ′ .
μ ν
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Note that the local Langlands correspondence for cuspidal representations of GLn

and its Levis, is an input to the above result. We do not expect the functor to be an
equivalence, see Remark 4.13.

As with Theorem 1.9 our results here were independently conjectured by Hell-
mann (see in particular Conjecture 3.2 of [50]) for more general groups G; these
results also fit the general categorical form of the local Langlands correspondence
formulated by Fargues-Scholze [41] and Zhu [86].

1.4.1 Discussion: categorical Langlands correspondence

Theorems 1.9 and 1.12 match the expectation in the Langlands program that has
emerged in the last couple of years for a strong form of the local Langlands cor-
respondence, in which categories of representations of groups over local fields are
identified with categories of coherent sheaves on stacks of Langlands parameters.
Such a coherent formulation of the real local Langlands correspondence was discov-
ered in [6], while the current paper finds a closely analogous picture in the Deligne-
Langlands setting. As this paper was being completed Xinwen Zhu shared the excel-
lent overview [86] on this topic and Laurent Fargues and Peter Scholze completed
the manuscript [41], to which we refer the reader for more details. We only briefly
mention three deep recent developments in this general spirit.

The first derives from the work of V. Lafforgue on the global Langlands corre-
spondence over function fields [60, 61]. Lafforgue’s construction in Drinfeld’s in-
terpretation (cf. [62, Sect. 6], [61, Remark 8.5] and [44]) predicts the existence of
a universal quasicoherent sheaf AX on the stack of representations of π1(X) into
G corresponding to the cohomology of moduli spaces of shtukas. The theorem of
Genestier-Lafforgue [47] implies that the category of smooth G∨(F ) representations
sheafifies over a stack of local Langlands parameters, and the local version A of the
Drinfeld-Lafforgue sheaf is expected [86] to be a universal G∨(F )-module over the
stack of local Langlands parameters. In other words, the fibers Aσ are built out of
the G∨(F )-representations in the L-packet labelled by σ . The expectation is that the
coherent Springer sheaf, which by our results is naturally enriched in Hq -modules, is
identified with the Iwahori invariants of the local Lafforgue sheaf Sq � AI .

The second is the theory of categorical traces of Frobenius as developed in [44,
46, 85]. When applied to a suitably formulated local geometric Langlands correspon-
dence, we obtain an expected equivalence between an automorphic and spectral cate-
gory. The automorphic category is Sh(G∨(F )/FrG∨(F )), the category of Frobenius-
twisted adjoint equivariant sheaves on G∨(F ), with orbits given by the Kottwitz set
B(G∨) of isomorphism classes of G∨-isocrystals. The spectral category is expected
to be a variant of a category QC!(LF,G) of ind-coherent sheaves over the stack LF,G

of Langlands parameters into G. The former category contains the categories of rep-
resentations of G∨(F ) and its inner forms as full subcategories, hence we expect a
spectral realization in the spirit of Theorems 1.9 and 1.12.

The last of these developments is the program of Fargues-Scholze [40, 41] in
the context of p-adic groups, which interprets the local Langlands correspondence
as a geometric Langlands correspondence. On the automorphic side one considers
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sheaves on the stack BunG∨ of bundles on the Fargues-Fontaine curve, whose iso-
morphism classes |BunG∨ | = B(G∨) are given as before by the Kottwitz set of G∨-
isocrystals. This category of sheaves admits a semiorthogonal decomposition indexed
by B(G∨), in which the factor corresponding to b ∈ B(G∨) is naturally equivalent
to the category of smooth representations of the inner form G∨

b (F ) arising from b.
On the spectral side of the picture is the same category of ind-coherent sheaves on
the moduli stack of Langlands parameter that we study. Fargues-Scholze construct a
spectral action of the category of perfect complexes on this moduli stack on the cate-
gory of �-adic sheaves on BunG∨ , and conjecture that there is an equivalence of this
category with the category of ind-coherent sheaves on the moduli stack of Langlands
parameters compatible with this spectral action. Such an equivalence necessarily has
the properties given in Theorem 1.12, although we do not attempt to verify that our
construction is compatible with that of Fargues-Scholze.

1.5 Methods

We now discuss the techniques underlying the proofs of Theorems 1.4 and 1.7 –
namely, Bezrukavnikov’s Langlands duality for the affine Hecke category and the
theory of traces of monoidal dg categories.

1.5.1 Bezrukavnikov’s theorem

The Kazhdan-Lusztig theorem (Theorem 1.2) has been famously categorified in the
work of Bezrukavnikov [17, 18], with numerous applications in representation theory
and the local geometric Langlands correspondence (see Theorem 2.17).

Theorem 1.13 Let G := G∨(Fq((t))) denote the loop group viewed as an ind-scheme,
and I ⊂ G denote the corresponding Iwahori subgroup. We define the (derived) Stein-
berg stack Z/G over Q�. There is a monoidal equivalence on homotopy categories

Db
c (I\G/I;Q�) � DbCoh(Z/G)

intertwining the pullback by geometric Frobenius and pushforward by multiplication
by q automorphisms.

Remark 1.14 In view of Theorem 1.13, we define the affine Hecke category to be
H := Coh(Z/G). It is natural to expect a mixed version, identifying the mixed affine
Hecke category Hm := Coh(Z/Ggr) with the mixed Iwahori-equivariant sheaves on
the affine flag variety (as studied in [19]). Indeed such a version is needed to directly
imply the Kazhdan-Lusztig Theorem 1.2 by passing to Grothendieck groups, rather
than its specialization at q = 1.

Theorem 1.13 establishes the “principal block” part of the local geometric Lang-
lands correspondence. Namely, it implies a spectral description of module categories
for the affine Hecke category (the geometric counterpart of unramified principal se-
ries representations) as suitable sheaves of categories on stacks of Langlands param-
eters.
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We apply Theorem 1.13 in Sect. 2 to construct a semiorthogonal decomposition of
the affine Hecke category. This allows us to calculate its Hochschild homology and
to establish the comparison with algebraic K-theory.

1.5.2 Trace decategorifications

To prove Theorem 1.7 we use the relation between the “horizontal” and “vertical”
trace decategorifications of a monoidal category, and the calculation of the subtler
horizontal trace of the affine Hecke category in [12].

Let (C,∗) denote a monoidal dg category. Then we can take the trace (or
Hochschild homology) tr(C) = HH(C) of the underlying (i.e. ignoring the monoidal
structure) dg category C, which forms an associative (or A∞-)algebra (tr(C),∗)

thanks to the functoriality (specifically the symmetric monoidal structure) of
Hochschild homology, as developed in [30, 46, 55, 79]. This is the naive or “ver-
tical” trace of C. On the other hand, a monoidal dg category has another trace or
Hochschild homology Tr(C,∗) using the monoidal structure which is itself a dg cat-
egory – the categorical or “horizontal” trace of (C,∗). This is the dg category which
is the universal receptacle of a trace functor out of the monoidal category C. In par-
ticular, the trace of the monoidal unit of C defines an object [1C] ∈ Tr(C,∗) – i.e.,
Tr(C,∗) is a pointed (or E0-)category.5 Moreover, as developed in [30, 46] the cat-
egorical trace provides a “delooping” of the naive trace: we have an isomorphism of
associative algebras

(tr(C),∗) � EndTr(C,∗)([1C]).
In particular taking Hom from [1C] defines a functor

Hom([1C],−) : Tr(C,∗) −→ (HH(C),∗)-mod.

Under suitable compactness assumptions the left adjoint to this functor embeds the
“naive” decategorification (the right hand side) as a full subcategory of the “smart”
decategorification (the left hand side).

More generally, given a monoidal endofunctor F of (C,∗), we can replace
Hochschild homology (trace of the identity) by trace of the functor F , obtaining two
decategorifications (vertical and horizontal) with a similar relation

Hom([1C],−) : Tr((C,∗),F ) −→ (tr(C,F ),∗)-mod. (1.2)

Remark 1.15 (Trace of Frobenius) When C is a category of �-adic sheaves on a stack
defined over Fq extended to Fq and Fr is the corresponding geometric Frobenius
morphism, a formalism of categorical traces realizing the function-sheaf correspon-
dence – i.e. tr(Sh(X),Fr∗) should be the space of functions on X(Fq) – was recently
established in [1]. The monoidal version of trace decategorification would then allow
us to pass from Hecke categories to categories of representations directly. Zhu [85]
explains some of the rich consequences of this formalism that can already be proved
directly.

5The horizontal trace is also the natural receptacle for characters of C-module categories, and [C] appears
as the character of the regular left C-module, see Definition 3.2.
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Example 1.16 (Finite Hecke Categories and unipotent representations) For the fi-
nite Hecke category C = Sh(B\G/B), the main theorem of [7] identifies Tr(C,∗)

with the full category of Lusztig unipotent character sheaves on G. The object [1C] is
the Springer sheaf itself, and modules for the naive decategorification (tr(C, idC),∗)

gives the Springer block, or unipotent principal series character sheaves, as modules
for the graded Hecke algebra. Likewise the trace of Frobenius on (C,∗) is studied
in [85, Sect. 3.2] (see also [44, Sect. 3.2]), where the categorical trace is the category
of all unipotent representations of G(Fq), and the coherent Springer sheaf [1C] gen-
erates the full subcategory consisting of the unipotent principal series, equivalent to
modules for the naive decategorification (tr(C,Fr),∗).

1.5.3 Trace of the affine Hecke category

We now consider the two kinds of trace decategorification for the affine Hecke cat-
egory H. First our description of the Hochschild homology of the Steinberg stack
provides a precise sense in which the affine Hecke category categorifies the affine
Hecke algebra. The following Corollary is a result of Theorems 1.13 and 1.4.

Corollary 1.17 The (vertical/naive) trace of Frobenius on the affine Hecke category
is identified with the affine Hecke algebra Hq � tr(H,Fr∗). Hence the naive decate-
gorification of H-mod is the category of unramified principal series representations
of G∨(F ).

Remark 1.18 Note that this corollary would follow directly from Theorem 1.13 if
we had available the hoped-for function-sheaf dictionary for traces of Frobenius on
categories of �-adic sheaves (Remark 1.15). After this paper was complete Xinwen
Zhu informed us that Hemo and he have a direct argument for this corollary, see the
forthcoming [53]. Combined with Bezrukavnikov’s theorem and Theorem 1.19 this
gives an alternative argument for the identification of Hq with the Ext algebra of the
coherent Springer sheaf.

The results of [12] (based on the technical results of [11]) provide an affine analog
of the results of [7, 20] for finite Hecke categories and (thanks to Theorem 1.13) a
spectral description of the full decategorification of H. Statement (1) is directly taken
from Theorem 4.4.1 in [12], statements (2)-(3) follow immediately from the same
techniques and Theorem 3.8.5 of [46] (see Theorems 3.4 and 3.23 and Lemma 3.24),
and the absence of a singular support condition is discussed in Remark 4.14.

Theorem 1.19 ([12]) Let G be a reductive group over k = Q� or C.

(1) The (horizontal/categorical) trace of the monoidal category (Coh(Z/G),∗) is
identified as

Tr(Coh(Z/G),∗) = Coh(L( pN /G)).

The same assertion holds with G replaced by Ggr = G ×Gm.
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(2) The trace of multiplication by q ∈ Gm acting on the monoidal category
(Coh(Z/G),∗) is identified as

Tr((Coh(Z/G),∗), q∗) = Coh(Lu
q).

(3) The distinguished object [1C] in each of these trace decategorifications is given
by the coherent Springer sheaf S (or its q-specialized version Sq ). Hence the
endomorphisms of the coherent Springer sheaf recover the affine Hecke algebra
(the vertical trace, as in Theorem 1.7), and the natural functor in Theorem 3.4 is
identified with

Hom(Sq,−) : Coh(Lu
q) −→ Hq -mod.

In other words, we identify the entire category of coherent sheaves on the stack
of unipotent Langlands parameters as the categorical trace of the affine Hecke cat-
egory. Inside we find the unramified principal series as modules for the naive trace
(the Springer block). Just as the decategorification of the finite Hecke category (Ex-
ample 1.16) knows all unipotent representations of Chevalley groups, the horizontal
trace Coh(Lu

q) of the affine Hecke category contains in particular all unipotent rep-
resentations of G∨(F ) – i.e., the complete L-packets of unramified principal series
representations – thanks to Lusztig’s remarkable Langlands duality for unipotent rep-
resentations:

Theorem 1.20 ([71]) The irreducible unipotent representations of G∨(F ) are in bi-
jection with G-conjugacy classes of triples (s, n,χ) with s, n q-commuting as in
Theorem 1.3 and χ an arbitrary G-equivariant local system on the orbit of (s, n).

It would be extremely interesting to understand Theorem 1.20 using trace decate-
gorification of Bezrukavnikov’s Theorem 1.13. In particular we expect the full cate-
gory of unipotent representations to be embedded in QC!(Lu

q).

1.6 Assumptions and notation

We work throughout over a field k of characteristic zero. Our results on traces hold
in this general setting, though most representation theoretic applications will be in
the specific case of k = Q� or C (e.g. in Sect. 2.2). All functors and categories are dg
derived unless noted otherwise.

1.6.1 Categories

We work in the setting of k-linear stable ∞-categories, which for us will arise via ap-
plying the dg nerve construction (Construction 1.3.1.6 of [65]) to a pre-triangulated
dg category. These come in two primary flavors, “big” and “small”: dgCatk is the
∞-category of presentable stable k-linear ∞-categories (with colimit-preserving
functors), and dgcatk is the ∞-category of small idempotent-complete stable k-
linear ∞-categories (with exact functors). We denote the compact objects in a sta-
ble ∞-category C by Cω, i.e. the objects X ∈ C for which HomC(X,−) commutes
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with all infinite direct sums. Both dgCatk and dgcatk are symmetric monoidal ∞-
categories under the Lurie tensor product, with units Vectk = k-mod ∈ dgCatk and
Perfk = k-perf ∈ dgcatk the dg categories of chain complexes of k-vector spaces
and perfect chain complexes, respectively. We have a symmetric monoidal ind-
completion functor:

Ind : dgcatk → dgCatk.

It defines an equivalence between dgcatk and the subcategory of dgCatk defined by
compactly generated categories and compact functors (functors preserving compact
objects, or equivalently, possessing colimit preserving right adjoints).

Let A be a Noetherian dg algebra. We let A-mod = D(A) ∈ dgCatk denote the
dg derived category of A-modules, A-perf = Dperf (A) ∈ dgcatk denote the full sub-
category of perfect complexes, and A-coh = Dcoh(A) denote the full subcategory
of cohomologically bounded complexes with coherent (i.e. finitely generated) coho-
mology. Let C denote a symmetric monoidal dg category, and A ∈ Alg(C) an alge-
bra object. We denote by A-modC (resp. A-perfC) the category of A-module (resp.
A-perfect) objects in C; the category A-modC is compactly generated by A-perfC.
When A ∈ dgCatk is a cocomplete monoidal category, we denote by A-mod the
(∞,2)-category of A-modules in dgCatk , i.e. cocomplete A-module categories (see
Sect. 3.6 of [46] for a definition).

Assume that C is either small or that it is compactly generated, and let X ∈ C be
an object, which we require to be compact in the latter case. The notation 〈X〉 denotes
the subcategory classically generated by X when C is small (i.e. the smallest pretri-
angulated idempotent-complete subcategory containing X), and weakly generated by
X when C is cocomplete and compactly generated (i.e. the essential image of the left
adjoint of HomC(X,−)).

1.6.2 Algebraic geometry

In Sect. 3, we work in the setting of derived algebraic geometry over an arbitrary field
k of characteristic zero as in [45]. Namely, this is a version of algebraic geometry in
which functors of (discrete) categories from rings to sets are replaced by prestacks,
functors of (∞-)categories from connective commutative dg k-algebras to simplicial
sets. Examples of prestacks are given by both classical schemes and stacks and topo-
logical spaces (or rather the corresponding simplicial sets of singular chains) such as
S1, considered as constant functors.

We will only be concerned with QCA (derived) stacks (or their formal completions
along closed substacks) as in [38], i.e., quasi-compact stacks of finite presentation
with affine6 finitely-presented diagonal (in fact only with quotients of schemes by
affine group-schemes and their formal completions along closed substacks), and use
the term stack to refer to such an object.

A stack X carries a symmetric monoidal ∞-category QC(X) ∈ dgCatk of qua-
sicoherent sheaves, defined by right Kan extension from the case of representable

6The notion of a QCA stack in [38] is slightly more general; only automorphism groups at geometric
points are required to be affine, and they are not required to be of finite presentation.
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functors X = Spec(R) which are assigned QC(SpecR) = R-mod. For all stacks we
will encounter (and more generally for perfect stacks in the sense of [9]), we have
QC(X) � Ind(Perf(X)), i.e., quasicoherent sheaves are compactly generated and the
compact objects are perfect complexes.

We can also consider the category QC!(X) ∈ dgCatk of ind-coherent sheaves,
whose theory is developed in detail in the book [45] (see also the earlier [43]). The
category QC!(X) (under our assumption that X is QCA) is compactly generated by
Coh(X), the objects which are coherent after smooth pullback to a scheme (see The-
orem 3.3.5 of [38]). For smooth X, the notions of coherent and perfect, hence ind-
coherent and quasicoherent, sheaves are equivalent.

A crucial formalism developed in detail in [45] is the functoriality of QC!. Namely
for an almost finite-type map p : X → Y of stacks, we have colimit-preserving func-
tors of pushforward p∗ : QC!(X) → QC!(Y ) and exceptional pullback p! : QC!(Y ) →
QC!(X), which form an adjoint pair (p∗,p!) for p proper. These functors satisfy
a strong form of base change, which makes QC! a functor – in fact a symmetric
monoidal functor7 – out of the category of correspondences of stacks (the strongest
form of this result is [45, Theorem III.3.5.4.3, III.3.6.3]).

We note that for a closed substack Z ⊂ X, the category of quasicoherent (or ind-
coherent, or perfect, et cetera) sheaves QC(pZ) on the formal completion pZ is canoni-
cally equivalent to the category QCZ(X) of sheaves on X set-theoretically supported
on Z.

See Definition 2.3.1 of [31] for a definition of the derived loop space L(−). For a
stack X with a self-map f , we define Lf (X) to be the derived fixed points of f , i.e.
the derived fiber product

Lf (X) X

X X × X.

(f,idX)

�

When f = idX , we have Lf X = LX. Given a group action G on a scheme X, and
f : X → X commuting with the G-action, we have via Proposition 2.1.8 of [31] a
Cartesian diagram:

Lf (X/G) (X × G)/G

X/G (X × X)/G

(f ◦α,idX)

�

where α is the action map.

1.6.3 Representation theory

In Sects. 2, 4 and 5, unless otherwise noted, G denotes a split reductive group over a
field k = Q� or C) with a choice of Borel B and torus T ⊂ B with universal Cartan

7In general QC! is only lax symmetric monoidal but thanks to [38] it is strict on QCA stacks. Also the full
correspondence formalism in [45] only includes pushforward for [inf,ind-]schematic maps.
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H and (finite) universal Weyl group Wf . The extended affine Weyl group is denoted
Wa := X•(H) � Wf . We denote by Rep(G) = QC(BG) the derived category of ra-
tional representations of G. Likewise, g= Lie(G), b = Lie(B), et cetera.

Morally, we view G as a group on the spectral side of Langlands duality. On
the automorphic side, one is interested in representations of the split group G∨(F ),
where we let F denote a non-archimedian local field with ring of integers O . We
denote by I the Iwahori subgroup with pro-unipotent radical I ◦, defined by the fixed
Borel subgroup B∨ ⊂ G∨ and maximal hyperspecial G∨(O) ⊂ G∨(F ). In Sect. 5.1,
we will reverse this convention for ease of reading, and G will denote a split reductive
group over F .

We will often be interested in equivariance with respect to the trivial extension
of G by Gm which we denote Ggr = G × Gm; this amounts to additional weight
grading on coherent sheaves. We fix once and for all a coordinate z ∈ Gm. For any
geometric vector space or bundle V (e.g. a Lie algebra g or the Springer resolution
˜NG introduced below), by convention the coordinate will act on geometric fibers by
weight −1, i.e. z · x = z−1x for x ∈ V , and therefore on functions by weight 1 (i.e.
z · f (−) = zf (−) for f ∈ V ∗). This negative sign convention corresponds to the
convention that the z = q fixed points of N /Ggr correspond to unipotent Langlands
parameters (s,N) for a local field with residue Fq , i.e. (s,N,q) · N = sNs−1q−1 =
N .8

Let BG = G/B denote the flag variety, NG denote the nilpotent cone, and pNG

its formal neighborhood inside g. We let ˜NG denote the (reduced) Springer res-
olution, and denote by μ : ˜NG = T ∗(BG) → NG ↪→ pNG the composition of the
Springer resolution with the inclusion, and g̃ the Grothendieck-Springer resolution,
which is Ggr-equivariant. Sometimes, we take the codomain of μ to be all of g. Let
ZG = ˜NG ×g

˜NG denote the derived Steinberg scheme, Z ′
G = ˜NG ×g g̃ denote the

non-reduced Steinberg scheme, and Z∧
G = (̃g ×g g̃)∧ denote the formal Steinberg

scheme via completing along the nilpotent elements. We denote by π0(ZG) the clas-
sical Steinberg variety, which coincides with (Z ′

G)red = (Z∧
G)red . We will drop the

subscript if there is no ambiguity regarding the group G in discussion.
We denote the affine Hecke algebra by HG; we use a Coxeter presentation, i.e. a

definition on the spectral side, which can be found e.g. in Definition 7.1.9 of [34]. It is
a k[q, q−1]-algebra whose specializations at prime powers q = pr are isomorphic to
the Iwahori-Hecke algebras Hq,G � H(G∨(F ), I ) := C∞

c (I\G∨(F )/I ; k) of com-
pactly supported Iwahori-biequivariant functions on a loop group (or p-adic group).
More generally, for a locally compact totally disconnected group G (now viewed on
the automorphic side), a compact open subgroup K ⊂ G and a representation τ of
K , we denote its Hecke algebra by H(G,K, τ) := EndG(cIndG

K τ) (these appear in
Sect. 5).

The mixed affine Hecke category is defined by Hm
G := Coh(Z/Ggr), while the

affine Hecke category is defined to be HG := Coh(Z/G). Note that we define these
categories directly on the spectral side of Langlands duality, while they are usually

8Letting q denote the action by q in the above convention (i.e. multiplication by q−1), we have q∗ =
q∗ , where q∗ is the functor in Sect. 11.1 of [18]. Thus, given an identification H � tr(Hm, idHm ) as in
Theorem 2.29, this implies an identification Hq � tr(H, q∗) � tr(H,Fr∗). This convention is compatible
with [2, 18, 34, 58].
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defined on the automorphic side. That is, we implicitly pass through Bezrukavnikov’s
theorem (Theorem 1.13).

We define the coherent Springer sheaf and the coherent q-Springer sheaf by:

SG := Lμ∗OL( ˜N /Ggr)
� Lμ∗ωL( ˜N /Ggr)

∈ Coh(L( pN /Ggr)),

Sq,G := Lqμ∗OLq ( ˜N /G) � Lqμ∗ωLq ( ˜N /G) ∈ Coh(Lq( pN /G)).

The coherent q-Springer sheaf is a coherent sheaf on the stack of unipotent Langlands
parameters:

L
u
q,G := Lq( pN /G).

Note that this definition is functorial and makes sense for any affine algebraic group
G (still completing along nilpotents), and thus the coherent q-Springer sheaf may be
realized by applying parabolic induction

L
u
q,T L

u
q,B L

u
q,G

ν μ

to the structure sheaf of Lu
q,T , i.e. Sq,G = μ∗ν∗OL

u
q,T

(where T is the quotient torus
of B , and does not depend on a choice of lift). By Proposition 4.3, if G is reductive
then L

u
q,G is a classical stack (i.e. no derived and no infinitesimal structure) when

q is not a root of unity. Note that other authors [4, 24, 35, 51, 86] have defined a
moduli stack of Langlands parameters XF,G for a given local field F and a reductive
group G∨ with coefficients in F . Our stack embeds as a connected component of
tame Langlands parameters.

2 Hochschild homology of the affine Hecke category

In this section we calculate the Hochschild homology of the affine Hecke category.
In particular in Corollary 2.26 we prove that the Chern character from K-theory fac-
tors through an isomorphism between K0 and Hochschild homology. For this we
use Bezrukavnikov’s Langlands duality for the affine Hecke category to construct a
semiorthogonal decomposition on the equivariant derived category of the Steinberg
stack with simple components, from which the calculation of localizing invariants is
immediate.

2.1 Background

We first review some standard notions regarding Hochschild homology and equivari-
ant �-adic sheaves that we need for our arguments. In this subsection we take k to be
any field of characteristic 0.
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2.1.1 Trace decategorifications and Hochschild homology

An extended discussion of the notions in this subsection can be found in [8, 31, 46,
79]. We recall the notion of a dualizable object X of a symmetric monoidal (∞,2)-
category C⊗ with monoidal unit 1⊗ (see the Appendix of [45] for a definition).

Definition 2.1 The object X is dualizable if there exists an object X∨ and coevalua-
tion and evaluation morphisms

ηX : 1⊗ → X ⊗ X∨, εX : X∨ ⊗ X → 1⊗

satisfying a standard identity. Dualizability is a property rather than an additional
structure on X (see Proposition 4.6.1.10 in [65]). The trace of an endomorphism
f ∈ EndC(X) of a dualizable object is defined by

tr(X,f ) = εX ◦ (f ⊗ 1) ◦ ηX ∈ EndC⊗(1⊗).

Remark 2.2 Note that End(1⊗) is naturally enriched as an object of C⊗ which is uni-
versal amongst objects tensored over 1⊗, i.e. there is a natural equivalence of algebras
End(1⊗) � 1⊗. In particular, End(1⊗), which is a priori only an A∞-algebra, is an
E∞-algebra (see the discussion in Sect. 4.7.1 of [65] for details).

The notion of dualizability depends only on the 1-categorical structure of C⊗.
However, in our applications, we are interested in the case when X is an algebra ob-
ject in the symmetric monoidal ∞-category C⊗, and the resulting algebra structure
on traces. To formulate this, we require a functoriality on traces involving (right-)du-
alizable 2-morphisms in C⊗; this discussion requires the presence of non-invertible
2-morphisms in C⊗.

Since C⊗ is a monoidal (∞,2)-category, the endomorphisms of the monoidal unit
EndC⊗(1⊗) in fact form an (∞,1)-category. We have the following natural functori-
ality enjoyed by the abstract construction of traces in the higher-categorical setting;
see [46, 55, 79] (and [8] for an informal discussion). Namely the trace of an object is
covariantly functorial under right dualizable morphisms.

Definition 2.3 A morphism of pairs (F,ψ) : (X,f ) → (Y, g) is a right dualizable
morphism F : X → Y (i.e. has a right adjoint G) between dualizable objects along
with a commuting structure ψ : F ◦ f → g ◦ F . Given a morphism of pairs (F,ψ),
it defines a map tr(F,ψ) on traces via the composition

tr(X,f ) tr(X,GFf ) tr(X,GgF) tr(Y, gFG) tr(Y, g)
tr(X,ηF idf ) tr(X,idGψ) � tr(Y,idgεF )

where ηF and εF are the unit and counit of the adjunction (F,G), and the equivalence
in the middle is via cyclic symmetry of traces (see also Definition 3.24 of [8]).

Note that taking the trace is canonically symmetric monoidal with respect to the
monoidal structure in C⊗ and composition in EndC⊗(1⊗) (or equivalently, ten-
soring in 1⊗). The trace construction enhances to a symmetric monoidal functor
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from the ∞-category of endomorphisms of dualizable objects in C⊗ to the category
EndC⊗(1⊗) � 1⊗, see [79, 2.5], [55, 2], and [46, 3] for details. In particular, if X is
an algebra object in C⊗ with right dualizable unit and multiplication, and f : X → X

is a map of algebra objects, then tr(X,f ) is an algebra object in EndC⊗(1⊗).
In this paper, we consider the ∞-category C⊗ = dgCatk of presentable (i.e. co-

complete) k-linear dg categories, with morphisms given by colimit-preserving (i.e.
continuous, or left adjoint) functors, with monoidal product the Lurie tensor product.
We now specialize to this setting.

Example 2.4 Any presentable compactly generated dg category C = Ind(Cω) ∈
dgCatk is dualizable, with dual given by taking the ind-completion of the opposite of
compact objects C∨ = Ind(Cω,op). Thus we may speak of traces of its endofunctors,
which are endomorphisms of the unit, i.e. chain complexes

EnddgCatk (Vectk) � Vectk.

Furthermore, note that a right dualizable morphism of presentable compactly gener-
ated dg categories must have a colimit-preserving right adjoint, or equivalently is a
functor which preserves compact objects.

Definition 2.5 The Hochschild homology of a dualizable (for instance, compactly
generated) presentable k-linear dg category C ∈ dgCatk is the trace of the identity
functor

HH(C/k) := tr(C, idC) ∈ Vectk.

We often omit k from the notation above. More generally, the Hochschild homol-
ogy of C with coefficients in a colimit-preserving endofunctor F is HH(C,F ) =
tr(C,F ) ∈ Vectk .

Remark 2.6 (Large vs. small categories) The above definition is formulated in terms
of large categories, but can be defined for small categories by taking ind-completions.
Since every compactly generated category is dualizable but not conversely, the notion
of Hochschild homology for large categories is more general. We will often not dis-
tinguish between the two.

We have a notion of characters of compact objects in categories, defined via func-
toriality of traces.

Definition 2.7 Let C ∈ dgCatk be dualizable, and F : C → C an endofunctor. Any
object c ∈ Ob(C) defines a functor αc : Vectk → C by action on the object c, and a
map ψ : c → F(c) defines a commuting structure. If c is a compact object, then αc is
right dualizable. Thus, by functoriality of traces, we have a map

tr(αc,ψ) : HH(Vectk) = k −→ HH(C,F )

and the character9 [c] = tr(αc,ψ)(1) of c is the image of 1 ∈ k under this map.

9This may also sometimes be referred to as a trace, but we call it a character to avoid overloading the term.



Coherent Springer theory and categorical Deligne-Langlands 277

Remark 2.8 We highlight a few properties of Hochschild homology which we use in
our arguments:

(1) Hochschild homology is a localizing invariant in the sense of [22] by Theo-
rem 5.2 of [59], and in particular in the explicit algebraic model of Definition 2.12
one can replace Ob(C) with any set of generating objects.

(2) Hochschild homology takes (possibly infinite) F -stable semiorthogonal decom-
positions (see Sect. 2.3) of C to direct sums. This is a consequence of (1) since
semiorthogonal decompositions give rise to exact sequences of categories.

(3) Let A be a dg algebra, M an dg A-bimodule, and define FM(−) = M ⊗A −.
Then, HH(A-mod,FM) = A ⊗A⊗kA

op M . This derived tensor product can be
computed via a bar resolution or otherwise.

(4) The Hochschild homology receives a Chern character map from the connective
K-theory spectrum (see Definition 2.14).

Example 2.9 We give a toy example to illustrate a canonical identification of two
calculations of Hochschild homology. Let C = Coh(P1). It is well-known that
O(−1) ⊕ O generates the category, with endomorphism algebra represented by the
Kronecker quiver. Since the Kronecker quiver has no cycles, we have an identification
HH(Coh(P1)) � k2. The character map is the (twisted) algebraic Euler characteris-
tic: [L] = (χ(P1,L(1)),χ(P1,L)).

On the other hand, the Hochschild-Kostant-Rosenberg isomorphism (see Theo-
rem 4.1 of [29]) identifies the Hochschild homology of a smooth variety with the
global sections of its negatively-shifted algebra of differential forms, which in this
example produces an identification HH(Coh(P1)) � H 0(P1,OP1)⊕H 1(P1,�1

P1) �
k2. The character map is the Chern character, i.e. [O(n)] = (1, n); compatibility
of traces forces a particular identification H 0,0(P1) ⊕ H 1,1(P1) � End(O(−1)) ⊕
End(O).

2.1.2 The cyclic bar and Block-Getzler complex

The Hochschild homology of compactly generated (or equivalently, small) categories
has an algebraic realization via the cyclic bar complex, which we briefly recall; see
Sect. 5.3 in [59] for further discussion. In the below definition, we relax the condition
that C is pretriangulated; morally it should be thought of as a full subcategory of
F -fixed compact generators of a cocomplete dg category.

Definition 2.10 The cyclic bar complex of a small k-linear dg category C, equipped
with a dg-endofunctor F , is defined to be the sum totalization of the simplicial chain
complexes with10

C−n(C,F ) =
⊕

X0,...,Xn∈Ob(C)

Hom•
C(X0,X1) ⊗ · · · ⊗ Hom•

C(Xn−1,Xn)

⊗ Hom•
C(Xn,F (X0))

10Note that for consistency we label using cohomological grading, and that we are defining the complex
of Hochschild chains and not the complex of Hochschild cochains.
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where the face maps di : C−n → C−(n−1) (for i = 0, . . . , n) compose morphisms, i.e.

di(f0 ⊗ · · · ⊗ fn) = f0 ⊗ · · ·fifi+1 ⊗ · · · ⊗ fn, i = 0, . . . , n − 1

dn(f0 ⊗ · · · ⊗ fn) = fnF (f0) ⊗ F(f1) ⊗ · · · ⊗ F(fn−1).

If C is a monoidal dg category, and F has the structure of a monoidal functor,
then HH(C,F ) is an (associative) dg algebra via functoriality and the shuffle or
Eilenberg-Zilber map.

Now, let k be a field of characteristic 0, and G a reductive group over k. For dg cat-
egories with a Rep(G)-action, there is an explicit algebraic model for the Hochschild
homology due to Block and Getzler [21]. We define a Rep(G)-internal Hom for
Rep(G)-module categories in the following standard lemma.

Lemma 2.11 Let C be a Rep(G)-module category. The Hom-sets of C are canoni-
cally enriched in Rep(G) such that

HomC(X,Y ) = HomC(X,Y )G

where Hom denotes the Rep(G)-internal Hom. In particular, if E ∈ C is a compact
Rep(G)-generator for C, then C is equivalent to modules in Rep(G) for the internal
endomorphism algebra

A = EndC(E)op ∈ Alg(Rep(G)).

Proof The lemma is an application of the rigidity of Rep(G) and the Barr-Beck-
Lurie monadicity theorem. The internal Hom is defined in the following way.
For any X ∈ C, the functor actX : Rep(G) → C given by action on X has a
Rep(G)-linear colimit-preserving right adjoint �X(−) = HomRep(G)(X,−). We de-
fine HomC(X,Y ) = �X(Y ). More explicitly, we have

HomC(X,Y ) = HomC(X,Y ⊗O(G)) =
⊕

V ∈Irr(G)

HomC(X,Y ⊗ V ) ⊗ V ∗

where G acts on O(G) by conjugation. Note that �E takes E to the internal
endomorphism algebra, which represents the corresponding monad �E ◦ actE on
Rep(G). By rigidity, this monad is Rep(G)-linear, thus is given by tensoring with
A = EndC(E)op , its value on the monoidal unit. The functor �X is monadic; it pre-
serves colimits since its left adjoint preserves compactness, and it is conservative
since E is a Rep(G)-generator, thus the claim follows by Barr-Beck. �

Block and Getzler defined a chain complex in [21] associated to any dg category
C enriched in Rep(G). We review this notion here. We often do not take the entire
category C, but a full subcategory which generates under the Rep(G)-action (but is
not closed under it).
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Definition 2.12 Let G be a reductive group, and let C be a small dg category en-
riched in Rep(G) equipped with an Rep(G)-enriched dg-endofunctor F . For any
V ∈ Rep(G), we abusively denote by γ : V → V ⊗ k[G] the coaction map. The
Block-Getzler complex (over k) C•

G(C,F ) is defined to be the sum totalization of the
simplicial object in chain complexes with

C−n
G (C,F ) =

⊕

X0,...,Xn∈Ob(C)

(

Hom•
C(X0,X1) ⊗ · · · ⊗ Hom•

C(Xn,F (X0)) ⊗ k[G]
)G

where G acts on k[G] by conjugation, and the face maps di : C−n
G → C−(n−1)

G (for
i = 0, . . . , n) compose morphisms, i.e.

di(f0 ⊗ · · · ⊗ fn ⊗ g) = f0 ⊗ · · ·fifi+1 ⊗ · · · ⊗ fn ⊗ g, i = 0, . . . , n − 1

dn(f0 ⊗ · · · ⊗ fn ⊗ g) = γ (fn)F (f0) ⊗ F(f1) ⊗ · · · ⊗ F(fn−1) ⊗ g.

We define the enhanced Block-Getzler complex to C•
G(C,F ) to be the complex above,

but without taking G-invariants.11 Finally, for a specified g ∈ G(k) we define

C•
G,g(C,F ) = C•

G(C,F ) ⊗k[G] kg

where kg is the skyscraper module at g ∈ G. Note that there are canonical maps

C•
G(C,F ) ↪→ C•

G(C,F ) → C•
G,g(C,F ).

We now wish to show that the Block-Getzler complex computes Hochschild ho-
mology for Rep(G)-module categories. Letting (−)dq := −⊗Rep(G) Vectk denote the

de-equivariantization, since Vectdq
k � QC(G) for any g ∈ G(k) we have an automor-

phism g∗ of the category Cdq induced by the action of the skyscraper sheaf kg at
g ∈ G(k). For any Rep(G)-linear endofunctor F : C → C, consider the squares

C Cdq Cdq

C Cdq Cdq.

F F dq

g∗

F dq

g∗

The left square is equipped with a canonical commuting structure coming from
the Rep(G)-linear structure of F , and the right square is equipped with a canoni-
cal commuting structure since F dq acquires a natural QC(G) � Vectdq

k -linear struc-

ture. We denote by F
dq
g := F dq ◦ g∗ � g∗ ◦ F dq, and consider the map of pairs

� : (C,F ) → (Cdq,F
dq
g ).

11Note that if F is the identity functor, then the Block-Getzler simplicial chain complex is a cyclic object,
and thus the associated chain complex has the natural structure of a mixed complex. However, the enhanced
Block-Getzler complex is not cyclic, since the “rotation” twists by the coaction γ which can be nontrivial
on nontrivial G-isotypic components. One can view this object as an S1-equivariant object in QC(G/G).
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Proposition 2.13 Let G be a reductive group (over k), C be a small dg category
with a Rep(G)-action, and F a Rep(G)-linear endofunctor. Let C0 ⊂ C be a full
subcategory, closed under F , which generates C over Rep(G). Then, the map
C•

G(C0,F ) → C•
G,g(C0,F ) computes the map in Hochschild homology HH(�) :

HH(C,F ) → HH(Cdq,F
dq
g ).

Proof The claim that C•
G(C0,F ) computes HH(C,F ) is similar to Proposition 2.3.6

of [31]. Since C0 (compactly) generates C under the Rep(G)-action, to compute
Hochschild homology we may use the cyclic bar complex with nth term

⊕

Xi∈C0

⊕

Vi∈Irr(G)

HomC(X0 ⊗ V0,X1 ⊗ V1) ⊗ · · · ⊗ HomC(Xn ⊗ Vn,F (X0) ⊗ V0)

�
⊕

Xi∈C0

⊕

Vi∈Irr(G)

HomC(X0 ⊗ V0,X1 ⊗ V1)
G ⊗ · · ·

⊗ HomC(Xn ⊗ Vn,F (X0) ⊗ V0)
G

�
⊕

Xi∈C0

⊕

Vi∈Irr(G)

(V ∗
0 ⊗ HomC(X0,X1) ⊗ V1)

G ⊗ · · ·

⊗ (V ∗
n ⊗ HomC(Xn,F (X0)) ⊗ V0)

G.

By Proposition 2.3.2 of op. cit. we have

�
⊕

Xi∈C0

⊕

V0∈Irr(G)

(V ∗
0 ⊗ HomC(X0,X1) ⊗ · · · ⊗ HomC(Xn,F (X0)) ⊗ V0)

G.

By Peter-Weyl, we have

�
⊕

Xi∈C0

(HomC(X0,X1) ⊗ · · · ⊗ HomC(Xn,F (X0)) ⊗ k[G])G.

These identifications are compatible with the face maps by a straightforward diagram
chase.

The claim that C•
G,g(C0,F ) computes HH(Cdq,F

dq
g ) follows from the obser-

vation that if C0 (compactly) generates C over Rep(G), then its image in the de-
equivariantization (compactly) generates Cdq, and that the Hom-spaces in Cdq are
obtained from the Rep(G)-internal Hom-spaces of C after forgetting the G-module
structure. Thus C•

G,g(C0,F ) is just the cyclic bar complex via the identification of the
last tensor factor (implicitly using the commuting structure):

HomCdq(�(Xn),� ◦ F(X0)) ⊗
O(G)

kg � HomCdq(Xn,F
dq(X0) ⊗

O(G)
kg)

� HomCdq(Xn,F
dq
g (X0)).

Verification that the identifications are compatible under � is a straightforward dia-
gram chase. �
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2.1.3 Chern character from K -theory to Hochschild homology

Finally, we will use the universal trace map from connective K-theory to Hochschild
homology constructed in [22].

Definition 2.14 For any small k-linear dg-category C, the connective K-theory spec-
trum K(C) is the connective K-theory of the corresponding Waldhausen category
defined in Sect. 5.2 of [59]. Since Hochschild homology is a localizing invariant, by
Theorems 1.1 and 1.3 of [22] it receives a canonical and functorial map from the
connective K-theory spectrum which we call the Chern character:12

ch : K(C) → HH(C).

Remark 2.15 We note two important properties of the Chern character that we use.
Note that unlike in the definition of Hochschild homology, in this discussion we re-
strict ourselves to small categories C (i.e. the compact objects of a compactly gener-
ated cocomplete category).

(1) Via functoriality of the Chern character, for any object X ∈ Ob(C), the Chern
character sends [X] ∈ K0(C) �→ [X] ∈ HH0(C), i.e. equivalence classes in the
Grothendieck group to their characters in Hochschild homology in the sense of
Definition 2.7.

(2) Using the lax monoidal structure of K-theory, we see that for a monoidal category
C the Chern character defines a map of algebras (see also Theorem 1.10 of [23]).

Often in applications to geometric representation theory, we are only interested in (or
able to compute) the Grothendieck group K0. However, note that the map K0(C) →
HH0(C) does not automatically induce a map of algebras K0(C) → HH(C) at the
chain level. In order to compare K0 with Hochschild homology, we require certain
vanishing conditions to hold. Namely, if HH(C) is concentrated in degrees ≥ 0, then
the Chern character canonically factors through the truncation of K(C) to degrees
≥ 0, i.e. K0(C) since K(C) is connective:

K(C) HH(C)

K0(C)

ch

and we may ask whether this map is an equivalence. In particular, given this van-
ishing, when C is a monoidal category the induced map from K0(C) → HH(C) is
automatically a map of dg algebras at the chain level.

2.1.4 Equivariant �-adic sheaves, weights, and Tate type

In this subsection we review some standard notions concerning weights and the �-
adic cohomology of BG. In this section and the following one, we fix a prime power

12We use this terminology to avoid overloading the word “trace.”
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q = pr and a prime � �= p, and will work with �-adic sheaves F on Fq -schemes X.
All schemes and sheaves on them that arise are defined over Fq , i.e., X will come
with a geometric Frobenius automorphism Fr and F with a Fr-equivariant (Weil)
structure, which will be left implicit.

Fix a square root of q in Q�, thereby defining a notion of half Tate twist (this choice
can be avoided by judicious use of extended groups as in [15, 28, 84]). For F ∈ Sh(X)

where X is over Fq , we will denote the Tate twist by F(n/2) for n ∈ Z. For a scheme
X with an action by a smooth group scheme G, we denote by Sh(X/G) = ShG(X)

the bounded derived category of G-equivariant Q�-sheaves on X with constructible
cohomology (see Sect. 1.3 of [19] and [16]). In this context, the cohomology of a
sheaf H •(X,−) will be understood to mean étale cohomology.

Following the Appendix of [42], this notion can be extended to G-equivariant ind-
schemes (i.e. a functor which is representable by a directed colimit of schemes with
transition maps closed embeddings), where G is a pro-affine algebraic group (i.e. an
inverse limit of finite-type affine algebraic groups in the category of schemes) act-
ing in a sufficiently finite way. We say a G-action on X is nice if the following two
properties hold: (1) every closed subscheme Z ⊂ X is contained in a closed G-stable
subscheme Z′ ⊂ X such that the action of G on Z′ factors through a quotient of G

which is affine algebraic, and (2) G contains a pro-unipotent subgroup of finite codi-
mension, i.e. if G = lim←− Gn, then there is an n such that ker(G → Gn) is a projective

limit of unipotent affine algebraic groups. If G is a pro-affine group scheme acting
nicely on X, and X = colim−→ Xi with affine quotient Gi acting on Xi , then we define13

ShG(X) = colim−→ ShGi (Xi).

We recall the well-known calculation of the �-adic cohomology ring of BG, whose
description we repeat for convenience following [80] (in the Hodge-theory context).

Proposition 2.16 Let G be a pro-affine group scheme with split reductive quo-
tient over Fq . Then, H •(BG;Q�) is polynomial, generated in even degrees, and
H 2k(BG;Q�) is a Frobenius eigenspace with eigenvalue qk . Furthermore the dg
algebra C•(BG;Q�) under the cup product is formal, i.e. there is an algebra quasi-
isomorphism C•(BG;Q�) � H •(BG;Q�).

Proof First, since G is pro-affine, there is a reductive (finite type) algebraic group G0

such that the kernel ker(G → G0) is pro-unipotent. By Theorem 3.4.1(ii) in [16] we
may assume that G is reductive (and finite type).

We first establish the claim that H •(BG;Q�) is polynomial in even degrees and
compute the action of Frobenius. It is a standard calculation that H •(Gm,Q�) =
H 0(Gm,Q�) ⊕ H 1(Gm,Q�), where H 0 is a 1-eigenspace for the Frobenius and H 1

is a q-eigenspace. By Corollary 10.4 of [63], it follows that H •(BGm,Q�) � Q�[u]
where u has cohomological degree |u| = 2, and is a q-eigenvector for Frobenius.
In particular, by the Künneth formula (Theorem 11.4 in op. cit.) we have that for a

13This definition is independent of the choice of presentation, since by [16] Theorem 3.4.1(ii) if Gi → Gj

is a surjection with unipotent kernel, then ShGj (Y ) → ShGi (Y ) is an equivalence for any Y on which Gj

acts. See also Section A.4 of [42].
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split torus T , H •(BT ;Q�) is polynomial in even degrees, and H 2k is a Frobenius-
eigenspace with eigenvalue qk . Thus, the claim is true when G = T is a torus.
Now, assume T is a split torus inside a reductive group G, and B is a Borel
subgroup with T ⊂ B ⊂ G. Applying Theorem 3.4.1(ii) of [16] again, we have
H •(BB;Q�) � H •(BT ;Q�). By Theorem 1.1 of [81], H •(BG;Q�) is a polynomial
subring of H •(BB;Q�) � H •(BT ;Q�), completing the claim. Formality follows by
a standard weight-degree argument. �

2.2 Automorphic and spectral realizations of the affine Hecke category

We follow the set-up of Bezrukavnikov in [18], except that we view the group on the
automorphic side as dual to a chosen group on the spectral side for ease of notation.
Let G be a fixed reductive algebraic group over Q� on the spectral side of Langlands
duality, and let G∨ be the extension of scalars to Fq of its dual group split form over
Fq (equipped with corresponding Frobenius automorphism).

Let F = Fq((t)) and O = Fq [[t]]. We denote by qG the loop group, i.e. the group
ind-scheme over Fq with qG(Fq) = G∨(F ) defined in Sect. 0.2 of [42]. We denote
by qG0 the arc group, which is a pro-affine group scheme with qG0(Fq) = G∨(O).
There is a group scheme homomorphism qG0 → G∨, and the Iwahori subgroup of qG
is defined qI := qG0 ×G∨ B∨, which inherits its structure as a closed subgroup and is
therefore also a pro-affine group. We let qI◦ := qG0 ×G∨ U∨ denote its pro-unipotent
radical.

On the automorphic side, we are interested in equivariant Q�-sheaves on the affine
flag variety Fl = qG/qI, an ind-proper ind-scheme constructed in the Appendix of [42].
It carries a left action of qI whose orbits are of finite type and naturally indexed the
affine Weyl group Wa for the group G∨. For w ∈ W , we denote by Flw the corre-
sponding orbit. Denote by jw : Flw ↪→ Fl the inclusion of the corresponding qI-orbit.
Let � : Wa → Z

≥0 denote the length function on the affine Weyl group.
On the spectral side, the stacks that appear are defined over Q�. Recall the derived

Steinberg variety Z = ˜N ×g
˜N and the classical non-reduced Steinberg variety Z ′ =

g̃ ×g
˜N (see Sect. 1.6.3). Each of these (derived) schemes has a natural G-action,

as well as a commuting Gm-action which by our convention acts by scaling on the
points of g, ˜N , and g̃ by weight −1 (thus on linear functionals by weight 1). Recall
the notation Ggr = G ×Gm.

The following is Theorem 1 of [18], while the Frobenius property of � appears as
Proposition 53.

Theorem 2.17 (Bezrukavnikov) At the level of homotopy categories, there are equiv-
alences of categories � and �′ and a commutative diagram

Sh
qI◦(Fl) Coh(Z ′/G)

Sh
qI(Fl) Coh(Z/G)

�′
�

�

�

π∗
i∗
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where π :qI◦\Fl →qI\Fl is the quotient map and i : Z/G ↪→ Z ′/G is the inclusion.
Moreover the functors admits the following natural structures:

• � is naturally an equivalence of monoidal categories, and

• � and �′ intertwine the action of Frobenius on Sh
qI(Fl) (resp. Sh

qI◦(Fl)) with the
action of q ∈Gm on Coh(Z/G) (resp. Coh(Z ′/G)).

Remark 2.18 We note that while it is expected that the above equivalences lift to ∞-
categorical enhancements, it is not currently written in the literature explicitly. In our
arguments (e.g. in Proposition 2.19) we do not need this stronger version; we use the
equivalence to produce graded lifts of certain standard objects in the spectral affine
Hecke category which may be done at the level of homotopy categories.

We point out certain distinguished sheaves in Sh
qI(Fl) and Sh

qI◦(Fl) (computed
explicitly for G = SL2,PGL2 in Examples 2.2.3-5 in [74]).

(a) Let λ ∈ X∗(T ∨) = X∗(T ) ⊂ Wa be a character of the maximal torus of G, con-
sidered as an element of the affine Weyl group of the dual group. The Waki-
moto sheaves Jλ are defined as follows. When λ is dominant, we take Jλ =
jλ,∗Q�Flλ

[〈2ρ,λ〉]. When λ is antidominant, we take Jλ = jλ,!Q�Flλ
[〈2ρ,−λ〉].

In general, writing λ = λ1 −λ2, we define Jλ = Jλ1 ∗J−λ2 , which is independent
of choices due to Corollary 1 in Sect. 3.2 of [2].

(b) For any w ∈ Wa , we define the corresponding costandard (resp. standard) object
by ∇w := jw,∗Q�Flw

[�(w)] (resp. �w := jw,!Q�Flw
[�(w)]). They are monoidal

inverses by Lemma 8 in Sect. 3.2 of [2]. By Lemma 4 of [18], we have ∇w ∗
∇w′ = ∇ww′ (and likewise for standard objects) when �(w) + �(w′) = �(ww′). If
λ ∈ X∗(T ∨) = X∗(T ) is dominant, then the Wakimoto is costandard Jλ = ∇λ; if
λ is antidominant, the Wakimoto is standard Jλ = �λ.

(c) Let w0 ∈ Wf ⊂ Wa be the longest element of the finite Weyl group. The anti-

spherical projector or big tilting sheaf � ∈ Sh
qI◦(Fl) is defined to be the tilting

extension of the constant sheaf Q�Flw0
of Flw0 to Fl, as in Proposition 11 and

Sect. 5 of [18]. Note that this object does not descend to Sh
qI(Fl).

We abusively use the same notation to denote sheaves in Sh
qI◦(Fl); note that π∗�w �

�w and π∗∇w � ∇w by base change. All sheaves above are perverse sheaves, since
the inclusion of strata are affine.

For our applications, we need to work not with Z/G but with Z/Ggr (recall that
Ggr = G × Gm). The following proposition is the key technical argument we need
to construct the semiorthogonal decomposition of Coh(Z/Ggr) and hence deduce
results on its homological invariants – a graded lift of standards and costandards under
Bezrukavnikov’s theorem. It is conjectured in [18] (and announced in [54]) that the
equivalences in Theorem 2.17 should have mixed versions, relating a mixed form of
the Iwahori-equivariant category of Fl with a Gm-equivariant version of Coh(Z/G),
i.e. Coh(Z/Ggr), which would immediately give us the desired result. In particular,
see Example 57 in [18] for an expectation of what the sheaves �(�w) are explicitly
and note that they have Gm-equivariant lifts.
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Proposition 2.19 The objects �(∇w),�(�w) ∈ Coh(Z/G) have lifts to objects in
Coh(Z/Ggr) for all w ∈ Wa , compatible with the action of Frobenius under the
equivalence in Theorem 2.17.

Proof We will prove the statements for the standard objects; the statements for co-
standards follows similarly. Wakimoto sheaves are sent to twists of the diagonal
�(Jλ) � O�(λ) by Sect. 4.1.1 of [18], which evidently have Gm-equivariant lifts.
Convolution is evidently Gm-equivariant, so the convolution of two sheaves with
Gm-lifts also has a Gm-lift. Assuming that the standard objects corresponding to fi-
nite reflections have Gm-lifts, by Lemma 4 of [18] we can write the standard for the
affine reflection as a convolution of Wakimoto sheaves and standard objects for finite
reflections. Thus, we have reduced to showing that all standard objects �(�w) have
Gm-lifts for w a simple finite reflection.

By Corollary 42 of [18] �′ has the favorable property that Z ′ is a classi-
cal (non-reduced) scheme, and that it restricts to a map on abelian categories on

PervU∨
(G∨/B∨) ⊂ Perv

qI◦(Fl) taking values in Coh(Z ′/G)♥ (though it is not essen-
tially surjective). In particular, by Proposition 26 and Lemma 28 in [18] it takes the
tilting sheaf � to OZ ′/G, which manifestly has a Gm-lift.

We claim that Gm-lifts for the �′(�w) ∈ Coh(Z ′/G) for w ∈ Wf induce Gm-
lifts for the �(�w) ∈ Coh(Z/G). Since Z is a derived scheme, the functor i∗ :
Coh(Z/Ggr) → Coh(Z ′/Ggr) is not fully faithful (i.e. objects on the left may have
additional structure). But since �′(�w) � i∗�(�w) are in the heart and i∗ is t-exact
(for the standard t-structures) and conservative, we have that �(�w) ∈ Coh(Z/G)♥.
Moreover, the restriction of i∗ to Coh(Z/G)♥ is fully faithful, proving the claim.
Thus, we have reduced to showing that the finite simple standard objects �′(�w) ∈
Coh(Z ′/G)♥ have Gm-lifts; in particular these are objects in the abelian category of
coherent sheaves.

By Lemma 4.4.11 in [19], � is a successive extension of standard objects
�w(�(w)/2) for w ∈ Wf . Thus, there is a standard object �w(�(w)/2) and a sur-
jection � � �w(�(w)/2), which is Frobenius-equivariant as it arises as a morphism
in the mixed category. This implies that the kernel K = ker(� � �w(�(w)/2)) is a
Frobenius-equivariant subobject of K . On the spectral side, using Proposition 53 in
op. cit., this means that �′(K) ⊂ �′(�) � O/Z ′/G is a q-equivariant subobject with
quotient �′(�w(�(w)/2)). We wish to show that the quotient has a Gm-equivariant
lift, which amounts to showing that �′(K) is a Gm-equivariant subobject.

Since �(K) is already endowed with a Gm-equivariant structure, q-equivariance
for a subobject of a Gm-equivariant object is property, not an additional structure. We
claim that for q not a root of unity, any q-closed subsheaf of a Gm-equivariant sheaf
on a quotient stack must be Gm-closed as well (i.e. the isomorphism defining the Gm-
equivariant structure restricts to the subsheaf). Assuming this claim, and iterating the
above argument replacing � with the kernel K , we find that �′(�w) has a Gm-
equivariant lift for every w ∈ Wf (since the big tilting object contains every �w as a
subquotient), completing the proof.

We now justify the claim. First, if F is a sheaf on a quotient stack X/G with a Gm-
action, we can forget the G-equivariance (i.e. base change to the standard atlas X →
X/G). Now, by reducing to an open affine Gm-closed cover of X, we can assume X
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is affine. On an affine scheme X = Spec(A), the Gm-action gives the structure of a
Z-grading on A, and a submodule of a graded A-module M ′ ⊂ M is q-equivariant
if it is a sum of q-eigenspaces, and Gm-equivariant if it is a sum of homogeneous
submodules. The claim follows from the observation that any m ∈ M ′ can only have
eigenvalues qn for n ∈ Z, which are distinct, so the q-eigenspaces entirely determine
the Gm-weights. �

2.3 A semiorthogonal decomposition

In this section, we describe an “Iwahori-Matsumoto” semiorthogonal decomposition
of the mixed affine Hecke category Hm := Coh(Z/Ggr), arising from the stratifica-
tion of the affine flag variety Fl on the automorphic side of Bezrukavnikov’s equiv-
alence Theorem 2.17 and the lifting result in Proposition 2.19. This will, in turn,
induce a direct sum decomposition on Hochschild homology. First, let us establish
terminology.

Definition 2.20 Let {Sn}n∈N denote a collection of full subcategories of a small dg
category C. We say that {Sn} defines a semiorthogonal decomposition of C if there
is an exhaustive left admissible filtration FnC of C such that Sn is the left orthogonal
of Fn−1C inside FnC. In particular, in this case Hom•

C(Xn,Xm) � 0 for Xi ∈ Si and
n > m.

The following result is standard.

Proposition 2.21 Let G be a pro-affine group scheme acting nicely on an ind-
scheme X. Assume that the stabilizer of each orbit is connected, and that every G-
closed subscheme of X is a union of finitely many G-orbits. Let I be an indexing set
for the G-orbits Xi under the (partial) closure relation, i.e. Xn ⊂ Xm implies m ≥ n,
and let jn : Xn ↪→ X denote the inclusion. Then, 〈jn!Q�Xn

〉 defines a semiorthogonal
decomposition of ShG(X), where the ordering is given by any choice of extension of
the partial order to a total order.

Proof It is standard that stratifications of stacks give rise to semi-orthogonal decom-
positions on categories of �-adic sheaves. We note that each orbit is equivariantly
equivalent BH where H is the stabilizer (connected by assumption), and Sh(BH) is
generated by the constant sheaf Q� when H is connected. �

Corollary 2.22 Fix a Bruhat ordering of the affine Weyl group Wa . The standard ob-
jects 〈∇w = jn!Q�Xn

〉 give a semiorthogonal decomposition of ShI(Fl).

Remark 2.23 The costandard objects �w = jn∗Q�Xn
define a semiorthogonal decom-

position in the reverse order.

We would like to lift the above semiorthogonal decomposition of Coh(Z/G) to
Coh(Z/Ggr). We do so by applying Lemma 2.11 to the Gm-equivariant lifts of the
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objects �(�w) from Proposition 2.19. We will apply the following result to the set-
ting:

C = Hm = Coh(Z/Ggr), Cdq = H = Coh(Z/G), H = Gm = Speck[z, z−1]
recalling the de-equivariantization functor (−)dq : C → Cdq = C ⊗Rep(H) Vectk from
Sect. 2.1.1.

Corollary 2.24 Let H be a group-scheme over a field k of characteristic 0, and
C a compactly generated cocomplete Rep(H)-module dg category. Let {En ∈ C |
n ∈ N} be a linearly ordered set of objects such that 〈Edq

n 〉 defines a semiorthogo-
nal decomposition of Cdq. Denote by An = EndC(En)

op the Rep(H)-algebras from
Lemma 2.11. Then, we have an equivalence

HH(C) �
⊕

α

HH(An-modRep(H)).

Proof Let Cdq
n := 〈Edq

n 〉 be the category generated by E
dq
n , and let Cn be the preim-

age under (−)dq. The categories Cn form a semiorthogonal decomposition of C,
since HomC(X,Y ) = HomC(X,Y )G by Lemma 2.11, and since HomC(X,Y ) =
HomCdq(Xdq, Y dq) after forgetting the Rep(G)-enriched structure on the left.
Hochschild homology is a localizing invariant in the sense of [22], and in par-
ticular takes semiorthogonal decompositions to direct sums. Thus we have an
equivalence HH(C) �

⊕

n∈Z
HH(Cn). Applying Lemma 2.11, we find HH(C) �

⊕

n∈Z
HH(An-modRep(Gm)). �

We now compute the endomorphism algebras Aw as algebras in Rep(Gm), us-
ing the graded lifts from Proposition 2.19 and the semiorthogonal decomposition in
Corollary 2.22.

Proposition 2.25 Let Ew denote the Gm-lifts of �(�w) constructed in Proposi-
tion 2.19, and Aw = EndZ/Ggr

(E
dq
w ). We have quasi-isomorphisms Aw �

Sym
Q�

h[−2] where h[−2] is the universal dual Cartan shifted into cohomological
degree 2 with Gm-weight 1. In particular, Aw is formal.

Proof Since � is an equivalence of categories we can compute Aw on the automor-
phic side. The unit map F → j !j!F is an equivalence for j a locally closed immer-
sion, so that

Aw = Hom(jw,!Q�Flw
, jw,!Q�Flw

) = Hom(Q�Flw
, j !

wjw,!Q�Flw
)

� R�(qI\Flw,Q�Flw
).

Since Flw is an qI-orbit, letting qIw denote its stabilizer for a choice of base point in
Flw , we find that Aw � C•(BqIw;Q�) is the equivariant cohomology chain complex
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for BqIw with Q�-coefficients under the cup product. The reductive quotient (i.e. by
the pro-unipotent radical) of qIw is the quotient torus H∨, so Aw � C•(BH∨;Q�).
By Proposition 2.16, this algebra is formal and isomorphic to H •(BH∨;Q�) �
Sym

Q�
h[−2].

For the Gm-weight, recall that the pullback along multiplication by q corresponds
under � to the Frobenius automorphism. Thus, for q not a root of unity, the qn-
eigenspace and the homogeneous Gm-weight n part coincide, and the claim follows
by Proposition 2.16. �

We now apply Corollary 2.24 to the set-up in the above proposition.

Corollary 2.26 Letting k = Q� or C, we have an isomorphism of k[z, z−1]-modules

HH(Hm) � kWa ⊗k k[z, z−1].

In particular, we have that

(1) the Hochschild homology HH(Hm) is cohomologically concentrated in degree
zero,

(2) the Chern character K(Hm) → HH(Hm) factors through K0(Hm), and
(3) the map K0(Hm) ⊗Z k → HH(Hm) is an equivalence.

Proof The claim for C follows from Q� by fixing an isomorphism. Fix a Bruhat order
on Wa , extended to a total order. Applying Corollary 2.24 in the case C = Hm =
Coh(Z/Ggr), C = H = Coh(Z/G), and H = Gm, we have a canonical equivalence

HH(Hm/Q�) � Q�Wa ⊗
Q�

HH(A-perfRep(Gm)/Q�)

where A = Sym•
Q�

h[−2] � Aw is the algebra from Proposition 2.25 (which does not

depend on w ∈ Wa). The Hochschild homology of A-perfRep(Gm) is computed by
the Block-Getzler complex of Definition 2.12, which we can compute explicitly. Its
terms are (A⊗n+1 ⊗ Q�[z, z−1])Gm , and since z has Gm-weight 0, there is an iso-
morphism (A⊗n+1 ⊗Q�[z, z−1])Gm � (A⊗n+1)Gm ⊗Q�[z, z−1] and we observe that
(A⊗n+1)Gm = Q� since each A is generated over Q� by positive weights. Thus, the
natural map C•

Gm
(Q�) → C•

Gm
(A) is a quasi-isomorphism, so the first claim follows.

Factorization through K0 follows since the Hochschild homology is coconnective.
To show that the map K0(A-modRep(Gm))⊗ZQ� → HH(A-modRep(Gm)/Q�) is an

equivalence, first note that since HH(A-modRep(Gm)/Q�) is concentrated in degree
zero, the Chern character factors through K0, i.e. we have a commuting diagram for
each summand

K(Rep(Gm)) ⊗Z Q� K0(Rep(Gm)) ⊗Z Q� HH(Rep(Gm)/Q�)

K(A-perfRep(Gm)) ⊗Z Q� K0(A-perfRep(Gm)) ⊗Z Q� HH(A-modRep(Gm)/Q�).

�

�
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By Remark 2.15, the map K0(Rep(Gm)) → K0(A-perfRep(Gm)) is an equivalence,
since both sides are freely generated by K0(Rep(Gm)) = HH(Rep(Gm)) by the char-
acter of a single object [A], i.e. the free object. Using the semiorthogonal decompo-
sition, these equivalences induce an equivalence K0(Hm) ⊗Z Q� � HH(Hm/Q�),
which is an equivalence of algebras by Remark 2.15. �

We also have the following result for the non-Gm-equivariant version.

Corollary 2.27 Let k = Q� or C. The map of algebras K(Coh(Z/G)) →
HH(Coh(Z/G)) factors through K0 and we have an isomorphism as dg k-modules

HH(Coh(Z/G)) � kWa ⊗ H •(H∨ × BH∨; k) � kWa ⊗ Sym•
k(h[−1] ⊕ h[−2]).

Proof Essentially the same as the previous corollary, along with a direct cal-
culation of the Hochschild homology of the formal dg ring HH(Sh(BH∨)) =
HH(Sym•

k(h[−2])-mod). �

2.4 Hochschild homology of the affine Hecke category

In this section, we will show that the trace decategorification of the mixed affine
Hecke category Hm is the affine Hecke algebra H, while the trace decategorifica-
tion of the affine Hecke category H is a derived variant of the group algebra of the
extended affine Weyl group kWa . We assume that G has simply connected derived
subgroup until Sect. 2.4.2, where we remove the assumption.

We begin by quoting the following celebrated theorem by Ginzburg, Kazhdan and
Lusztig.

Theorem 2.28 (Ginzburg-Kazhdan-Lusztig) Let k = Q� or C, and assume that G

has simply connected derived subgroup. Then there is an equivalence of associative
algebras H → K0(Hm) ⊗Z k, compatibly with an identification of the center with
K0(Rep(Ggr))⊗Z k. Likewise, there is an equivalence of associative algebras kWa �
K0(H) ⊗Z k with center K0(Rep(G)).

Proof The only difference between our statement and that in [58] [34] is their Stein-
berg stack is the classical stack π0(Z)/Ggr, which has no derived structure. On the
other hand, we are interested in Z/Ggr which has better formal properties. The state-
ment follows from the fact that the Grothendieck group is insensitive to derived struc-
ture, i.e. the ideal sheaf for the embedding π0(Z)/Ggr ↪→Z/Ggr acts nilpotently on
any coherent complex. Finally, note that while the statement of Theorem 3.5 of [58]
and Theorem 7.2.5 in [34] are made for k = C, the proofs do not employ topological
methods and apply to the isomorphic field Q�. �

For the remainder of the section, we let k = Q� or C. We combine the above
theorem with Corollary 2.26 to arrive at the following main theorem. We will remove
the simply connectedness assumption in Sect. 2.4.2.
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Theorem 2.29 Assume that G has simply connected derived subgroup. There is an
equivalence of algebras, and an identification of the center:

H HH(Hm)

k[G]G ⊗k k[q, q−1] HH(Rep(G ×Gm)).

�

�

Proof That the map is an isomorphism is a combination of Theorem 1.2 and Corol-
lary 2.26. �

The following non-mixed variant may also be of interest, and is the analogue
to Corollary 2.27. In this case, the map to Hochschild homology is not an equiva-
lence, though it does induce an equivalence on HH0. We note that the dg algebra
Sym•

k(h[−1] ⊕ h[−2]) appearing in the statement is equivalent to C•(H∨ × BH∨).

Corollary 2.30 With the assumptions above, there is a commuting diagram of alge-
bras:

kWa ⊗k Sym•
k(h[−1] ⊕ h[−2]) HH(H)

k[G]G HH(Rep(G)).

�

�

Proof By Corollary 2.27, the Hochschild homology HH(Coh(Z/G)) is coconnec-
tive, so the Chern character from K(Coh(Z/G)) factors through K0(Coh(Z/G))⊗Z

k = kWa . Thus we have a map of algebras kWa → HH(Coh(Z/G)) which in-

duces an equivalence on H 0. Next, note that the subcategory Sh
qI(Fl) generated

by the monoidal unit (i.e. the skyscraper sheaf δe), which is closed under the
monoidal structure, is in the center of Coh(Z/G), so that the subalgebra HH(〈δe〉) �
Sym•

k(h[−1]⊕ h[−2]) ⊂ HH(Coh(Z/G)) is central. This defines a map of algebras
HH(〈δe〉)-mod → HH(Coh(Z/G)), which defines a map of algebras out of the ten-
sor product HH(〈δe〉) ⊗k kWa → HH(Coh(Z/G)) which is an equivalence when
restricted to each tensor factor; thus it is an equivalence. �

2.4.1 q-Specializations of the affine Hecke algebra

Let q : Z/G →Z/G be the action by q ∈ Gm under our conventions, i.e. multiplying
by q−1. In this section we compute the trace of the functor14 q∗ on the category
H = Coh(Z/G). First, we make the general observation that if F is an automorphism
of a small dg category C and E ∈ C, then an F -equivariant structure on E induces an
automorphism of the dg algebra A = EndC(E), and thus an automorphism of the
category A-perf which we denote FA. This F -equivariant structure on E defines a
commuting structure for an equivalence of pairs (A-perf,FA) → (〈E〉,F ).

14Note that our q∗ corresponds to q∗ in [2].
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Proposition 2.31 Let q �= 1 and let Aw denote the algebras from Proposition 2.25.
Then, HH(Aw,q∗) � k.

Proof First, observe that the functor q∗ induces the automorphism on the alge-
bra Aw � Symk h

∗[−2] arising via the q-scaling map on h (in particular, h∗ has
weight −1). The claim is a direct calculation using the complex Cq(Aw,Gm) from
Definition 2.12 via Koszul resolutions: Cq(Aw,Gm) is the derived tensor product
Aw ⊗L

Aw⊗Aw
Aw where Aw is the diagonal bimodule for one factor and is twisted by

q∗ on the other factor.
Rather than a direct calculation, we give a geometric argument. First, note that

q∗ preserves the Gm-weights of Aw � Sym•
k h

∗[−2] (i.e. since q ∈ Gm is central).
We apply a Tate shearing (i.e. sending cohomological-weight bidegree (a, b) to (a −
2b, b)) to the algebra Symk h

∗[−2] to obtain the algebra O(h) = Sym•
k h

∗. Note that
HH(Perf(h), q∗) = O(hq), i.e. functions on the derived fixed points of action by q .
When q �= 1 we have hq = {0}, so HH(Perf(h), q∗) = k. Undoing the shearing, we
find that the natural map HH(Aw,q∗) → HH(k, q∗) is an equivalence. �

Corollary 2.32 Let Hq denote the specialization of the affine Hecke algebra at q ∈
Gm. If q �= 1, we have an equivalence of algebras

HH(H, q∗) � Hq .

Proof The calculation in Proposition 2.31 shows that specialization at q ∈ Gm in-
duces an equivalence on Block-Getzler complexes (viewing Aw as an algebra in
Rep(Gm)):

C•
Gm

(Aw) ⊗k[z,z−1] kq → C•
Gm

(Aw) ⊗k[z,z−1] kq → C•
Gm,q(Aw)

inducing an equivalence HH(Coh(Z/Ggr)) ⊗k[z,z−1] kq � HH(Coh(Z/G), q∗),
since the trace of an endofunctor F on a category C takes semiorthogonal de-
compositions preserved by F to direct sums. Consequently, under the identifica-
tion of algebras HH(Coh(Z/Ggr)) � H, specialization at q defines an equivalence
HH(Coh(Z/G), q∗) � Hq . �

Remark 2.33 The above corollary is evidently untrue for q = 1, since H is flat over
k[z, z−1] but HH(H) has derived structure by Corollary 2.30.

Remark 2.34 Our methods also allow for an identification of the following mon-
odromic variants of the affine Hecke category introduced in [18] (where Z ′ = g̃×g

˜N
and Z∧ is the formal completion of g̃×g g̃ along Z):

HH(Coh(Z ′/Ggr)) � HH(Coh(Z∧/Ggr)) � H,

HH(Coh(Z ′/G), q∗) � Hq,

HH(Coh(Z∧/G), q∗) �
{

kWa ⊗k Sym•
k(h⊕ h[−1]) q = 1,

Hq q �= 1.
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The category Coh(Z ′/Ggr) is not monoidal, so it does not make sense to ask that it
is identified with H as an algebra. However, it is equivalent to H as a (right) module
for HH(Coh(Z/Ggr)) � H. The category Coh(Z∧/Ggr) does not have a monoidal
unit, and its monoid structure is trivial; in [33] an enlargement of Coh(Z∧/Ggr) will
be defined to resolve these issues (see also [19]) but we will not address it here.

In these cases the generating object Ew = Q�Flw
for each stratum on the auto-

morphic side live in different categories, resulting in different endomorphism alge-
bras (see Proposition 2.25). Recall that for Z , the category appearing is D(BH∨)

so we had Aw = C•(BH∨;Q�) � Sym•
Q�

h[−2]. For Z ′, the category is D(pt), so

A′
w = Q�. For Z∧, the category is Du(H∨ H∨) ⊂ D(H∨), the full subcategory of

sheaves with unipotent monodromy, and A∧
w � C•(H∨;Q�) � Sym•

Q�
h[−1].

For the enlargement of Coh(Z∧) from [33], the constant sheaf does not generate
on each stratum, and instead one should take a “cofree monodromic” sheaf (defined
in op. cit.) whose endomorphisms ySym

•
Q�
h∗ are Koszul dual to A∧

w = Sym• h[−1].
Likewise, for Coh(Z) the constant sheaf is not compact, and rather than coher-
ent sheaves one could have considered the smaller category of compact sheaves.
The generator then is the induced sheaf, which has endomorphisms C•(H∨;Q�) �
Sym•

Q�
h∗[1], which is Koszul dual to Aw = Sym•

Q�
h[−2].

2.4.2 Groups of non-simply connected type

In this section we will remove the simply connectedness assumptions from earlier
theorems. We work in the following set-up. Let G be a reductive algebraic group
with simply connected derived subgroup, and φ : G → G′ a central isogeny with
kernel Z (i.e. a quotient by a finite subgroup Z of the center). Following Sect. 1.5 of
[76], this induces a Z-action on HG via the formula

z · (Tw ⊗ eλ) = λ(z)(Tw ⊗ eλ), w ∈ Wf ,λ ∈ X∗(T ), z ∈ Z. (2.1)

Equivalently, the affine Hecke algebra has a multiplicative grading by characters of
Z, i.e.

HG =
⊕

χ∈X•(Z)

HG,χ

and we have an identification of HG′ with the trivial graded part or Z-invariants

HG′ � HZ
G = HG,triv ↪→HG.

Our goal will be to prove a similar formula in Hochschild homology, which arises
when the category is equipped with a Z-trivialization in the following sense.

Definition 2.35 Let G be an affine algebraic group with central subgroup Z ⊂ G,
and C be a Rep(G)-module category. A Z-trivialization of C is a Rep(G/Z)-linear
category C′ and an equivalence C � C′ ⊗Rep(G/Z) Rep(G).
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Remark 2.36 If G is reductive (thus Z is semisimple), then we have a decompo-
sition of Rep(G) into Rep(G/Z)-module categories by Z-characters. Via the Z-
trivialization, this gives a decomposition of C into Rep(G)-module categories

Rep(G) =
⊕

χ∈X•(Z)

Rep(G)χ , C �
⊕

χ∈X•(Z)

Cχ

where the natural functor C′ → C induces an equivalence C′ � Ctriv with the trivial
block. In this setting, the direct sum decomposition of C induces a X•(Z)-grading in
Hochschild homology

HH(C) =
⊕

χ∈X•(Z)

HH(Cχ )

such that HH(Ctriv) � HH(C′). Since the sum decomposition is evidently functorial
for Rep(G)-functors compatible with trivializations, so is the grading on Hochschild
homology.

It remains to show that these X•(Z)-gradings agree via the identifications in The-
orem 2.29.

Proposition 2.37 The identification H � HH(Hm) of Theorem 2.29 are compatible
with the X•(Z)-gradings defined in Equation (2.1) and Remark 2.36.

Proof We claim that the Z-action on H defined in [76] induces a decomposition of
H into eigenspaces indexed by Wf double cosets Wf λWf ⊂ Wa for λ ∈ X•(T ),
spanned by Iwahori-Matsumoto basis elements Tw for w ∈ Wf λWf , with eigenvalue
λ|Z . This claim can be directly verified, e.g. using the Bernstein relations in Sect. 7.1
of [34]. This X•(Z)-eigenbasis of H corresponds under Theorem 2.29 to the basis
{[id�(�w)] | w ∈ Wa} ⊂ HH(Hm), i.e. identity maps for the spectral-side standard
objects �(�w) described in Sect. 2.2, which we need to verify is an eigenbasis with
corresponding eigenvalues.

By functoriality, for any functor F : C → D of categories in our set-up, if
[idX] ∈ HH0(C) is a λ-eigenvector for Z, then [idF(X)] ∈ HH0(D) is as well; the
converse is true if F is faithful on the homotopy category (i.e. H 0(Hom•(X,X)) →
H 0(Hom•(F (X),F (X))) is injective). We will use this fact repeatedly. In particu-
lar, since the forgetful functor Coh(Z/Ggr) → Coh(Z/G) is faithful, we can forget
Gm-equivariance, and since the Z-action is compatible with convolution, it suffices
to check our statement for finite reflections and the lattice.

For the lattice, we have �(�λ) � �∗O ˜N (λ) = �∗p∗Vλ ∈ Coh(Z/G), where p :
˜N /G → BB is the projection. The eigenvalue for the identity map of Vλ ∈ Coh(BB)

is evidently λ|Z . For finite simple reflections, since i∗ is fully faithful on the homo-
topy category we may instead consider the equivalence �′. Here, the spectral-side
object corresponding to the automorphic big tilting object is OZ ′/G. By applying
functoriality to the pullback from a point we see that the identity on any structure
sheaf has trivial Z-eigenvalue, and therefore any subquotient does, thus �′(�w) and
�(�w) do. �
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Corollary 2.38 The statements of Theorem 2.29, Corollary 2.30 and Corollary 2.32
hold without the assumption that G has simply connected derived subgroup.

Proof By Theorem 2.29, we have an identification HH(Hm
G) � HG. Since the cen-

ter Z acts on Z and Z ′ trivially, the categories Coh(Z/G) and Coh(Z ′/G) come
equipped with natural Z-trivializations, and thus their Hochschild homologies have
X•(Z)-gradings. By Proposition 2.37 the two gradings coincide under our equiva-
lence, proving the claim. �

3 Traces of representations of convolution categories

We have seen in Theorem 2.29 that the affine Hecke algebra H is identified with the
Hochschild homology of the (mixed) affine Hecke category Hm = Coh(Z/Ggr). In
this section we describe a general theory of categorical traces in derived algebraic
geometry to explain why this is a useful realization. Namely, as an application we
will see in Sect. 4 that the geometric realization of Hochschild homology via derived
loop spaces implies a realization of the affine Hecke algebra as endomorphisms of
the coherent Springer sheaf, a certain coherent sheaf on the loop space of the stacky
nilpotent cone. Hence, we deduce a localization description of the category of mod-
ules for the affine Hecke algebra as the category of coherent sheaves generated by the
coherent Springer sheaf.

3.1 Traces of monoidal categories

In this section we present the two different trace decategorifications for a monoidal
category and their relation. See [8, 9, 30, 46, 55] for detailed exposition.

Definition 3.1 Let (A,∗) denote an E1-monoidal compactly generated cocomplete
k-linear dg category and F a monoidal endofunctor. There are two notions of its
Hochschild homology or trace. See definitions in Sect. 2.1.1.

(1) The naive or vertical trace (or Hochschild homology) is a chain complex
tr(A,F ) = HH(A,F ). Via functoriality of traces, and under the assumptions
that the multiplication functor ∗ : A⊗A → A preserves compact objects and that
the monoidal unit is compact, it has the additional structure of an associative (or
E1-)algebra (HH(A),∗).

(2) The 2-categorical or horizontal trace (or monoidal/categorical Hochschild ho-
mology) is a dg category15 Tr((A,∗),F ) = A ⊗A⊗Arv AF where AF is the
(E1-)monoidal category whose left action is twisted by F .16 Via functoriality
of traces, the horizontal trace is the tautological receptacle for characters in A:

[−] : A → Tr((A,∗),F ).

15The category Arv is obtained by reversing the monoidal product, not taking opposite morphisms.
16More generally, the horizontal trace may take as an input an A-bimodule category Q; we will not need
this.
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The monoidal unit 1A itself defines an object [1A] ∈ Tr((A,∗),F ), i.e. Tr((A,∗),

F ) is a pointed (or E0-)category.

We sometimes omit the monoidal product ∗ from the notation, and when F = idC we
also sometimes omit it from the notation.

We define the notion of characters in horizontal traces more precisely and gener-
ally below. These more general notions are used primarily in Sect. 3.4.

Definition 3.2 One can view the horizontal trace as a trace decategorification in the
sense of Definition 2.1 in the following way, following Sect. 3.6 of [46]. We consider
the symmetric monoidal “Morita” category Mork , whose objects are the (∞,2)-
categories A-mod, i.e. left-module categories for a monoidal category A, and whose
1-morphisms

MapMork
(A-mod,B-mod) := B ⊗ Arv-mod

are (B,A)-bimodule categories, and 2-morphisms are functors of bimodule cate-
gories.17 Then, for a monoidal endofunctor F : A → A, we have tr(A-mod,F ) =
Tr(A,AF ).

We can apply Definition 2.7 to obtain the following more general notion of char-
acter map for the horizontal trace (see Sect. 3.8.2 in [46]). That is, the horizontal
trace Tr(A,F ) can be viewed as the tautological receptacle for characters [(M,FM)]
of left A-module categories M equipped with an F -semilinear endofunctor FM, i.e.
a map of A-module categories FM : M → MF := AF ⊗A M.18

The trace [A] of objects A ∈ A in Definition 3.1 above is a special case in the
following way: consider M := A as the usual (left) regular A-module category; for
A ∈ Ob(A), we define FA(−) := F(−) ∗ A. In this case, we have [A] = [A,FA].
In particular, the trace of the monoidal unit19 is [1A] = [A,F ], i.e. the trace of the
regular representation.

Moreover, the categorical trace provides a “delooping” of the naive trace. To make
the relationship between the two traces precise, we first recall the notion of a rigid
monoidal category (see Definition 9.1.2 and Lemma 9.1.5 in [45]).

Definition 3.3 Let A be a compactly generated stable monoidal ∞-category, with
multiplication μ : A ⊗ A → A. We say A is rigid if the monoidal unit is compact, μ

preserves compact objects, and if every compact object of A admits a left and right
(monoidal) dual.

We have the following relationship between vertical and horizontal traces of [46],
which may be interpreted via Theorem 1.1 of [30] as a compatibility of iterated

17The arguments in [46] do not require the use of non-invertible 3-morphisms in Mork .
18Roughly, this is the data of FM ∈ End(M) with natural compatibility isomorphisms FM(A ∗ M) �
F(A) ∗ FM(M) for A ∈ A, M ∈ M, i.e. for a functor to be A-linear is a structure, not merely a property.
19The monoidal structure on F gives rise to an F -equivariant structure on 1A .



296 D. Ben-Zvi et al.

traces. Let A be a monoidal category, and F a monoidal endofunctor. We denote
by (A,F )-mod the 1-category (i.e. forget the 2-morphisms) of A-module categories
with F -semilinear endofunctors as in Definition 3.2.

Theorem 3.4 (Theorem 3.8.5 [46], Theorem 1.1 [30]) Assume that A is compactly
generated and rigid monoidal, and F a monoidal endofunctor. Then, there is an
equivalence of algebras20

HH(A,F ) � EndTr(A,F )([A,F ])op.

More generally, there is an equivalence of functors from the category of F -
equivariant module categories:

HH(−) � HomTr(A,F )([A,F ], [−]) : (A,F )-modR −→ HH(A,F )-mod.

In particular, assuming that [A,F ] is a compact object, then the left adjoint to the
functor HomTr(A,F )([A,F ],−) defines a fully faithful embedding which preserves
compact objects, whose essential image is the category generated by [A,F ]:

HH(A,F )-mod Tr(A,F )

〈[A,F ]〉.
�

[A,F ]⊗End([A,F ])−
Hom([A,F ],−)

3.2 Traces in geometric settings

The geometric avatar for Hochschild homology is the derived loop space (or more
generally, the derived fixed points of a self-map), see [5, 8] for extended discussions.

Definition 3.5 Let X be a derived stack.

(1) We define the derived loop space LX (or derived inertia stack) to be

LX = MapDStk (S
1,X) � X ×

X×X
X

i.e. the derived mapping stack from a circle, or more concretely the derived self-
intersection of the diagonal.

(2) More generally, if φ : X → X is a self-map, we define the derived fixed points or
φ-twisted loop space LφX to be the fiber product

LφX X

X X × X.

ev �φ

�

20The opposite algebra appears because we took left modules in Definition 3.2.
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i.e. the derived intersection of the diagonal with the graph �φ = idX × φ of φ.
Note that the derived fixed points of the identity is the derived loop space, i.e.
LidX

X = LX.
(3) The formation of derived loop spaces and derived fixed points are functorial, i.e.

if f : X → Y is map of derived stacks, and φX , φY are compatible self-maps,
then we have a map of derived stacks Lφf : LφX

X → LφY
Y .

Example 3.6 For X a scheme over a characteristic 0 field k we have that the derived
loop space LX � TX[−1] is the total space of the shifted tangent complex to X (see
Proposition 4.4 in [5]), while for X = pt/G we have LX = G/G � LocG(S1), i.e.
the classical inertia stack (see Proposition 2.1.8 in [31]). For a general stack the loop
space is a combination of the shifted tangent complex with the inertia stack.

Example 3.7 For us, the self-maps above will arise via a action of a group G on
X, i.e. for g ∈ G(k) we obtain a map g : X → X. Then, we have the relationship
LgX = L(X/G) ×L(BG) {g}.

Note the parallel between the loop space, which is the self-intersection of the
diagonal (the identity self-correspondence from X) and Hochschild homology (the
trace of the identity on a category). As a result the push-pull functoriality of cate-
gories of sheaves under correspondences implies an immediate relation between their
Hochschild homology and loop spaces. Since QC is functorial under ∗-pullbacks and
QC! under !-pullbacks, this produces the following answers, both of which hold in
particular for QCA stacks (see Corollary 4.2.2 of [8, 38], and Example 2.2.10 in
[31]):

HH(QC(X),φ∗) � �(LφX,OLφX),

HH(QC!(X),φ∗) � �(LφX,ωLφX).
(3.1)

In other words, taking φ = idX , the Hochschild homology of QC(X) (respectively
QC!(X)) is given by functions (respectively volume forms) on the derived loop space.
For X = Spec(R) a smooth affine scheme, along with Example 3.6 this recovers
the Hochschild-Kostant-Rosenberg identification of Hochschild homology of R-mod
with differentials on R,

HH(R-mod) = O(LX) = O(TX[−1]) = Sym•(�1
R[1]).

Example 3.8 (Quasicoherent sheaves under tensor product) Let X be a perfect stack
in the sense of [9]. Then, the symmetric monoidal structure on QC(X) via tensor
product has compact unit and multiplication. We have that HH(QC(X)) = O(LX)

is an algebra object (with the multiplication given by the shuffle product after passing
through HKR as in Example 3.6; see Sect. 4.2 of [64] for a discussion of this struc-
ture), and the universal trace QC(X) → Tr(QC(X)) = QC(LX) given by pullback
along evaluation at the identity. Furthermore, the monoidal unit is OX ∈ QC(X) with
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trace [OX] = OLX ∈ QC(LX). Finally, we have

O(LX)-mod � 〈OLX〉 ⊂ QC(LX)

where the fully faithful inclusion is an equivalence if X is affine.

We now establish a certain Calabi-Yau property of derived fixed points of smooth
stacks (or more generally, smooth maps). In our arguments it will be useful to factor
the loop space of a map Lf : LX → LY through the following intermediate derived
stack, which we define in three equivalent ways.

Definition 3.9 Let f : X → Y be a map of derived stacks with compatible self-maps
φX , φY , and define Z := X ×Y X. We define LφYX via the pullback diagrams:

LφYX X LφYX X LφYX LφY

Z X × X X Y × X X Y.

�φ f ×φX ev

f ×idX f

Roughly, this is the derived moduli stack of paths in X mapping to loops in Y .

The following lemma is a straightforward verification of the depicted diagrams,
which we leave to the reader.

Lemma 3.10 The above three presentations are canonically equivalent, and we have
a canonical factorization

LφX LφYX LφY
δ π

where the maps are realized via the base change

LφX LφYX X LφYX LφY Y

X Z X × X X Y Y × Y.

δ

evX
�φX

π

evX/Y �φY

�f =�X/Y f �Y

i.e. δ is a base change of the relative diagonal for f , and π is a base change of f

itself.

Example 3.11 When φ is the identity and Y = pt, the factorization above is just
LX → X → pt.

When X is a smooth stack, there is an equivalence of categories Perf(X) =
Coh(X), thus by (3.1) we expect that O(LX) � ω(LX). It turns out that this equiv-
alence on global sections comes from a map on the underlying sheaves themselves.
We now establish the following Calabi-Yau property of derived fixed points of smooth
stacks, which we will use repeatedly in our arguments. We refer the reader to Sect. 8
of [37] for discussion of quasi-smoothness for derived Artin stacks.
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Lemma 3.12 Let X, Y be derived Artin stacks equipped with proper self-maps φX ,
φY , and let f : X → Y be a smooth relative Artin 1-stack21 commuting with φX , φY .
Then, there is a canonical equivalence of functors

Lφf ! � Lφf ∗ : QC!(LφY ) −→ QC!(LφX).

In particular, if X is a smooth Artin 1-stack with a proper self-map φ, then ωLφX �
OLφX , and if f is proper then Lφf ∗ is biadjoint to Lφf∗.

Proof Following the notation and factorization in Lemma 3.10, we have canonical
identifications:

ωLφX/LφYX
� ev∗

XωX/Z, ωLφYX/LφY � ev∗
X/Y ωX/Y .

Furthermore, after choosing22 one of the projections Z = X ×Y X → X, the usual
exact triangle for cotangent complexes for the composition X → Z → X gives a
canonical equivalence

ωX/Z � �∗
X/Y ω−1

Z/X � ω−1
X/Y .

Thus, we have a canonical equivalence

ωLφX/LφY � ev∗
Xω−1

X/Y ⊗ δ∗ev∗
X/Y ωX/Y � OLφX.

By assumption the cotangent complex Lf is perfect in degrees [0,1], so the relative
cotangent complex L�X/Y

is perfect in degrees [−1,0]; in particular, �X/Y is rep-
resentable by schemes and quasi-smooth and thus we have a canonical equivalence
(see Proposition 7.3.8 of [43]) Lφf ! � Lφf ∗ ⊗ ωLφX/LφY � Lφf ∗ as desired. �

Furthermore, by functoriality of Hochschild homology, for a map of stacks
f : X → Y we expect that the pullback and pushforward functors define maps of
global functions or volume forms HH(f ∗) : O(LY) → O(LX) and (if f is proper)
HH(f∗) : ω(LX) → ω(LY). We identify this map with the global sections of a nat-
ural map on the underlying sheaves in two cases of concern (see Appendix A.1 for
the proof).

Definition 3.13 Let f : X → Y be a map of QCA stacks, and φX , φY compatible
proper self-maps.

(1) If f is proper, then we have a pushforward map ω(Lφf∗) : ω(LφX) → ω(LφY )

of global volume forms. That is, by Remark 4.6 in [8], since f is proper,
Lφf : LφX → LφY is proper; ω(Lφf∗) is the global sections of the counit of
the adjunction (Lφf∗,Lφf !) applied to ωLφY .

21By this we mean such that the relative cotangent complex is perfect of Tor amplitude [0,1], i.e. the fibers
are allowed to be stacky, and in particular, this map does not need to be representable by schemes.
22The definition of Hochschild homology implicitly requires us to choose an orientation on the circle S1.
We make one such choice, once and for all, which forces a particular choice here (i.e. a choice of sign).
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(2) If f is smooth, then we have a “Gysin” pullback ω(Lφf ∗) : ω(LφY ) → ω(LφX)

of global volume forms. That is, by Proposition 3.12, if f is smooth then Lφf is
Calabi-Yau; passing through this equivalence, ω(Lφf ∗) is the global sections of
the unit of the adjunction (Lφf ∗,Lφf∗) applied to ωLφY .

Proposition 3.14 Let f : X → Y be map of QCA stacks with compatible proper self-
maps φX , φY .

(1) There are canonical identifications

HH(QC!(X),φ∗) � ω(LφX).

(2) Suppose f is proper, and consider f∗ : QC!(X) → QC!(Y ). Then, the map
HH(f∗, φ∗) is canonically identified with the map on global volume forms
ω(Lφf∗).

(3) Suppose that f is smooth, and consider f ∗ : QC!(Y ) → QC!(X). Then, the map
HH(f ∗, φ∗) is canonically identified with the map on volume forms ω(Lφf ∗).

3.3 Convolution patterns in Hochschild homology

Convolution patterns in Borel-Moore homology and algebraic K-theory play a cen-
tral role in the results of [34]. We now describe a similar pattern which appears in
Hochschild homology.

Definition 3.15 We will work with the following general setup (see Sect. 1.5 of [12]).

• f : X → Y is a proper morphism of smooth, QCA stacks over k, and Z = X ×Y X.
• φX : X → X and φY : Y → Y are (representable) proper self-maps commuting

with f , inducing a proper self-map φ : Z → Z.

We refer to any Z arising from the set-up above a convolution space, and call the
category QC!(Z) a convolution category.

In this setup the category QC!(Z) carries a monoidal structure under convolu-
tion,23 and φ∗ is a monoidal endofunctor. The convolution monoidal structure re-
stricts to the compact objects Coh(Z) thanks to the smoothness of X (hence finite
Tor-dimension of the diagonal of X) and the properness of f ; furthermore, since φ is
proper, φ∗ has a colimit-preserving right adjoint, and preserves Coh(Z).

By Theorem 1.1.3 of [11], there is an equivalence of small monoidal categories24

(Coh(X ×Y X),∗) (Funex
Perf(Y )(Perf(X),Perf(X)),◦)

�

23As explained in Remark 3.0.7 and Lemma 3.0.8 of [11], on the compact objects Coh(Z) there are two
monoidal products, given by ∗- or !-convolution, intertwined by Grothendieck duality. We will default to
the !-version, which is amenable to the ind-completed category QC!(Z).
24Via the discussion in Sect. 4.7 of [65], endofunctor categories naturally possess the structure of an asso-
ciative monoidal ∞-category. Theorem 1.1.3 in [11] identifies the underlying categories, with convolution
corresponding to composition object-by-object. Thus we can simply define the monoidal structure (with
all its higher coherence compatibilities) on the left by transporting it from the right.
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which takes an integral kernel K ∈ Coh(X×Y X) to the functor F �→ Rπ2∗(Rπ !
1F⊗L

K) where π1,π2 : X ×Y X → X are the projections. Moreover, we will argue in The-
orem 3.25 that (QC!(Z),∗) is rigid monoidal. The monoidal unit is the dualizing
sheaf of the relative diagonal ω� := ι∗ωX , where ι : X → X ×Y X.

Recall (from Sect. 3.2) that the Hochschild homology of Coh(Z) (or equivalently
of its large variant QC!(Z) by Remark 2.2.11 of [31]) for a stack Z is given geometri-
cally by volume forms on the loop space, or in the case of the trace of φ∗ the derived
fixed points:

HH(QC!(Z),φ∗) � �(LφZ,ωLφZ).

Thus the vertical trace of the monoidal category Coh(Z) defines an algebra structure
on global distributions �(LφZ,ωLφZ).

We want to relate this convolution structure on sheaves to its decategorified version
involving volume forms on the corresponding loop spaces. Thus we consider the loop
map Lφf : LφX → LφY to f , whose self-fiber product is LφZ � LφX ×LφY LφX.
Note that Lφf is a proper map of quasismooth derived stacks. In particular, ωLφX is

coherent (a compact object in QC!(LφX)) and Lφf∗ preserves coherence. We thus
define our main object of interest.

Definition 3.16 We define the universal trace sheaf

SX/Y,φ := Lφf∗ωLφX � Lφf∗OLφX ∈ Coh(LφY ).

The latter isomorphism follows since the loop space of smooth stacks are naturally
Calabi-Yau (see Lemma 3.12).

The endomorphisms of the universal trace sheaf have a close relationship to vol-
ume forms on the loop space of the convolution space. Namely, we have a canonical
equivalence

ω(LφZ) � EndLφY (SX/Y,φ).

Furthermore, these equivalences are functorial at the sheafy level; on the left, this was
discussed in Definition 3.13. On the right, the functoriality arises via the following
functoriality of the universal trace sheaf.

Definition 3.17 Let (X,Y,f,φ) and (X′, Y ′, f ′, φ′) as in Definition 3.15 (with con-
volution spaces Z, Z′), and write S := SX/Y,φ and S ′ := SX′/Y ′,φ′ . Suppose we have
maps αX : X → X′ and αY : Y → Y ′ commuting with f , f ′, inducing αZ : Z → Z′.
Then, we have the following due to base change.

(1) Suppose that X = X′ and that αY is proper. Then, there is a canonical equivalence
LαY∗S � S ′, and the functor αZ∗ : Coh(Z) → Coh(Z′) is monoidal.

(2) Suppose that αY is smooth and f is base-changed from f ′, i.e. X = X′ ×Y ′
Y . Then there is a canonical equivalence Lα!

YS ′ � S , and the functor α!
Z :

Coh(Z′) → Coh(Z) is monoidal.
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The functorialities on the two sides of the equivalence are compatible.

Proposition 3.18 We let p : Z → Y denote the structure map. In the set-up of Defini-
tion 3.15, we have a canonical equivalence

ζ : Lφp∗ωLφZ � EndLφY (S)

with ζ ′ defined analogously, such that if α : Y → Y ′ is proper and X = X′, we have
commuting squares

Lφα∗Lφp∗ωLφZ Lφα∗EndLφY (S)

Lφp′∗ωLφZ′ EndLφY ′(S ′),

�
Lφα∗(ζ )

Def. 3.13 Def. 3.17

�
ζ ′

while if α : Y → Y ′ is smooth and X = X′ ×Y ′ Y , we have commuting squares

Lφp′∗ωLφZ′ EndLφY ′(S ′)

Lφα∗Lφp∗ωLφZ Lφα∗EndLφY (S).

Def. 3.13

�
ζ ′

Def. 3.17

�
Lφα∗(ζ )

Proof Application of Proposition A.1, noting that if f is smooth then Lφf is Calabi-
Yau by Proposition 3.12. �

Remark 3.19 (Convolution of volume forms and endomorphisms of SX/Y ) Apply-
ing the above proposition to Lφf : LφX → LφY , i.e. if we sheafify over LφY , we
can identify this algebra structure more concretely as convolution of volume forms on
LφZ. That is, LφZ = LφX ×LφY LφX has the structure of proper monoid in stacks

over LφY , from which one deduces the structure of algebra object in (QC!(LφY ),⊗!)
on the pushforward of ωLφZ . One can also use proper descent for Lφf : LφX → LφY

to identify this sheaf of algebras with the internal endomorphism sheaf of SX/Y – an
analog, in the setting of derived categories of coherent sheaves on derived stacks, of
the standard proof (see e.g. [34]) that self-Ext of the Springer sheaf is identified with
Borel-Moore homology of Z. It would be interesting to see how these arguments
globalize over LφY to give the isomorphism �(LφZ,ωLφZ) � EndQC!(LφY )(SX/Y )

of Theorem 3.25.

3.3.1 Horizontal trace of convolution categories

Recall that Theorem 3.4 identifies the vertical trace HH(QC!(Z),∗) as the endo-
morphism algebra of the distinguished object in the horizontal trace Tr(QC!(Z),∗),
under the assumption that this distinguished object is compact (and a rigidity condi-
tion to be addressed in Theorem 3.25). In this section we discuss this horizontal trace
in the context of convolution spaces following [12], slightly generalizing the main
theorem of op. cit.
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For this we require a discussion of singular supports; we summarize the main
points and refer the reader to [12, 37] for details. Note that singular supports do not
appear in our main application Theorem 4.12, since the singular support condition
there is actually a classical support condition (see Remark 4.14).

Definition 3.20 Let f : X → Y be a representable map of quasi-smooth stacks.

(1) We define the scheme of singularities or (classical) odd cotangent bundle to be

T
∗[−1]
X := SpecX Sym•

X H 1(TX) = SpecX Sym•
X H 0(TX[1])

where TX denotes the tangent complex of X, i.e. the OX-linear dual of the cotan-
gent complex.

(2) Any ind-coherent sheaf F ∈ QC!(X) has a closed conical singular support
SS(F) ⊂ T

∗[−1]
X . To any subset � ⊂ T

∗[−1]
X we can associate the full category

QC!
�(X) ⊂ QC!(X) consisting of sheaves with the specified singular support.

(3) Let �X ⊂ T
∗[−1]
X and �Y ⊂ T

∗[−1]
Y , and consider the correspondence

T
∗[−1]
X T

∗[−1]
Y ×Y X T

∗[−1]
Y

df p
.

One can push forward and pull back singular support conditions

f∗�X = p(df −1(�X)), f !�Y = df (p−1(�Y ))

such that the pushforward and pullback functors preserve singular supports, i.e.

f∗ : QC!
�X

(X) → QC!
f∗�X

(Y ), f ! : QC!
�Y

(Y ) → QC!
f !�Y

(X).

Example 3.21 If X is smooth, then T
∗[−1]
X = X, i.e. there are no possible singular

codirections to consider. In particular, the nontrivial fibers of the map T
∗[−1]
X → X

live over the singular locus of X.
When � = T

∗[−1]
X , we have QC!

�(X) = QC!(X). At the opposite extreme, when
� = {0}X is the zero section, we have QC!

�(X) = QC(X). If Z ⊂ X is a closed

subscheme and � = Z ×X T
∗[−1]
X , then QC!

�(X) = QC!
Z(X), i.e. the full subcategory

of ind-coherent sheaves with classical support at Z ⊂ X. If instead we take � =
Z × {0}X , then QC!

�(X) = QCZ(X).

The following singular support condition appears when taking traces of convolu-
tion categories.

Definition 3.22 Recall the notation from Definition 3.5 and Definition 3.9. We have
the following trace correspondence:

Z = X ×Y X LφYX = Z ×
X×X

X � X ×
Y×X

X LφY.
δ π

We define a singular support condition �X/Y,φ := π∗δ!
T

∗[−1]
Z .
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We now give a description of the horizontal trace. The following statement is
more general than the statement of Theorem 3.3.1 in [12], but follows from the same
argument in the proof with the definitions given above; the proof is in Appendix A.2.

Theorem 3.23 There is a canonical identification of the horizontal trace (i.e. the
monoidal Hochschild homology)

Tr((QC!(Z),∗),φ∗) � QC!
�X/Y,φ

(LφY ),

with the universal trace given by25

[−] = π∗δ! : QC!(Z) → QC!
�X/Y,φ

(LφY ).

Next we identify the universal trace sheaf (i.e. coherent Springer sheaf) as the
trace of the monoidal unit (which is a compact object of the trace category) or regular
representation.

Lemma 3.24 There is a natural equivalence SX/Y,φ � [ω�] = π∗δ!ω� in Coh(LφY ).

Proof The calculation of δ!ω� = δ!�∗ωX arises via base change along the diagram

LφX LφYX = Z ×X×X X

X Z = X ×Y X
�

and the statement follows. �

3.3.2 Trace delooping in convolution categories

We now deduce the main structural relation between universal trace sheaves (see
Definition 3.16) and iterated categorical traces of convolution categories.

Theorem 3.25 Let f : X → Y be as in Definition 3.15. Then, the convolution category
QC!(X×Y X) is rigid. In particular, the statements of Theorem 3.4 apply: the vertical
trace of the convolution category (QC!(Z),∗) is identified as an algebra with the
endomorphisms of the universal trace sheaf

HH(QC!(X ×Y X),φ∗) � EndQC!(LφY )(Lφf∗ωLφX).

Proof We need to verify that QC!(Z) is rigid monoidal. Standard arguments show
that integral transforms arising via coherent sheaves preserve compact objects; this
statement is also contained within Theorem 1.1.3 in [11]; one further immediately
observes that the monoidal unit �∗ωX is a compact object, i.e. coherent, since the

25Note that our trace functor is given by δ! rather than the δ∗ in [12], since we employ the !-transform
rather than the ∗-transform.
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diagonal is a closed embedding. It remains to verify the existence of right and left du-
als of coherent sheaves K ∈ QC!(Z). Using loc. cit., it suffices to show that the right
and left adjoints of the corresponding integral transform FK : QC(X) → QC(X) pre-
serve compact objects, thus are realized by integral transforms with coherent kernels.
We note that since the projection maps p : Z → X are quasi-smooth, the functors p!
and p∗ differ by a shifted line bundle. By Lemma 3.0.8 in op. cit. we can consider
equivalently either the ∗ or !-transforms up to twisting by Grothendieck duality. For
convenience we will consider the ∗-transform.

To see the claim, note that we can write the ∗-integral transform FK as a compo-
sition:

QC(X) QC(Z) QC!(Z) QC!(X).
p∗ −⊗K p∗

We claim that the right adjoint preserves compact objects. The claim for the left
adjoint follows similarly by replacing p∗ with a twist of p! by a shifted line bundle.
The right adjoints define a sequence of functors

QC(X) QC(Z) QC!(Z) QC!(X).
p∗ HomQC!(Z)

(K,−) p!=p∗⊗L

The functor HomQC!(Z)(K,−) : QC!(Z) → QC(Z) is defined as follows. Given G ∈
QC!(Z), we may write G = colimi Gi with Gi ∈ Coh(Z). Since K is compact, we may
define:

HomQC!(Z)(K,G) := lim
i
HomZ(K,Gi ) ∈ QC(Z)

where the internal Hom on the right is taken inside Coh(Z) ⊂ QC(Z) as usual. Let
us justify the claim that this functor is a right adjoint to tensoring with K. Let F ∈
QC(Z), and write F = colimj Fj with Fj ∈ Perf(Z). Then, by the usual adjunction
in QC(Z), and using the facts that the Fj are compact in QC(Z) and that Fj ⊗K ∈
Coh(Z) are compact in QC!(Z) since Fj are perfect, we have:

HomQC(Z)(F ,HomQC(Z)(K,G)) � HomQC(Z)(colim
j

Fj , lim
i
HomZ(K,Gi ))

� lim
i,j

HomQC(Z)(Fj ,HomZ(K,Gi ))

� lim
i,j

HomQC!(Z)(Fj ⊗K,Gi )

� HomQC!(Z)(F ⊗K,G).

Finally, we claim that HomQC!(Z)(K,−) sends Perf(Z) to Coh(Z). Assuming this
claim, then the composite of the sequence of right adjoints above preserves compact
objects, which finishes the proof: since X is smooth, the image of Coh(X) = Perf(X)

under p! = p∗ ⊗ L takes values in Perf(Z), and since p is proper (and again since
X is smooth) the image of Coh(Z) under p∗ takes values in Coh(X) = Perf(X). To
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prove the claim, note that the Grothendieck dual D(K) = HomZ(K,ωZ) is coherent,
and since Z is quasi-smooth, ωZ is a line bundle, so we have for E ∈ Perf(Z):

HomQC!(Z)(K,E) = HomQC!(Z)(K,ωZ) ⊗OZ
ω−1

Z ⊗OZ
E � D(K) ⊗OZ

ω−1
Z ⊗OZ

E

which is coherent. �

3.4 Trace of the standard categorical representation

In Lemma 3.24, we have computed the trace of the regular representation QC!(Z) of
QC!(Z) to be the universal trace sheaf, i.e. [QC!(Z),φ∗] � SX/Y,φ := Lφf∗OLφX .
Our convolution set-up comes equipped with another natural module category: the
standard representation, i.e. the module category QC!(X). In this section we compute
the trace of this categorical representation, and relate it to the trace of the regular
representation in a special case. We first note a degenerate example.

Example 3.26 Consider the case when X = Y = Z is smooth. In this case, QC!(Y ) =
QC(Y ), and the trace correspondence of Definition 3.22 is simply given by pullback
along the evaluation ev : LφY → Y :

Y LφY LφY
ev

and the corresponding singular support condition �Y/Y,φ = {0}LφY is the zero sec-

tion, i.e. we have Tr(QC!(Y ),φ∗) = QC(LφY ) (see Corollary 5.2 of [9]). The stan-
dard representation is the regular representation, and by Theorem 3.3.1 of [12] (and
Proposition 3.12), the trace of the regular representation is the structure sheaf

[QC!(Y ),φ∗] = [ωY ] = ωLφY � OLφY .

We recall a few notions from Sect. 2.3 of [12]. The following functors allow us to
pass between categories with different singular supports.

Definition 3.27 For a pair (X,�X), there is an adjoint pair of functors (see Defini-
tion 2.3.2 of [12]):

ι� : QC!
�(X) QC!(X) : ��

where ι� is the natural inclusion, and �� is the corresponding colocalization.26

We need an identification of the relative tensor product of convolution categories,
with specified support. We work in the set-up of Definition 3.15: let Xi be smooth
QCA stacks over k, proper over Y , and let Zij = Xi ×Y Xj .

26I.e. a “projection” functor to the subcategory QC!
�(X), which we view as a singular support analogue

of local cohomology. Note the abusive notation, i.e. the local cohomology functor usually refers to the
functor ι� ◦ �� .
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Definition 3.28 Let �12 ⊂ T
∗[−1]
Z12

and �23 ⊂ T
∗[−1]
Z23

. Consider the diagram

Z12 × Z23 X1 ×Y X2 ×Y X3 Z13.
δ π

We define the convolution of singular supports

�12 ∗ �23 = π∗δ!(�12 ��23).

We say that �ij is Zii -stable if T∗[−1]
Zii

∗ �ij ⊂ �ij .

Remark 3.29 The trace singular support condition �X/Y of Definition 3.22 can be

viewed as the convolution of T∗[−1]
Z with itself “in a circle.”

We immediately observe that the convolution action restricts to an action of
QC!

�ii
(Zii) on QC!

�ij
(Zij ) if and only if �ij is �ii -stable. In particular, we have

the following identification, which we prove in Appendix A.2; a proof will also ap-
pear in [33].

Proposition 3.30 In the set-up above, let �12 ⊂ T
∗[−1]
Z12

and �23 ⊂ T
∗[−1]
Z23

be Z22-
stable. Define �13 := �12 ∗ �23. Then convolution defines an equivalence of cate-
gories:

QC!
�12

(Z12) ⊗QC!(Z22)
QC!

�23
(Z23) QC!

�13
(Z13).

�

Furthermore, we have the following functoriality of supports: let �i,i+1 ⊂ �′
i,i+1 be

another singular support condition on Zi,i+1 (for i = 1,2) with �′
13 := �′

12 ∗ �′
23.

Then, �13 ⊂ �′
13, and the following squares commute:

QC!
�12

(Z12) ⊗
QC!(Z22)

QC!
�23

(Z23) QC!
�13

(Z13)

QC!
�′

12
(Z12) ⊗

QC!(Z22)

QC!
�′

23
(Z′

23) QC!
�′

13
(Z13).

�

ι�12 ⊗ι�23
ι�13

�
��13 ⊗��23

��13

These actions are canonically φ∗-semilinear. We now compute the trace of the
categorical representation, which arises via functoriality of horizontal traces (see
Sect. 3.5 of [8] for details). Namely, consider the functor

T (−) := QC!(X) ⊗QC(Y ) − : QC(Y )-mod = QC!(Y )-mod −→ QC!(Z)-mod.

Note that the QC(Y )-action on QC(X) = QC!(X) via pullback commutes with the
QC!(Z)-action by convolution. This functor defines a functor on horizontal traces:27

Tr(T ,φ∗) : Tr(QC(Y ),φ∗) = QC!
{0}LφY

(LφY ) −→ Tr(QC!(Z),φ∗)

= QC!
�X/Y,φ

(LφY ).

27Note that, as discussed in Example 3.21, QC!{0}LφY
(LφY ) = QC(LφY ).
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By definition,

[QC!(X),φ∗] = Tr(T ,φ∗)([QC(Y ),φ∗]) = Tr(T ,φ∗)(OLφY ).

Remark 3.31 A variant of the functor T for quasi-coherent sheaves, and in the setting
where f : X → Y is surjective, was studied in [10]. Note that unlike in their setting,
this functor T is not an equivalence since we are considering ind-coherent sheaves
QC!(Z) rather than quasi-coherent sheaves QC(Z). Furthermore, the failure of f

to be surjective in our setting requires the application of local cohomology in the
calculation of its trace.

We now identify the trace of the standard representation.

Proposition 3.32 Define the singular support condition {0}f (X) := {0}LφY ∩ �X/Y,φ .
There is a canonical identification of functors

Tr(T ,φ∗) � ι{0}f (X)
◦ �{0}f (X)

: QC!
{0}LφY

(LφY ) → QC!
�X/Y,φ

(LφY ).

Furthermore, letting ev−1f (X) ⊂ LφY corresponding to {0}f (X), we have

[QC!(X),φ∗] � �ev−1f (X)(ωLφY ).

Proof We claim that the right dual to T is

T R(−) := QC!(X) ⊗QC!(Z) − : QC!(Z)-mod → QC!(Y )-mod

where QC!(X) here is considered as a right QC!(Z)-module, so that we have

T R ◦ T (−) = (QC!(X) ⊗QC!(Z) QC!(X)) ⊗QC!(Y ) − � QC!
f (X)(Y ) ⊗QC(Y ) −,

T ◦ T R(−) = (QC!(X) ⊗QC!(Y ) QC!(X)) ⊗QC!(Z) − � QC!
{0}Z (Z) ⊗QC!(Z) −.

The convolution QC(Y )-action can be re-interpreted as the usual pullback and tensor
product, while the QC!(Z)-action is by convolution. The first isomorphism is due to
Proposition 3.30, whereby

QC!(X) ⊗QC!(Z) QC!(X) � QC!
f (X)(Y )

i.e. the full subcategory of QC!(Y ) = QC(Y ) with classical support on the closed sub-
set f (X) (since Y is smooth there are no possible singular codirections). The second
isomorphism is due to Theorem 4.7 of [9], i.e. we have QC!(X) ⊗QC!(Y ) QC!(X) =
QC(Z) = QC!

{0}Z (Z).
To establish duality, we need to write down unit and counit maps

η : QC!(Y ) −→ QC!(X) ⊗QC!(Z) QC!(X) � QC!
f (X)(Y ),

ε : QC!
{0}Z (Z) � QC!(X) ⊗QC!(Y ) QC!(X) → QC!(Z)
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satisfying the usual “Zorro’s identities”. We define η := �f (X) to be the local co-
homology functor, and ε = ι{0}Z to be the fully faithful inclusion. The verification
of Zorro’s identities is immediate from the observation that tensoring η or ε with
idQC!(X) (on either side) gives rise to the identity functor, i.e. that the following dia-
grams commute:

QC!(X) ⊗
QC!(Y )

QC!(Y ) QC!(X) QC!
{0}Z (Z) ⊗

QC!(Z)

QC!(X) QC!(X)

QC!(X) ⊗
QC!(Y )

QC!
f (X)(Y ) QC!(X) QC!(Z) ⊗QC!(Z) QC!(X) QC!(X)

�

idQC!(X)
⊗η

idQC!(X) ε⊗idQC!(X)

�

idQC!(X)

� �

This follows by Proposition 3.30 and the singular support calculations (note that X is
smooth and thus T∗[−1]

X has no singular codirections):

{0}X ∗ f (X) = {0}X, {0}Z ∗ {0}X = {0}X.

This establishes the duality of (T ,T R).
Now, we compute the map on traces, using the functoriality described in Sect. 3.5

of [8]. There is a canonical commuting structure ψ : T ◦φY∗ → φZ∗ ◦T , which for us
is an equivalence (thus induces an equivalence on traces). We let f (X) ⊂ T

∗[−1]
Y = Y

denote the (necessarily, since Y is smooth) classical support condition, and define
� := ev!(f (X)), i.e. the loops with base points classically supported over f (X) ⊂ Y

and no singular codirections. We have {0}LY ⊃ � ⊂ �X/Y .

Tr(QC!(Y ),φY∗) QC!
{0}LφY

(LφY )

Tr(QC!(Y ), T R ◦ T ◦ φY∗) QC!
ev!f (X)

(LφY )

Tr(QC!(Y ), T R ◦ φZ∗ ◦ T ) QC!
ev!f (X)

(LφY )

Tr(QC!(Z),φZ∗ ◦ T ◦ T R) QC!
δ∗π !{0}Z (LφY )

Tr(QC!(Z),φZ∗) QC!
�X/Y

(LφY )

Tr(QC!(Y ),η◦idφ∗ )

�

��◦ι{0}=��

Tr(QC!(Y ),id
T R ◦ψ) �

�

�

�

Tr(QC!(Z),idφ∗◦ε)

�

��X/Y
◦ι�=ι�

�

The top and bottom isomorphisms are given by Theorem 3.3.1 in [12]. We argue
the middle isomorphisms. A combination of the arguments of Propositions 3.23 and
3.30 gives rise to identifications

Tr(QC!(Z),T ◦ T R ◦ φY∗) = QC!(Y ) ⊗QC!(Y×Y) QC!
f (X)(Y ) � QC!

ev!(f (X))
(LφY ),
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Tr(QC(Y ),φZ∗ ◦ T R ◦ T ) = QC!(Z) ⊗QC!(Z×Z) QC!
{0}Z (Z) � QC!

δ∗π !{0}Z (LφY ),

where δ∗π !{0}Z is the pull-push of {0}Z along the correspondence in Theorem 3.23.
We note that δ∗π !{0}Z = δ∗{0}LφYX

= ev!f (X) = {0}f (X). The identification of the
vertical functors follows via the functoriality of supports in Proposition 3.30 applied
to the setting of Proposition 3.23, and the observation that {0}LφY ⊃ � ⊂ �X/Y,φ .
This establishes the first statement of the theorem.

For the second statement, note that ωLφY is perfect (since LY is quasi-smooth),
i.e. has no singular codirections. In general, for singular support conditions �1,�2 ⊂
T

∗[−1]
X , we have ��2 ◦ ι�1 ◦ ��1 = ��1∩�2 . Now, take �1 = {0}LY (i.e. no singular

codirections with unrestricted classical support) and �2 = ev−1f (X) ×LφY T
∗[−1]
LφY

(i.e. all singular codirections with restricted classical support). The second statement
follows, since ��1(ωLφY ) = ωLφY and ��2 is the classical local cohomology functor
with support ev−1f (X). �

Corollary 3.33 The functor

Hom(SX/Y,φ,−) : Tr(QC!(Z),φ∗) � QC!
ev−1f (X)

(LφY ) −→ End(SX/Y,φ)-mod

takes �ev−1f (X)(OLφY ) to the HH(QC!(Z),φ∗)-module HH(QC!(X),φ∗).

Proof By Theorem 3.4, it suffices to identify the trace of the QC!(Z)-module
category QC!(X). By the above theorem, [QC!(X),φ∗] � �ev−1f (X)(ωLφY ) �
�ev−1f (X)(OLφY ) (the latter isomorphism by Proposition 3.12). �

Remark 3.34 Note that it is immediate via adjunctions that

HomLφY (SX/Y,φ,�ev−1f (X)OLφY ) � HomLφX(OLφX,OLφX)

� O(LφX) � HH(QC!(X),φ∗).

By working at the level of categorical traces, we automatically deduce that this is an
identification as HH(QC!(Z),φ∗)-modules.

3.4.1 Splitting the universal trace sheaf

The coherent Springer sheaf SX/Y,φ may be realized as the character of the reg-
ular QC!(Z)-representation [QC!(Z),φ∗], but also as the character of the QC(Y )-
representation [QC(X),φ∗]. In this section, we will take the latter point of view.
This allows us to do something sneaky in the proof of Theorem 4.12: we swap out
X = ˜N /G with g̃/G, and use the observation that their q-fixed points are canonical
equivalent for q not a root of unity. There is a canonical map

[QC!(X),φ∗] = SX/Y,φ = Lφf∗ωLφX −→ ωLφY = [QC!(Y ),φ∗]
arising via the pushforward of volume forms. In this section we investigate when this
map splits, realizing the trace of the standard representation as a summand of the
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trace of the regular representation. To do so we require a discussion of enhanced ver-
tical traces, i.e. the realization of vertical traces of module categories for a monoidal
category as characters in the horizontal trace of the monoidal category.

Definition 3.35 Let us fix a monoidal dg category A, and a monoidal endofunctor F .
For any A-module category C equipped with a commuting structure FM for F (see
Definitions 2.7 and 3.2), we define the enhanced Hochschild homology to be

HH(C,FM) := [C,FM] ∈ Tr(A,F ).

By Theorem 3.4, the usual Hochschild homology can be recovered by applying the
functor HomTr(A,F )([A,F ],−).

Remark 3.36 We have seen examples of this enhanced Hochschild homology in
Sect. 3.2, namely that in geometric settings Hochschild homology and maps in-
duced by functoriality often sheafify, i.e. arise as global objects via local ones by
taking global sections. The category QC(Y ) is monoidal, and for any module cat-
egory C the Hochschild homology HH(C) := [C] ∈ Vectk has an enhancement
HH(C) ∈ Tr(QC(Y )) = QC(LY). Though we do not need or prove it, the enhanced
Block-Getzler complex in Definition 2.12 is also an example of this phenomenon,
where we view the Hochschild homology of a Rep(G)-module category as an object
of Tr(Rep(G)) = QC(G/G).

We now compute the enhanced trace in an example of interest; see Appendix A.2
for a proof.

Proposition 3.37 Let f : X → Y be a map of QCA (or more generally, perfect) stacks,
and φX , φY compatible self-maps such that φY∗ : QC(Y ) → QC(Y ) is monoidal and
φX∗ : QC(X) → QC(X) is φY∗-semilinear. Consider QC(X) as a QC(Y )-module
category. Then, we have

HH(QC(X),φX∗) = [QC(X),φX∗] � Lφf∗OLφX ∈ Tr(QC(Y ),φY∗) = QC(LφY ).

We now establish the desired splitting. We note that in the below, we take the
category QC of quasi-coherent sheaves rather than ind-coherent sheaves.

Proposition 3.38 Let f : X → Y be a proper morphism of smooth QCA stacks,
with compatible self-maps φX , φY , such that φY∗ is a monoidal endofunctor of
QC(Y ) and φX∗ is a φY∗-semilinear endofunctor of QC(X). Furthermore, assume
that f∗OX � OY ⊗k V for a φ∗-equivariant vector space V such that tr(φ∗,V ) �= 0.
Then, [QC(X),φX∗] � Lφf∗OLφX contains [QC(Y ),φY∗] � OLφY as a summand
in Tr(QC(Y ),φY∗) = QC(LφY ).

Proof of Proposition 3.38 To prove the claim, we need to produce a splitting. Since the
character of the monoidal unit in QC(Y ) is the monoidal unit in HH(QC(Y ),φ∗),
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applying Proposition 3.37 we obtain a diagram (where � means an element of global
sections, i.e. non-enhanced Hochschild homology):

HH(QC(Y ),φ∗) OLφY 1LφY [OY ,φ∗]

HH(QC(X),φ∗) Lφf∗OLφX 1LφX [f ∗OY ,φ∗] = [OX,φ∗]

HH(QC(Y ),φ∗) OLφY trO(Y )(φ∗,V ) · 1LφY [f∗OX,φ∗] = [OY ⊗ V,φ∗].

HH(f ∗,φ∗)

�

HH(f∗,φ∗)

�

�

Note that f ∗ always preserves perfect objects, and f∗ preserves perfect objects since
f is proper and X and Y are smooth, giving us the functoriality on the left following
Proposition 3.37. To see that the composition is an isomorphism, note that a map
OLφY → OLφY is determined by where the constant function maps; by the above,
it maps to [f∗,OX,φ∗] ∈ HH(QC(Y ),φ∗). We will show this is a unit, thus the
composition of the arrows on the left is an isomorphism.

To this end, let p : Y → Speck be the (φ-equivariant) projection to a point where
φ acts trivially on Speck, and note that f∗OX � p∗E. In particular, [p∗V,φ∗] is
the image of [V,φ∗] = tr(V ,φ∗) under the pullback map O(Lφp∗) : k → O(LφY ),
which is a non-zero multiple of the identity by assumption, thus a unit as required.

�

4 The affine Hecke algebra and the coherent Springer sheaf

We now specialize the discussion of Sect. 3 to our Springer theory setting. In this
section, we will take k = Q� or C. We are interested in the following special cases.

Definition 4.1 (Coherent Springer sheaves) Recall that Ggr = G ×Gm, and the set-
up in Definition 3.15 and the universal trace sheaf of Definition 3.16.

(1) We take

f = μ : X = ˜N /Ggr −→ pN /Ggr ↪→ Y = g/Ggr

to be the scaling-equivariant Springer resolution (with codomain in the Lie alge-
bra rather than the nilpotent cone). We call the resulting sheaf S on L( pN /Ggr)

(or equivalently, on L(g/Ggr) supported over N ) the coherent Springer sheaf.
(2) We take

f = μ : X = ˜N /G −→ pN /G ↪→ Y = g/G

to be the above Springer resolution without Gm-equivariance, and φ := q to be
multiplication by q ∈Gm(k). Then we have the derived q-fixed points:

Lq( pN /G) � L( pN /Ggr) ×L(BGm) {q}.
This is the stack L

u
q,G from the introduction. We call the sheaf Sq on Lq( pN /G)

the coherent q-Springer sheaf.
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We note the following convenient presentation of the stacks L( ˜N /Ggr) and
L( pN /Ggr).

Remark 4.2 We realize L( pN /Ggr) as the formal completion of L(g/Ggr) → g/Ggr

over the nilpotent cone. By Proposition 2.1.8 of [31], we can write L(g/Ggr) as the
pullback

L(g/Ggr) g/Ggr {0}/Ggr

(g× Ggr)/Ggr (g× g)/Ggr g/Ggr

�

a×p −

where the bottom right map is given by subtraction in g, a is the action map, p

the projection, and � the diagonal. Explicitly, the map g × Ggr → g is given by
(x, g, q) �→ q−1Adg(x) − x. We also have a version for fixed q:

Lq(g/G) g/G {0}/Ggr

(g× G)/G (g× g)/Ggr g/Ggr.

�

aq×p −

where aq is the q-twisted action map. There is a similar description for L( ˜N /Ggr) =
L(n/˜B):

L( ˜N /Ggr) ˜N /Ggr (G/B)/Ggr

( ˜N × Ggr)/Ggr ( ˜N × ˜N )/Ggr ˜N /Ggr.

�

a×p −

We record the following mild generalization and direct consequence of Proposi-
tion 4.2 in [51] and Proposition 2.1 in [50] (also proven for q a prime power in Propo-
sition 3.1.5 of [86]). In particular, when q is not a root of unity (e.g. for arithmetic
applications), we may replace pN or g with N in the q-twisted loop spaces.

Proposition 4.3 If q is not a root of unity, then Lq( pN /G) is a classical stack, i.e. has
trivial derived structure and is supported at the nilpotent cone. The maps

Lq(N /G) −→ Lq( pN /G) −→ Lq(g/G)

are isomorphisms of classical (but a priori derived) stacks.

Proof We first argue that Lq(g/G) is supported over the nilpotent cone, thus
Lq(g/G) = Lq( pN /G). The formation of (twisted) loop spaces commutes with prod-
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ucts; note the Cartesian square

N /G g/G

{0} h//W.

The morphisms are Gm-equivariant, where Gm acts on h by weight 1, and on h//W

by weights ≥ 1. Thus if q is not a root of unity, then the (derived and classical) q-
fixed points of h//W is precisely {0}. Thus the map on the bottom is an equivalence,
and the claim follows. The vanishing of derived structure follows by Proposition 4.2
in [51] and in view of Remark 2.2(b) of [50]. �

Remark 4.4 It is necessary to exclude roots of unity; when G = SL2, the weight of
h//W is 2, so the argument fails for q = ±1. When G = SL3, the weights of h//W

are 2 and 3, so the argument fails for q = ±1 and any cubic root of unity. A sharper
statement is possible: for a fixed group G, the proposition is true if we avoid roots of
unity with order dividing any fundamental invariant of g. The statements also hold
for G a parabolic subgroup, except that Lq(NP /P ) may fail to be a classical stack
(i.e. may have derived structure).

We now give an alternative characterization of the coherent Springer sheaf (and
likewise for the q-version) via coherent parabolic induction.

Definition 4.5 Consider the parabolic induction correspondence

pN /Ggr pn/Bgr x{0}/Hgr.
μ ν

We define the coherent Springer sheaf by applying the loop space of the above cor-
respondence to the reduced structure sheaf of L({0}/Hgr):

S := Lμ∗O ˜N /Ggr
= Lμ∗Lν∗OL({0}/Hgr) ∈ Coh(L( pN /Ggr)).

We define the coherent q-Springer sheaf analogously, or equivalently we can take
Sq := ι∗qS , where ιq : Lq( pN /G) → L( pN /Ggr).

Remark 4.6 Note that a priori, one could define Sq via either the ∗ or !-pullback. How-
ever, the map ιq is base-changed from the map iq : {q} → Gm/Gm. Since {q} ⊂ Gm

has trivial normal bundle and iq has relative dimension zero, we have a canoni-
cal equivalence ι!q � ι∗q , i.e. it did not matter which definition we took. Likewise,
since derived loop spaces of smooth stacks (or smooth morphisms) are Calabi Yau by
Proposition 3.12, we have an equivalence Lν∗ � Lν! and can use either.

For number theory applications, we will be interested in specializing at q a prime
power. These are the algebraic specializations of the affine Hecke algebra, which have
no derived structure since H is flat over k[z, z−1].
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Definition 4.7 We define the Iwahori-Hecke algebra by

Hq := H⊗k[z,z−1] k[z, z−1]/〈z − q〉.

A potentially different algebra arises when specializing geometrically, i.e. taking
endomorphisms of a q-specialized Springer sheaf. We introduce the following un-
mixed version of the affine Hecke algebra, which is obtained by taking G-equivariant
endomorphisms of the Springer sheaf without taking Gm-invariants, i.e. by passing
to the base changed stack L( pN /Ggr) ×BGm

pt.

Definition 4.8 Let Lun( pN /Ggr) := L( pN /Ggr) ×BGm
pt. We define the unmixed

affine Hecke algebra and its specialization by

Hun := EndLun(xN /Ggr)
(S), Hun

q := Hun ⊗L
k[z,z−1] k[z, z−1]/〈z − q〉.

The algebra Hun has the additional structure of a Gm-representation, i.e. a weight
grading.

The unmixed affine Hecke algebra arises naturally when considering the trace by
pullback by various q ∈ Gm acting on the affine Hecke category H = Coh(Z/G) (as
opposed to the mixed affine Hecke category Hm = Coh(Z/Ggr)).

Proposition 4.9 There is a natural equivalence of algebras

Hun
q � HH(H, q∗) � EndLq (xN /G)

(Sq).

That is,

Hun
q �

{

kWa ⊗k Symk(h
∗[−1] ⊕ h∗[−2]) when q = 1,

Hq when q �= 1.

Proof We adopt the shorthand notation Sun for the corresponding coherent Springer
sheaf on Lun( pN /Ggr). Let ιq : Lq( pN /G) ↪→ Lun( pN /Ggr) be the base change along
the closed immersion {q} ↪→ Gm. Consider the forgetful functor for the natural map
of algebras

Hun = EndLun(xN /Ggr)
(Sun) → HomLq (xN /G)

(ι∗qSun, ι∗qSun) = HH(H, q∗),

obtained via functoriality (Proposition 2.13). Using the (ι∗q, ιq,∗) adjunction, we have
ιq,∗ι∗qF = cone(q :F → F), and an equivalence of complexes

HomLun(xN /Ggr)
(Sun, ιq,∗ι∗qSun) HomLun(xN /Ggr)

(Sun,Sun) = Hun

HomLun(xN /Ggr)
(Sun,Sun) = Hun.

�

q
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The equivalence is an equivalence of dg algebras, so HH(H, q∗) � Hun
q . Finally,

we have HH(H, q∗) � Hq by Corollary 2.32 (and the identification for q = 1 by
Corollary 2.30), proving the claim. �

Remark 4.10 The algebra Hun can be recovered as the Gm-enhanced Hochschild
homology of Hm discussed in [46] and Sect. 3.4.1. In particular, take coordinates
O(Gm) = k[z, z−1], let h[−n] denote the shifted Cartan algebra in cohomological-
weight bidegree (n,1), and define the graded k[z, z−1] algebra

A[−n] := O(L(h∗[n]/Gm) = Sym•
O(Gm)(h[−n] ⊗k O(Gm))/〈x(z − 1) | x ∈ h[−n]〉.

One can compute (in a similar manner as Corollaries 2.30 and 2.32) that

Hun = HHGm(Hm) = H⊗O(Gm) A[−2]

recovering the above proposition on specialization at various z = q . One can do the
same for the variants in Remark 2.34, i.e.

HHGm(Coh(Z ′/Ggr)) = H, HHGm(Coh(Z∧/Ggr)) = H⊗O(Gm) A[−1].

Note that Theorem 4.4.4 in op. cit. establishes a relationship similar to this one.

Remark 4.11 One can similarly argue that Hq can be realized as the endomorphisms
of the restriction of S along the base change of the inclusion {q}/Gm ↪→ L(BGm),
i.e. where we retain Gm-equivariance.

Our main result is the following theorem (see Proposition 4.3).

Theorem 4.12 Assume that q �= 1.

(1) The dg algebra of endomorphisms of the coherent Springer sheaf is concentrated
in degree zero and is identified with the affine Hecke algebra,

EndL(xN /Ggr)
(S) � H, EndLq (xN /G)

(Sq) � Hq .

In particular, S generates full embeddings, the Deligne-Langlands functors:

DL :H-mod ↪→ QC!(L( pN /Ggr)), DLq :Hq -mod ↪→ QC!(Lq( pN /G)).

(2) On the anti-spherical modules Masp := IndHHf (sgn) and M
asp
q := Ind

Hq

Hf
q

(sgn),

these functors take values

DL(Masp) � prS(ωL(xN /Ggr)
), DLq(M

asp
q ) � prSq

(ωLq (xN /G)
),

where prS = DL ◦ DLR (resp. prSq
= DLq ◦ DLR

q ), i.e. the composition of the
Deligne-Langlands functor with its right adjoint. Furthermore, when q is not a
root of unity,

DLq(M
asp
q ) � prSq

(ωLq (xN /G)
) = ωLq (N /G) � OLq (N /G)

and OLq (N /G) is a summand of Sq .
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(3) These embeddings are compatible with parabolic induction, i.e. for a parabolic
P ⊃ B with quotient Levi M , we have commuting diagrams

HM -mod QC!(L( pNM/Mgr)) Hun
q,M -mod QC!(Lq( pNM/M))

HG-mod QC!(L( pNG/Ggr)) Hq,G-mod QC!(Lq( pNG/G)).

HG⊗HM
− Lμ∗◦Lν∗ Hq,G⊗Hq,M

− Lqμ∗◦Lqν∗

That is, the parabolic induction functor is the pull-push along the correspondence
obtained by applying L or Lq to the usual correspondence

pNM/Mgr pNP /Pgr pNG/Ggr.
μ ν

Proof The first claim of the theorem is a combination of Theorems 2.29 and The-
orem 3.25, Corollaries 2.32 and 2.30, and Proposition 4.9, for both general q and
specific q . It remains to prove the claims regarding the anti-spherical module and
compatibility with parabolic induction.

We first address the claim regarding anti-spherical modules. By Corollary 3.33,
we have an equivalence as End(S) � HH(Coh(Z/Ggr))-modules

Hom(S,ωL(xN /Ggr)
) � HH(Coh( ˜N /Ggr)).

Thus, it follows that prS(ωL(xN /Ggr)
) � HH(Coh( ˜N /Ggr)) as HH(Coh(Z/Ggr))-

modules (and similarly for special q). Thus, we need to compute the module
HH(Coh( ˜N /Ggr)) (and likewise for special q), and we need to identify the pro-
jection for q not a root of unity.

We first produce an isomorphism HH(Coh( ˜N /Ggr)) � Masp as HH(Coh(Z/

Ggr))-modules, and isomorphisms HH(Coh( ˜N /G), q∗) � M
asp
q as HH(Coh(Z/

G), q∗)-modules. The first isomorphism follows via the identification of K0(Coh( ˜N /

Ggr)) as the anti-spherical module for K0(Coh(Z/Ggr)) in Sect. 7.6 of [34]28 once
we establish an equivalence K0(Coh( ˜N /Ggr)) � HH(Coh( ˜N /Ggr)) as K0(Coh( ˜N /

Ggr)) � HH(Coh( ˜N /Ggr))-modules, and the second would follow from an equiva-
lence HH(Coh( ˜N /G,q∗)) � HH(Coh( ˜N /Ggr)) ⊗k[Gm] kq (similar to the identifi-
cation in Proposition 4.9).

To see this, note that Coh( ˜N /Ggr) has a semiorthogonal decomposition indexed
by λ ∈ X•(H) characters of the quotient torus H = B/[B,B], where each subcate-
gory Coh( ˜N /Ggr)λ is generated over Rep(Gm) by the line bundle O

˜N /Ggr
(λ). Com-

puting via the Block-Getzler complex of Definition 2.12 (see also Corollary 2.24),
and noting that End

˜N /Ggr
(O

˜N /Ggr
(λ)) = k we have that the specialization at q map

28In our convention, we identify K0(Coh(˜N /Ggr)) with the anti-spherical module, and
K0(CohB/Ggr (

˜N /Ggr)) with the spherical module.
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is:

HH(Coh( ˜N /Ggr))λ) HHGm(Coh( ˜N /Ggr))λ) HH(Coh( ˜N /G))λ, q∗)

O(Gm) O(Gm) kq.

� � �

The equivalence on the left induces an equivalence K0(Coh( ˜N /Ggr))λ �
HH(Coh( ˜N /Ggr))λ. Summing over each subcategory in the semiorthogonal de-
omposition, this establishes both claims.

It remains to compute the projection prSq
(ωLq (xN /G)

) for q not a root of unity.

By Proposition 4.3, Lq( pN /G) � Lq(N /G); it suffices to show that ωLq (N /G) �
OLq (N /G) is a summand of Sq . Since derived fixed points commutes with fiber prod-
ucts, the diagrams

Lq(N /G) Lq(g/G) Lq( ˜N /G) Lq (̃g/G)

Lq({0}) Lq(h//W) Lq({0}) Lq(h)

are Cartesian. When q is not a root of unity, we have Lq({0}) = Lq(h//W) = Lq(h),
so that Lq(N /G) = Lq(g/G) and Lq( ˜N /G) = Lq (̃g/G). We then apply Proposi-
tion 3.38 to the Grothendieck-Springer resolution μ′ : g̃/G → g/G and φ = q∗ to
obtain the splitting, observing that μ′∗Og̃ � Og ⊗O(h)W O(h), and that by the main
theorem of [36] O(h) is a free graded O(h)W -module of rank |W | with homogeneous
basis of degrees −�(w) for w ∈ W (in our sign convention), so we may further write

μ′∗Og̃ � Og ⊗k V

where V ∈ Rep(Gm) is the k-linear span of these Gm-eigenvector basis elements. In
particular the trace of the action of q∗ on the free O(h)W -module O(h) is the Poincaré
polynomial of W evaluated at q , which is non-zero when q is not a root of unity [73,
Cor. 2.5].

We now address compatibility with parabolic induction. First, note that by Propo-
sition 3.12 we have Lν∗ = Lν∗, since ν is smooth. Let H = B/U , fix a parabolic
P ⊃ B with quotient Levi M , and let BM ⊂ B denote the Borel subgroup defined to
be the image of B ⊂ P under the quotient. Consider the correspondence

ZP /Pgr := n/Bgr ×p/Pgr n/Bgr

ZG/Ggr := n/Bgr ×g/Ggr n/Bgr ZM/Mgr := nM/BM,gr ×m/Mgr nM/BM,gr.

i p

Note that the correspondence satisfies the conditions of Proposition 3.17, i.e. since
n/B = b/B ×h/H {0}/H (and similarly for BM ), and the formation of loop spaces
commutes with fiber products, we have via base change that SG = Lμ∗OL(n/B) �
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Lμ∗Lν∗OL({0}/H), and similar formulas hold for SM . That is, the coherent Springer
sheaf is the parabolic induction of the structure sheaf of L({0}/H). Thus, we have a
Cartesian diagram

L(b/B)

L(bM/BM) L(p/P )

L(h/H) L(m/M) L(g/G)

ν μ

thus Lμ∗Lν∗SM � SG by base change. By the commuting diagram

HH(Coh(ZM/Mgr)) ω(L(ZM/Mgr)) End(SM)

HH(Coh(ZG/Ggr)) ω(L(ZG/Ggr)) End(SG),

�
Prop. 3.14

HH(i∗p∗)

�
Prop. 3.18

Def. 3.13 Def. 3.17

�
Prop. 3.14

�
Prop. 3.18

it remains to check that the map HH(Coh(ZM/Mgr)) → HH(Coh(ZG/Ggr)) in-
duces the parabolic induction map on affine Hecke algebras. By Corollary 2.26 we
can argue for K0 instead, i.e. we show that the map

HM � K0(Coh(ZM/Mgr)) −→ K0(Coh(ZG/Ggr)) � HG

agrees with the natural parabolic induction map of affine Hecke algebras HM → HG

which takes TM,w �→ TG,w where w ∈ Wa,M (in the notation of Sect. 7.1 of [34]). We
will assume G has simply connected derived subgroup, but the general case follows
by passing to invariants of finite central subgroups (i.e. as in Sect. 2.4.2). It suffices
to show that they agree for finite simple reflections and on the lattice. Via the proof
of Theorem 7.2.5 in [34], it is clear that the map is as claimed on the lattice; we argue
that parabolic induction on K0 sends [QM,s] �→ [QG,s] where s is a finite simple
reflection of M .

Let us recall the definition of QM,s . The underlying closed, reduced scheme of
ZM is a disjoint union of conormal bundles to closures of M-orbits YM,s ⊂ M/BM ×
M/BM ; we denote these subschemes and the projection by πM,s :ZM,s → YM,s and
the inclusion ιM,s : ZM,s ↪→ZM . We define QM,s := ιM,s,∗π∗

M,s�
1
YM,s/(M/BM)2 .

We have a similar description of ZP,s ⊂ ZP . The map p : ZP → ZM is a
u/U -fibration, base changed from the quotient the quotient map p/P → m/M . In
particular, ZP,s and ZM,s ×ZM

ZP are closed reduced underived subschemes of
ZP with the same points, and thus agree. On the other hand, we have YP,s =
(B\P/B) ×YM,s

(BM\M/BM), so that denoting the projection p : YP,s → YM,s we

have �1
YP,s/(P/B)2 � p∗�1

YM,s/(M/BM)2 and thus p∗QM,s � QP,s by base change. We

have QG,s = i∗QP,s by definition, and the claim follows. Finally, the statements for
specialized q follow by Proposition 4.10, completing the proof. �
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Remark 4.13 A few remarks on the theorem.

(1) Analogous statements hold when q = 1, where Hochschild homology of the
Steinberg stack does not agree with the Grothendieck group, i.e. we have

HH(Coh(Z/G)) � EndL(N /G)(S1) � kWa ⊗ Sym(h∗[−1] ⊕ h
∗[−2]) � Hun

1

while K0(Coh(Z/G))k � kWa � H1. However, the anti-spherical module aris-
ing via Hochschild homology agrees with K0, i.e.

HH(Coh( ˜N /G)) � K0(Coh( ˜N /G))k � kWa ⊗kWf ksgn,

where h∗[−1] ⊕ h∗[−2] ⊂ Hun
1 acts by zero.

(2) Compatibility with parabolic induction implies that the action of the lattice
subalgebra k[X•(H)] ⊂ H on the coherent Springer sheaf comes from the
O(L( ˜N /Ggr))-action on S = Lμ∗OL( ˜N /Ggr)

via the natural O(L({0}/H)) =
O(H)-algebra structure on O(L( ˜N /Ggr)).

(3) If G = T is a torus, then L(NT /T ) � x{e} × T × BT and S = O{e}×T ×BT , and
we see immediately that End(S) � k[T ] = k[X•(T )].

(4) Let g̃P = G×P p; applying our methods in Sects. 3.4 and 3.4.1 to the QC(g/G)-
module category QC(̃gP /G), one can show that for q not a root of unity, the
coherent “partial Whittaker” sheaves, obtained by applying the parabolic induc-
tion correspondence

L
u
q,M = Lq(NM/M) ←− L

u
q,P = Lq(NP /P ) −→ L

u
q,G = Lq(NG/G)

to the structure sheaf OL
u
q,M

are also summands of the coherent Springer sheaf.
For example, at the extremes taking P = G we obtain the statement for the anti-
spherical sheaf, and taking P = B we obtain the coherent Springer sheaf itself.

Remark 4.14 We explain the absence of a singular support condition. There are two
Koszul dual versions of the Steinberg variety leading to two versions of the unipo-
tent affine Hecke algebra: the “Springer” version Z = ˜N ×g

˜N we consider and a
“Grothendieck-Springer” version Zg := g̃ ×g g̃. Theorem 4.4.1 of [12] shows the
singular support condition appearing for trace sheaves in Tr(Coh(Zg/Ggr)) in the
“Grothendieck-Springer” version can be characterized by a nilpotence condition.

We now argue that the singular support condition for the “Springer” version
Tr(Coh(Z/Ggr)) is vacuous, i.e. that the singular support locus �

˜N /g is the en-

tire scheme of singularities Sing(L( pN /Ggr)). The singular locus of L( pN /Ggr) at a
k-point η = (n, z = (g, q)) where gng−1 = qn is the set (after identifying g � g∗ via
a non-degenerate form 〈−,−〉):

Sing(L( pN /Ggr))η = {v ∈ g | gvg−1 = q−1v, [n, v] = 0, 〈n, v〉 = 0}.
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A calculation29 shows that the singular support locus is given by:

(�
˜N /g)η = {v ∈ Sing(L( pN /Ggr))η | ∃ Borel B ⊂ G such that n, v ∈ b = Lie(B)}.

Note that n, v generate a two-dimensional solvable Lie algebra, thus are contained in
a Borel, so Sing(L( pN /Ggr))η = �

˜N /g. In particular, the singular codirection v need
not be nilpotent.

The analogous claim at specific q ∈ Gm follows by a similar argument and a cal-
culation of the singular support locus at a point η ∈ {(n, g) ∈ N × G | gng−1 = qn}
as

Sing(Lq( pN /G))η = {v ∈ g | gvg−1 = q−1v, [n, v] = 0}.
In the case of q not a root of unity, the argument in Proposition 4.3 shows that the sin-
gular codirection v must be nilpotent, i.e. Sing(Lq( pN /G)) can only contain nilpotent
singular codirections. This condition is not imposed by the singular support condition
itself, i.e. in this case all singular codirections are nilpotent to begin with.

It is natural to conjecture that the coherent Springer sheaf is in fact a sheaf –
i.e., lives in the heart of the dg category Coh(L(g/Ggr)). We prove this in the case
G = GL2,SL2 in Proposition 4.19.

Conjecture 4.15 The Springer sheaf S lives in the abelian category Coh(L( pN /

Ggr))
♥.

Remark 4.16 One consequence of the conjecture would be an explicit description
of the endomorphisms of the cohrent Springer sheaf. Namely, it is easy to see that
the underived parabolic induction from L({0}/H) is generated as a module by the
lattice X•(H), and via the identification with K-theory and Theorem 7.2.16 of [34]
we would obtain a description of the action of finite simple reflections in terms of
Demazure operators.

Remark 4.17 A variant of Conjecture 4.15 was answered in the affirmative in Corol-
lary 4.4.6 of [49]. Namely, in loc. cit. it is proven that the Lie algebra version of our
coherent Springer sheaf at q = 1 has vanishing higher cohomology.

Remark 4.18 When Ggr acts on ˜N by finitely many orbits, then L( ˜N /Ggr) has trivial
derived structure, and the conjecture is implied by the vanishing of higher cohomol-
ogy of a classical scheme Hi(L( ˜N /Ggr) ×BGgr pt,π0(OL( ˜N /Ggr)×BGgr pt)) for i > 0.

The G-orbits in the Springer resolution are known to be finite exactly in types A1,
A2, A3, A4, B2 by [56].

29In contrast to the singular support calculation for Coh(Zg/Ggr), it is the Lie algebra of the Borel b that
appears in the above condition rather than its nilradical n since

Sing(˜N ×g
˜N )(n,B,B′) ⊂ b∩ b

′, Sing(̃g×G g̃)(x,B,B′) ⊂ n∩ n
′.
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4.1 Conjectures and examples for G = SL2,GL2,PGL2

In this case, Ggr acts on both pN and ˜N by finitely many orbits, the derived loop
spaces L( pN /Ggr) and L( ˜N /Ggr) are classical stacks. Recall that pN is a formal
completion; if the reader would rather do so, they may replace pN with g, which is
also acted on by finitely many orbits. We prove Conjecture 4.15 in these cases.

Proposition 4.19 Conjecture 4.15 holds for G = SL2,GL2,PGL2.

Proof We give a proof for G = SL2; the case of G = GL2 is the same. In view of
Remark 4.18, it suffices to forget equivariance and show vanishing of higher coho-
mology. Since X := L( ˜N /Ggr) ×BGgr pt is a closed subscheme of g × G/B × G,
and dim(G/B) = 1, we know that R�i(X,−) = 0 for i > 1. To verify vanishing for
i = 1, let i : X ↪→ ˜N ×Ggr be the closed immersion. We have a short exact sequence
of sheaves:

0 → I → O
˜N×Ggr

→ i∗OX → 0

leading to a long exact sequence with vanishing H 2 terms (for the above reason).
Thus, it suffices to show that H 1( ˜N × Ggr,O ˜N×Ggr

). By the projection formula, we

have H 1( ˜N × Ggr,O ˜N×Ggr
) � H 1( ˜N ,O

˜N ) ⊗k O(Ggr), but it is well-known that

Hi( ˜N ,O
˜N ) = 0 for i > 0. �

Example 4.20 (Geometry of the loop space of the Springer resolution) We de-
scribe the geometry of the looped Springer resolution L( ˜N /Ggr) → L( pN /Ggr) for
G = SL2. Though this example is well-known, we reproduce it for the reader’s con-
venience. Let A(s,n) denote the component group of the double stabilizer group, i.e.
the component group of {g ∈ G | gng−1 = n,gs = sg}. Let A1

node = Speck[x, y]/xy

denote the affine nodal curve, and (−)ν the normalization. The fibers are described
in Table 1.

Example 4.21 (Generators and relations) For G = SL2, with some work, one can
write down generators and relations for the (underived) scheme L(g/Ggr) and the
coherent Springer sheaf S . Let us fix coordinates

g =
(

a b

c d

)

∈ SL2, N =
(

x y

z −x

)

∈Nsl2 , q ∈Gm.

We implicitly impose the equations ad − bc = 1 and x2 + yz = 0, and by convention
we take the commuting relation gxg−1 = qx; note that this is the relation that arises
when Gm acts on fibers by weight −1 (i.e. inversely). Then, we have that S is the
module with generators λn for n ∈ Z:

O(SL2 ×Nsl2 ×Gm)[λ,λ−1]
a + d = λ + λ−1, (x, y, z)(q − λ2) = 0,

z(λ − d) = ax, y(a − λ) = bx, x(d − λ) = cy, x(λ − a) = bz.
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Table 1 G = SL2

q n s =
(

λ 0

0 λ−1

)

N (s,q) → ˜N (s,q) A(s, n) Gs

q = 1 n = 0 λ = ±1 ˜N → N 1 G

n �= 0 Z/2

q = 1 n = 0 λ �= ±1 pt∪pt → pt 1 T

q = −1 n = 0 λ = i A
1,ν
node → A

1
node 1 T

n �= 0, upper triangular Z/2

n �= 0, lower triangular Z/2

q = −1 n = 0 λ = ±1 P
1 → pt 1 G

q = −1 n = 0 λ �= ±1 pt∪pt → pt 1 T

q �= ±1 n = 0 λ = ±√
q A

1 ∪ pt → A
1 1 T

n �= 0 Z/2

q �= ±1 n = 0 λ = ±1 P
1 → pt 1 G

q �= ±1 n = 0 λ �= ±1, ±√
q pt∪pt → pt 1 T

In particular, multiplication by λn defines the action of the lattice, and one can verify
that the Demazure operator for the anti-spherical module (see Theorem 7.2.16 of
[34]) defines the endomorphism

T (λn) = λn − λ−n+2

λ2 − 1
− q

λn − λ−n

λ2 − 1

corresponding to the finite reflection. In particular, it preserves the relations in the
module, and the endomorphism satisfies (T − q)(T + 1) = 0. For fixed q , and letting
ksgn denote the character of Hf with T �→ −1, one can verify that S ⊗Hf ksgn �
OLq (xN /G)

, i.e. amounts to imposing the relation λ2 = q , thus identifying the structure

sheaf with the anti-spherical module.

5 Moduli of Langlands parameters for GLn

We now turn to arithmetic applications of our results, in particular the study of moduli
spaces of Langlands parameters for G = GLn. Let F be a non-archimedian local field
with residue field Fq , and let G∨ denote a connected, split, reductive group over F

(i.e. on the automorphic side of Langlands).
The derived category D(G∨) of smooth complex representations of G∨ admits a

decomposition into blocks, and the so-called principal block of D(G∨) (that is, the
block containing the trivial representation) is naturally equivalent to the category of
Hq -modules, where Hq now denotes the affine Hecke algebra associated to G with
parameter q . Theorem 4.12 then gives a fully faithful embedding from this principal
block into QC!(Lq( pN /G)).
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The space Lq( pN /G) has a natural interpretation in terms of Langlands (or Weil-
Deligne) parameters for G∨(F ). Recall that a Langlands parameter for G∨ is a pair
(ρ,N), where ρ : WF → G(C) is a homomorphism with open kernel, and N is a
nilpotent element of LieG such that, for all σ in the inertia group IF of WF , one has
Ad(ρ(Frn σ ))(N) = qnN , where Fr denotes a Frobenius element of WF .

On the other hand, the underlying stack of Lq( pN /G) can be regarded as the mod-
uli stack of pairs (s,N), where s ∈ G(C), N ∈ LieG, and Ad(s)(N) = qN , up to
G-conjugacy (i.e. the map ρ above vanishes on inertia). To such a pair we can at-
tach the Langlands parameter (ρ,N), where ρ is the unramified representation of
WF taking Fr to s. Such a Langlands parameter is called unipotent, and this construc-
tion identifies Lq( pN /G) with the moduli stack of unipotent Langlands parameters,
modulo G-conjugacy.30 We thus obtain a fully faithful embedding from the principal
block of D(G∨) into the category of ind-coherent sheaves on the moduli stack of
unipotent Langlands parameters.

It is natural to ask if this extends to an embedding of all of D(G∨) into a category
of sheaves on the moduli stack of all Langlands parameters. We will show that, at
least when G = GLn over F , this is indeed the case. For the remainder of the section,
we will take G = G∨ = GLn.

5.1 Blocks, semisimple types, and affine Hecke algebras

Our argument proceeds by reducing to the principal block. On the representation
theory side, this reduction is a consequence of the Bushnell-Kutzko theory of types
and covers [26, 27], which we now recall. For this subsection only, we will reverse our
conventions to avoid cumbersome notation; that is, we let G be a connected reductive
split group over F on the automorphic side of Langlands duality.

5.1.1 Supercuspidal support

Let P ⊂ G be a parabolic subgroup with Levi M and unipotent radical U , and let π

be a smooth complex representation of M . Recall that the parabolic induction iGP (π)

is obtained by inflating π to a representation of P , twisting by the square root of
the modulus character of P , and inducing to G. The parabolic induction functor iGP
has a natural left adjoint, the parabolic restriction rP

G (restriction to P , untwist, and
U -coinvariants).

Definition 5.1 A complex representation π of G is supercuspidal if, for all proper
parabolic subgroups P of G, the parabolic restriction rP

G(π) vanishes. Let π be an
irreducible supercuspidal representation of M ; an irreducible complex representation
� has supercuspidal support (M,π) if � is isomorphic to a subquotient of iGP (π)

(this is well-defined up to conjugacy).

30Strictly speaking, a Langlands parameter is a pair (ρ,N) as above in which ρ is semisimple. When
building a moduli space of Langlands parameters we must drop this condition, however, as the space of
semisimple parameters is not a well-behaved geometric object. In particular the locus in Lq consisting of
pairs (s,N) in which s is semisimple is neither closed nor open in Lq .
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A character χ of M is unramified if it is trivial on every compact open subgroup
of M , and the Levi-supercuspidal pairs (M,π) and (L,π ′) are inertially equivalent
if there exists an unramified character χ of L such that (M,π) and (L,π ′ ⊗ χ) are
G-conjugate.

For such a pair (M,π) up to inertial equivalence, following Bernstein-Deligne
[14], we define D(G)[M,π] ⊂ D(G) to be the full subcategory of objects such that
every subquotient of � has supercuspidal support inertially equivalent to (M,π).
Then Bernstein-Deligne show:

Theorem 5.2 The full subcategory D(G)[M,π] is a block of D(G), i.e. summing over
supercuspidals up to inertial equivalence,

D(G) =
⊕

D(G)[M,π].

5.1.2 Types and Hecke algebras

We recall the notion of a type.

Definition 5.3 A type for G is a pair (K, τ), where K ⊂ G is a compact open sub-
group and τ is an irreducible complex representation of K , such that31 the full sub-
category Rep(G,K, τ)♥ ⊂ Rep(G)♥ of representations V which are generated by the
image of the evaluation HomK(τ,V ) ⊗ τ → V is closed under taking subquotients.
Attached to a type we have its Hecke algebra

H(G,K, τ) := EndG(cIndG
K(τ))

and an equivalence of abelian categories Rep(G,K, τ)♥ � D(H(G,K, τ))♥.

The main result of [27] describes an arbitrary block of D(G) as a category of
modules for a certain tensor product of Hecke algebras, via the theory of G-covers,
providing a connection between parabolic induction methods (which involve sub-
groups which are not compact open) and Hecke algebra methods (which only make
sense for compact open subgroups).

We first consider the block D(L)[L,π], where L be a Levi subgroup of G and π a
supercuspidal representation of L. We denote by L0 ⊂ L the smallest subgroup con-
taining every compact open; then L/L0 is free abelian of rank equal to dim(Z(L)).
Furthermore, the unramified characters of L are in bijection with the characters of
L/L0. There is a bijection

X•(L/L0)/H ←→ Irr(L)[L,π], χ �→ π ⊗ χ

where we denote X•(L/L0) = Hom(L/L0,C
×) and H ⊂ X•(L/L0) is the subgroup

of unramified characters χ such that π ⊗ χ � π . Moreover, there is an equivalence
of categories:

D(L)[L,π] � D(C[X•(L/L0)]H ), π ⊗ χ �→Cχ .

31See pp. 594 of [26] for why this is necessary.
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We may rephrase this equivalence in terms of types and Hecke algebras as fol-
lows: first, we may (by Sect. 1.2 in [27]) choose a maximal simple cuspidal type
(KL, τL) occurring in π . One then has a natural support-preserving isomorphism of
H(L,KL, τL) � C[X•(L/L0)]H , and thus an (inverse) equivalence

D(C[X•(L/L0)]H ) � D(G)[L,π], V �→ V ⊗H(L,KL,τL) cIndL
KL

τL.

We are interested in understanding the induction of (L,π) to G. This is achieved
by the following composite of results of [27]; we refer the reader to op. cit. for the
definitions of simple type and G-cover.

Theorem 5.4 ([27]) Let [L,π] and the cuspidal type (KL, τL) be as above, and let
P ⊂ G be a parabolic subgroup with Levi factor L. There exists an intermediate32

Levi subgroup L ⊂ L† ⊂ G, and types (K†, τ †) of L† and (K, τ) of G with the
following properties:

(1) The type (K†, τ †) is a simple type of L†.
(2) (K, τ) is a G-cover of (K†, τ †), and (K†, τ †) is an L†-cover of (KL, τL). In

particular we have natural injections:

TP∩L† : H(L,KL, τL) H(L†,K†, τ †)

TL†P : H(L†,K†, τ †) H(G,K, τ)
�

with TL†P an isomorphism.
(3) The functors

HomK(τ,−) : D(G)[L,π] D(H(G,K, τ))

HomK†(τ †,−) : D(L†)[L,π] D(H(L†,K†, τ †))

HomKL
(τL,−) : D(L)[L,π] D(H(L,KL, τL))

�

�

�

are equivalences of categories. Moreover, for any representation V in D(L), one
has an isomorphism of H(G,K, τ)-modules:

HomK(τ, iGP ′V ) ∼= HomKL
(τL,V ) ⊗H(L,KL,τL) H(G,K, τ),

where P ′ denotes the opposite parabolic to P , and where H(G,K, τ) is regarded
as an H(L,KL, τL)-module via the map TP := TL†P ◦ TP∩L† .

(4) Suppose L† � ∏

i L
†
i , with each L

†
i � GLni

for some ni . Let Li be the projection

of L to L
†
i , and let πi be the projection of π to Li . Let Hi denote the group

of unramified characters χ of L
†
i such that π ⊗ χ � π , and let ri denote the

order of Hi . Then ni = rimi for some positive integer mi , and there is a natural

32Defined to be the smallest Levi containing the G-normalizer of the type (KL, τL).
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isomorphism (depending on π ):

H(L†,K†, τ †) ∼=
⊗

i

Hqri (mi),

where Hqri (mi) denotes the affine Hecke algebra associated to GLmi
with pa-

rameter qri .

These constructions are naturally compatible with parabolic induction, in the fol-
lowing sense: let M be a Levi with L ⊂ M ⊂ G, and with parabolic Q = MP . Then
Theorem 5.4 gives us an M-cover (KM, τM) of (KL, τL) and a G-cover (K, τ) of
(KL, τL), as well as maps:

TP∩M :H(L,KL, τL) →H(M,KM,τM), TP :H(L,KL, τL) →H(G,K, τ).

We then have:

Theorem 5.5 ([27]) There exists a unique map:

TQ : H(M,KM,τM) → H(G,K, τ)

such that TP = TQ ◦ TP∩M . Moreover, for any V ∈ D(M), we have an isomorphism
of H(G,K, τ)-modules:

HomK(τ, iGQ′V ) ∼= HomKM
(τM,V ) ⊗H(M,KM,τM) H(G,K, τ).

Example 5.6 The fundamental (and motivating) example for this is when L = T is
the standard maximal torus with parabolic P = B the standard Borel, and τ = 1
is the trivial character of T . In this setting KL is the maximal compact subgroup
T0 = T (O) ⊂ T , and τL is the trivial character. Moreover L† = G, the subgroup
K = I ⊂ G is the Iwahori subgroup, and τ is the trivial representation of I . We then
have natural identifications of the Hecke algebra:

H(L,KL,1) � C[T/T0] � C[X•(T )],
and a commutative diagram:

C[X•] H(T ,T (O),1)

Hq H(G, I,1).

�

TP

�

More generally, if M ⊂ G is a Levi subgroup and Q is its standard parabolic, then
KM is the Iwahori subgroup I ∩ M of M , and the map

TQ : H(M, I ∩ M,1) → H(G, I,1)

is uniquely determined by the following properties:
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(1) TQ ◦ TB∩M = TB ,
(2) If w ∈ W(M) is an element of the Iwahori-Weyl group of M , then TQ(IMwIM) =

IwI .

This picture is compatible with the general situation in the following sense. Sup-
pose for simplicity that L† = G. Then L is a product of m copies of GL n

m
for some

divisor m of n, and (after an unramified twist) we may assume that π has the form
π⊗m

0 . There is an extension E/F of degree n
m

and ramification index r , and an em-
bedding GLm(E) ⊂ G = GLn(F ), such that the intersection L∩GLm(E) is the stan-
dard maximal torus of GLm(E).

We denote the subgroup GLm(E) by GE , its standard maximal torus by TE and its
standard Iwahori by IE . Let M be a Levi such that L ⊂ M ⊂ G, define ME = M ∩GE

and take (KM, τM) to be a cover of (KL, τL) via Theorem 5.4. The choice of π

then gives rise to an isomorphism C[X•(T )] � H(L,KL, τL), such that for each
coharacter λ ∈ X•(T ) the image of λ is supported on the double coset KLλ(�E)KL,
and such that the induced action of X•(T ) on the Hecke module attached to π is
trivial. We then have:

Theorem 5.7 (Theorem 6.4 [25]) Assume that L† = G. There is an isomorphism
Hqr (m) � H(G,K, τ) fitting into a commutative diagram:

H(TE, (TE)0,1) ∼= C[X•(T )] ∼= H(L,KL, τL)

↓ ↓ ↓
H(ME, IE ∩ ME,1) ∼= ⊗

mi
Hqr (mi) ∼= H(M,KM,τM)

↓ ↓ ↓
H(GE, IE,1) ∼= Hqr (m) ∼= H(G,K, τ).

Thus when [L,π] is “simple” (that is, when L† = G), we have a natural reduction
of D(G)[L,π] to the principal block of D(GE), in a manner compatible with parabolic
induction. In general we obtain a reduction of D(G)[L,π] to a tensor product of such
principal blocks.

5.2 The moduli spaces Xν
F,G

We now turn to our study of moduli stacks of Langlands parameters for G = GLn.
Henceforth we revert to our default notation, where G denotes a group on the spectral
side of Langlands duality.

Moduli stacks of Langlands parameters for GLn have been studied extensively
in mixed characteristic, for instance in [51] in the case of GLn, or more recently in
[4, 24], and [35] for more general groups. Since in our present context we work over
C, the results we need are in general simpler than the results of the above papers, and
have not appeared explicitly in the literature in the form we need.

We first consider these moduli spaces as underived stacks; it will follow by Propo-
sition 4.3 that they have trivial derived structure. As in the previous section, we take
G = GLn, considered as the Langlands dual of G∨ = GLn(F ). We use XF,G to de-
note the moduli scheme whose quotient stack is the moduli stack LF,G in the intro-
duction.
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Definition 5.8 Let I be an open normal subgroup of the inertia subgroup IF ⊂ WF .
Then there is a scheme XI

F,G parameterizing pairs (ρ,N), where ρ : WF /I → GLn

is a homomorphism, and N is a nilpotent n by n matrix such that for all σ ∈ IF ,
Adρ(Frn σ )(N) = qnN . For any ν : IF /I → GLn(C), we may consider the sub-
scheme Xν

F,G ⊂ XI
F,G corresponding to pairs (ρ,N) such that the restriction of ρ to

IF is conjugate to ν; it is easy to see that Xν
F,G is both open and closed in XI

F,G. We
will say that a Langlands parameter is of “type ν” if it lies in Xν

F,G.

Example 5.9 When ν = 1 is the trivial representation, the quotient stack X1
F,G/G is

isomorphic to the underlying underived stack of Lq( pN /G), as we remarked in the
previous section.

We will show that in fact, for ν arbitrary, the stack Xν
F,G/G is isomorphic to a

product of stacks of the form Lqri ( pNi/Gi), in a manner that exactly parallels the
type-theoretic reductions of the previous section. This will allow us to transfer the
structures we have built up on Lqri ( pNi/Gi) to stacks of the form Xν

F,G/G for arbi-
trary ν. Our approach very closely parallels the construction of Sects. 7 and 8 of [51]
with the exception that we are able to work with the full inertia group IF , whereas
the integral �-adic setting of [51] requires one to work with the prime-to-� inertia
instead.

Our strategy will be to rigidify the moduli space Xν
F.G. For any C-algebra R, let

us fix a representative ρ : WF /I → GLn(R) of type ν, i.e. of the conjugacy class.
For any irreducible complex representation η of IF , let Wη be the finite index

subgroup of WF consisting of all w ∈ WF such that ηw is isomorphic to η. Then η

extends to a representation of Wη, although not uniquely; let η̃ be a choice of such
an extension. This choice defines a natural Wη/IF -action on the space HomIF

(η,ρ),
and an injection of Wη-representations

η̃ ⊗ HomIF
(η,ρ) ↪→ ρ.

Frobenius reciprocity then gives an injection:

IndWF

Wη

(

η̃ ⊗ HomIF
(η,ρ)

)

↪→ ρ.

The image of this injection is the sum of the IF -subrepresentations of ρ isomor-
phic to a WF -conjugate of η. We thus have a direct sum decomposition of WF -
representations:

ρ ∼=
⊕

η

IndWF

Wη

(

η̃ ⊗ HomIF
(η,ρ)

)

,

where η runs over a set of representatives for the WF -orbits of irreducible represen-
tations of IF /I . Moreover, the map33 N is IF -equivariant, and thus induces, for each
η, a nilpotent endomorphism Nη of HomIF

(η,ρ). If Frη is a Frobenius element of
Wη, we have Frη Nη Fr−1

η = qrηNη.

33I.e. viewed as a map N : IF � IF /PF � ∏

�′ Q�′ �Q� � C → GLn(R).
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Let nη(ρ) be the dimension of the space HomIF
(η,ρ); since nη(ρ) only de-

pends on the type ν of ρ, we may also write this as nη(ν). A choice of R-basis
for HomIF

(η,ρ) then gives a homomorphism:

ρη : WF /IF → GLni
(R)

and realizes Nη as a nilpotent element of Mni
(R) such that (ρη,Nη) is an R-point of

X1
Eη,GLnη(ρ)

. We thus define:

Definition 5.10 A pseudo-framing of a Langlands parameter (ρ,N) over R is a
choice, for all η such that nη(ρ) is nonzero, of an R-basis for HomIF

(η,ρ). Let
˜Xν

F,G be the moduli scheme parameterizing parameters (ρ,N) of type ν together
with a pseudo-framing, and define

Gν :=
∏

{η|nη(ν) �=0}
GLnη .

The scheme ˜Xν
F,G is equipped with a G × Gν -action.

We denote by Eη the fixed field of Wη, by rη the degree of Eη over F , and by dη

the dimension of η. We see that Gν acts on ˜Xν
F,G via “change of pseudo-framing”,

and this action makes ˜Xν
F,G into a Gν -torsor over Xν

F,G. On the other hand, given an

R-point (ρ,N) of ˜Xν
F,G, the pseudo-framing gives, for each η, an R-point (ρη,Nη)

of X1
Eη,GLnη(ν)

. We thus obtain a natural map:

˜Xν
F,G →

∏

η

X1
Eη,GLnη(ν)

which is a torsor for the conjugation action of G on ˜Xν
F,G. We thus obtain natural

isomorphisms of quotient stacks:

Xν
F,G/G ∼= ˜Xν

F,G/(G × Gν) ∼=
(

∏

η

X1
Eη,GLnη(ν)

)

/Gν

�
∏

η

Lqrη ( pNnη(ν)/GLnη(ν)).

Note that the composite isomorphism depends on the choice, for each η, of an exten-
sion η̃ of η to WF .

5.3 The ν-Springer sheaves

We define a Springer sheaf by transporting across the above isomorphism.

Definition 5.11 We define the ν-Springer sheaf Sν ∈ Coh(Xν
F,G/G) to be the prod-

uct, over η, of the sheaves Sqrη on the moduli stack X1
Eη,GLnη(ν)

/GLnη(ν).
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By Theorem 4.12, the endomorphisms of the ν-Springer sheaf are a tensor product
of affine Hecke algebras, and we introduce the notation

Hν :=
⊗

η

Hqrη (nη(ν)).

We thus obtain a fully faithful embedding D(Hν) ↪→ QC!(Xν
F,G/G). However, since

our identifications depend, ultimately, on our choices of η̃, this embedding will also
depend on these choices. (By contrast, the sheaf Sν itself is, at least up to isomor-
phism, independent of the choices of η̃.) We can remove this dependence by rephras-
ing this embedding in terms of smooth representations of G∨, via the type theory of
the previous section.

Proposition 5.12 There is a G-type (Kν, τν) such that H(G∨,Kν, τν) � Hν (depend-
ing on choices), and an identification of dg algebras

End•(Sν) � H(G∨,Kν, τν)

which is independent of the choices of η̃.

Proof Let L∨
ν be the standard Levi of G∨ corresponding to block diagonal matrices

whose blocks consist, for each η, of nη(ν) blocks of size rηdη. Let π0
η be the cus-

pidal representation of GLrηdη corresponding to IndWF

Wη
η̃ under the local Langlands

correspondence, and let πν be the cuspidal representation:

πν :=
⊗

η

(π0
η )⊗nη(ν)

of L∨
ν . Then representations in the block D(G∨)[L∨

ν ,πν ] correspond, via local Lang-
lands, to Langlands parameters for G of type ν.

For each η, we can find a cuspidal type (Kη, τη) in GLrηdη for π0
η . From this

we can form the type (KLν , τLν ) in L∨
ν , by setting KLν = ∏

η K
nη(ν)
η and τLν =

⊗

η τ
⊗nη(ν)
η . This type is associated to the block [L∨

ν ,πν] in D(L∨
ν ). Let P ∨ be the

standard parabolic of G∨ with Levi L∨, and let (P ′)∨ denote the opposite parabolic.
The theory of Sect. 5.1 then gives us a Levi subgroup (L†)∨ of G∨ containing L∨

ν ,
an (L†)∨-cover (K†

ν , τ †
ν ) of (KLν , τLν ), and a G∨-cover (Kν, τν) of (K†

ν , τ †
ν ). These

covers depend on a choice of parabolic with Levi L∨; we choose our covers to be the
ones associated to the opposite parabolic (P ′)∨. In particular we obtain a map

T(P ′)∨ :H(L∨
ν ,KL∨

ν
, τL∨

ν
) →H(G∨,Kν, τν)

that is compatible with the parabolic induction functor iG
∨

P∨ on D(L∨
ν ) in the sense of

Theorem 5.4.
One verifies, by compatibility of local Langlands with unramified twists, that for

each η the group of unramified characters χ of GLrηdη such that π0
η ⊗χ is isomorphic
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to π0
η is rη. Thus there is an isomorphism of Hecke algebras H(G∨,Kν, τν) � Hν .

Moreover, the composition:

H(G∨,Kν, τν) ∼= Hν
∼= End(Sν)

is independent of the choices of η̃. This essentially boils down to the compatibility of
the local Langlands correspondence with unramified twists and parabolic induction.

�

Since D(G∨)[L∨
ν ,πν ] is canonically equivalent to the category of H(G∨,Kν, τν)-

modules, and this equivalence associates the representations cIndG∨
Kν

τν to the free
H(G∨,Kν, τν)-module of rank one, we have shown:

Theorem 5.13 For each ν there is a natural fully faithful functor:

LLG,ν : D(G∨)[L∨
ν ,πν ] ↪→ QC!(Xν

F,G)

that takes the generator cIndG∨
Kν

τν to Sν .

Remark 5.14 We will say that an inertial type ν is cuspidal if the representations
of WF corresponding to points of Xν

F,G are irreducible. For G = GLn this happens
precisely when nη = 1 for a single η and is zero for all other η. In such cases Xν

F,G

is simply a copy of Gm, the sheaf Sν is the structure sheaf, and the corresponding
affine Hecke algebra is simply C[T ,T −1], which our choices above identify with
the global functions on Xν

F,G
∼= Gm. In particular for such ν the functor LLG,ν is

an abelian equivalence, that takes an irreducible C[T ,T −1]-module to a skyscraper
sheaf on the corresponding point of Xν

F,G.
By taking products of the above picture we see that a similar statement holds for

Levi subgroups M of G (with a suitable torus in place of Gm.)

5.3.1 A direct construction of Sν

In this section we give a more intrinsic construction of Sν . Fix a particular ν, and
let Lν denote the Langlands dual of L∨

ν ; we identify Lν with the standard block
diagonal Levi of G containing nη(ν) blocks of size rηdη. Let ν′ : IF → Lν be the
representation of IF on L whose projection to each block of Lν of type η is the
sum of the WF -conjugates of η. We then have a moduli space Xν′

F,Lν
parameterizing

Langlands parameters for Lν that are of type ν′.
Let P be the standard (block upper triangular) parabolic of G containing Lν . We

then also have a moduli space Xν′
F,P parameterizing Langlands parameters for G that

factor through P , and whose projection to Lν is of type ν′. The inclusion of P ↪→ G,
and the projection of P �L induce parabolic induction maps

Xν′
F,Lν

Xν′
F,P Xν′

F,G

πP ιP

We then have:
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Theorem 5.15 There are natural isomorphisms:

Sν
∼= (ιP )∗Oν′

F,P
∼= (ιP )∗π∗

POν′
F,Lν

,

where Oν′
F,P and Oν′

F,Lν
denote the structure sheaves on Xν′

F,P /P and Xν′
F,Lν

/Lν ,
respectively.

Proof Let L† be the standard Levi of G that is block diagonal of block sizes
nη(ν)rηdη. Let Q be the standard block upper triangular parabolic of G with Levi
L†, and let ν′′ be the composition of ν′ with the inclusion of Lν in L†. We then have
spaces Xν′′

F,L† and Xν′′
F,Q, where the former parameterizes pairs (ρ,N) for L† that are

of type ν′′, and the latter parameterizes pairs (ρ,N) for G that factor through Q and
whose projection to L† is of type ν′′. We may also consider the space Xν′

F,P∩L† , which

parameterizes pairs (ρ,N) for L† that factor through P ∩ L† and whose projection
to L is of type ν′. We then have a natural Cartesian diagram:

Xν′
F,P /P Xν′

F,P∩L†/P ∩ L†

Xν′′
F,Q/Q Xν′′

F,L†/L
†

ι
P∩L†

ιQ

from which we conclude that (ιP )∗π∗
POν′

F,Lν
is isomorphic to (πQ)∗ι∗Q(ιP∩L†)∗ ×

π∗
P∩L†Oν′

F,Lν
, where πQ : Xν′′

F,Q/Q → Xν
F,G/G, and πP∩L† : Xν′

F,P∩L†/(P ∩ L†) →
Xν′

F,Lν
/Lν .

On the other hand, let Bη and Tη denote the standard Borel subgroup and maximal
torus of GLnη(ν), for each η. We then have a commutative diagram (note that we
transport derived structures across the isomorphisms by definition):

∏

η Lqrη ( pNTη/T ) ∼= Xν′
F,L/Lν

↑ ↑
∏

η Lqrη ( pNBη/B) ∼= Xν′
F,P∩L†/(P ∩ L†)

↓ ↓
∏

η Lqrη ( pNnη(ν)/Gnη(ν)) ∼= Xν′′
F,L†/L

†

↑ ↑
∏

η Lqrη ( pNnη(ν)/Gnη(ν)) ∼= Xν′′
F,Q/Q

↓ ↓
∏

η Lqrη ( pNnη(ν)/Gnη(ν)) ∼= Xν
F,G/G

where the bottom two vertical maps on the left are the identity. It follows that the
iterated pull-push (ιQ)∗π∗

Q(ιP∩L†)∗π∗
P∩L†Oν′

F,Lν
corresponds, under the bottom iso-

morphism, to Sν , as the latter is simply the pushforward to
∏

η Lqrη ( pNnη(ν)/Gnη(ν))

of the structure sheaf on
∏

η Lqrη ( pNBη/B). �
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5.3.2 Compatibility with parabolic induction

As in the previous subsection, we fix a particular ν and let L∨
ν , Lν and P be as

above. Let Q be a standard Levi subgroup of G whose standard Levi subgroup M

contains Lν , and let M∨ and Q∨ be the corresponding dual subgroups of G∨. Let ν′
be the inertial type IF → Lν constructed in the previous subsection, and let ν′′ be the
composition of ν′ with the inclusion of Lν in M . We have a diagram with the square
Cartesian:

Xν′
F,Lν

/Lν Xν′
F,P∩M/P ∩ M Xν′

F,P /P

Xν′′
F,M/M Xν′′

F,Q/Q

Xν
F,G/G.

πP∩M

ιP∩M ιP,Q

πP,P∩M

πQ

ιQ

Theorem 5.15 shows that Sν is isomorphic to the pushforward to Xν
F,G/G of

the structure sheaf on Xν′
F,P /P , and the corresponding sheaf Sν,M on Xν′′

F,M is the

pushforward to Xν′′
F,M/M of the structure sheaf on Xν′

F,P∩M/(P ∩ M). The above
diagram then gives us a natural isomorphism:

Sν
∼= (ιQ)∗π∗

QSν,M.

Via functoriality and this isomorphism one obtains an embedding of End(Sν,M) in
End(Sν).

Recall that we have identified these endomorphism rings with certain Hecke alge-
bras via type theory. In particular, we have the type (KLν , τLν ) of L∨

ν , an M∨-cover
(KM∨ , τM∨) coming from the parabolic (P ′)∨ ∩ M∨ opposite P ∨ ∩ M∨, and a G∨-
cover (K, τ) coming from the parabolic (P ′)∨ opposite P ∨. Theorem 5.5 then gives
us a map:

T(Q′)∨ :H(M∨,KM∨ , τM∨) → H(G∨,K, τ).

Lemma 5.16 We have a commutative diagram:

H(M∨,KM∨ , τM∨) End(Sν,M)

H(G∨,K, τ) End(Sν)

�

T(Q′)∨

�

where the right hand map is induced by the isomorphism of Sν � (ιQ)∗π∗
QSν,M .

Proof The machinery of the previous subsection, together with the compatibility of
the general case with the Iwahori case in Sect. 5.1 allow us to reduce to the case where
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ν = 1. In this case the claim reduces to the compatibility of the Ginsburg-Kazhdan-
Lusztig interpretation of the affine Hecke algebra as K0 of the Steinberg variety with
parabolic induction, checked in the proof of Theorem 4.12. �

As a consequence, we deduce:

Theorem 5.17 We have a commutative diagram of functors:

D(M∨)[Lν,τν ] QC!(Xν
F,M)

D(G∨)[Lν,τν ] QC!(Xν
F,G).

LLM,ν

iG
∨

Q∨ (ιQ)∗π∗
Q

LLG,ν

Proof We have isomorphisms:

LLG,ν(i
G∨
Q∨V ) ∼= Hom(cIndG∨

K τ, iG
∨

Q∨V ) ⊗H(G∨,K,τ) Sν

∼= HomM∨(cIndM∨
KM∨ τM∨,V ) ⊗H(M∨,KM∨ ,τM∨ ) (ιQ)∗π∗

QSM∨,ν

∼= (ιQ)∗π∗
Q(LLM,ν V )

from which the result follows. �

Appendix: Proofs

This appendix contains proofs of technical results used in the body of the paper.

A.1 Functoriality of Hochschild homology in geometric settings

Proof of Proposition 3.14 The first and second statements are Theorem 2.21 (or
Proposition 5.5) in [8]. We give a direct argument for the third statement (which
can also be adapted toward the second). We let Z := X ×Y X, and denote the
diagonals by �X : X ↪→ X × X (and likewise for Y ), the relative diagonal by
� : X ↪→ Z = X ×Y X, and its inclusion by i : Z = X ×Y X ↪→ X × X.

Note that we use !-integral transforms in our convention; thus to describe the in-
tegral transforms it is convenient to pass between ∗-pullbacks and !-pullbacks. For
any quasi-smooth map g : E → B we denote by β∗

g : f ∗(−) � f !(−) ⊗OX
ω−1

E/B and

β !
g : f !(−) � f ∗(−) ⊗OX

ωE/B the canonical equivalences.
The integral transform corresponding to f∗f ∗ : Coh(Y ) → Coh(Y ) is given by the

kernel

Kf∗f ∗ := �Y∗f∗(ωX ⊗
OX

ω−1
X/Y ).

Letting ηf denote the unit for the adjunction (f ∗, f∗), the unit η ∈ HomY×Y (�Y∗ωY ,

Kf∗f ∗) is defined:

η := �Y∗(β∗
f ◦ ηf ) : �Y∗ωY −→ �Y∗(f∗f ∗ωY ) � �Y∗(f∗(f !ωY ⊗

OX

ω−1
X/Y )).
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The integral transform corresponding to f ∗f∗ : Coh(X) → Coh(X) is given by
the kernel:

Kf ∗f∗ := i∗(ωZ ⊗
OZ

ω−1
Z/X).

Letting η� denote the unit for the adjunction (�∗,�∗), the counit ε ∈
HomX×X(Kf ∗f∗ ,�X∗ωX) is defined:

ε := i∗(β !−1
� ◦ η�) : i∗(ωZ ⊗

OZ

ω−1
Z/X) → i∗�∗(�∗ωZ ⊗

OZ

ωX/Z) � i∗�∗ωX

where we implicitly use the canonical identification �∗ω−1
Z/X � ωX/Z (i.e. since

ωX/X is canonically trivial). We leave verification of the adjunction identites to the
reader.

The functoriality ω(LφY ) → ω(LφX) is given by composing the unit and counit
after applying � ◦ �!

φY
and � ◦ �!

φX
(where, somewhat confusingly, � denotes the

global sections functor, and �φ denotes the graph). Recall the factorization and no-
tation of Lemma 3.10, let pX : LφYX → X and pY : LφYX → Y denote the natural
maps, and evX : LφX → X the evaluation (and likewise for Y ). For the unit map η,
we have

�!
φY

η : �!
φY

�Y∗ωY −→ �!
φY

�Y∗f∗(ωX ⊗OX
ω−1

X/Y ).

We perform a base change along the diagram:

LφYX LφY Y

X Y Y × Y.

π

pX

evY

evY
�φY

f �Y

to find

�!
φY

�Y∗f∗(ωX ⊗OX
ω−1

X/Y ) � pY∗p!
X(ωX ⊗OX

ω−1
X/Y )

� pY∗(ωLφYX
⊗OLφYX

p∗
Xω−1

X/Y ) � pY∗(ωLφYX
⊗OLφYX

ω−1
LφYX/LφY

)

� evY∗π∗π∗ωLφY

and an identification of η with the unit ηπ for the adjunction (π∗,π∗):

η � evY∗(ηπ (ωLφY )) : evY∗ωLφY −→ evY∗π∗π∗ωLφY .

For the counit map ε, we have

�!
φX

ε : �!
φX

i∗(ωZ ⊗OZ
ω−1

Z/X) −→ �!
φX

�X∗ωX.
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We perform a base change along the diagram:

LφX LφYX X

X Z X × X.

evX

δ

s

pX

�φX

� i

to find that

�!
φX

i∗(ωZ ⊗OZ
ω−1

Z/X) � pX∗s!(ωZ ⊗OZ
ω−1

Z/X) � pX∗(ωLφYX
⊗OLφYX

s∗ω−1
Z/X)

� pX∗(ωLφYX
⊗OLφYX

ω−1
LφYX/LφY

) � pX∗δ∗ωLφY .

Due to the canonical Calabi-Yau equivalence ωLφX/LφY � OLφX of Proposition 3.12,

we have a canonical equivalence ωLφX/LφYX
� δ∗ω−1

LφYX/LφY
. Passing through this

equivalence, we have

�!
φX

i∗�∗ωX � pX∗s!�∗ωX � pX∗δ∗δ!ωLφYX

� pX∗δ∗(δ∗ωLφYX
⊗OLφX

ωLφX/LφYX
) � pX∗δ∗δ∗(ωLφYX

⊗OLφYX
ω−1
LφYX/LφY

).

Thus, ε is identified with the unit ηδ for the adjunction (δ∗, δ∗):

ε � pX∗(ηδ(ωLφX/LφYX
⊗OLφYX

ω−1
LφYX/LφY

)) : pX∗π∗ωLφY → evX∗ωLφX.

Taking global sections and composing, we see that the map

ω(LφY ) → �(LφYX,ωLφYX
⊗ ω−1

LφYX/LφY
) � �(LφYX,ωLφYX

⊗ δ∗ωLφX/LφYX
)

→ ω(LφX)

is induced by the unit of the adjunction (Lφf ∗,Lφf∗), twisted by the Calabi-Yau
equivalence. �

The following is a generalization of Proposition 3.18. While Proposition 3.18 is
stated in the setting of derived loop spaces, the arguments hold in the following more
general setting.

Proposition A.1 Let f : X → Y be a proper map of derived stacks, and let Z = X ×Y

X with projections p1,p2 : Z → X and p : Z → Y . There is a canonical equivalence:

ζf : p∗HomZ(OZ,ωZ) � HomY (f∗OX,f∗ωX).
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In particular, if X is Calabi-Yau, then we have a natural equivalence ω(Z) �
EndY (f∗ωX). This equivalence is functorial in the following sense. Let f ′ : X′ → Y ′
(and p′ : Z′ → Y ′) be as above.

• Suppose that αY : Y → Y ′ is proper, and that X = X′. We let f : X → Y be as
above, f ′ = αY ◦ f : X → Y → Y ′. We have commuting squares

αY∗p∗HomZ(OZ,ωZ) αY∗HomY (f∗OX,f∗ωX)

p′∗HomZ′(OZ′ ,ωZ′) HomY ′(f∗OX′, f∗ωX′).

�
αY∗(ζf )

Def. 3.13 Def. 3.17

�
ζf ′

• Suppose that αY : Y → Y ′ is Calabi-Yau, and that X = X′ ×Y ′ Y (so αX is also
Calabi-Yau). Then we have commuting squares

p′∗HomZ′(OZ′ ,ωZ′) HomY ′(f∗OX′, f∗ωX′)

αY∗p∗HomZ(OZ,ωZ) αY∗HomY (f∗OX,f∗ωX).

Def. 3.13

�
ζf ′

Def. 3.17

�
αY∗(ζf )

Proof The first statement is a formal consequence of adjunctions and base change:

p∗HomZ(OZ,ωZ) � f∗HomX(OX,p1∗ωZ) � f∗HomX(OX,f !f∗ωX)

� HomY (f∗OX,f∗ωX).

Functoriality for proper morphisms follows by a diagram chase on:

αY∗p∗HomZ(OZ,ωZ) p′∗HomZ′(OZ′ ,ωZ′)

f ′∗HomX(OX,p1∗ωZ) f ′∗HomX(OX,p′
1∗ωZ′)

f ′∗HomX(OX,f !f∗ωX) f ′∗HomX(OX,f ′ !f ′∗ωX)

αY∗HomY (f∗OX,f∗ωX) αY∗HomY ′(f ′∗OX,f ′∗ωX)

� �

� �

� �

where we use the identification in the middle left terms αY∗f∗ � f ′∗αX∗ � f ′∗ (i.e.
since X = X′ and αX = idX), and the middle horizontal maps are given by functo-
riality of pushforwards of dualizing sheaves. In the Calabi-Yau case, we pass to left
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adjoints, apply the base change α∗f ′∗ � f∗α∗ and chase the diagram:

p∗α∗
ZHomZ′(OZ′ ,ωZ′) p∗HomZ(OZ,ωZ)

f∗α∗
XHomX′(OX′,p′

1∗ωZ′) f∗HomX(OX,p1∗ωZ)

f∗α∗
XHomX′(OX′, f ′ !f ′∗ωX′) f∗HomX′(OX,f !f∗ωX)

α∗
YHomY ′(f ′∗OX′, f ′∗ωX′) HomY (f∗OX,f∗ωX)

� �

� �

� �

where the middle arrows arise by functoriality of Calabi-Yau pullback (as in Defini-
tion 3.13) after passing to left adjoints. �

A.2 Horizontal trace of convolution categories

Proof of Theorem 3.23 We will employ the notation in Theorem 3.3.1 of [12] to point
out how its argument can be modified to acommodate this more general setting. First,
note that the surjectivity condition is not needed nor used in the proof of the theorem;
it is subsumed by the singular support condition, so we omit it from the statement.
The quasi-smoothness of qn follows by quasi-smoothness of the graph �φ . We re-
place, in the definition of C•, the diagonal module Perf(X) with the module defined
by the graph �φ . In the definition of Z•, this amounts to replacing LY with Yφ (infor-
mally, introducing a twist by φ as we “come around the circle,” i.e. in Lemma 3.3.2
the automorphism � lives in MapY(k)(y,φ(y))). In the definition of W•, this amounts
to replacing the last factor of X ×Y X = X ×f,Y,f X representing the “segment con-
taining the twist by φ” with X ×f,Y,φX◦f X (i.e. in Lemma 3.3.3, the final point xn

should lie in the fiber f −1(φ(y)) rather than f −1(y)). The rest of the proof goes
through without modification as the formulas still hold with the φ-twist. �

Proof of Proposition 3.30 The argument in Theorem 3.3.1 of [12] may be adapted in
the following way. Let M = QC!(Z12) and N = QC!(Z23), and following the notation
of loc. cit. we let A = QC!(Z22) and B = QC!(X2). Then, writing M ⊗A N = M ⊗A
A ⊗A N, and (following the argument of loc. cit.) resolving A as a A ⊗B Arv-module
via the relative bar complex for A over B, we find that M ⊗A N can be realized as the
geometric realization of the cosimplicial object:

M ⊗A N = colim(QC!
�n

(Zn))

where we define

qn : Zn := X1 ×
Y

n+1
︷ ︸︸ ︷

X2 ×
Y

· · · ×
Y

X2 ×
Y
X3 −→ Wn := Z12 × Zn

22 × Z23,
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�n = q !
n(�12 �

n
︷ ︸︸ ︷

T
∗[−1]
Z22

� · · ·�T
∗[−1]
Z22

��23).

Explicitly, for η = (x1, x
(0)
2 , . . . , x

(n)
2 , x3) ∈ Zn(k) with each coordinate living in the

fiber over y ∈ Y(k), we have

T
∗[−1]
Zn

= {(ω12,ω
(01)
22 , . . . ,ω

(n−1,n)
22 ,ω23) ∈ T

∗
Y,y |

df ∗
1 ω12 = 0, df ∗

3 ω23 = 0, df ∗
2 ω

(i,j)

22 = df ∗
2 ω

(i′,j ′)
22 },

�n = {(ω12,ω
(01)
22 , . . . ,ω

(n−1,n)
22 ,ω23) ∈ T

∗
Y,y |

ω12 ∈ �12,η,ω23 ∈ �23,η, df
∗
2 ω

(i,j)

22 = 0}.
Here, we note that the fiber of the singular support condition �ij at the point
(xi, xj ) ∈ Zij (k) in the fiber over y is naturally a subset �ij,(xi ,xj ) ⊂ T

∗
Y,y . The singu-

lar support stability condition implies that the face maps (Zm,�m) → (Zn,�n) are
maps of pairs. Pullback along the augmentation is conservative by definition of �13.
Analogous formulas in Lemma 3.3.9 of op. cit. hold in this situation (without the need
to “loop around”), and the strictness condition follows by an argument analogous to
Proposition 3.3.8 of op. cit. Thus, we have an equivalence

QC!
�13

(Z13) � Tot(QC!
�n

(Zn)).

For functoriality, we note that the resulting maps (Zn,�n) → (Zn,�
′
n) are maps

of pairs by our description above for n ≥ 0, and the case n = −1 is a straightfor-
ward verification. The claim then follows by functoriality of the descent with support
discussed in Sect. 2.4 of [12]. We adopt the notation of loc. cit.: let (X•,�•) →
(X−1,�−1) and (Y•,�•) → (Y−1,�−1) be augmented simplicial diagrams of maps
of pairs satisfying the descent conditions of Theorem 2.4.1 and Corollary 2.4.2 of
[12], and let g• : (X•,�•) → (Y•,�•) be a level-wise proper map of augmented
simplicial diagrams of pairs. We claim that we have a limit Tot(g!•) � g!

−1 and a col-
imit Real(g•∗) � g−1∗, which proves the functoriality claims (i.e. since the maps g•
are the identity, the functors g•∗ are the inclusion functors and g!• are the local coho-
mology functors). The first statement follows by commutativity of !-pullbacks with
supports (see Remark 2.3.3 of [12]) and by universal property of the limit. The second
statement follows by passing to left adjoints (as in Corollary 2.4.2 of op. cit.). �

Proof of Proposition 3.37 Consider the functors

T (−) := − ⊗QC(k) QC(X) : dgCatk → QC(Y )-mod,

T R(−) := − ⊗QC(Y ) QC(X) : QC(Y )-mod → dgCatk.

We claim that (T ,T R) are adjoint. Let �X : X → X × X denote the diagonal, p :
X → pt denote the structure map, and �X/Y : X → X×Y X the relative diagonal. We
define the unit η : iddgCatk → T R ◦T via the functor �X/Y∗p∗ : QC(pt) → QC(X×Y
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X) and the counit ε : T ◦ T R → idQC(Y )-mod by the functor f∗�∗
X : QC(X × X) →

QC(Y ). Verification of the adjunction axioms is a straightforward application of base
change and Theorem 4.7 of [9]. To compute the trace, we apply base change and
find that [QC(X),φX∗] is the pull-push of k ∈ QC(pt) along the diagram (where
�Y : Y → Y × Y is the diagonal):

X ×Z LφYX � LφX

X LφYX � X ×
(f,f ◦φX),Y×Y,�Y

Y

pt Z = X ×Y X = (X × X) ×
(f,f ),Y×Y,�Y

Y LφY,

p �X/Y
�φ×idY f ×idY

i.e. [QC(X),φX∗] � Lφf∗OLφX . �
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