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Abstract
Local Schauder theory holds in the nonuniformly elliptic setting. Specifically, first
derivatives of solutions to nonuniformly elliptic problems are locally Hölder contin-
uous if so are their coefficients.
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1 Introduction

In this paper we give the first general solution to two different, but yet connected,
longstanding and classical open problems in the regularity theory of variational in-
tegrals and elliptic equations. To begin with, we prove the first results concerning
local gradient Hölder regularity of minimizers of nonuniformly elliptic integrals, that
are not necessarily equipped with a Euler-Lagrange equation. In fact, in the cases we
are going to consider here, such equations might not exist. Such type of results are
classical in the uniformly elliptic case since the work of Giaquinta & Giusti [28–30],
whilst nothing is known in the general nonuniformly elliptic one. Second, and most
importantly, we prove Schauder estimates for nonuniformly elliptic problems. Both
for variational problems and for elliptic equations, gradients of solutions are locally
Hölder continuous provided coefficients are locally Hölder continuous. Again, while
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this is classical in the uniformly elliptic case – see again [29, 30], Manfredi’s [61, 62]
and Lieberman’s [59] papers for full generality – no analog is recorded in the nonuni-
formly elliptic case. The crucial point in this setting is to obtain L∞-gradient bounds,
after which, more classical perturbation methods can be combined with certain spe-
cific forms of the a priori estimates obtained, to prove gradient Hölder continuity.
See for instance the comments in Lieberman’s review of Giaquinta & Giusti’s paper
[30].1 The central role of gradient bounds is also remarked by Ivanov [46, page 7]2

and was exploited by Ladyzhenskaya & Ural’tseva [55], as described in [46, page 15]
too. To achieve our results, we employ a novel hybrid perturbation approach, suited
for nonuniformly elliptic problems. This is aimed at replacing the classical ones used
in the uniformly elliptic setting, that are ultimately based on plain freezing arguments.
We believe that this approach has potential for applications in several other places.
In fact, in this paper we present the main bulk of the technique and apply it in a cer-
tain number of different settings. Others are still possible. In particular, the boundary
case, as well as the evolutionary one, will be treated in forthcoming papers.

So-called Schauder estimates for linear elliptic equations are actually a classic
achievement of Hopf [43], Caccioppoli [12] and Schauder [74, 75] (see also [33]).
Modern proofs are in [13, 32, 80, 87]. The nonlinear story goes back to the classi-
cal papers by Frehse [27], Giaquinta & Giusti [28–31], Ivert [47, 48] and Manfredi
[61, 62]. There the first Schauder type results for nonlinear equations and nondif-
ferentiable integral functionals, asserting local Hölder continuity of the gradient for
some exponent, were proved. For the sake of simplicity, let us consider the following
classical model example [14, 15, 29, 42, 51, 72, 81, 84]:

w �→
∫

�

[F(Dw) + h(x,w)]dx . (1.1)

Here F(·) ≥ 0 is a sufficiently regular, uniformly elliptic integrand with p-growth -
take for instance F(Dw) ≡ |Dw|p , p > 1. Instead, h : � × R → R is a bounded,
merely Hölder continuous function; � ⊂ R

n denotes a bounded open subset, n ≥ 2.
By uniform ellipticity of F(·) here we mean that the ellipticity ratio RF (z) remains

1Indeed, in the MR review of [30], Lieberman states: “A comment needs to be made concerning their
[i.e., of Giaquinta & Giusti’s methods] brief application to equations when their growth properties fail. As
they point out, such equations fall under their considerations provided a global gradient bound has been
established; however, this gradient bound has only been proved when A [i.e., the operator or functional
considered in [30]] is differentiable with respect to all its arguments, and in many cases more smoothness
of the coefficients is needed. The results of this paper are thus much more striking when applied to uni-
formly elliptic equations than to nonuniformly elliptic ones” [60]. The missing growth properties forcing
smoothness of coefficients Lieberman is pointing at actually correspond to nonuniform ellipticity. This can
be therefore treated, when coefficients are Hölder continuous, only upon assuming that solutions are a pri-
ori Lipschitz (and under certain additional assumptions, like non-degeneracy). In this paper we overcome
these basic points.
2Ivanov remarks: “In view of the results of Ladyzhenskaya and Ural’tseva, the problem of solvability
of boundary value problems for a nonuniformly elliptic or parabolic equation reduces to the question of
constructing a priori estimates of the maximum moduli of the gradients of solutions for a suitable one-
parameter family of similar equations”. This means finding uniform a priori gradient estimates for regu-
larized problems. This is shown to be possible in this paper without the unnatural assumptions considered
before, i.e., without differentiability and smoothness of coefficients, in turn ruling out the Schauder setting.
See the proof of Theorem 6.
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bounded for |z| large [46, 55, 78, 85], i.e.,

sup
|z|≥1

RF (z) < ∞, RF (z) := highest eigenvalue of ∂zzF (z)

lowest eigenvalue of ∂zzF (z)
. (1.2)

This happens for instance in the p-Laplacean case F(z) = |z|p , i.e., when

∂zzF (z) ≈ |z|p−2
Id (1.3)

holds for |z| large. As h(·) is not assumed to be differentiable, the Euler-Lagrange
equation

−div ∂zF (Du) + ∂uh(x,u) = 0 (1.4)

of the functional in (1.1) just cannot be derived. Yet, in [29] a method is devised to
get local gradient Hölder continuity of minima only using minimality, and without
passing through (1.4). This goes roughly as follows. Given a minimizer u of the
functional in (1.1), one defines its lifting v on the ball B � � by solving

v → min
w∈u+W

1,p
0 (B)

∫
B

F(Dw)dx . (1.5)

Solutions to corresponding Euler-Lagrange equation div∂zF (Dv) = 0, are C1,α-
regular and enjoy good homogeneous decay estimates. This is a direct consequence
of the uniform ellipticity (1.2). Such estimates can then be matched with compari-
son ones between u and v on B as they enjoy the same degree of homogeneity of
the reference ones and this is another consequence of (1.2). Thanks to this common
homogeneity, combining the two ingredients finally leads to transfer, at all scales,
the C1,α-estimates available for solutions to (1.5), to the original minimizer u. This
comparison scheme, based on minimality, is in spirit close to the one used to derive
classical Schauder estimates and relying on Korn’s argument.

Such classical perturbation schemes uniformly fail in the nonuniformly elliptic
setting. In this paper we show a different route aimed at bypassing the lack of ho-
mogeneous estimates typical of nonuniformly elliptic problems. For this, we shall
consider a general class of integrands for which (1.2) is not necessarily satisfied, and
for which RF (z) grows at most polynomially

RF (z) � |z|δ + 1 , δ > 0 . (1.6)

In fact, our main ellipticity assumption, replacing (1.3), will be of the type

|z|p−2
Id � ∂zzF (z) � |z|q−2

Id (1.7)

for |z| ≥ 1, so that it is δ = q − p in (1.6); conditions (1.7) are the most general to
describe (1.6). Polynomial nonuniform ellipticity as in (1.6) is a standard topic since
the classical works of Ladyzhenskaya & Ural’tseva [55, 56], Hartman & Stampac-
chia [39], Trudinger [85, 86], Ivočkina & Oskolkov [49], Oskolkov [71], Serrin [77],
Ivanov [44–46], Leon Simon [78, 79], Ural’tseva & Urdaletova [89], Lieberman [58],
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just to mention a few. In the variational setting, conditions (1.7) were systematically
studied by Marcellini in a series of pioneering papers [65–67], who introduced func-
tionals with so-called (p, q)-growth conditions, referring to the formulation in (1.7).
Today a huge literature is devoted to such problems. With the current techniques,
differentiability of coefficients is unescapable; Hölder regularity is forbidden.

To describe the methods employed here, we recall that a traditional, non-
perturbative and direct way to get that minima are Lipschitz when equation (1.4)
exists, is to first differentiate (1.4), and then invoking De Giorgi-Nash-Moser theory.
Sticking to De Giorgi’s method, this means to get first a Caccioppoli inequality in-
volving derivatives of Du, and then to run a geometric iteration leading to gradient
boundedness. Here we use, in a sense, both the direct and the perturbative approach,
and that’s where the word hybrid stems from. We also take advantage of various regu-
larity tools and viewpoints developed over the last years in the Calculus of Variations
[3, 21, 51] and in Nonlinear Potential Theory [50, 69]. The approach proposed here
goes along the following points:

• We still prove Du ∈ L∞
loc via a direct De Giorgi type geometric iteration involving,

up to minor corrections, truncations of a certain convex function of |Du| (Bern-
stein method). The iteration is based on a Caccioppoli type inequality, that this time
does not involve full derivatives of Du, as in the classical case. This is because the
functionals/equations we are dealing with involve nondifferentiable coefficients,
and therefore cannot be differentiated. Instead, notwithstanding the problem is lo-
cal, the Caccioppoli inequality we use involves fractional derivatives of Du; see
Sect. 5.

• In order to iterate the Caccioppoli inequality of the previous point, we use a renor-
malization that makes it homogeneous, as in uniformly elliptic problems. The price
we pay is a controlled increase of the involved multiplicative constants. They now
incorporate an additional, direct dependence on ‖Du‖σ

L∞ , with σ ≡ σ(q/p). Keep-
ing track of such constants is a crucial part of the proof. For this, we impose a
moderate polynomial growth rate on RF (z) as in (1.6), that implies that δ ≡ q −p

must be small enough, in turn making σ small too. This kind of assumption is not
technical and it is necessary (see Remark 1).

• The perturbative part, making the approach hybrid. This is in the proof of the
Caccioppoli inequality. For this we exploit a delicate atomic like decomposition
in Nikolski spaces. The argument still employs comparisons with liftings v as in
(1.5), used in a sense as atoms (see Sect. 5.3.4 below). At this stage, crucial use is
made of precise a priori Lipschitz estimates for autonomous problems (see Lemma
5.3).

• We rely on the use of nonlinear potentials of the type originally introduced by
Havin & Maz’ya [68]; see Sect. 4. Indeed, certain quantities apparently uncontrol-
lable in the nonuniformly elliptic setting, are now treated by means of an optimized
splitting between the L∞-norm of Du, and integral remainder terms building up
nonlinear potentials along iterations (see Propositions 5.3-5.4). As an additional
benefit, this nonlinear potential theoretic approach allows to treat cases involving
unbounded data. In particular, it leads to discover new borderline conditions for
regularity in Lorentz spaces. These extend known ones from standard settings and
connect to a very large literature on borderline cases; see Remark 2.
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This approach allows to settle the open problem of proving Schauder estimates in the
nonuniformly elliptic setting. To fix the ideas, consider the model functional

⎧⎨
⎩

w �→ Sx(w,�) :=
∫

�

c(x)F (Dw)dx, 0 < ν ≤ c(·) ≤ L

|c(x1) − c(x2)| ≤ L|x1 − x2|α, α ∈ (0,1],
(1.8)

for every choice of x1, x2 ∈ �, where F(·) satisfies (1.7). When p = q , gradient
Hölder regularity of minima can be found in [28, 29, 59, 61, 62]. When p �= q , the
first result is in Theorem 2 below, that in fact applies to functionals as in (1.8).

Further developing our approach, we treat also nondifferentiable functionals of the
type

⎧⎪⎪⎨
⎪⎪⎩

w �→ S(w,�) :=
∫

�

[c(x,w)F (Dw) + h(x,w)] dx,

0 < ν ≤ c(·) ≤ L,

|c(x1, y1) − c(x2, y2)| ≤ L|x1 − x2|α + L|y1 − y2|α, α ∈ (0,1],
(1.9)

for every choice of x1, x2 ∈ �,y1, y2 ∈ R, and thereby falling outside the realm of
traditional Schauder estimates. The conditions we impose on h(·) are detailed in (2.6)
below; see also (2.23). Essentially, h(x, y) is assumed to be Hölder continuous with
respect to y and merely measurable with respect to x. Examples are obviously given
by h(x, y) = f(x)h(y), where h(·) is any Hölder continuous function and f ∈ Lq

with q > n/α. For functionals as in (1.9) we assume the additional lower bound p >

n, that we suspect to be necessary; see Theorem 3 and subsequent Remark 3. We note
that Theorem 3 is new already when y �→ c(·, y) is smooth, and, due to the peculiar
growth conditions assumed on h(·) with respect to x, even when p = q (uniformly
elliptic case; see Remark 2 below).

Our techniques apply to general nonuniformly elliptic equations in divergence
forms of the type considered in [30, 55, 59, 61, 62] in the uniformly elliptic case.
In order to present the main ideas and to keep presentation at a reasonable length, we
confine ourselves to equations of the type

−divA(x,Du) = 0 , (1.10)

but not necessarily stemming from variational integrals; see Sect. 2.6. Again, more
general cases, for instance involving non-zero right-hand sides, can be treated by our
means.

2 Results

2.1 Basic notation

We deal with integral functionals of the form

W
1,1
loc (�) 
 w �→F(w,�) :=

∫
�

[F(x,w,Dw) + h(x,w)] dx . (2.1)
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Here, as in the rest of the paper, � ⊂ R
n, n ≥ 2, denotes a fixed open and bounded

subset, F : � × R × R
n → [0,∞) and h : � × R → R are Carathéodory regular

functions, and h(·) is such that h(·,w) ∈ L1
loc(�), whenever w ∈ W

1,1
loc (�). Under

such premises, we adopt the following

Definition 1 A function u ∈ W
1,1
loc (�) is a (local) minimizer of the functional F in

(2.1) if, for every ball B � �, we have F(·, u,Du) ∈ L1(B) and F(u,B) ≤F(w,B)

holds for every competitor w ∈ u + W
1,1
0 (B).

For the rest of the paper, we denote by c, χ1, χ2 general constants such that
c,χ1, χ2 ≥ 1. Different occurrences from line to line will be still denoted using the
same letters. Special occurrences of c will be denoted by c∗, c̃ or likewise. Relevant
dependencies on parameters will be as usual emphasized by putting them in paren-
theses; for instance c ≡ c(n,p, q) means that c depends on n, p, q . Next, we fix a set
of real parameters denoted by data ≡ (n,p, q,α, ν,L), where n ≥ 2 is an integer,
1 < p ≤ q , 0 < ν ≤ L, and α ∈ (0,1], and also set datae ≡ (n,p, q,α). With ν, L

being fixed, we denote by ν̃ ≡ ν̃(n,p, ν) and L̃ ≡ L̃(n, q,L) two quantities such that
0 < ν̃ ≤ ν ≤ L ≤ L̃. While ν, L are fixed here, the exact value of the quantities ν̃, L̃

might vary in different occurrences, but still keeping the dependence on the constants
specified above. For this reason, dependence on ν̃, L̃ will be often incorporated in
the dependence on data or on ν, L. Unless otherwise specified, μ denotes a fixed
constant such that μ ∈ [0,1]; we also denote

Hs(z) := |z|2 + s2 for z ∈R
n, μs := μ + s and s ≥ 0. (2.2)

Further notation can be found in Sect. 3.1.

2.2 Functionals without the Euler-Lagrange equation

Here we concentrate on nondifferentiable functionals of the form

w �→ G(w,�) :=
∫

�

[F(Dw) + g(x,w,Dw) + h(x,w)]dx . (2.3)

The integrand F : Rn → [0,∞) satisfies the growth and (nonuniform) ellipticity con-
ditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(·) ∈ C1(Rn) ∩ C2(Rn \ {0Rn})
ν[Hμ(z)]p/2 ≤ F(z) ≤ L[Hμ(z)]q/2 + L[Hμ(z)]p/2

ν[Hμ(z)](p−2)/2|ξ |2 ≤ ∂zzF (z)ξ · ξ
|∂zzF (z)| ≤ L[Hμ(z)](q−2)/2 + L[Hμ(z)](p−2)/2,

(2.4)
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for all z, ξ ∈ R
n, |z| �= 0. The function g : � ×R×R

n → [0,∞) satisfies
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z �→ g(x, y, z) is convex and of class C1(Rn) ∩ C2(Rn \ {0Rn})
g(x, y, z) + Hμ(z)|∂zzg(x, y, z)| ≤ L[Hμ(z)]p/2

|g(x1, y1, z) − g(x2, y2, z)|
≤ L(|x1 − x2|α + |y1 − y2|α) (|z|2 + 1)γ /2

α + γ < p, γ ≥ 0

(2.5)

for all x, x1, x2 ∈ �, y, y1, y2 ∈ R, z ∈ R
n, |z| �= 0 .3 The function g(·) is therefore

only Hölder continuous with respect to (x, y); a typical example can be g(x, y, z) =
c(x, y)[Hμ(z)]p/2[H1(z)](γ−p)/2, where c(·) is as in (1.9). The function h : �×R →
R is assumed to be Carathéodory regular and to satisfy conditions involving Lorentz
spaces (see Sect. 4)

⎧⎪⎨
⎪⎩

|h(x, y1) − h(x, y2)| ≤ f (x)|y1 − y2|α
f ∈ L(n/α,1/2)(�)

h(·,0) ∈ L1(�)

(2.6)

for a.e. x ∈ � and every y1, y2 ∈R. This time h(·) is only measurable with respect to
the x-variable. An example can be h(x, y) = f(x)h(y), where h(·) is Hölder contin-
uous and f ∈ L(n/α,1/2)(�).

Theorem 1 Let u ∈ W
1,1
loc (�) be a minimizer 4 of the functional G in (2.3), under

assumptions (2.4)-(2.6) and

q

p
≤ 1 + 1

5

(
1 − α + γ

p

)
α

n
. (2.7)

Then Du ∈ L∞
loc(�,Rn). Moreover,

‖Du‖L∞(Bt )

≤ c

(r − t)χ1

[
G(u,Br) + ‖h(·, u)‖L1(Br )

+ ‖f ‖n/α,1/2;Br
+ 1
]χ2 (2.8)

holds whenever Bt � Br � � are concentric balls with r ≤ 1, where c ≡ c(data, γ )

and χ1, χ2 ≡ χ1, χ2(datae, γ ). If f ∈ L
q

loc(�) for some q > n/α, then Du is locally
Hölder continuous in �.

Note that Theorem 1 covers the model functional in (1.1) by simply taking g(·) ≡
0. In this case the bound on q/p becomes (2.7) with γ = 0 and condition α + γ < p

becomes immaterial; see also Remark 8.

3The function g(·) is continuous. This follows from (2.5) and Lemma 3.4.
4Assumptions (2.6) imply that h(·,w) ∈ L1

loc(�), whenever w ∈ W
1,1
loc (�). This follows using Sobolev

embedding theorem and (2.6) via (6.37) below. This is in accordance to Definition 1. This will always be
the case for the rest of this paper, also when dealing with different functionals. As a consequence, requiring
that F(Dw),g(·, u,Dw) ∈ L1

loc(�) implies that G(w,B) is finite for every ball B � �. It follows from

(2.4)1 that any minimizer automatically belongs to W
1,p
loc (�).
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Remark 1 (Gap bounds) Gap bounds of the form q/p < 1 + o(n) for o(n) ≈ 1/n, as
in (2.7), are known to be necessary already for boundedness of minimizers, as shown
in [65, 66], and in the case w �→ ∫

F(Dw)dx. Already in such a plain situation,
the optimal bound on q/p implying Du ∈ L∞

loc remains unknown. See [4–6, 8, 19,
42, 73] for recent work in this direction. Counterexamples in [24], involving non-
homogeneous integrands show that the condition

q

p
≤ 1 + α

n
(2.9)

is necessary already for continuity of minima. This is crucial in our setting. Specif-
ically, it implies that, when departing from standard ellipticity conditions, Schauder
estimates do not hold in general. A subtle balance between regularity of x �→ F(x, ·)
and ellipticity of z �→ F(·, z) is needed. The bound in (2.7) reflects this fact and ex-
hibits the same sharp asymptotic with respect to α/n of (2.9). A more delicate interac-
tion occurs with the regularity of y �→ g(·, y, ·), and reflects in conditions α + γ < p

and (2.7). Indeed, assumptions as α + γ < p are bound to quantify the direct inter-
action between more irregular coefficients, as those yield by the presence of v in the
integrand, and gradient terms. Such interactions have already been considered in the
literature, see for instance [29, 51, 52] and related references. See Remark 3 for a
similar interaction and Remark 7 for the technical role assumption α + γ < p plays
in the proof of Theorem 1. The bound in (2.7) can be further (slightly) improved by
introducing a correction function κ1(·). For this see Proposition 6.1 and subsequent
Remark 8. Anyway this does not change the asymptotic of (2.7) with respect to α/n

and p − (α + γ ), that is what we are mainly interested in at this stage.

Remark 2 (New borderline conditions) When p = q (uniformly elliptic case), the as-
sumptions of Theorem 1 are standard [28–31, 51, 61, 62], but the one on f , which
is usually taken in L∞. When p �= q assuming f ∈ L∞ would not improve the gap
bound in (2.7) according to our techniques. Passing from L∞ to Lebesgue spaces,
and eventually to Lorentz, is an automatic side benefit of our approach. By scal-
ing arguments, we do not expect Hölder continuity of Du without assuming that
f ∈ Lq(�) for q > n/α, and do not expect that Du ∈ L∞ when f ∈ Ln/α . The new
Lorentz condition (2.6) connects Theorem 1 to a large literature devoted to find op-
timal conditions on data f implying regularity. For differentiable, uniformly elliptic
functionals like

w �→
∫

�

[F(Dw) + f w]dx, (2.10)

and equations as diva(Du) = f , the L(n,1)-regularity of f implies that minima and
solutions are locally Lipschitz; Ln is not sufficient. This can be considered as a non-
linear version of a classical result of Stein [82] on solutions to �u = f . See [54] for
local estimates, and [16, 17] for global ones. The same holds when assuming that
F(·) is nonuniformly elliptic in the sense of (1.7) and (2.4), as in [3, 19, 21]. The
remarkable fact is that the L(n,1)-condition is independent of the integrand/opera-
tor considered, exactly as the condition f ∈ L(n/α,1/2) considered here for (2.3).
Anyway, this can be still improved in certain situations, see Theorem 5 below. As far
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as we know, due to the presence of the Lorentz condition, Theorem 1 is new already
when p = q .

2.3 Nonuniformly elliptic Schauder and more nondifferentiable functionals

Theorem 2 Let u ∈ W
1,1
loc (�) be a minimizer of the functional Sx in (1.8), under

assumptions (2.4); in particular, c(·) ∈ C0,α(�). If

q

p
≤ 1 + α2

5n2
, (2.11)

then Du is locally Hölder continuous in �. Moreover

‖Du‖L∞(Bt ) ≤ c

(r − t)χ1
[Sx(u,Br) + 1]χ2 (2.12)

holds whenever Bt � Br � � are concentric balls with r ≤ 1, where c ≡ c(data)

and χ1, χ2 ≡ χ1, χ2(datae).

Corollary 1 (Hopf-Schauder-Caccioppoli, reloaded - I) In the setting of Theorem 2,
assume also that p ≥ 2, μ > 0, and that ∂zzF (·) is continuous. Then u ∈ C

1,α
loc (�).

In the linear case F(Dw) ≡ |Dw|2, Corollary 1 is nothing but the content of classi-
cal (interior) Schauder estimates, where local C0,α-regularity of coefficients sharply
reflects in local C1,α-regularity of solutions. Assuming the non-degeneracy condi-
tion μ > 0 is necessary, as otherwise shown by counterexamples occurring in the
p-Laplacean setting [53, 57, 88]. In the uniformly elliptic case p = q = 2, Corollary
1 is a classical result of Giaquinta & Giusti [29, 30]. In the case p < 2 we can still
get results; for this see Remark 12 at the very end of this paper.

Theorem 3 Let u ∈ W
1,1
loc (�) be a minimizer of the functional S in (1.9), under as-

sumptions (2.4), with h(·) as in (2.6) and p > n. If

q

p
≤ 1 + 1

5

(
1 − n

p

)
α2

n2 , (2.13)

then Du ∈ L∞
loc(�,Rn). Moreover,

‖Du‖L∞(Bt )

≤ c

(r − t)χ1

[
S(u,Br) + ‖h(·, u)‖L1(Br )

+ ‖f ‖n/α,1/2;Br
+ 1
]χ2 (2.14)

holds with the same notation relative to (2.12). If f ∈ L
q

loc(�) for some q > n/α, then
Du is locally Hölder continuous in �.

Remark 3 In Theorem 3, assuming p > n ensures, via Sobolev embedding, some
degree of Hölder continuity of x �→ c(x,u(x)), and rebalances the otherwise mea-
surable interaction between coefficients and gradient terms. When p = q , this is not
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necessary since De Giorgi-Nash-Moser theory ensures that minimizers are a priori
Hölder continuous, also when x �→ c(x, ·) is measurable. This is in general false
when p �= q . The situation shares similarities with the uniformly elliptic vectorial
theory, where De Giorgi type results are not available, and indeed singularities occur
for minimizers no matter dependence on u-coefficients is smooth. In this respect, we
note that some counterexamples of irregular minimizers in the scalar, nonuniformly
elliptic case [24] resemble those occurring in the uniformly elliptic vectorial one [35].
By such a potential analogy, we would tend to believe that the assuming p > n is un-
avoidable. For the same reasons (2.13) naturally connects to (2.7) as discussed in
Remark 1.

Corollary 2 In the setting of Theorem 3, assume also that p ≥ 2, μ > 0, and that
∂zzF (·) is continuous; finally, assume that f ∈ L∞

loc(�). Then u ∈ C
1,α/2
loc (�).

In comparison to Corollary 1, Corollary 2 exhibits a loss in the Hölder exponent
of Du. This is typical when dealing with nondifferentiable functionals. It is not a
technical fact, as C1,α-regularity cannot be reached in general, as shown in [72].
In the uniformly elliptic case p = q = 2, Corollary 2 is another classical result of
Giaquinta & Giusti [29–31].

2.4 General functionals, relaxation and the Lavrentiev phenomenon

In order to deal with cases more general than (1.8), that is with integrals of the type

w �→Fx(w,�) :=
∫

�

F(x,Dw)dx , (2.15)

we need to recast a few basic facts concerning relaxed functionals and Lavren-
tiev phenomenon. Here, we assume that the integrand F : � × R

n → [0,∞) is
Carathéodory regular and such that

⎧⎪⎨
⎪⎩

z �→ F(x, z) satisfies (2.4) uniformly with respect to x ∈ �

|∂zF (x1, z) − ∂zF (x2, z)|
≤ L|x1 − x2|α([Hμ(z)](q−1)/2 + [Hμ(z)](p−1)/2)

(2.16)

for every x1, x2 ∈ � and z ∈ R
n .5 In this case, a natural obstruction to regularity of

minimizers is the possible occurrence of the Lavrentiev phenomenon. For instance, it
might happen that

inf
w∈u0+W

1,p
0 (B)

Fx(w,B) < inf
w∈u0+W

1,p
0 (B)∩W 1,q (B)

Fx(w,B) (2.17)

5∂zF (·) is continuous. This follows from (2.16)2 and the upper bound on ∂zzF (·) in (2.4)4 via (2.16)1. In
fact ∂zF (·) is uniformly continuous on � ×BM , for every M < ∞. In fact, there is no loss of generality
is assuming that F(·) is continuous. For this, it is sufficient to observe that we can assume F(x,0Rn ) =
0 (eventually passing to the new integrand (x, z) �→ F(x, z) − F(x,0Rn )). Then we can use (2.16) in
combination with Lemma 3.4.
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even when u0 is a Lipschitz regular function and B � � is a ball [24]. Examples of
Lavrentiev phenomenon related to our setting, were given by Zhikov [90–92]; see
also [24]. In the case energy gaps as (2.17) occur, one is led to consider the so-called
relaxed functional [7, 25, 26, 63–65, 76]6

Fx(w,U) := inf
{wk}⊂W 1,q (U)

{
lim inf

k
Fx(wk,U) : wk ⇀ w in W 1,p(U)

}
(2.18)

for every w ∈ W 1,1(U) and every open subset U ⊆ �. Accordingly, the Lavrentiev
gap functional is defined by

LFx(w,U) := Fx(w,U) −Fx(w,U) (2.19)

for every w ∈ W 1,1(U) such that Fx(w,U) < ∞; we set LFx(w,U) = 0 other-
wise. The functional LFx(·,U) provides a possible way to quantify phenomena
like (2.17). Note that by W 1,p-weak lower semicontinuity of Fx(·,U),7 we have
Fx(·,U) ≤ Fx(·,U) so that LFx(·,U) ≥ 0. It trivially follows that w ∈ W 1,p(U)

whenever Fx(w,U) is finite.

Definition 2 A minimizer u ∈ W 1,p(�) of Fx(·,�) is a function such that Fx(u,�)

is finite and Fx(u,�) ≤ Fx(w,�) holds whenever w ∈ u + W
1,1
0 (�).

Theorem 4 Let u ∈ W 1,p(�) be a minimizer of the functional Fx(·,�), where � is a
Lipschitz regular domain and Fx is defined in (2.15). Assume (2.11) and (2.16). Then
Du is locally Hölder continuous in �. Moreover

‖Du‖L∞(�0) ≤ c

[dist(�0, ∂�)]χ1

[
Fx(u,�) + 1

]χ2 (2.20)

holds whenever �0 � � is an open subset, where c, χ1, χ2 are as in Theorem 2.

If u ∈ W
1,1
loc (�) is a minimizer of the original functional Fx in (2.15) such that

LFx(u,B) ≡ 0 for every ball B � �, then

Fx(u,B) = Fx(u,B) ≤ Fx(w,B) ≤ Fx(w,B) (2.21)

holds whenever w ∈ u+W
1,1
0 (B). Therefore u is also a minimizer of w �→Fx(w,B),

for every ball B � �. Then from Theorem 4 it follows

Corollary 3 Let u ∈ W
1,1
loc (�) be a minimizer of the functional Fx in (2.15), under

assumptions (2.11) and (2.16). Assume that LFx(u,B) = 0 for every ball B . Then

6The idea of considering this type of lower semicontinuous envelope goes back to Lebesgue, Caccioppoli,
Serrin and De Giorgi. In the nonuniformly elliptic setting, it appears for the first time in the work of
Marcellini [63, 64].
7Lower semicontinuity, when z �→ F(·, z) is convex, follows by results of De Giorgi and Ioffe, see [34,
Theorem 4.5].
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Du is locally Hölder continuous in �. Moreover,

‖Du‖L∞(Bt ) ≤ c

(r − t)χ1
[Fx(u,Br) + 1]χ2 (2.22)

holds with the same notation relative to (2.12).

The Lavrentiev gap (2.19) vanishes in several common situations. For instance, if
there exists a convex function G : Rn → [0,∞) such that G(z) � F(x, z) � G(z)+1,
then LFx(·,B) ≡ 0 holds for every ball B � �. This is the case of Theorem 2, that in
fact follows from Corollary 3. See [24, 90, 92] for cases where the Lavrentiev gap is
zero.

2.5 More Lorentz conditions

In some cases, the Lorentz condition on data (2.6)2 can still be improved in

f ∈ L(n/α,l)(�), where l := min

{
p

2(p − α)
,

1

2 − α

}
. (2.23)

Theorem 5 Let u ∈ W
1,1
loc (�) be a minimizer of the functional G in (2.3), under as-

sumptions (2.4)-(2.6), and replace (2.6)2 by the weaker (2.23). If

q

p
≤ 1 + 1

5

(
1 − α + γ

p

)
min

{
α

n
,

2(p − α)

p(2 − α)

}
, (2.24)

then Du ∈ L∞
loc(�,Rn) and moreover

‖Du‖L∞(Bt )

≤ c

(r − t)χ1

[
G(u,Br) + ‖h(·, u)‖L1(Br )

+ ‖f ‖n/α,l;Br
+ 1
]χ2 (2.25)

holds whenever Bt � Br � � are concentric balls with r ≤ 1, where c ≡ c(data, γ )

and χ1, χ2 ≡ χ1, χ2(datae, γ ).

Just note that, when p ≥ 2nα/[2n−2α+α2], the upper bounds in (2.7) and (2.24)
coincide; in particular, this happens when p ≥ 2. As a consequence of Theorem 5
with α = 1, we get the following result, that completes the ones in [3], where the
L(n,1)-condition on data was proved to imply local Lipschitz regularity of minima
for n ≥ 3. Similar technical restrictions also occur elsewhere [16, 17].

Corollary 4 (Nonlinear Stein Theorem in two dimensions) Let u ∈ W
1,1
loc (�) be a

minimizer of the functional in (2.10) under assumptions (2.4) and (2.24), with n = 2,
1 < p ≤ 2, α = 1, γ = 0. If f ∈ L(2,1), then u is locally Lipschitz continuous.
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2.6 Equations

Here we deal with equations of the type (1.10). The vector field A : � ×R
n →R

n is
of class C1(Rn \ {0Rn}) with respect to gradient variable, and satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|A(x, z)| + [Hμ(z)]1/2|∂zA(x, z)|
≤ L[Hμ(z)](q−1)/2 + L[Hμ(z)](p−1)/2

ν[Hμ(z)](p−2)/2|ξ |2 ≤ ∂zA(x, z)ξ · ξ
|A(x1, z) − A(x2, z)|

≤ L|x1 − x2|α([Hμ(z)](q−1)/2 + [Hμ(z)](p−1)/2)

(2.26)

whenever x1, x2 ∈ � and z, ξ ∈ R
n, |z| �= 0 .8 In the nonuniformly elliptic setting,

passing from minimizers of functionals to weak solutions of general equations raises
additional issues. There are essentially two approaches available in the literature.
The former prescribes to get a priori estimates for more regular, i.e. W 1,q -solutions
[55, 66, 80]. The latter is to prove, simultaneously, the existence of regular solutions
for assigned boundary value problems, say for instance Dirichlet problems [3, 46,
66]. These alternatives are ultimately linked to growth conditions (2.26)1, that imply
that the distributional form of (1.10) can be tested only by W 1,q -regular functions.
Therefore an ambiguity arises concerning the space where to initially pick solutions
from, and on the very same concept of energy solution. See Remark 4 below. Such an
ambiguity does not exist when p = q . Of the two approaches mentioned above, we
follow the second, and consider the Dirichlet problem

{
−divA(x,Du) = 0 in �

u ≡ u0 on ∂� ,
u0 ∈ W

1,
p(q−1)
p−1 (�) , (2.27)

where � ⊂ R
n is a bounded and Lipschitz domain.

Theorem 6 Assume that the vector field A(·) satisfies (2.26). If

q

p
≤ 1 + p − 1

10p

α2

n2
, (2.28)

then there exists a solution u ∈ W 1,p(�) to the Dirichlet problem (2.27), such that
Du is locally Hölder continuous in �. Moreover, the estimate

‖Du‖L∞(�0) ≤ c

[dist(�0, ∂�)]χ1

(∫
�

(|Du0| + 1)
p(q−1)
p−1 dx + 1

)χ2

(2.29)

holds whenever �0 � � is an open subset, where c ≡ c(data) and χ1, χ2 ≡
χ1, χ2(datae).

8Assumptions (2.26) imply that A(·) is uniformly continuous on � ×BM , for every M < ∞.
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Corollary 5 (Hopf-Schauder-Caccioppoli, reloaded - II) In the setting of Theorem 6,
assume also that p ≥ 2, μ > 0, and that ∂zA(·) is continuous on � × R

n. Then
u ∈ C

1,α
loc (�).

When p = q = 2, Corollary 1 is classical in the uniformly elliptic theory [12, 29,
30, 43, 74].

Remark 4 Already in the case of the classical p-Laplace equation div (|Du|p−2Du) =
0, starting from distributional solutions that only belong to W 1,s for s < p, prevents
higher regularity, and even W 1,p-regularity. This is a recent, striking achievement of
Colombo & Tione [18].

2.7 Recent, related cases available in the literature

Schauder type estimates in the nonuniformly elliptic case attracted a lot of attention
over decades, and especially in the last years. For functionals with nonstandard poly-
nomial growth of the type in (2.15), and connected equations, recent related results
hold under certain special structure assumptions [1, 2, 9–11, 38, 40, 41]. These in-
clude for instance the variable exponent case F(x,Dw) ≡ |Dw|p(x), p(x) > 1 as in
[1], and the double phase case F(x,Dw) ≡ |Dw|p +a(x)|Dw|q , a(x) ≥ 0, as in [2].
The common point of all these papers is that the frozen integrand z �→ F(x0, z) is
still uniformly elliptic, for every fixed point x0 ∈ �. This means that (1.2) is satis-
fied upon taking F(z) ≡ F(x0, z). On the contrary, in this paper we deal with real,
pointwise nonuniform ellipticity, allowing that

sup
|z|≥1

highest eigenvalue of ∂zzF (x0, z)

lowest eigenvalue of ∂zzF (x0, z)
= ∞ .

In (1.8), note that z �→ c(x0)F (z) is still nonuniformly elliptic in the sense of (1.6) if
so is F(·). We mention that, when applying the techniques of this paper in the known
settings mentioned above, we come up with the same sharp results available in the
literature [22]. Another approach was described in [23], where the authors considered
integrands depending on |z| and with Sobolev-regular coefficients. This means that
x �→ F(x, ·) belongs to W 1,d , with d ≡ d(p,q) > n. In this case Hölder continuity
of coefficients follows by Sobolev-Morrey embedding, but, again, differentiability of
coefficients must be assumed; see also [21].

3 Preliminary facts and notation

3.1 Further notation

We denote N0 := N ∪ {0}, and by Br(x0) := {x ∈ R
n : |x − x0| < r} the open ball

with center x0 and radius r > 0; we omit denoting the center when it is not necessary,
i.e., B ≡ Br ≡ Br(x0); this especially happens when various balls in the same context
will share the same center. We also denote

Br ≡ Br(0) := {x ∈R
n : |x| < r} (3.1)
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and often abbreviate 0 ≡ 0Rn . Finally, with B being a given ball with radius r and γ

being a positive number, we denote by γB the concentric ball with radius γ r and by
B/γ ≡ (1/γ )B . Given a number s ≥ 1, its Sobolev conjugate exponent is denoted by

s∗ :=
{

ns
n−s

if s < n

∞ if s ≥ n .
(3.2)

In denoting several function spaces like Ls(�), W 1,s(�), we shall denote the vec-
tor valued version by Ls(�,Rk), W 1,p(�,Rk) in the case the maps considered
take values in R

k , k ∈ N. When clear from the contest, we shall also abbreviate
Ls(�,Rk),W 1,s(�,Rk) ≡ Ls(�),W 1,s(�) and so on. With U ⊂ R

n being a mea-
surable subset with bounded positive measure 0 < |U | < ∞, and with g : U → R

k ,
k ≥ 1, being an integrable map, we denote

(g)U ≡
∫
−
U

g(x)dx := 1

|U |
∫
U

g(x)dx ,

and also ‖g‖γ

Lγ (U)
= ∫U |g|γ dx, for every γ ≥ 0. Given a function h : A → R we

define its (essential) oscillation on A

osc(h,A) := ess sup
A

h − ess inf
A

h . (3.3)

With β ∈ (0,1] and A ⊂ R
n, we use the standard notation

[w]0,β;A := sup
x1,x2∈A,x1 �=x2

|w(x1) − w(x2)|
|x1 − x2|β .

Given a ball B ⊂ R
n, we denote by Qinn ≡ Qinn(B) and Qout ≡ Qout(B) the inner

and outer (open) hypercubes of B . These are defined as the largest and the smallest
hypercubes, with sides parallel to the coordinate axes and concentric to B , that are
contained in and containing B , respectively:

Qinn(B) ⊂ B ⊂ Qout(B) . (3.4)

If B has radius r , then the sidelength of Qinn(B) is 2r/
√

n while that of Qout(B) is
2r .

3.2 Fractional Sobolev spaces

Classical fractional Sobolev-Slobodeckij spaces are defined via Gagliardo norms as
follows:

Definition 3 Let β ∈ (0,1), s ∈ [1,∞), k ∈ N, n ≥ 2, and let � ⊂ R
n be an open

subset. The space Wβ,s(�,Rk) consists of maps w : � → R
k such that

‖w‖Wβ,s(�) := ‖w‖Ls(�) +
(∫

�

∫
�

|w(x) − w(y)|s
|x − y|n+βs

dx dy

)1/s
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=: ‖w‖Ls(�) + [w]β,s;� < ∞ . (3.5)

The local variant W
β,s

loc (�,Rk) is defined by requiring that w ∈ W
β,s

loc (�,Rk) iff w ∈
Wβ,s(�̃,Rk) for every open subset �̃ � �.

Given w : � →R
k , k ≥ 1, an open subset � ⊂ R

n, and a vector h ∈ R
n, we denote

by τh : L1(�,Rk) → L1(�|h|,Rk) the standard finite difference operator

τhw(x) := w(x + h) − w(x) , (3.6)

for x ∈ �|h|, where �|h| := {x ∈ � : dist(x, ∂�) > |h|}. We shall several times use
the following elementary properties (with Br(x0) ⊂ R

n being a fixed ball):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖τhw‖Ls(Br (x0)) ≤ c(s)‖w‖Ls(Br+|h|(x0))

∀w ∈ Ls(Br+|h|(x0)), s ≥ 1

‖τhw‖Ls(Br (x0)) ≤ c(n, s)|h|‖Dw‖Ls(Br+|h|(x0))

∀w ∈ W 1,s(Br+|h|(x0)), s ≥ 1 .

(3.7)

Finite difference operators can be used to detect maps from fractional Sobolev spaces,
as described in the following lemma, that in fact quantifies, locally, the imbedding
properties of Nikolski spaces into Sobolev-Slobodeckij spaces Wβ,s (see [20]):

Lemma 3.1 Let B� � Br ⊂ R
n be concentric balls with r ≤ 1, w ∈ Ls(Br,R

k), s ≥ 1
and assume that, for α∗ ∈ (0,1], H ≥ 1, there holds

‖τhw‖Ls(B�) ≤ H|h|α∗ , (3.8)

for every h ∈ R
n with 0 < |h| ≤ (r − �)/K , where K ≥ 1. Then, for c ≡ c(n, s), it

holds that

‖w‖Wβ,s(B�)

≤ c

(α∗ − β)1/s

(
r − �

K

)α∗−β

H+ c

(
K

r − �

)n/s+β

‖w‖Ls(B�) (3.9)

for every β < α∗.

In the case the domain considered is the ball B1/2 (which is the only one needed
here) the fractional Sobolev embedding reads as

‖w‖
L

ns
n−sβ (B1/2)

≤ c‖w‖Wβ,s(B1/2)
(3.10)

and holds provided s ≥ 1, β ∈ (0,1) and sβ < n, where c ≡ c(n, s,β).
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3.3 Additional preliminary material

We shall use the vector field Vμ : Rn → R
n defined by

Vμ(z) := (|z|2 + μ2)(p−2)/4z (3.11)

where μ ∈ [0,2] and p > 1 is defined in Sect. 2.1. Whenever z1, z2 ∈R
n, there holds

that

|Vμ(z1) − Vμ(z2)|2 ≈p (|z1|2 + |z2|2 + μ2)(p−2)/2|z1 − z2|2, (3.12)

see [37, Lemma 2.1]. As a consequence we find

|z1 − z2|p �p |Vμ(z1) − Vμ(z2)|2 + 1p|Vμ(z1) − Vμ(z2)|p(|z1| + μ)p(2−p)/2 ,

(3.13)
where

1p :=
{

0 if p ≥ 2

1 if p < 2 .
(3.14)

When p ≥ 2, (3.13) follows directly from (3.12). Instead, for 1 < p < 2 inequality
in (3.13) follows mimicking the proof of [54, Lemma 2], which is given in the case
μ = 0. We also record the following inequality, which is a direct consequence of the
Mean Value Theorem:

|[Hμ(z2)]p/2 − [Hμ(z1)]p/2| �p (|z1|2 + |z2|2 + μ2)(p−1)/2|z2 − z1| . (3.15)

See (2.2) for the definition of Hμ(·). Combining this last inequality with (3.12) yields

|[Hμ(z2)]p/2 − [Hμ(z1)]p/2| �p (|z1|2 + |z2|2 + μ2)p/4|Vμ(z1) − Vμ(z2)| . (3.16)

The last algebraic result of elementary nature we include is the following:

∫ 1

0
[Hμ(z1 + t (z2 − z1))]s/2 dt ≈s (|z1|2 + |z2|2 + μ2)s/2 (3.17)

that holds whenever s > −1, μ ∈ [0,2] and z1, z2 ∈ R
n; see for instance [37]. The

above inequalities are useful to prove a few convexity and monotonicity properties
concerning functionals and vector fields. These are scattered in the literature, but
for the sake of the reader we briefly recall the proofs of some of them. Let us first
consider a C1-regular vector field A0 : Rn → R

n satisfying (2.26) (recast for no x-
dependence). We have that

1

c
|Vμ(z2) − Vμ(z1)|2 ≤ (A0(z2) − A0(z1)) · (z2 − z1) (3.18)

holds whenever z1, z2 ∈R
n, where c ≡ c(n,p, ν) ≥ 1. This is a standard monotonic-

ity property that follows by (2.26)2 via the use of (3.12) and (3.17); see for instance
[37] or [22, Remark 2]. Next we consider a C2-regular integrand F0 : Rn �→ R sat-
isfying (2.4) with μ ∈ (0,2] (this is exactly the setting we are interested in, but, in
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fact, using mollifiers, everything works under the full assumptions (2.4)). The strict
convexity inequality

1

c
|Vμ(z2) − Vμ(z1)|2 ≤ F0(z2) − F0(z1) − ∂zF0(z1) · (z2 − z1) (3.19)

holds whenever z1, z2 ∈ R
n, for c ≡ c(n,p, ν) ≥ 1. For completeness we give a rapid

proof of (3.19). Note that the vector field ∂zF0(·) is of the type A0(·) considered a few
lines above and therefore satisfies (3.18). Using this last fact, with zt := z1 + t (z2 −
z1), 0 ≤ t ≤ 1, we have

F0(z2) − F0(z1) − ∂zF0(z1) · (z2 − z1)

=
∫ 1

0
[∂zF0(zt ) − ∂zF0(z1)]dt · (z2 − z1)

≥ 1

c

∫ 1

1/2
t (|zt |2 + |z1|2 + μ2)

p−2
2 dt |z2 − z1|2 .

Since |z1| + |zt | ≤ 2|z1| + 2|z2|, in the case 1 < p ≤ 2 inequality (3.19) immediately
follows from the above display and (3.12). In the case p > 2 just observe that triangle
inequality implies t |z2| ≤ (1 − t)|z1| + |zt | so that |z1| + |zt | ≈ |z1| + |z2| for 1/2 ≤
t ≤ 1 and (3.19) follows again using (3.12).

Next, two classical iteration lemmas from Campanato, and Giaquinta & Giusti.

Lemma 3.2 [28, Lemma 1.1] Let h : [t, s] → R be a non-negative and bounded func-
tion, and let a, b, γ be non-negative numbers. Assume that the inequality

h(τ1) ≤ h(τ2)

2
+ a

(τ2 − τ1)γ
+ b

holds whenever t ≤ τ1 < τ2 ≤ s. Then

h(t) ≤ c(γ )

[
a

(s − t)γ
+ b

]

holds too.

Lemma 3.3 [29, Lemma 2.2] Let h : [0, r0] → R be a non-negative and non-
decreasing function such that the inequality

h(�) ≤ a

[(�

r

)β∗ + ε

]
h(r) + brβ

holds whenever 0 ≤ � ≤ r ≤ r0, where a, b are positive constants, and 0 < β < β∗.
There exists ε0 ≡ ε0(a,β∗, β) such that, if ε ≤ ε0, then

h(�) ≤ c
(�

r

)β [h(r) + brβ ]
holds whenever 0 ≤ � ≤ r ≤ r0, where c ≡ c(a,β∗, β).

Finally, a convexity lemma of Marcellini, that follows as in [65, Lemma 2.1].
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Lemma 3.4 Let F : � × R × R
n → [0,∞) be a Carathéory function such that z �→

F(x, y, z) is convex for every (x, y) ∈ � × R and that F(x, y, z) ≤ c∗[Hμ(z)]q/2 +
c∗[Hμ(z)]p/2, for some c∗ ≥ 1. Then

|∂zF(x, y, z)| ≤ c[Hμ(z)](q−1)/2 + c[Hμ(z)](p−1)/2

holds for every (x, y, z) ∈ � ×R×R
n, where c ≡ c(n,p, q, c∗).

4 Nonlinear potentials, Lorentz spaces, and iterations

Let us fix t, δ > 0, m,θ ≥ 0, f ∈ L1(Br(x0)) such that |f |m ∈ L1(Br(x0)) with
Br(x0) ⊂ R

n. The following quantity will play a crucial role in this paper:

Pm,θ
t,δ (f ;x0, r) :=

∫ r

0
�δ

(∫
−
B�(x0)

|f |m dx

)θ/t
d�

�
. (4.1)

This is a nonlinear potential of Havin-Maz’ya-Wolff type [68], used for instance in
[3, 19, 21, 54]. Pm,θ

t,δ (f, ·) can be seen as a nonlinear generalization of the classical
Riesz potential I1(f, ·), that in its so-called truncated form is in turn defined as

∫
Br/2(x0)

|f (x)|
|x − x0|n−1

dx � I1(f ;x0, r)

:=
∫ r

0

1

�n−1

∫
B�(x0)

|f |dx
d�

�
≈ P1,1

1,1(f ;x0, r) .

The variety of parameters considered in (4.1) makes Pm,θ
t,δ useful in settings where I1

cannot be directly employed, as we shall see via its use in this paper. We refer to [3,
Sect. 2] for more details and references. Note that

Pm,θ
t,δ (f ;x0, r) = rδ/δ , when m = 0 or when |f | ≡ 1 or when θ = 0 . (4.2)

The usual definition of Lorentz space L(s, γ )(�), with s, γ ∈ (0,∞), prescribes that
the quantity

‖f ‖s,γ ;� =
(∫ ∞

0

(
f ∗(�)�1/s

)γ d�

�

)1/γ

=
(

s

∫ ∞

0
(λs |{x ∈ � : |f (x)| > λ}|)γ /s dλ

λ

)1/γ

is finite in order to say that the function f : � → R belongs to L(s, γ )(�), see [36,
1.4.6, 1.4.9]; other basic references in this setting are [70, 83]. Here f ∗ : [0,∞] → R

denotes the non-increasing rearrangement of f , i.e.,

f ∗(τ ) := inf {v > 0 : |{x ∈ � : |f (x)| > v}| ≤ τ } .
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Note that a simple change of variables yields that

‖|f |m‖s,γ ;� = ‖f ‖m
ms,mγ ;� (4.3)

holds for every choice of s, γ,m > 0; see [36, 1.4.7]. In Lorentz spaces, the latter
index tunes the former in the sense that, when � ⊂ R

n has finite measure, it then
holds that
⎧⎪⎨
⎪⎩

L(s1, γ1)(�) ⊂ L(s2, γ2)(�) for all 0 < s2 < s1 < ∞, γ1, γ2 ∈ (0,∞]
L(s, γ1)(�) ⊂ L(s, γ2)(�) for all s ∈ (0,∞), 0 < γ1 ≤ γ2 ≤ ∞
L(s, s)(�) = Ls(�) for all s > 0,

(4.4)

with continuous inclusions. When s > 1, it is possible to define another quantity,
which is equivalent to ‖f ‖s,γ ;�, by considering the maximal operator of f ∗, that is

f ∗∗(�) := 1

�

∫ �

0
f ∗(τ )dτ for � > 0 . (4.5)

It turns out that

‖f ‖γ

s,γ ;� ≤
∫ ∞

0

(
f ∗∗(�)�1/s

)γ d�

�
≤ c‖f ‖γ

s,γ ;� (4.6)

holds provided s > 1 and γ > 0, where c ≡ c(γ, s); see [70, (6.8)]. Nonlinear poten-
tials and Lorentz spaces naturally connect, as for instance shown in the next lemma;
see [3, 21, 54] for similar results.

Lemma 4.1 Let n ≥ 2, t, δ, θ > 0 be numbers such that

nθ

tδ
> 1 . (4.7)

Let Bτ1 � Bτ1+r0 ⊂ R
n be two concentric balls with τ1, r0 ≤ 1, and let f ∈

L1(Bτ1+r0) be such that |f |m ∈ L1(Bτ1+r0), where m > 0. Then

‖Pm,θ
t,δ (f ; ·, r0)‖L∞(Bτ1 ) ≤ c̃‖f ‖

mθ
t

mnθ
tδ

, mθ
t

;Bτ1+r0

≤ c(ε)c̃‖f ‖
mθ
t

L
(1+ε)mnθ

tδ (Bτ1+r0 )

(4.8)

holds for every ε > 0, with c̃ ≡ c̃(n, t, δ, θ).

Proof Basic properties of rearrangements give

�tδ/θ

∫
−
B�(x0)

|f |m dx ≤ �tδ/θ

|B1|�n

∫ |B1|�n

0
(|f |m)∗(τ )dτ

(4.5)≤ �tδ/θ (|f |m)∗∗(|B1|�n) (4.9)
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whenever x0 ∈ Bτ1 and � ≤ r0. We further estimate

Pm,θ
t,δ (f ;x0, r0)

(4.9)≤
∫ r0

0
[�tδ/θ (|f |m)∗∗(|B1|�n)]θ/t d�

�

≤ c

∫ ∞

0
[� tδ

nθ (|f |m)∗∗(�)]θ/t d�

�

(4.6)≤ c‖|f |m‖θ/t
nθ
tδ

, θ
t
;Bτ1+r0 (x0)

(4.3)= c(n, t, δ, θ)‖f ‖
mθ
t

mnθ
tδ

, mθ
t

;Bτ1+r0 (x0)

so that the first inequality in (4.8) follows (recall (4.4) and see [83] for the second).
�

Next lemma extends [3, Lemma 3.1]. It features a pointwise version of classical
De Giorgi’s iteration that finds its origins in the work in Nonlinear Potential Theory
of Kilpeläinen & Malý [50]. We report the full proof as the crucial point here is the
explicit dependence on the constants.

Lemma 4.2 Let Br0(x0) ⊂ R
n be a ball, n ≥ 2, and consider functions fi , |fi |mi ∈

L1(B2r0(x0)), and constants χ > 1, t ≥ 1, δi,mi, θi > 0 and c∗,M0 > 0, κ0,Mi ≥ 0,
for i ∈ {1, . . . , h}, h ∈N. Assume that v ∈ Lt(Br0(x0)) is such that for all κ ≥ κ0, and
for every ball B�(x0) ⊂ Br0(x0), the inequality

(∫
−
B�/2(x0)

(v − κ)
tχ
+ dx

)1/χ

≤ c∗Mt
0

∫
−
B�(x0)

(v − κ)t+ dx

+ c∗
h∑

i=1

Mt
i �

tδi

(∫
−
B�(x0)

|fi |mi dx

)θi

(4.10)

holds, where we denote, as usual, (v − κ)+ := max{v − κ,0}. If x0 is a Lebesgue
point of v in the sense that

lim
�→0

(v)B�(x0) = v(x0) , (4.11)

then

v(x0) ≤ κ0 + cM
χ

χ−1
0

(∫
−
Br0 (x0)

(v − κ0)
t+ dx

)1/t

+ cM
1

χ−1
0

h∑
i=1

MiP
mi,θi

t,δi
(fi;x0,2r0) (4.12)

holds with c ≡ c(n,χ, δi, θi, c∗).
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Proof We can assume that the right-hand side in (4.12) is finite, otherwise, there is
nothing to prove. In the following all the balls will be centred at x0. We define radii
{�j }j∈N0 , where �j := r0/2j integer j ≥ 0 (so that �0 = r0), and, for every i ≤ h,
numbers {Wi,j }j∈N0 , via

Wi,j := �
δi

j

(∫
−
B�j

|fi |mi dx

)θi/t

. (4.13)

The next two sequences of numbers {κj }j∈N0 and {Vj }j∈N0 are defined inductively,
with κ0 given by the statement. With κj having been defined, we set Vj and then κj+1
as follows:

Vj :=
(∫

−
B�j

(v − κj )
t+ dx

)1/t

, κj+1 := κj + Vj/τ, (4.14)

where τ > 0 is going to determined in due course of the proof as a function of n, c∗,
χ , t ; see (4.19) below. It follows that {κj }j is non-decreasing, and Vj+1 ≤ 2n/tVj ;
therefore

κj+2 − κj+1 ≤ 2n/t (κj+1 − κj ) (4.15)

holds for every j ≥ 0. Using (4.10) and the definitions in (4.13), yields, for every
j ≥ 0

(∫
−
B�j+1

(v − κj )
tχ
+ dx

)1/χ

≤ c∗Mt
0V

t
j + c∗

h∑
i=1

Mt
i W

t
i,j .

By κj+1 ≥ κj for every j and (4.14), we estimate

(κj+1 − κj )
(χ−1)/χV

1/χ

j+1

= (κj+1 − κj )
(χ−1)/χ

(∫
−
B�j+1

(v − κj+1)
t+ dx

) 1
tχ

≤
(∫

−
B�j+1

(v − κj )
tχ−t
+ (v − κj+1)

t+ dx

) 1
tχ

≤
(∫

−
B�j+1

(v − κj )
tχ
+ dx

) 1
tχ

.

Recalling the definition in (4.13), the last two displays combine in

(κj+1 − κj )
(χ−1)/χV

1/χ

j+1 ≤ c
1/t∗ M0Vj + c

1/t∗
h∑

i=1

MiWi,j . (4.16)
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Now, in the case it is

κj+2 − κj+1 ≥ 1

2
(κj+1 − κj ) (4.17)

we deduce

2−1/χτ 1/χ (κj+1 − κj )
(4.17)≤ τ 1/χ (κj+1 − κj )

(χ−1)/χ (κj+2 − κj+1)
1/χ

(4.14)= (κj+1 − κj )
(χ−1)/χV

1/χ

j+1

(4.16)≤ c
1/t∗ M0Vj + c

1/t∗
h∑

i=1

MiWi,j

(4.14)= c
1/t∗ M0τ(κj+1 − κj ) + c

1/t∗
h∑

i=1

MiWi,j . (4.18)

We now take

τ = 2− 1+χ
χ−1 M

− χ
χ−1

0 c
− χ

t(χ−1)∗ =⇒ 21/χc
1/t∗ M0τ

χ−1
χ = 1

2
(4.19)

so that, reabsorbing the first term in the right-hand side in the left-hand side of (4.18),
and recalling (4.15), we get

κj+2 − κj+1 ≤ c∗M
1

χ−1
0

h∑
i=1

MiWi,j , c∗ := 2
n
t
+ χ+1

χ−1 c

χ
t(χ−1)∗ .

As this last inequality holds under condition (4.17), we can work in any case with

κj+2 − κj+1 ≤ κj+1 − κj

2
+ c∗M

1
χ−1

0

h∑
i=1

MiWi,j

for all integers j ≥ 0. Summing up such inequalities for 0 ≤ j ≤ N , re-absorbing
terms, and then letting N → ∞, gives

∞∑
j=0

(κj+2 − κj+1) ≤ κ1 − κ0 + 2c∗M
1

χ−1
0

h∑
i=1

∞∑
j=0

MiWi,j ,

so that, recalling also the definitions of V0 and τ , in (4.14) and (4.19), respectively,

lim
j→∞κj =

∞∑
j=0

(κj+2 − κj+1) + κ1

≤ κ0 + 2(κ1 − κ0) + 2c∗M
1

χ−1
0

h∑
i=1

∞∑
j=0

MiWi,j
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≤ κ0 + 2V0

τ
+ 2c∗M

1
χ−1

0

h∑
i=1

∞∑
j=0

MiWi,j

≤ κ0 + 2c∗M
χ

χ−1
0 V0 + 2c∗M

1
χ−1

0

h∑
i=1

∞∑
j=0

MiWi,j . (4.20)

Setting �−1 := 2r0, we have, for every i ≤ h,

∞∑
j=0

Wi,j =
∞∑

j=0

�
δi

j

(∫
−
B�j

|fi |mi dx

)θi/t

= δi

2δi − 1

∞∑
j=0

∫ �j−1

�j

�δi
d�

�

(∫
−
B�j

|fi |mi dx

)θi/t

≤ 2nθi/t δi

2δi − 1

∞∑
j=0

∫ �j−1

�j

�δi

(∫
−
B�(x0)

|fi |mi dx

)θi/t
d�

�

≤ 2nθi/t δi

2δi − 1

∫ 2r0

0
�δi

(∫
−
B�(x0)

|fi |mi dx

)θi/t
d�

�

= 2nθi/t δi

2δi − 1
Pmi,θi

t,δi
(fi;x0,2r0) . (4.21)

From the (4.20)-(4.21) we gain

lim
j→∞κj ≤ κ0 + cM

χ
χ−1

0 V0 + cM
1

χ−1
0

h∑
i=1

MiP
mi,θi

t,δi
(fi;x0,2r0) (4.22)

with c ≡ c(n,χ, δi, θi, c∗). In particular, {κj }j converges to a finite limit and therefore
(4.14) implies

lim
j→∞Vj = 0 . (4.23)

Using (4.11) now we have

v(x0) = lim
j→∞(v)B�j

≤ lim sup
j→∞

∫
−
B�j

(v − κj )+ dx + lim sup
j→∞

κj

≤ lim sup
j→∞

(∫
−
B�j

(v − κj )
t+ dx

)1/t

+ lim
j→∞κj

= lim
j→∞Vj + lim

j→∞κj
(4.23)= lim

j→∞κj

and (4.12) follows using (4.22). �
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5 Hybrid fractional Caccioppoli inequalities

In this section we provide various Caccioppoli type inequalities for minima of vari-
ational integrals and solutions to nonlinear equations. These are basic tools in order
to prove Lipschitz estimates. Although the underlying principle is common to all
cases, the specific shape of these inequalities varies according to the setting consid-
ered. The basic prototype is provided in Propositions 5.1-5.2. These contain fractional
Caccioppoli type estimates of hybrid type. The word hybrid accounts this time for the
fact that on the right-hand sides of (5.10) and (5.11), there still appears the L∞-norm
of Du, (implicit in the presence of M). Inequalities (5.10) and (5.11) will be proved
in the form of a priori estimates for minima of more regular, uniformly elliptic inte-
grals with standard polynomial growth. They will be then incorporated in a suitable
approximation scheme in order to cover the case of nonuniformly elliptic integrals.
Propositions 5.1-5.2 refer to functionals of the type in (2.3). Later on, in Propositions
5.3-5.5, we shall present additional Caccioppoli inequalities, valid also for function-
als of the type in (1.9) and (2.15), and for general elliptic equations of the type in
(1.10). Although the basic scheme of proofs is the same, the estimation of the various
terms must be different in each case, as every particular type of structure considered
needs a specific treatment, eventually leading to different bounds on q/p. In the rest
of Sect. 5, Br � � will always denote a ball such that r ≤ 1. Moreover, when dealing
with minimizers, we shall always assume that p and q satisfy at least the bound

q

p
< 1 + 2

n
. (5.1)

Accordingly, we consider the number

s := 2q

(n + 2)p − nq
≥ 1 , (5.2)

unless n = 2, q > p, when s is any larger quantity. This is in fact well-defined by
(5.1). Note that s= 1 if and only if p = q .

5.1 Model Caccioppoli estimates

In this section we consider the functional G(·,Br) in (2.3). The integrand F : Rn → R

is assumed to satisfy stronger conditions that those considered in (2.4), namely

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(·) ∈ C2(Rn), 0 < μ ≤ 2 ,

ν0[Hμ(z)]q/2 + ν̃[Hμ(z)]p/2

≤ F(z) ≤ L̃[Hμ(z)]q/2 + L̃[Hμ(z)]p/2

ν0[Hμ(z)](q−2)/2|ξ |2 + ν̃[Hμ(z)](p−2)/2|ξ |2
≤ ∂zzF (z)ξ · ξ

|∂zzF (z)| ≤ L̃[Hμ(z)](q−2)/2 + L̃[Hμ(z)](p−2)/2

(5.3)
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for all z, ξ ∈ R
n, where ν0 > 0 and the numbers 0 < ν̃ ≤ L̃ are as in Sect. 2.1. The

function g : Br ×R×R
n �→ R satisfies the following reinforcement of (2.5):

{
g(·) satisfies (2.5) with μ as in (5.3)1 and L replaced by L̃ in (5.3)

z �→ g(x, y, z) ∈ C2(Rn) for every (x, y) ∈ � ×R.
(5.4)

We shall denote by cg a generic constant, depending on parameters that will be
specified, but such that cg = 0 when g is identically zero. Finally, the function
h : Br ×R �→R is such that

{
|h(x, y1) − h(x, y2)| ≤ f (x)|y1 − y2|α, α ∈ (0,1]
f (x) ≤ L0, |h(x, y)| ≤ L0(|y| + 1)

(5.5)

hold for all x ∈ Br , y, y1, y2 ∈ R, where L0 ≥ 1 is a fixed constant. Denoting
F̃ (x, y, z) := F(z) + g(x, y, z), using also that μ > 0, this new integrand is seen
to satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
c∗ [H1(z)]q/2 ≤ F̃ (x, y, z) ≤ c∗[H1(z)]q/2

1
c∗ [H1(z)](q−2)/2|ξ |2 ≤ ∂zzF̃ (x, y, z)ξ · ξ
|∂zzF̃ (x, y, z)| ≤ c∗[H1(z)](q−2)/2

|F̃ (x1, y1, z) − F̃ (x2, y2, z)|
≤ c∗ (|x1 − x2|α + |y1 − y2|α) [H1(z)]γ /2

(5.6)

with the same meaning of (5.3)-(5.5), but this time we have c∗ ≡ c∗(n, q,L,μ, ν0).
In (5.6) the constant c∗ is such that c∗ → ∞ when either μ → 0 or ν0 → 0. Therefore
we have that F̃ (·) is a regular and non-degenerate integrand with q-growth. It follows
that if u ∈ W 1,q (Br) is a minimizer of the functional G(·,Br) in (2.3) and (5.3)-(5.5)
are in force, then standard regularity arguments give

u ∈ C
1,α1
loc (Br) for some α1 ≡ α1(n, q, c∗, α,L0,μ) ∈ (0,1) . (5.7)

This is shortly detailed in Sect. 5.7. We shall also use a couple of parameters (β,χ)

such that

0 < β <
αm

2 + αm
and χ ≡ χ(β) := n

n − 2β
> 1 , (5.8)

where αm ≤ 1 is a positive number that will be specified later. By denoting

Eμ(z) := 1

p

[
(|z|2 + μ2)p/2 − μp

]
= 1

p

[
[Hμ(z)]p/2 − μp

]
, z ∈ R

n (5.9)

we now have

Proposition 5.1 (Hybrid Fractional Caccioppoli) Let u ∈ W 1,q(Br) be a minimizer
of the functional G(·,Br) in (2.3), under assumptions (5.1) and (5.3)-(5.5). Let
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B�(x0) � Br and let M ≥ 1 be a constant such that ‖Du‖L∞(B�(x0)) ≤ M . Then,
for every number κ ≥ 0

�2β−n[(Eμ(Du) − κ)+]2
β,2;B�/2(x0)

+
(∫

−
B�/2(x0)

(Eμ(Du) − κ)
2χ
+ dx

)1/χ

≤ cMs(q−p)

∫
−
B�(x0)

(Eμ(Du) − κ)2+ dx

+ cgM
sq+α+γ q/p�α + cMsq+α�α

∫
−
B�(x0)

f dx (5.10)

holds whenever (β,χ) are as in (5.8) with αm := α. The constants c, cg in (5.10)
depend on data, γ and β , but are otherwise independent of ν0 and L0; dependence
on γ only occurs when g(·) �≡ 0. The number s is defined in (5.2).

An alternative, and more flexible version of (5.10), is in the next

Proposition 5.2 Under the same assumptions of Proposition 5.1, for every number
κ ≥ 0

�2β−n[(Eμ(Du) − κ)+]2
β,2;B�/2(x0)

+
(∫

−
B�/2(x0)

(Eμ(Du) − κ)
2χ
+ dx

)1/χ

≤ cMs(q−p)

∫
−
B�(x0)

(Eμ(Du) − κ)2+ dx + cgM
sq+α+γ q/p�α

+ cMsq�
pα

p−α

(∫
−
B�(x0)

f
p

p−α dx

)θ(p)

+ c1pMsq+ α(2−p)
2−α �

2α
2−α

(∫
−
B�(x0)

f
p

p−α dx

)σ(p)

(5.11)

holds whenever p ∈ [p,p∗), where

θ(p) := p− α

p

p

p − α
≥ 1 and σ(p) := p− α

p

2

2 − α
, (5.12)

and whenever (β,χ) are as in (5.8), with this time

αm ≡ αm(p) := α min

{
1,

pa(p)

p − α
,

2a(p)

2 − α

}
and a(p) := n

p
− n

p
+ 1 . (5.13)

The constants c, cg, s are as in Proposition 5.1 and 1p is defined in (3.14).



Nonuniformly elliptic Schauder theory 1137

Remark 5 From the proof of Proposition 5.2 it follows that in the case g(·) ≡ 0, so
that cg = 0 in (5.11), the definition of αm in (5.13) can be changed into

αm = α min

{
pa(p)

p − α
,

2a(p)

2 − α

}
. (5.14)

We also note that in both the proofs of Proposition 5.1 and 5.2, when deriving quanti-
tative a priori estimates, we shall only use (5.5)1. Instead we use (5.5)2 only to derive
the qualitative information in (5.7) and to justify the computations. This is explained
in Sect. 5.7 below.

5.2 Preliminaries on equations

For the proof of Propositions 5.1-5.2, we need a few preliminary results concerning
non-degenerate elliptic equations of the type

−divA0(Dv) = 0 in B ⊂ R
n , (5.15)

where B is a ball. Here the vector field A0 : Rn �→R
n satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A0(·) is C1-regular , 0 < μ ≤ 2

|A0(z)| + [Hμ(z)]1/2|∂zA0(z)|
≤ L̃[Hμ(z)](q−1)/2 + L̃[Hμ(z)](p−1)/2

ν0[Hμ(z)](q−2)/2|ξ |2 + ν̃[Hμ(z)](p−2)/2|ξ |2
≤ ∂zA0(z)ξ · ξ,

(5.16)

whenever z, ξ ∈ R
n, where ν0 > 0 and the numbers 0 < ν̃ ≤ L̃ are as in Sect. 2.1. The

assumption μ > 0 implies that A0(·) is non-degenerate elliptic.

Lemma 5.1 Let v ∈ W 1,q (B) be a weak solution to (5.15) under assumptions (5.16),
then [Hμ(Dv)]p/2,Eμ(Dv) ∈ W

1,2
loc (B), and Dv is locally Hölder continuous in B .

Moreover, assume also that there exists M≥ 1 such that ‖Dv‖L∞(B) ≤ M.

• Then
∫

B/2
|D(Eμ(Dv) − κ)+|2 dx ≤ cM2(q−p)

|B|2/n

∫
B

(Eμ(Dv) − κ)2+ dx (5.17)

holds for every κ ≥ 0, where c ≡ c(n,p, q, ν,L) is independent of ν0.
• If, in addition, ∂A0(·) is symmetric, then

∫
B/2

|D(Eμ(Dv) − κ)+|2 dx ≤ cMq−p

|B|2/n

∫
B

(Eμ(Dv) − κ)2+ dx (5.18)

holds with c, κ as in (5.17).

Proof The standard regularity theory gives that Dv is locally Hölder continuous in
�, as well as the differentiability of Hμ(Dv), and therefore of Eμ(Dv). For the
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first result see for instance [62] and Lemma 6.3. As for the second, let us outline
the argument for completeness. Standard difference quotients techniques give that
Vμ(Du) ∈ W

1,2
loc (B,Rn); see for instance [34, Chap. 8], and recall that μ > 0 to adapt

from there (still observe that by approximation μ > 0 is not really needed at this
stage). By (3.12) we have

|τhDv|2 � (|Dv(· + h)|2 + |Dv|2 + μ2)(2−p)/2|τhVμ(Dv)|2

in {x ∈ B : dist(x, ∂B) > |h|}, so that μ > 0 and Dv ∈ L∞
loc(B,Rn) imply Dv ∈

W
1,2
loc (B,Rn) via difference quotients (note that, in fact, for this last result we can

allow μ = 0 when 1 < p ≤ 2). In turn, (3.15) implies

|τh[Hμ(Dv)]p/2|2 � (|Dv(· + h)|2 + |Dv|2 + 1)p−1|τhDv|2 ,

from which [Hμ(Dv)]p/2 ∈ W
1,2
loc (B) again follows via difference quotients method.

We go for the proof of (5.17)-(5.18) and we first consider (5.18). By (5.16) we are in
the setting of [3, Lemma 4.5]; in particular, by μ > 0, A0(·) satisfies [3, (4.26)] with
T̄ = 0 and

{
g2,ε(t) ≡ g2(t) ≡ L̃(t2 + μ2)(q−2)/2 + L̃(t2 + μ2)(p−2)/2

g1(t) ≡ ν̃(t2 + μ2)(p−2)/2 .
(5.19)

Note that, with respect to [3], we have that g2,ε(·) is actually independent of ε as
indicated in (5.19) (that in fact appears only in the context of [3], where a family of
vector fields is considered). Moreover, thanks to (5.16), we can in fact take T̄ = 0
(alternatively, take any T̄ ∈ (0,M) in [3] and then let T̄ → 0 in [3]). Again by (5.16),
v enjoys the regularity in (5.7) and we can use [3, (4.29)] with f ≡ 0, that gives, with
the notation of [3]
∫

B/2
|D(GT̄ (|Dv|) − k)+|2 dx ≤ c(n)

|B|2/n

g2(M)

g1(M)

∫
B

(GT̄ (|Dv|) − k)2+ dx . (5.20)

In this setting (recall T̄ = 0) it is

GT̄ (|z|) :=
∫ |z|

0
g1(s)s ds = ν̃

p

[
(|z|2 + μ2)p/2 − μp

]
= ν̃Eμ(|z|)

for z ∈ R
n. Recalling (5.19) and that M≥ 1, we estimate

g2(M)

g1(M)
≤ c(Mq−p + 1) ≤ cMq−p , (5.21)

with c ≡ c(n,p, q, ν̃, L̃), so that (5.18) follows from (5.20). For (5.17), we use [3,
(4.37)], that is

∫
B/2

|D(GT̄ (|Dv|) − k)+|2 dx ≤ c

|B|2/n

[
g2(M)

g1(M)

]2 ∫
B

(GT̄ (|Dv|) − k)2+ dx ,
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and (5.17) follows via (5.21). For the constant dependence, recall that ν̃, L̃ depend
on n, p, q , ν, L. �

Lemma 5.2 Let v ∈ u + W
1,q

0 (B) be a weak solution to (5.15) under assumptions
(5.16), with u ∈ W 1,q (B)∩L∞(B). Then osc(v,B) ≤ osc(u,B) and ‖u−v‖L∞(B) ≤
osc(u,B).

Proof This is a small variant of the classical maximum principle, see for instance
[62, Lemma 3.1], and we report the proof for the sake of completeness. By (5.16) it
follows that

(|z1|2 + |z2|2 + μ2)(p−2)/2|z1 − z2|2 � (A0(z2) − A0(z1)) · (z2 − z1) . (5.22)

This is in fact a consequence of (3.12) and (3.18). Note that, up to replacing A0(z)

by A0(z) − A0(0Rn), that does not change the validity of (5.22), we can assume
A0(0Rn) = 0Rn , so that (5.22) now gives that

(|z|2 + μ2)(p−2)/2|z|2 � A0(z) · z (5.23)

holds for every z ∈ R
n. Let now M , m be constants such that m ≤ u ≤ M a.e. in

B , and use ϕ := (v − M)+ ∈ W
1,q

0 (B) as test function in
∫
B

A0(Dv) · Dϕ dx = 0,

which is in fact valid whenever ϕ ∈ W
1,q

0 (B) by v ∈ W 1,q(B) and a standard
density argument. By (5.23) it follows that D(v − M)+ = 0 which implies, via
Poincaré inequality, that (v − M)+ = 0, that is, v ≤ M a.e. Similarly, testing with
ϕ := (v − m)− := max{m − v,0}, we get v ≥ m a.e. Alternatively, note that ṽ := −v

solves −div Ã0(Dṽ) = 0 with Ã0(z) := −A0(−z) and ṽ ≡ −u on ∂B , and apply the
above argument to ṽ with −m in place of M . This proves that osc(v,B) ≤ osc(u,B).
Moreover, this also implies that m − M ≤ u(x) − v(x) ≤ M − m a.e., that is,
‖u − v‖L∞(B) ≤ osc(u,B). The proof is complete. Notice that the lemma still works
assuming only |A0(z)| � |z|q−1 + 1 and (5.23) in place of (5.16). �

We proceed with a few a priori estimates that will play a central role in our anal-
ysis. These are suitable modifications of estimates that can be found in the literature
since [65, 66]. To get the full statements we need, we shall appeal to [3].

Lemma 5.3 Let v ∈ W 1,q (B) be a weak solution to (5.15), under assumptions (5.16).

• If q/p < 1 + 1/n, then

‖Dv‖L∞(B/2) ≤ c

(∫
−
B

(|Dv| + 1)p dx

) 1
(n+1)p−nq

(5.24)

holds unless n = 2, q > p, when it holds for any larger exponent, whenever B �
� ⊂ R

n is a ball, where c ≡ c(n,p, q, ν,L) is independent of ν0.
• If q/p < 1 + 2/n, that is (5.1) holds, and in addition ∂A0(·) is symmetric, then

‖Dv‖L∞(B/2) ≤ c

(∫
−
B

(|Dv| + 1)p dx

) 2
(n+2)p−nq

(5.25)

holds in place of (5.24), unless n = 2, q > p, when it holds for any larger exponent.
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Proof We start proving (5.24)-(5.25). The information concerning the local bounded-
ness of Dv can be found for instance in [3], but it is also a direct consequence of the
arguments developed to prove (5.24)-(5.25) in the following lines, when using arbi-
trary balls B̃ � B rather than B/2. So, we concentrate on the proof of (5.24)-(5.25).
First, note that we can reduce to the case B ≡ B1 by a standard scaling argument
(which is for instance detailed in Sect. 5.3.1). The proof of (5.24) can be obtained
following the estimates in [3, Lemma 7.2], where we must take f ≡ 0 and � ≡ B1,
and the choices are those in (5.19); as in [3], we first treat the case n > 2. Specifically,
using [3, (4.38)] with ϑ = 1, we arrive at

‖Dv‖p

L∞(Bτ1 )
≤ c

(τ2 − τ1)n/2

[
‖Dv‖

(q−p)n+p
2

L∞(Bτ2 )
+ 1

][
‖Dv‖p/2

Lp(B1)
+ 1
]

, (5.26)

which holds whenever 1/2 ≤ τ1 < τ2 ≤ 1. This is nothing but the estimate in the
second display at [3, Page 1026], where D is replaced by ‖Dv‖Lp(B1) + 1. Using
q/p < 1+1/n - implying [(q −p)n+p]/2 < p - allows to apply Young’s inequality
in (5.26) and

‖Dv‖L∞(Bτ1 ) ≤ 1

2
‖Dv‖L∞(Bτ2 ) + c

(τ2 − τ1)
n

(n+1)p−nq

[‖Dv‖Lp(B1) + 1
] p

(n+1)p−nq

from which (5.24) follows - modulo rescaling back to B - applying Lemma 3.2 with
the choice h(τ) ≡ ‖Du‖L∞(Bτ ), 1/2 ≤ τ ≤ 1. For the case n = 2, again from [3,
(4.38)] we find that (5.26) still holds replacing the exponent [(q − p)n + p]/2 =
q − p/2 with any larger number still smaller than p (no need when q = p), and the
conclusion follows as in the case n > 2. For (5.25) the argument is similar (and we
outline it when n > 2). We again go back to [3, Lemma 7.2] and apply [3, (4.38)]
with ϑ = 0, that this time gives the following analog of (5.26):

‖Dv‖p

L∞(Bτ1 )
≤ c

(τ2 − τ1)n/2

[
‖Dv‖

(q−p)n+2p
4

L∞(Bτ2 )
+ 1

][
‖Dv‖p/2

Lp(B1)
+ 1
]

.

Applying Young’s inequality as in (5.26), thanks to (5.1), we arrive at (5.25). The
case n = 2 can again be dealt with as for (5.24). �

5.3 Proof of Propositions 5.1-5.2

The proof goes in five different steps; in the first four, given in Sects. 5.3.1-5.3.4, we
complete the proof of (5.11). The last one, in Sect. 5.3.5, is instead devoted to the
proof of (5.10).

5.3.1 Blow-up

In order to prove Proposition 5.1, we can reduce to the case B�(x0) ≡ B1(0) ≡ B1
(recall the notation in (3.1)). Indeed, take u� ∈ W 1,q (B1) defined as

u�(x) := u(x0 + �x)

�
, x ∈ B1 . (5.27)
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It follows that

‖Du�‖L∞(B1) ≤ M (5.28)

and that u� is a minimizer of the functional (defined on W 1,q (B1))

w �→ G�(w,B1) :=
∫
B1

[F(Dw) + g�(x,w,Dw) + h�(x,w)]dx , (5.29)

where g�(x, y, z) := g(x0 + �x,�y, z) and h�(x, y) := h(x0 + �x,�y). By (5.4) we
have
⎧⎪⎨
⎪⎩

z �→ g�(x, y, z) is convex, non-negative and z �→ g�(x, y, z) ∈ C2(Rn)

g�(x, y, z) + Hμ(z)|∂zzg�(x, y, z)| ≤ L̃[Hμ(z)]p/2

|g�(x1, y1, z) − g�(x2, y2, z)| ≤ L̃�α (|x1 − x2|α + |y1 − y2|α) [H1(z)]γ /2

(5.30)

for all x, x1, x2 ∈ B1, y, y1, y2 ∈R, z ∈R
n. As for h�(·), by (5.5) we have that

|h�(x, y1) − h�(x, y2)| ≤ f�(x)|y1 − y2|α, f�(x) := �αf (x0 + �x) (5.31)

hold for all x ∈ B1, y1, y2 ∈R. As B�(x0) � Br , (5.7) implies u� ∈ C1,α1(B1). There-
fore we only need to prove that

[(Eμ(Du�) − κ)+]β,2;B1/2 + ‖(Eμ(Du�) − κ)+‖L2χ (B1/2)

≤ cMs(q−p)/2‖Eμ(Du�) − κ)+‖L2(B1)
+ cgM

(sq+α+γ q/p)/2�α/2

+ cM
sq
2 ‖f�‖

pθ(p)
2(p−α)

L
p

p−α (B1)

+ c1pM
sq
2 + α(2−p)

2(2−α) ‖f�‖
pσ(p)

2(p−α)

L
p

p−α (B1)

(5.32)

holds for c, cg as in Proposition 5.1, and then (5.11) follows scaling back (5.32) from
u� to u.

5.3.2 Estimates on balls

Consider a ball B ⊂ B1, centred at xc, and define the functional

w �→
∫

B

F0(Dw)dx, where F0(z) := F(z) + g�(xc, (u�)B, z) . (5.33)

As a consequence of (5.3),(5.30) and Lemma 3.4, and eventually choosing new ν̃ ≤ L̃

still as in Sect. 2.1, the integrand F0(·) satisfies itself conditions (5.3). Therefore
(3.19) applies to F0(·), with c ≡ c(n,p, ν̃) ≥ 1. From now on, and up to Sect. 6,
we shall often abbreviate Eμ(·) ≡ E(·), Vμ(·) ≡ V (·) and Hμ(·) ≡ H(·). To proceed
with the proof (5.32), we fix β0 ∈ (0,1), and h ∈R

n, such that

0 < |h| ≤ 1

28/β0
. (5.34)
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We take

xc ∈ B1/2+2|h|β0 (5.35)

and fix a ball centred at xc with radius |h|β0 , denoted by Bh := B|h|β0 (xc). By (5.34)

we have 8Bh � B1. We then define v ≡ vBh
∈ u� + W

1,q

0 (8Bh) as the solution to

v �→ min
w∈u�+W

1,q
0 (8Bh)

∫
8Bh

F0(Dw)dx (5.36)

where the integrand F0(·) has been fixed in (5.33), with B ≡ Bh, and verifies (5.6). It
follows that v solves the Euler-Lagrange equation

∫
8Bh

∂zF0(Dv) · Dϕ dx = 0 for every ϕ ∈ W
1,q

0 (8Bh). (5.37)

Note that v is in fact Hölder continuous (for some exponent) up to the boundary
∂(8Bh), see [34, Theorem 7.8], [50]. By (5.3) and (5.4), the vector field ∂zF0(·) ≡
A0(·) satisfies (5.16) for suitable constants 0 < ν̃ ≤ L̃ depending as described in
Sect. 2.1, and, needless to say, ∂zA0(·) ≡ ∂zzF0(·) is symmetric. Therefore equation
(5.37) is of the type considered in (5.15) and, via (5.1), Lemmas 5.1-5.3 apply. In
particular, Lemma 5.2 implies

{
osc(v,8Bh) ≤ osc(u�,8Bh)

‖u� − v‖L∞(8Bh) ≤ osc(u�,8Bh) .
(5.38)

As a consequence of (5.28) and (5.38), we find

{
|v − (v)8Bh

| ≤ 16M|h|β0

‖u� − v‖L∞(8Bh) ≤ 16M|h|β0 .
(5.39)

Next, applying Lemma 5.3, estimate (5.25) yields

‖Dv‖L∞(4Bh) ≤ c

(∫
−

8Bh

(|Dv| + 1)p dx

)s/q
. (5.40)

On the other hand, by minimality of v, (5.3)2 and (5.4), we have
∫
−

8Bh

|Dv|p dx ≤ c

∫
−

8Bh

F0(Dv)dx

≤ c

∫
−

8Bh

F0(Du�)dx
(5.28)≤ c(Mq + 1) ≤ cMq . (5.41)

Matching the content of the last two inequalities, yields

‖Dv‖L∞(4Bh) ≤ c̃Ms , c̃ ≡ c̃(n,p, q, ν,L) . (5.42)



Nonuniformly elliptic Schauder theory 1143

Finally, by (5.42) we apply Lemma 5.1 with M≡ c̃Ms as follows:

∫
Bh

|τh(E(Dv) − κ)+|2 dx
(3.7)2≤ c|h|2

∫
2Bh

|D(E(Dv) − κ)+|2 dx

(5.18)≤ c|h|2(1−β0)Ms(q−p)

∫
4Bh

(E(Dv) − κ)2+ dx , (5.43)

for c ≡ c(n,p, q, ν,L); recall that τh has been defined in (3.6). Note that in the first
line we have used (5.34), that ensures

Bh ≡ B|h|β0 (xc) ⊂ B|h|β0 +|h|(xc) ⊂ B2|h|β0 (xc) = 2Bh . (5.44)

Let us now quantify the L2-distance between V (Du�) and V (Dv). Recalling that u�

minimizes G�(·,B1) defined in (5.29), we have

1

c̃

∫
8Bh

|V (Du�) − V (Dv)|2 dx

(3.19)≤
∫

8Bh

[
F0(Du�) − F0(Dv) − ∂zF0(Dv) · (Du� − Dv)

]
dx

(5.37)=
∫

8Bh

[
F0(Du�) − F0(Dv)

]
dx

= G�(u�,8Bh) − G�(v,8Bh)

+
∫

8Bh

[g�(xc, (u�)8Bh
,Du�) − g�(x,u�,Du�)]dx

+
∫

8Bh

[g�(x, v,Dv) − g�(xc, (u�)8Bh
,Dv)]dx

+
∫

8Bh

[h�(x, v) − h�(x,u�)]dx

=:
≤0 by minimality of u�︷ ︸︸ ︷

G�(u�,8Bh) − G�(v,8Bh)+(I) + (II) + (III)

≤ (I) + (II) + (III) . (5.45)

We proceed estimating (I), using (5.30)3 as follows:

(I) ≤ cg�
α

∫
8Bh

(|x − xc|α + |u� − (u�)8Bh
|α) (|Du�| + 1)γ dx

≤ cg|h|β0αMγ �α|Bh| + cg|h|β0αMα+γ �α|Bh|
≤ cg|h|β0αMα+γ �α|Bh|
≤ cg|h|β0αMα+γ q/p�α|Bh| .
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For (II) we have

(II)
(5.30)3≤ cg�

α

∫
8Bh

(|x − xc|α + |v − (v)8Bh
|α + |(v)8Bh

− (u�)8Bh
|α)

·(|Dv| + 1)γ dx

(5.39)≤ cg|h|αβ0Mα�α

∫
−

8Bh

(|Dv| + 1)γ dx |Bh|

≤ cg|h|αβ0Mα�α

(∫
−

8Bh

(|Dv| + 1)p dx

)γ /p

|Bh|

(5.41)≤ cg|h|β0αMα+γ q/p�α|Bh| .

For (III) we use Sobolev and Morrey embeddings in the form

‖u� − v‖Lp(8Bh) ≤ c|h|β0a(p)‖Du� − Dv‖Lp(8Bh) , (5.46)

where a(p) has been defined in (5.13). Note that, according to the definition (3.2),
inequality (5.46) holds for every p ≥ p when p ≥ n. Using also (3.13), (5.31) and
(5.46), we find

(III) ≤ c

∫
8Bh

f�(x)|u� − v|α dx

≤ c‖f�‖
L

p
p−α (8Bh)

‖u� − v‖α
Lp(8Bh)

≤ c|h|β0αa(p)‖f�‖
L

p
p−α (8Bh)

‖Du� − Dv‖α
Lp(8Bh)

≤ c|h|β0αa(p)‖f�‖
L

p
p−α (8Bh)

(∫
8Bh

|V (Du�) − V (Dv)|2 dx

)α/p

+ c1p|h|β0αa(p)‖f�‖
L

p
p−α (8Bh)

·
(∫

8Bh

|V (Du�) − V (Dv)|p(|Du�| + μ)p(2−p)/2 dx

)α/p

≤ c|h|β0αa(p)‖f�‖
L

p
p−α (8Bh)

(∫
8Bh

|V (Du�) − V (Dv)|2 dx

)α/p

+ c1p|h|β0αa(p)M
α(2−p)

2 |h|
β0n

p
α(2−p)

2 ‖f�‖
L

p
p−α (8Bh)

·
(∫

8Bh

|V (Du�) − V (Dv)|2 dx

)α/2

≤ 1

2c̃

∫
8Bh

|V (Du�) − V (Dv)|2 dx + c|h|
β0αpa(p)

p−α ‖f�‖
pθ(p)
p−α

L
p

p−α (8Bh)
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+ c1p|h| β0α2a(p)

2−α M
α(2−p)

2−α |h|
β0n

p
α(2−p)

2−α ‖f�‖
pσ(p)
p−α

L
p

p−α (8Bh)

, (5.47)

where θ(p), σ(p) are defined in (5.12); in the last line we have used Young’s inequal-
ity twice. Using the estimates found for (I),(II),(III) in (5.45), and reabsorbing terms,
we come up with

∫
8Bh

|V (Du�) − V (Dv)|2 dx ≤ cg|h|β0αMα+γ q/p�α|Bh|

+ c|h|
β0αpa(p)

p−α ‖f�‖
pθ(p)
p−α

L
p

p−α (8Bh)

+ c1p|h| β0α2a(p)

2−α M
α(2−p)

2−α |h|
β0n

p
α(2−p)

2−α ‖f�‖
pσ(p)
p−α

L
p

p−α (8Bh)

(5.48)

where c, cg ≡ c, cg(n,p, q, ν,L). We now use this last inequality to bound E(Du�)−
E(Dv) in L2. Recalling (2.2) and (5.9), and that t �→ (t − k)+ is 1-Lipschitz regular,
we find

|(E(Du�) − κ)+ − (E(Dv) − κ)+|2

≤ |E(Du�) − E(Dv)|2

≤ |[H(Du�)]p/2 − [H(Dv)]p/2|2
(3.16)
�p (|Du�|2 + |Dv|2 + μ2)p/2|V (Du�) − V (Dv)|2 , ∀ x ∈ 8Bh .

By finally using (5.42), we conclude with

|(E(Du�) − κ)+ − (E(Dv) − κ)+|2

≤ cMsp|V (Du�) − V (Dv)|2 , for every x ∈ 4Bh (5.49)

for c ≡ c(n,p, q, ν,L). We then estimate using, in order, (3.7)1, (5.49) (twice) and
(5.43)
∫

Bh

|τh(E(Du�) − κ)+|2 dx ≤ 2
∫

Bh

|τh(E(Dv) − κ)+|2 dx

+ 2
∫

Bh

|τh

(
(E(Du�) − κ)+ − (E(Dv) − κ)+

)|2 dx

≤ 2
∫

Bh

|τh(E(Dv) − κ)+|2 dx

+ 2
∫

2Bh

|(E(Du�) − κ)+ − (E(Dv) − κ)+|2 dx

≤ 2
∫

Bh

|τh(E(Dv) − κ)+|2 dx
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+ cMsp

∫
2Bh

|V (Du�) − V (Dv)|2 dx

≤ c|h|2(1−β0)Ms(q−p)

∫
4Bh

(E(Dv) − κ)2+ dx

+ cMsp

∫
2Bh

|V (Du�) − V (Dv)|2 dx

≤ c|h|2(1−β0)Ms(q−p)

∫
4Bh

(E(Du�) − κ)2+ dx

+ cMsq

∫
4Bh

|V (Du�) − V (Dv)|2 dx . (5.50)

We have again used (5.44). Matching this last inequality with (5.48) we get

∫
Bh

|τh(E(Du�) − κ)+|2 dx ≤ c|h|2(1−β0)Ms(q−p)

∫
8Bh

(E(Du�) − κ)2+ dx

+ cg|h|β0αMsq+α+γ q/p�α|Bh| + c|h|
β0αpa(p)

p−α Msq‖f�‖
pθ(p)
p−α

L
p

p−α (8Bh)

+ c1p|h| β0α2a(p)

2−α Msq+ α(2−p)
2−α |h|

β0n

p
α(2−p)

2−α ‖f�‖
pσ(p)
p−α

L
p

p−α (8Bh)

(5.51)

with c, cg ≡ c, cg(n,p, q, ν,L). Recalling that |h| ≤ 1, we first estimate

|h|β0α + |h|
β0αpa(p)

p−α + |h| β0α2a(p)

2−α ≤ 3|h|β0αm (5.52)

in (5.51), with αm which has been defined in (5.13), and then equalize the resulting
exponents by taking

β0 = 2

2 + αm
⇐⇒ β0αm = 2(1 − β0) . (5.53)

We conclude with

∫
Bh

|τh(E(Du�) − κ)+|2 dx

≤ c|h| 2αm
2+αm Ms(q−p)

∫
8Bh

(E(Du�) − κ)2+ dx

+ cg|h| 2αm
2+αm Msq+α+γ q/p�α|Bh| + c|h| 2αm

2+αm Msq‖f�‖
pθ(p)
p−α

L
p

p−α (8Bh)

+ c1p|h| 2αm
2+αm Msq+ α(2−p)

2−α |h|
β0n

p
α(2−p)

2−α ‖f�‖
pσ(p)
p−α

L
p

p−α (8Bh)

. (5.54)
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5.3.3 Covering

We consider a fixed, standard lattice L|h| of hypercubes of Rn, with sidelength equal
to 2|h|β0/

√
n (these are mutually disjoint open hypercubes with sides parallel to the

coordinate axes, and whose union of closures covers R
n). We also consider L̃|h| :=

{Q ∈ L|h| : Q ∩ B1/2 �= ∅}. With n denoting the cardinality of L̃|h|, we write L̃|h| =
{Qk ≡ Qk(xk)}k≤n, with xk being the center of Qk . Obviously, it is

|B1/2 \
⋃
k≤n

Qk| = 0, Qi ∩ Qj = ∅ ⇔ i �= j . (5.55)

This family of hypercubes corresponds to a family of balls L|h| := {Bk ≡ Bk(xk)}k≤n

in the sense of (3.4), that is, such cubes can be identified as inner cubes of balls, i.e.,

Qk ≡ Qk(xk) ≡ Qinn(Bk) ⊂ Bk := B|h|β0 (xk) . (5.56)

Note that the centers xk ≡ xc satisfy (5.35) as the diameter of such cubes is equal to
2|h|β0 . Summarizing, we find

{
8Bk � B1 , xk ∈ B1/2+2|h|β0 for all k ≤ n

n� nn/22−n|h|−β0n ≡ c(n)|h|−β0n .
(5.57)

Each of the dilated balls 8Bk intersects the similar ones 8Bi (including itself) less than
a finite number ct(n), depending only on n (uniform finite intersection property). This
can be easily seen by observing that the outer cubes of the dilated balls Qout(8Bk) in
the sense of (3.4), whose sidelength is 16|h|β0 , touch similar ones ct(n) times, as they
are obtained by dilating of a factor 8

√
n the original ones Qk ≡ Qinn(Bk), which are

mutually disjoint and have sides parallel to the coordinate axes. By considering the
family of enlarged balls 8L|h| := {8Bk : Bk ∈ L|h|}, we can therefore write
⎧⎪⎨
⎪⎩

8L|h| =
⋃

i≤c̃t(n)

8Li
|h| , with c̃t(n) ≤ ct(n) and 8Li

|h| ∩ 8Lj
|h| �= ∅ =⇒ i = j

8Li
|h| is made of mutually disjoint balls, for every i ≤ ct(n) .

As a consequence, given a Radon measure λ defined on B1, recalling (5.57), we find

∑
k≤n

λ(8Bk) =
c̃t(n)∑
i=1

∑
8B∈8Li|h|

λ(8B) ≤
c̃t(n)∑
i=1

λ(B1) = c̃t(n)λ(B1) . (5.58)

Another inequality we shall often use is, for t ∈ (0,1]
∑
k≤n

at
k ≤ n

1−t
(∑

k≤n

ak

)t (5.57)≤ c(n)|h|−β0n(1−t)
(∑

k≤n

ak

)t
, (5.59)

that holds whenever {ak}k≤n are non-negative numbers. This is a simple consequence
of the discrete Hölder’s inequality (see [36, 1.1.4, page 12]).
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5.3.4 Proof of (5.11)

By (5.57) we can now consider the minimization problems in (5.36) for each one
of the enlarged balls 8Bk , i.e., we take Bh ≡ Bk , thereby getting (5.54). Inequalities
(5.54) can be summed over k ≤ n, and this yields

∫
B1/2

|τh(E(Du�) − κ)+|2 dx
(5.55)≤

∑
k≤n

∫
Qk

|τh(E(Du�) − κ)+)|2 dx

(5.56)≤
∑
k≤n

∫
Bk

|τh(E(Du�) − κ)+)|2 dx

(5.54)≤ c|h| 2αm
2+αm Ms(q−p)

∑
k≤n

∫
8Bk

(E(Du�) − κ)2+ dx

+cg|h| 2αm
2+αm Msq+α+γ q/p�α

∑
k≤n

|Bk|

+c|h| 2αm
2+αm Msq

∑
k≤n

‖f�‖
pθ(p)
p−α

L
p

p−α (8Bk)

+c1p|h| 2αm
2+αm Msq+ α(2−p)

2−α |h|
β0n

p
α(2−p)

2−α

∑
k≤n

‖f�‖
pσ(p)
p−α

L
p

p−α (8Bk)

. (5.60)

To estimate the first two sums appearing in the right-hand side of (5.60) we can use
(5.58) in an obvious way

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
k≤n

∫
8Bk

(E(Du�) − κ)2+ dx ≤ c̃t(n)

∫
B1

(E(Du�) − κ)2+ dx

∑
k≤n

|Bk| ≤ c̃t(n)|B1| .
(5.61)

For the third we proceed similarly, using that θ(p) ≥ 1

∑
k≤n

‖f�‖
pθ(p)
p−α

L
p

p−α (8Bk)

≤ ‖f�‖
p[θ(p)−1]

p−α

L
p

p−α (B1)

∑
k≤n

∫
8Bk

f
p

p−α
� dx (5.62)

(5.58)≤ c̃t(n)‖f�‖
pθ(p)
p−α

L
p

p−α (B1)

. (5.63)

As for the last sum in (5.60), this appears only when p < 2 and here we distinguish
two cases. The first is when σ(p) ≥ 1. In this case we again argue as in (5.63), using
(5.58), and we get (recall |h| ≤ 1 by (5.34))

|h|
β0n

p
α(2−p)

2−α

∑
k≤n

‖f�‖
pσ(p)
p−α

L
p

p−α (8Bk)

≤ c̃t(n)‖f�‖
pσ(p)
p−α

L
p

p−α (B1)

. (5.64)



Nonuniformly elliptic Schauder theory 1149

The second case is when, instead, σ(p) < 1 and we are led to use (5.59), with t ≡ σ(p)

and ak ≡ ‖f�‖p/(p−α)

Lp/(p−α)(8Bk)
, thereby getting

|h|
β0n

p
α(2−p)

2−α

∑
k≤n

‖f�‖
pσ(p)
p−α

L
p

p−α (8Bk)

≤ c|h|
β0n

p
α(2−p)

2−α
−β0n(1−σ(p))‖f�‖

pσ(p)
p−α

L
p

p−α (B1)

≤ c‖f�‖
pσ(p)
p−α

L
p

p−α (B1)

. (5.65)

We have used that |h| ≤ 1 and the identity

β0n

p

α(2 − p)

2 − α
− β0n(1 − σ(p)) = 2β0nα

pp(2 − α)
(p− p)

p≥p≥ 0 .

Connecting the content of (5.61)-(5.65) to (5.60), we finally arrive at
∫
B1/2

|τh(E(Du�) − κ)+|2 dx

≤ c|h| 2αm
2+αm Ms(q−p)

∫
B1

(E(Du�) − κ)2+ dx + cg|h| 2αm
2+αm Msq+α+γ q/p�α

+ c|h| 2αm
2+αm Msq‖f�‖

pθ(p)
p−α

L
p

p−α (B1)

+ c1p|h| 2αm
2+αm Msq+ α(2−p)

2−α ‖f�‖
pσ(p)
p−α

L
p

p−α (B1)

for c ≡ c(n,p, q, ν,L). From this last inequality and Lemma 3.1, we deduce that
(E(Du�) − κ)+ ∈ Wβ,2(B1/2) for all β ∈ (0, αm/(2 + αm)) and that the inequality

‖(E(Du�) − κ)+‖Wβ,2(B1/2)
≤ cM

s(q−p)
2 ‖(E(Du�) − κ)+‖L2(B1)

+ cgM
sq+α+γ q/p

2 �
α
2 + cM

sq
2 ‖f�‖

pθ(p)
2(p−α)

L
p

p−α (B1)

+ c1pM
sq
2 + α(2−p)

2(2−α) ‖f�‖
pσ(p)

2(p−α)

L
p

p−α (B1)

holds with c ≡ c(data, β). From this the full form of (5.32) follows via (3.10). This
brings to a conclusion the proof of Proposition 5.1.

5.3.5 Proof of (5.10)

The only real modification with respect to the proof of (5.11) occurs in the estimate
of the term (III) in (5.47), that we can now replace as follows:

(III) ≤ c

∫
8Bh

f�(x)|u� − v|α dx ≤ ‖u� − v‖α
L∞(8Bh)‖f�‖L1(8Bh)

(5.39)≤ c|h|β0αMα‖f�‖L1(8Bh) . (5.66)
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Using this estimate in place of (5.47), we can replace (5.48) by
∫

8Bh

|V (Du�) − V (Dv)|2 dx

≤ cg|h|β0αMα+γ q/p�α|Bh| + c|h|β0αMα‖f�‖L1(8Bh) (5.67)

with c, cg ≡ c, cg(n,p, q, ν,L). Proceeding as for the proof of (5.11), choosing β0

as in (5.53) with αm = α, we arrive at (5.10) and Proposition 5.1 is proved.

5.4 Functionals of the type in (1.9)

We consider functionals S(·,Br) as in (1.9), assuming that

F(·) satisfies (5.3), c(·) is as in (1.9), and h(·) satisfies (5.5) . (5.68)

Proposition 5.3 Let u ∈ W 1,q(Br) be a minimizer of the functional S(·,Br) in (1.9),
under assumptions (5.1) and (5.68). Let B�(x0) � Br and let M ≥ 1 be a constant
such that ‖Du‖L∞(B�(x0)) ≤ M . Then, for every number κ ≥ 0

(∫
−
B�/2(x0)

(Eμ(Du) − κ)
2χ
+ dx

)1/χ

≤ cMs(q−p)

∫
−
B�(x0)

(Eμ(Du) − κ)2+ dx

+ cMsq+p+α−b�α

∫
−
B�(x0)

(|Du| + 1)q−p+b dx

+ cMsq+α�α

∫
−
B�(x0)

f dx (5.69)

holds for every b ∈ [0,p], and (β,χ) as in (5.8) with αm := α, where c ≡
c(data, β).

Proof We keep the notation introduced in Proposition 5.1. First we rescale u as in
(5.27), thereby passing to u� ∈ W 1,q (B1). This is a minimizer of the functional

w �→ S�(w,B1) :=
∫
B1

[c�(x,w)F (Dw) + h�(x,w)]dx, (5.70)

which is defined on W 1,q(B1), where c�(x, y) := c(x0 + �x,�y) and h�(x, y) :=
h(x0 + �x,�y). As a consequence of (5.68), and therefore of (1.9),

|c�(x1, y1) − c�(x2, y2)| ≤ L�α
(|x1 − x2|α + |y1 − y2|α

)
, ν ≤ c�(·) ≤ L (5.71)

holds for all x1, x2 ∈ B1, y1, y2 ∈R, and h�(·) satisfies (5.31). It is sufficient to prove
that

‖(E(Du�) − κ)+‖2
L2χ (B1/2)

≤ cMs(q−p)‖(E(Du�) − κ)+‖2
L2(B1)
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+ cMsq+p+α−b�α

∫
B1

(|Du�| + 1)q−p+b dx

+ cMsq+α‖f�‖L1(B1)
(5.72)

holds for c ≡ c(data, β), so that (5.69) follows scaling back to u. We next con-
sider v ∈ u� + W

1,q

0 (8Bh) as the solution to (5.36), where this time it is F0(z) :=
c�(xc, (u�)8Bh

)F (z), and xc is the center of Bh. Note that, thanks to (5.68), inequali-
ties (5.38)-(5.42) apply to v. Recalling (5.70), we have, similarly to (5.45)

1

c̃

∫
8Bh

|V (Du�) − V (Dv)|2 dx

≤
∫

8Bh

[
F0(Du�) − F0(Dv)

]
dx

= S�(u�,8Bh) − S�(v,8Bh)

+
∫

8Bh

[c�(xc, (u�)8Bh
)F (Du�) − c�(x,u�)F (Du�)]dx

+
∫

8Bh

[c�(x, v)F (Dv) − c�(xc, (u�)8Bh
)F (Dv)]dx

+
∫

8Bh

[h�(x, v) − h�(x,u�)]dx

=:
≤0 by minimality of u�︷ ︸︸ ︷

S�(u�,8Bh) − S�(v,8Bh)+(I) + (II) + (III)

≤ (I) + (II) + (III) . (5.73)

Using (5.71) yields

(I) ≤ c�α

∫
8Bh

(|x − xc|α + |u� − (u�)8Bh
|α) (|Du�| + 1)q dx

≤ c|h|β0α(Mα + 1)�α

∫
8Bh

(|Du�| + 1)q dx

≤ c|h|β0αMp+α−b�α

∫
8Bh

(|Du�| + 1)q−p+b dx (5.74)

For (II), note that the minimality of v and ν ≤ c�(·) ≤ L give
∫

8Bh

F (Dv)dx ≤ 1

ν

∫
8Bh

c�(xc, (u�)8Bh
)F (Dv)dx

≤ 1

ν

∫
8Bh

c�(xc, (u�)8Bh
)F (Du�)dx

≤ c(ν,L)

∫
8Bh

(|Du�| + 1)q dx . (5.75)
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Using the content of the last display, (5.71) and then (5.39), we get

(II) ≤ c�α

∫
8Bh

(|x − xc|α + |v − (v)8Bh
|α + |(v)8Bh

− (u�)8Bh
|α)F(Dv)dx

≤ c|h|β0α(Mα + 1)�α

∫
8Bh

F (Dv)dx

≤ c|h|β0αMα�α

∫
8Bh

(|Du�| + 1)q dx

≤ c|h|β0αMp+α−b�α

∫
8Bh

(|Du�| + 1)q−p+b dx . (5.76)

The term (III) can be estimated exactly as in (5.66). Using this together with (5.73)-
(5.76) yields

∫
8Bh

|V (Du�) − V (Dv)|2 dx ≤ c|h|β0αMp+α−b�α

∫
8Bh

(|Du�| + 1)q−p+b dx

+ c|h|β0αMα‖f�‖L1(8Bh) . (5.77)

Using (5.49)-(5.50), employing (5.77) in (5.50), and choosing β0 := 2/(2 + α), we
arrive at

∫
Bh

|τh(E(Du�) − κ)+|2 dx ≤ c|h| 2α
2+α Ms(q−p)

∫
8Bh

(E(Du�) − κ)2+ dx

+ c|h| 2α
2+α Msq+p+α−b�α

∫
8Bh

(|Du�| + 1)q−p+b dx

+ c|h| 2α
2+α Msq+α‖f�‖L1(8Bh)

for c ≡ c(data). This estimate can be used as a replacement of (5.54) and proceeding
as in the proofs of Proposition 5.1 and 5.2 we conclude with

∫
B1/2

|τh(E(Du�) − κ)+|2 dx ≤ c|h| 2α
2+α Ms(q−p)

∫
B1

(E(Du�) − κ)2+ dx

+ c|h| 2α
2+α Msq+p+α−b�α

∫
B1

(|Du�| + 1)q−p+b dx

+ c|h| 2α
2+α Msq+α‖f�‖L1(B1)

.

As done for Proposition 5.1, from this last inequality, Lemma 3.1 and (3.10), we
deduce that (E(Du�) − κ)+ ∈ Wβ,2(B1/2) for all β < α/(2 + α), with (5.72) that
follows accordingly. �
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5.5 Functionals of the type in (2.15)

The assumptions on the integrand F : Br ×R
n → [0,∞) we consider here are

⎧⎪⎨
⎪⎩

z �→ F(x, z) satisfies (5.3) uniformly with respect to x ∈ Br

|∂zF (x1, z) − ∂zF (x2, z)|
≤ L̃|x1 − x2|α([Hμ(z)](q−1)/2 + [Hμ(z)](p−1)/2)

(5.78)

whenever x1, x2 ∈ Br , z ∈ R
n, and where 0 < μ ≤ 2. In the following, we denote

A(·) := ∂zF (·), so that the Euler-Lagrange equation of Fx reads as divA(x,Du) = 0
and any W 1,q -regular minimizer is an energy solution. Moreover, this time (β,χ)

might also be such that

β <
α

1 + α
and χ := n

n − 2β
. (5.79)

Proposition 5.4 Let u ∈ W 1,q (Br) be a minimizer of the functional Fx(·,Br) in
(2.15), under assumptions (5.1) and (5.78). Let B�(x0) � Br and let M ≥ 1 be a
constant such that ‖Du‖L∞(B�(x0)) ≤ M . Let κ ≥ 0 be a number.

• If p ≥ 2, then

(∫
−
B�/2(x0)

(Eμ(Du) − κ)
2χ
+ dx

)1/χ

≤ cMs(q−p)

∫
−
B�(x0)

(Eμ(Du) − κ)2+ dx

+ cMsq+p−b�2α

∫
−
B�(x0)

(|Du| + 1)2q−2p+b dx (5.80)

holds for every b ∈ [0,p] and (β,χ) as in (5.79), where c ≡ c(data, β).
• If 1 < p < 2, then

(∫
−
B�/2(x0)

(Eμ(Du) − κ)
2χ
+ dx

)1/χ

≤ cMs(q−p)

∫
−
B�(x0)

(Eμ(Du) − κ)2+ dx

+ cM(s+1)q−b/p�α

(∫
−
B�(x0)

(|Du| + 1)q−p+b dx

)1/p

(5.81)

holds for every b ∈ [0,p], and (β,χ) as in (5.8) with αm := α, where c ≡
c(data, β).

Proof of Proposition 5.4 We again build on the general arguments exposed in Propo-
sition 5.1. The rescaled function u� defined in (5.27) minimizes

w �→
∫
B1

F�(x,Dw)dx,

where F�(x, z) := F(x0 + �x, z), and therefore solves

−divA�(x,Du�) = 0 in B1, where A�(x, z) := A(x0 + �x, z) . (5.82)
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Note that

|A�(x1, z) − A�(x2, z)| ≤ L̃�α|x1 − x2|α([Hμ(z)](q−1)/2 + [Hμ(z)](p−1)/2) (5.83)

holds for every choice of x1, x2 ∈ B1 and z ∈ R
n, as a consequence of (5.78)2. We

define A0(z) := A�(xc, z), where Bh is centred at xc, which is strictly p-monotone
in the sense that (3.18) holds (with c ≡ c(n,p, ν̃)). We then define v as the unique
solution to the Dirichlet problem

⎧⎨
⎩

∫
8Bh

A0(Dv) · Dϕ dx = 0 for every ϕ ∈ W
1,q

0 (8Bh)

v ∈ u� + W
1,q

0 (8Bh) ,

(5.84)

that coincides with (5.37), where F0(z) = F�(xc, z), so that we can use (5.38)-(5.42).
We have∫

8Bh

|V (Du�) − V (Dv)|2 dx

(3.18)≤ c

∫
8Bh

(
A0(Du�) − A0(Dv)

) · (Du� − Dv
)

dx

(5.84)= c

∫
8Bh

(
A0(Du�) − A�(x,Du�)

) · (Du� − Dv
)

dx

(5.83)≤ c�α|h|β0α

∫
8Bh

(
[H(Du�)](q−1)/2 + [H(Du�)](p−1)/2

)
|Du� − Dv|dx

=: c(I) , (5.85)

where c ≡ c(data). We focus on (5.80) and therefore on the case p ≥ 2. Young’s
inequality and (3.12) give

c(I) ≤ 1

2

∫
8Bh

|V (Du�) − V (Dv)|2 dx

+ c�2α|h|2β0α

∫
8Bh

(
[H(Du�)]q−1 + [H(Du�)]p−1

)

· (|Du�|2 + |Dv|2 + μ2)(2−p)/2 dx

≤ 1

2

∫
8Bh

|V (Du�) − V (Dv)|2 dx

+ c|h|2β0α�2α

∫
8Bh

(
[H(Du�)](2q−p)/2 + [H(Du�)]p/2

)
dx

≤ 1

2

∫
8Bh

|V (Du�) − V (Dv)|2 dx

+ c|h|2β0αMp−b�2α

∫
8Bh

(|Du�| + 1)2q−2p+b dx .
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Connecting this last inequality to (5.85) yields

∫
8Bh

|V (Du�) − V (Dv)|2 dx

≤ c|h|2β0αMp−b�2α

∫
8Bh

(|Du�| + 1)2q−2p+b dx . (5.86)

Inserting this last estimate in (5.50) we can repeat the scheme of proof of Proposition
5.1, and this eventually leads to (5.80). The only difference is that this time, in order
to equalize the exponents of |h|, we choose β0 := 1/(1 + α) instead of making the
choice in (5.53). We now consider the range 1 < p < 2, to which we specialize for
the rest of the proof. We estimate the term c(I) appearing in (5.85) in a different way,
also using the minimality of v, as follows:

c(I) ≤ c|h|β0α(Mq−1 + Mp−1 + 1)�α

∫
8Bh

|Du� − Dv|dx

≤ c|h|β0αMq−1|Bh|(p−1)/p�α

(∫
8Bh

|Du� − Dv|p dx

)1/p

≤ c|h|β0αMq−1|Bh|(p−1)/p�α

(∫
8Bh

[F0(Du�) + F0(Dv)]dx

)1/p

≤ c|h|β0αMq−1|Bh|(p−1)/p�α

(∫
8Bh

F0(Du�)dx

)1/p

≤ c|h|β0αMq−1|Bh|(p−1)/p�α

(∫
8Bh

(|Du�| + 1)q dx

)1/p

≤ c|h|β0αMq−b/p|Bh|(p−1)/p�α

(∫
8Bh

(|Du�| + 1)q−p+b dx

)1/p

. (5.87)

Connecting the content of the last displays to (5.85) yields

∫
8Bh

|V (Du�) − V (Dv)|2 dx

≤ c|h|β0αMq−b/p�α|h|
β0n(p−1)

p ‖|Du�| + 1‖
q−p+b

p

Lq−p+b(8Bh)
(5.88)

where c ≡ c(data). Using (5.88) in (5.50), and taking β0 = 2/(2 + α), we arrive at
the following analog of (5.54):

∫
Bh

|τh(E(Du�) − κ)+|2 dx ≤ c|h| 2α
2+α Ms(q−p)

∫
8Bh

(E(Du�) − κ)2+ dx

+ c|h| 2α
2+α M(s+1)q−b/p�α|h|

β0n(p−1)

p ‖|Du�| + 1‖
q−p+b

p

Lq−p+b(8Bh)
. (5.89)
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The last step is to perform the covering argument in Sect. 5.3.3, summing up inequal-
ities in (5.89) over balls Bh ≡ Bk for k ≤ n as done in (5.60). The sum of the first
terms in the right-hand sides can be dealt with as in (5.61). For the second ones, we
use (5.59) with t = 1/p and ak ≡ ‖|Du�| + 1‖q−p+b

Lq−p+b(8Bk)
, arguing as in (5.64) we

obtain

|h|
β0n(p−1)

p

∑
k≤n

‖|Du�| + 1‖
q−p+b

p

Lq−p+b(8Bk)

(5.59)≤ c

⎛
⎝∑

k≤n

‖|Du�| + 1‖q−p+b
Lq−p+b(8Bk)

⎞
⎠

1/p

(5.58)≤ c‖|Du�| + 1‖
q−p+b

p

Lq−p+b(B1)
, (5.90)

for c ≡ c(n,p). From (5.89), after summation, we arrive at
∫
B1/2

|τh(E(Du�) − κ)+|2 dx ≤ c|h| 2α
2+α Ms(q−p)

∫
B1

(E(Du�) − κ)2+ dx

+ c|h| 2α
2+α M(s+1)q−b/p�α‖|Du�| + 1‖

q−p+b
p

Lq−p+b(B1)

and the rest of the proof of (5.81) can now be obtained as in Proposition 5.1. �

5.6 Equations

The proof of Proposition 5.4 makes little use of minimality of u. This leads to extend
its content to solutions to general equations as

−divA(x,Du) = 0 in Br , (5.91)

that are not necessarily arising as Euler-Lagrange equations of any functional. For
this, we consider a general vector field A : Br × R

n → R
n satisfying (2.26), with ν,

L replaced by general constants ν̃, L̃ as in Sect. 2.1, with 0 < μ ≤ 2 and such that

ν0[Hμ(z)](q−2)/2|ξ |2 + ν̃[Hμ(z)](p−2)/2|ξ |2 ≤ ∂zA(x, z)ξ · ξ (5.92)

holds with the same notation of (2.26). Let us record the following coercivity inequal-
ity:

|z2|p ≤ c[H1(z1)]p(q−1)/[2(p−1)] + cA(x, z2) · (z2 − z1) , (5.93)

which is valid under the assumptions satisfied by A0(·) for every z1, z2 ∈ R
n, x ∈ Br ,

where c ≡ c(data) ≥ 1. The proof of (5.93) relies on (3.18) and is a minor variant
of the one in [65, Lemma 4.4]. We shall argue under the permanent assumption

q

p
< 1 + 1

n
. (5.94)

Accordingly, in the present setting a relevant exponent is given by

t := p

(n + 1)p − nq

q − 1

p − 1
, (5.95)



Nonuniformly elliptic Schauder theory 1157

unless n = 2, q > p, when t is any larger quantity. Note that t ≥ 1 and t = 1 when
p = q; t is well defined thanks to (5.94). This exponent plays for equations the same
role that s in (5.2) plays for functionals. Note that t ≥ s for n > 2.

Proposition 5.5 Let u ∈ W 1,q(Br) be a weak solution to (5.91), under assumptions
(2.26) with 0 < μ ≤ 2 and ν, L replaced by ν̃, L̃ (as in Sect. 2.1); also assume (5.92)
and (5.94). Let B�(x0) � Br and let M ≥ 1 be a constant such that ‖Du‖L∞(B�(x0)) ≤
M . Let κ ≥ 0 be a number.

• If p ≥ 2, then

(∫
−
B�/2(x0)

(Eμ(Du) − κ)
2χ
+ dx

)1/χ

≤ cM2t(q−p)

∫
−
B�(x0)

(Eμ(Du) − κ)2+ dx

+ cMt(2q−p)+p−b�2α

∫
−
B�(x0)

(|Du| + 1)2q−2p+b dx (5.96)

holds for every b ∈ [0,p] and (β,χ) as in (5.79), where c ≡ c(data, β).
• If 1 < p < 2, then

(∫
−
B�/2(x0)

(Eμ(Du) − κ)
2χ
+ dx

)1/χ

≤ cM2t(q−p)

∫
−
B�(x0)

(Eμ(Du) − κ)2+ dx

+ cM(t+1)q+t(q−p)−b/p�α

(∫
−
B�(x0)

(|Du| + 1)
p(q−1)
p−1 −p+b dx

)1/p

(5.97)

holds for every b ∈ [0,p], and (β,χ) as in (5.8) with αm := α, where c ≡
c(data, β).

Proof of Proposition 5.5 We modify the proof of Proposition 5.4. Keeping the notation
introduced there, we arrive up to (5.84), where again it is A0(z) := A�(xc, z). Now,
while we can still use (5.38)-(5.39), that hold for solutions to general equations, we
have to find replacements for (5.40)-(5.42), that are linked to minimality. Thanks to
(5.94), we can use (5.24), that yields

‖Dv‖L∞(4Bh) ≤ c

(∫
−

8Bh

(|Dv| + 1)p dx

) t(p−1)
p(q−1)

.

Using (5.93) (applied to A0(·)) with z2 ≡ Dv, z1 ≡ Du� , and integrating over 8Bh,
gives

∫
−

8Bh

|Dv|p dx ≤ c

∫
−

8Bh

(|Du�| + 1)
p(q−1)
p−1 dx . (5.98)

Matching the inequalities in the last two displays we conclude with the following
analog of (5.42):

‖Dv‖L∞(4Bh) ≤ cMt , c ≡ c(n,p, q, ν,L) . (5.99)
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This inequality allows to get analogs of (5.49)-(5.50), via this time the use of (5.17),
that is∫

Bh

|τh(E(Du�) − κ)+|2 dx ≤ c|h|2(1−β0)M2t(q−p)

∫
4Bh

(E(Du�) − κ)2+ dx

+ cMt(2q−p)

∫
4Bh

|V (Du�) − V (Dv)|2 dx .

(5.100)

When p ≥ 2, combining this last estimate with (5.86), that holds for general equations
too, we finally arrive at (5.96) as in Proposition 5.4. It again remains to treat the case
p < 2 as in Proposition 5.4 we have used minimality to deal with this case and here
we need to take a different route. By looking at c(I), defined as in (5.85), as in (5.87),
we have

(I) ≤ c|h|β0αMq−1|Bh|(p−1)/p�α

(∫
8Bh

(|Du�|p + |Dv|p)dx

)1/p

(5.101)

(5.98)≤ c|h|β0αMq−b/p|Bh|(p−1)/p�α

(∫
8Bh

(|Du�| + 1)
p(q−1)
p−1 −p+b dx

)1/p

.

Connecting this to (5.85), and the resulting inequality to (5.100), yields
∫

Bh

|τh(E(Du�) − κ)+|2 dx ≤ c|h| 2α
2+α M2t(q−p)

∫
8Bh

(E(Du�) − κ)2+ dx

+ c|h| 2α
2+α cM(t+1)q+t(q−p)−b/p�α|h|

β0n(p−1)

p

(∫
8Bh

(|Du�| + 1)
p(q−1)
p−1 −p+b dx

)1/p

where c ≡ c(data). After this, we can proceed as after (5.89), including the sum-
mation argument in (5.90), that works verbatim also with the new exponents, finally
leading to (5.97). �

5.7 A priori Hölder

We briefly justify the validity of (5.7), which is in fact completely standard when
h(·) ≡ 0 [29, 61, 62]. We report some details of the proof of the result, that, in the
form stated here, does not seem to be explicitly mentioned in the literature, although
it can be obtained by totally standard arguments. Here we consider a minimizer u ∈
W 1,q (Br) of the functional F(·,Br) in (2.1), and we assume (5.5) and that F(·) ≡
F̃ (·) satisfies conditions (5.6). Therefore we are covering the functionals described in
Sects. 5.1, 5.4 and 5.5. With Bτ (xc) � Br being a ball, we define v ∈ u + W

1,q

0 (Bτ )

as the unique minimizer of w �→ ∫
Bτ

F(xc, (u)Bτ ,Dw)dx in the Dirichlet class u +
W

1,q

0 (Bτ ). This satisfies the following a priori estimates

⎧⎪⎨
⎪⎩

‖Dv‖q

L∞(Bτ/2)
≤ c

∫
−
Bτ

(|Dv| + 1)q dx

osc (Dv,B�) ≤ c
(�

τ

)β1 ‖Dv‖L∞(Bτ )

(5.102)
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for every � ≤ τ , where both c ≥ 1 and β1 ∈ (0,1) depend on n, q , L, L0, μ, ν0; see
for instance [61, (2.4)-(2.5)]. Moreover, by Lemma 5.2 it is osc(v,Bτ ) ≤ osc(u,Bτ )

and ‖u − v‖L∞(Bτ ) ≤ osc(u,Bτ ). Finally, by minimality it is ‖Dv‖Lq(Bτ ) � ‖|Du| +
1‖Lq(Bτ ). Next, note that also thanks to (5.5)2, the integrand F(·) + h(·) satisfies
the growth conditions |z|q − |y| − 1 � F(x, y, z) + h(x, y) � |z|q + |y| + 1, with
implied constants depending on n, q , L, L0, μ, ν0. Therefore, by De Giorgi-Nash-
Moser theory it follows that u ∈ C

0,β2
loc (�) for some β2 ≡ β2(n, q,L,L0,μ, ν0) ∈

(0,1); see for instance [34, Theorem 7.6]. Using these last facts, a modification of
the comparison arguments in [28, 62], and especially [51, Lemma 4.9], taking into
account the presence of h(·), gives
∫

Bτ

(|Du|2 + |Dv|2 + 1)
q−2

2 |Du − Dv|2 dx ≤ cταβ3

∫
Bτ

(|Du| + 1)q dx (5.103)

where c ≡ c(n, q,L,L0,μ, ν0) ≥ 1 and β3 ≡ β3(n, q,L,L0,μ, ν0) ∈ (0,1). See for
instance [51, Lemma 4.9]. Estimates (5.102)-(5.103) can be combined in a by now
standard way to prove (5.7), as for instance described in [61] or in [1].

6 Theorems 1 and 5

We first develop a priori estimates in Sect. 6.1. Those for Theorem 1 are in Proposi-
tion 6.1, while Proposition 6.2 contains those for Theorem 5. In both cases, the setting
is that of Sect. 5.1. These estimates, obtained for minima of more regular functionals,
are then embedded in an approximation argument which is contained in Sect. 6.2. At
that stage we have proved that Du is locally bounded in Theorems 1 and 5, thereby
completing the proof of the latter. The proof that Du is locally Hölder continuous
when f ∈ Lq for q > n/α is given in Sect. 6.4, and completes the derivation of Theo-
rem 1. Some of the arguments developed in Sects. 6.1 and 6.2 will be employed also
for the proofs of the remaining theorems of this paper.

Remark 6 (Tilting of s) The exponent s in (5.2) reflects the structural properties of the
functionals. Replacing it with a larger/smaller number leads to more/less restrictive
bounds on q/p and to cover more cases. Furthermore, since all the forthcomig al-
gebraic inequalities concerning s are strict and involve continuous functions, all the
forthcoming results and proofs still hold for slightly larger values of s, giving room
for micro-improvements along with those addressed in Remarks 5 and 8. Examples
of possible tilting will occur in (6.8), (7.6) and (8.3) below. In particular, as it is stan-
dard in this setting [3, 67] and to ease and unify the presentation, in the following
proofs we always formally use (5.2) when n = 2 too, and this is justified by slightly
increasing s when n = 2. The same applies to t in (5.95) below. Notice, anyway, that
all the results in Sect. 5 continue to hold when replacing s in (5.2) by any larger
number; the effective value in (5.2) plays a role from now on.

6.1 A priori L∞-bounds for Theorems 1 and 5

Proposition 6.1 Let u ∈ W 1,q (Br) be a minimizer of the functional G(·,Br) in (2.3),
where Br � � and r ≤ 1, under assumptions (5.3)-(5.5). There exists an explicitly
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computable function κ1(n,p,α, γ ), with

1/5 < κ1(·) < 1 , (6.1)

such that, if

q

p
< 1 + κ1(n,p,α, γ )

(
1 − α + γ

p

)
α

n
, (6.2)

then

‖Du‖L∞(Bt ) ≤ c

(s − t)χ1

[‖Du‖Lp(Bs) + ‖f ‖n/α,1/2;Bs
+ 1
]χ2 (6.3)

holds whenever Bt � Bs � Br are concentric balls, where c ≡ c(data, γ ) ≥ 1 and
χ1, χ2 ≡ χ1, χ2(datae, γ ) ≥ 1, and such constants are independent of ν0. In partic-
ular, by (6.1) it follows that condition (6.2) implies (5.1) and that (2.7) implies (6.2).
Ultimately, if (2.7) holds, then (6.3) holds as well.

Proof The function κ1(·) will be computed in due course of the proof; it will be such
that p, q will verify the initial condition in (5.1), which is necessary in order to apply
Propositions 5.1-5.2. Therefore we proceed assuming (5.1). By the assumptions con-
sidered we observe that u satisfies (5.7); in particular, Du is locally bounded in Br ,
that is what we ultimately need at this stage. Let Bt � Bs � Br be balls as in the state-
ment of Proposition 6.1, and note that we can assume that ‖Du‖L∞(Bt ) ≥ 1, otherwise
(6.3) is trivial. Next we consider further concentric balls Bt � Bτ1 � Bτ2 � Bs , and
a generic point x0 ∈ Bτ1 ; note that every one of such points is a Lebesgue point for
Eμ(Du) by virtue of (5.7). We let r0 := (τ2 −τ1)/8, so that B2r0(x0) � Bτ2 . By (5.10)
used with M ≡ ‖Du‖L∞(Bτ2 ) ≥ 1, we can apply Lemma 4.2 on Br0(x0) with h ≡ 2,

κ0 ≡ 0, v ≡ Eμ(Du), f1 ≡ 1, f2 ≡ f , M0 ≡ Ms(q−p)/2, M1 ≡ M(sq+α+γ q/p)/2,
M2 ≡ M(sq+α)/2, t ≡ 2, δ1 = δ2 ≡ α/2, m1 = m2 ≡ 1, θ1 = θ2 ≡ 1; also using (4.2),
this yields

Eμ(Du(x0)) ≤ c‖Du‖
s(q−p)χ
2(χ−1)

L∞(Bτ2 )

(∫
−
Br0 (x0)

[Eμ(Du)]2 dx

)1/2

+ cg‖Du‖
s(q−p)χ
2(χ−1)

+ sp+α+γ q/p
2

L∞(Bτ2 ) r
α
2

0

+ c‖Du‖
s(q−p)χ
2(χ−1)

+ sp+α
2

L∞(Bτ2 ) P1,1
2,α/2(f ;x0,2r0) (6.4)

with c ≡ c(data, β) and χ ≡ χ(β) is as in (5.8) with αm := α. Since x0 ∈ Bτ1 is
arbitrary we also gain, after a few elementary manipulations

‖Du‖L∞(Bτ1 ) ≤ c

(τ1 − τ2)
n

2p

‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ 1
2

L∞(Bτ2 )

(∫
Bs

(|Du| + 1)p dx

) 1
2p

+ cg‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s
2 + α+γ q/p

2p

L∞(Bτ2 ) r
α

2p

0
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+ c‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s
2 + α

2p

L∞(Bτ2 ) ‖P1,1
2,α/2(f ; ·,2r0)‖1/p

L∞(Bτ1 ) + c .

(6.5)

We have used that Br0(x0) ⊂ Bs . In the above display, the constants c, cg depend on
data and β in such a way that c, cg → ∞ as β approaches its upper limit in (5.8)
(with αm = α; this ultimately comes from the application of Lemma 3.1 at the end
of the proof of Proposition 5.1). Note also that, in order to derive (6.5), the second
integral in (6.4) has been estimated as follows (we also use ‖Du‖L∞(Bτ2 ) ≥ 1):

∫
−
Br0 (x0)

[Eμ(Du)]2 dx ≤ ‖Eμ(Du)‖L∞(Br0 (x0))

∫
−
Br0 (x0)

(|Du| + 1)p dx

≤ c‖Du‖p

L∞(Bτ2 )

∫
−
Br0 (x0)

(|Du| + 1)p dx . (6.6)

To proceed with the proof, by (4.8) and Bτ1+(τ2−τ1)/4 ⊂ Bs , we have

‖P1,1
2,α/2(f ; ·,2r0)‖L∞(Bτ1 ) = ‖P1,1

2,α/2(f ; ·, (τ2 − τ1)/4)‖L∞(Bτ1 )

≤ c‖f ‖1/2
n/α,1/2;Bs

. (6.7)

Looking at (6.5), we are led to consider the term with the highest power of
‖Du‖L∞(Bτ2 ), which happens to be the second one appearing in the right-hand side.
We are now interested in studying the range of parameters n, p, q , α, β , γ for which
the following inequality holds true:

(
q

p
− 1

)
sχ(β)

2[χ(β) − 1] + s

2
+ α + γ q/p

2p
=
(

q

p
− 1

)
sn

4β
+ s

2
+ α + γ q/p

2p
< 1 .

(6.8)
More precisely, as n, p, q , α and γ are fixed, we want to determine the existence of
a value β , within the range fixed in (5.8) here with αm = α, for which (6.8) holds.
Recalling (5.2), (5.8) and Remark 6, reformulating (6.8) in terms of q − p leads to

(q − p)

2

(
n[(q − p) + p]

β[2p − n(q − p)] + γ

p

)
+ p[(q − p) + p]

2p − n(q − p)
+ α + γ

2
< p .

Via routine computations, we arrive at the following second order polynomial in-
equality in q − p:

A(β)(q − p)2 +B(β)(q − p) + C(β) < 0 , (6.9)

where
⎧⎪⎨
⎪⎩
A(β) := n(p − γβ) > 0

B(β) := p[np + 2β(p + γ ) + nβ(2p − α − γ )] > 0

C(β) := −2p2β[p − (α + γ )] < 0 .

(6.10)
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Computing the roots of (6.9), yields a first bound on q − p, i.e.,

q − p <
B(β)

2A(β)

(√
1 − 4A(β)C(β)

[B(β)]2 − 1

)

= B(β)

2A(β)

(√
1 +

(
1 − α + γ

p

)
β

n
H(β) − 1

)
(6.11)

where, by (6.10), it is

H(β) := 8p(p − γβ)

[p + 2β(p + γ )/n + β(2p − α − γ )]2 <
8

(1 + β)2 . (6.12)

For the last inequality drop the second term at the denominator and use p > α + γ

again. From definition of H(β) it then follows that

B(β)H(β)

2pA(β)
= 4p

p + 2β(p + γ )/n + β(2p − α − γ )
< 4 . (6.13)

Introducing the function

καm(n,p,β, γ ) := 1

2 + αm

B(β)H(β)

2pA(β)
S

((
1 − α + γ

p

)
β

n
H(β)

)
, (6.14)

where

S(t) :=
√

1 + t − 1

t
, t > 0 , (6.15)

we can rewrite (6.11) as

q

p
< 1 + καm(n,p,β, γ )

β(2 + αm)

αm

(
1 − α + γ

p

)
αm

n
. (6.16)

Note that, although here it is αm = α, we keep on using the notation αm to employ
the same computations later on, in Proposition 6.2. We determine κ1(·) in (6.2) as

κ1(n,p,α, γ ) := καm

(
n,p,

αm

2 + αm
, γ

)

so that (6.1) follows from Lemma 6.1 below. Recalling that καm(·) in (6.14) is a con-
tinuous function, we conclude that, if (6.2) holds, then we can find β < αm/(2 + αm)

such that (6.16), and therefore (6.8), holds. This allows to apply Young’s inequality
in (6.5); taking also into account (6.7) to estimate the terms containing the potentials,
we come up with

‖Du‖L∞(Bτ1 )

≤ 1

2
‖Du‖L∞(Bτ2 ) + c

(τ2 − τ1)χ1

[‖Du‖Lp(Bs) + ‖f ‖n/α,1/2;Bs
+ 1
]χ2
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where c, χ1, χ2 depend as described in the statement. We recall that Du is locally
bounded in Br , therefore, applying Lemma 3.2 to the last inequality with the choice
h(τ) ≡ ‖Du‖L∞(Bτ ), s ≤ τ ≤ t , yields (6.3). �

Remark 7 The crucial assumption α + γ < p enters the proof of Proposition 6.1 in
(6.9) and makes the term C(β) negative for every considered value of β . In turn, this
ensures the existence of non-negative solutions to the quadratic inequality (6.9) for
q suitably close to p and in a way which is indeed quantified via (2.7). Once this is
secured, the reabsorption condition (6.8) holds and leads to the final a priori estimate.
This is a typical mechanism in nonuniformly elliptic problems, which is several times
displayed in this paper, i.e., a set of sophisticated integral estimates finally leads to
verify certain simple but not always transparent algebraic conditions involving the
gap q/p. Note that we have used α + γ < p also in deriving the upper bound on
H(β) in (6.12).

Lemma 6.1 The function καm(·) defined in (6.14) satisfies 1/5 < καm(n,p, t, γ ) < 1,
for every t such that 0 < t ≤ 1/3 and for every αm ∈ (0,1].

Proof The function S(·) in (6.15) is decreasing, so that S(·) ≤ 1/2 and by (6.13) it
follows that καm(n,p, t, γ ) < 1 for every t > 0. Thanks to (6.12) and (6.13), elemen-
tary estimations give

12

7
<

B(t)H(t)

2pA(t)
and

(
1 − α + γ

p

)
t

n
H(t) <

8t

n(1 + t)2
<

3

2n
≤ 3

4
.

Using again that t �→ S(t) is decreasing, and the content of the previous display, we
get

1

5
<

16

21

(√
7/4 − 1

)
<

1

2 + αm

B(t)H(t)

2pA(t)
S(3/4) < καm(n,p, t, γ ) ,

and the lemma is proved. �

Proposition 6.2 Let u ∈ W 1,q (Br) be a minimizer of the functional G(·,Br) in (2.3),
where Br � � and r ≤ 1, under assumptions (5.3)-(5.5). Assume that (6.1)-(6.2) hold
together with

p >
2nα

2n − 2α + α2
. (6.17)

Then

‖Du‖L∞(Bt ) ≤ c

(s − t)χ1

[‖Du‖Lp(Bs) + ‖f ‖n/α,l;Bs
+ 1
]χ2 (6.18)

holds whenever Bt � Bs � Br are concentric balls, where l has been defined in
(2.23), c ≡ c(data, γ ), and χ1, χ2 ≡ χ1, χ2(datae). In the case (6.17) does not
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hold, there exists an explicitly computable function κ2(n,p,α, γ ), with 1/5 < κ2(·) <

1, such that if

q

p
< 1 + κ2(n,p,α, γ )

(
1 − α + γ

p

)
2(p − α)

p(2 − α)
, (6.19)

then (6.18) holds (with different constants c, χ1, χ2, but having the same dependence
of the case (6.17)).

Proof We argue as for Proposition 6.1. This time we employ (5.11) with M ≡
‖Du‖L∞(Bτ2 ) ≥ 1, so that, for any x0 ∈ Bτ1 , we apply Lemma 4.2 on Br0(x0),

with h ≡ 3, κ0 ≡ 0, v ≡ Eμ(Du), f1 ≡ 1, f2 ≡ f3 ≡ f , M0 ≡ Ms(q−p)/2, M1 ≡
M(sq+α+γ q/p)/2, M2 ≡ Msq/2, M3 ≡ 1pMsq/2+α(2−p)/[2(2−α)], t ≡ 2, δ1 ≡ α/2,
δ2 ≡ pα/[2(p − α)], δ3 ≡ α/(2 − α), m1 ≡ 1, m2 = m3 ≡ p/(p − α), θ1 ≡ 1,
θ2 ≡ θ(p) and θ3 ≡ σ(p). Similarly to Proposition 6.1, we arrive at

‖Du‖L∞(Bτ1 ) ≤ c

(τ1 − τ2)
n

2p

‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ 1
2

L∞(Bτ2 )

(∫
Bs

(|Du| + 1)p dx

) 1
2p

+ cg‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s
2 + α+γ q/p

2p

L∞(Bτ2 ) r
α

2p

0

+ c‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s
2

L∞(Bτ2 )

∥∥∥∥P
p

p−α
,θ(p)

2,
pα

2(p−α)

(f ; ·, (τ2 − τ1)/4)

∥∥∥∥
1/p

L∞(Bτ1 )

+ c1p‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s
2 +
(

2
p

−1
)

α
2(2−α)

L∞(Bτ2 )

·
∥∥∥∥P

p

p−α
,σ (p)

2, α
2−α

(f ; ·, (τ2 − τ1)/4)

∥∥∥∥
1/p

L∞(Bτ1 )

+ c . (6.20)

In the following we shall always take p ∈ [p,p∗) to be such that

p >
nα

n − α
=: pm ≤ 2 , (6.21)

and proceed by checking that Lemma 4.1 can be applied to estimate the last two
terms featuring potentials from (6.20); note that pm < p∗ therefore it is always pos-
sible to choose p ∈ [p,p∗) satisfying (6.21), provided p is close enough to pm. This
ultimately boils down to check that (4.7) is satisfied with the current choice of pa-
rameters. Indeed we have

nθ

tδ
≡ nθ(p)

2δ2
= nσ(p)

2δ3
= n(p− α)

pα

(6.21)
> 1 .

Therefore Lemma 4.1 applies, giving, in any case p > 1
∥∥∥∥P

p

p−α
,θ(p)

2,
pα

2(p−α)

(f ; ·, (τ2 − τ1)/4)

∥∥∥∥
L∞(Bτ1 )

≤ c‖f ‖
p

2(p−α)
n
α
,

p
2(p−α)

;Bs
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(2.23),(4.4)≤ c‖f ‖
p

2(p−α)

n/α,l;Bs
(6.22)

and (this one occurring only when p < 2)
∥∥∥∥P

p

p−α
,σ (p)

2, α
2−α

(f ; ·, (τ2 − τ1)/4)

∥∥∥∥
L∞(Bτ1 )

≤ c‖f ‖
1

2−α
n
α
, 1

2−α
;Bs

(2.23)= c‖f ‖ln/α,l;Bs
, (6.23)

where c ≡ c(n,p,α). Back to (6.20), and noting that
(

q

p
− 1

)
sχ

2(χ − 1)
+ s

2
+ 1p

(
2

p
− 1

)
α

2(2 − α)

≤
(

q

p
− 1

)
sχ

2(χ − 1)
+ s

2
+ α + γ q/p

2p
, (6.24)

we are again led to determine p ∈ [p,p∗) and a positive β < αm(p)/(2+αm(p)) such
that (6.8) holds. For this, we distinguish three different cases, as now the identity
αm = α used in Proposition 6.1 is not always ensured.

• Case 1: p > pm. We take p = p, that gives a(p) = a(p) = 1. It follows that αm = α

in (5.13) and we conclude exactly as in Proposition 6.1, using the bound (6.16)
with αm = α. Specifically, we take β < αm/(2 +αm) in order to satisfy (6.8), then,
using Young’s inequality in (6.20), and taking also into account (6.22)-(6.23), we
come up with

‖Du‖L∞(Bτ1 ) ≤ 1

2
‖Du‖L∞(Bτ2 )

+ c

(τ2 − τ1)χ1

[‖Du‖Lp(Bs) + ‖f ‖n/α,l;Bs
+ 1
]χ2

where c, χ1, χ2 depend as described in the statement. Applying Lemma 3.2 yields
(6.18) and the proof is complete.

• Case 2: 2nα/(2n − 2α + α2) < p ≤ pm. This implies p ≤ 2 and therefore

αm(p) = α min

{
1,

2a(p)

2 − α

}
. (6.25)

On the other hand, the lower bound on p implies 2a(pm)/(2 − α) > 1 so that
αm(pm) = α. It follows we can take p > pm close enough to pm in order to have
2a(p)/(2 −α) > 1 so that it is αm = αm(p) = α in (6.25). We then argue as in Case
1.

• Case 3: 1 < p ≤ 2nα/(2n − 2α + α2). The upper bound on p implies that
2a(pm)/(2 − α) ≤ 1 so that αm(pm) = 2αa(pm)/(2 − α). Recalling that t �→ a(t)

is decreasing, we have that

p > pm =⇒ αm(p) = 2αa(p)

2 − α
<

2αa(pm)

2 − α
= αm(pm) = 2(p − α)

p(2 − α)
n ≤ α ≤ 1.
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We formally take the limiting value p = pm and consider the corresponding version
of (6.16) with αm ≡ αm(pm), β = αm(pm)/(2 + αm(pm)), and finally set

κ2(n,p,α, γ ) := καm(pm)

(
n,p,

αm(pm)

2 + αm(pm)
, γ

)
.

This leads to (6.19); note that 1/5 < κ2(n,p,α, γ ) < 1 follows as in Lemma 6.1.
Summarizing, if (6.19) holds, then we can find p > pm and β < αm(p)/(2+αm(p))

such that (6.16) this time holds with αm ≡ αm(p), and therefore also (6.8) holds.
We then conclude as for Case 1.

�

Remark 8 (Refinements) The lower bound κ1(·) > 1/5 in (6.1) can be improved by
using Taylor expansion of the function S(·) in (6.15). This eventually leads to a
slightly better bound than that in (2.7). Anyway, this does not lead to a different
asymptotic in terms of the ratio α/n and we shall not pursue this path here. Further
improvements come when considering more specific structures, as for instance in
(1.1). Let us for simplicity consider the range p ≥ 2. In this case, looking at (6.20)
and recalling that cg = 0, we arrive at

(
q

p
− 1

)
sn

4β
+ s

2
< 1 , (6.26)

that replaces (6.8) in this setting. Then, taking also into account the content of Remark
5, and performing the same reasoning of (6.8)-(6.16) and Lemma 6.1, we obtain a
refinement of (2.7), but still preserving the same asymptotic with respect to α/n.

6.2 Approximation

Let u ∈ W
1,p

loc (�) be a (local) minimizer of G as in Theorem 5; in particular, F(·),
g(·), h(·) satisfy (2.4)-(2.6). With Br � �, r ≤ 1, in the following by ε, δ ≡ {ε}, {δ} ≡
{εk}, {δk} we denote two decreasing sequences of positive numbers such that ε, δ →
0, ε ≤ dist(Br , ∂�)/10 and ε, δ ≤ 1; we shall several times extract subsequences and
these will still be denoted by ε, δ. We denote by o(ε,B) a quantity, also depending on
a considered ball B (or on an open subset) but independent of δ, such that o(ε,B) →
0 as ε → 0. Similarly, we denote by oε(δ,B) a quantity, depending both on ε and δ,
such that oε(δ,B) → 0 as δ → 0 for each fixed ε. As usual, the exact value of such
quantities might change on different occurences. In the following we shall denote, for
x ∈ Br and y, z ∈ R

n

{
F(x, y, z) := F(z) + g(x, y, z)

Gε(u,Br) := G(u,Br) + ‖h(·, u)‖L1(Br )
+ ‖f ‖p/(p−α)

n/α,l;B(1+ε)r
+ 1 .

(6.27)

We fix a family of radially symmetric, non-negative mollifiers {φs}0<s≤1 ⊂ C∞(Rn),
defined in a standard way as φs(x) := φ(x/s)/sn, where 0 ≤ φ ∈ C∞

c (B1),
‖φ‖L1(Rn) = 1, B3/4 ⊂ suppφ, with φ > 0 when |z| ≤ 3/4. We next define

ũε = u ∗ φε , fε := f ∗ φε + 1 , (6.28)
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and

Fε,δ(x, y, z) := (F(x, y, ·) ∗ φδ)(z) + σε[Hμδ(z)]q/2

=
∫
B1

F(x, y, z + δλ)φ(λ)dλ + σε[Hμδ(z)]q/2

=: Fδ(x, y, z) + σε[Hμδ(z)]q/2 , (6.29)

where

σε :=
(

1 + ε−1 + ‖Dũε‖2q

Lq(Br )

)−1

=⇒ σε

∫
Br

[Hμδ(Dũε)]q/2 dx
ε→0→ 0

uniformly with respect to δ; we recall that μδ = μ + δ ∈ (0,2]. Specifically, by the
Mean Value Theorem we can write

σε

∫
Br

[Hμδ(Dũε)]q/2 dx = o(ε,B) + oε(δ,B) (6.30)

with the second quantity in the right-hand side that converges to zero as δ → 0, uni-
formly with respect to ε. From (6.29) it obviously follows that, with x ∈ Br , y ∈ R,
z ∈ R

n

⎧⎪⎨
⎪⎩
Fε,δ(x, y, z) = Fε,δ(z) + gδ(x, y, z)

Fε,δ(z) := (F ∗ φδ)(z) + σε[Hμδ(z)]q/2

gδ(x, y, z) := (g(x, y, ·) ∗ φδ)(z) .

(6.31)

(Be careful here: gδ(·) defined in (6.31)3 and used in this section and in Sects. 6.3-6.4,
has nothing to do with the rescaled function g�(·) introduced in (5.29)). Finally, we
define hε : Br ×R → R by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hε(x, y) := h̃ε(x, y) + |ũε(x) − y|α
h̃ε(x, y) := (h(·, y) ∗ φε)(x) =

∫
B1

h(x + ελ, y)φ(λ)dλ

h0,ε(x) := (|h|(·,0) ∗ φε)(x) =
∫
B1

|h(x + ελ,0)|φ(λ)dλ .

(6.32)

From (6.29) and Lemma 3.4 it easily follows that

|Fδ(x, y, z) − F(x, y, z)| � δ(|z| + 1)q−1 (6.33)

(see also Lemma 9.1 below) so that, since Dũε is bounded for every ε, we have

‖Fδ(·, ũε,Dũε) − F(·, ũε,Dũε)‖L1(Br )
= oε(δ,Br) , (6.34)
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for every fixed ε. Up to not relabelled subsequences, we can also assume that

{
‖Dũε − Du‖Lp(Br ) = o(ε,Br)

ũε → u in Lγ (Br), where γ > n/(n − 1) and a.e.
(6.35)

By Remark 9 below, we have F(Dũε) → F(Du) in L1(Br). On the other hand by
(2.5)2, (6.35) and again Lebesgue domination, it follows g(·, ũε,Dũε) → g(·, u,Du)

in L1(Br). We conclude with

‖F(·, ũε,Dũε) − F(·, u,Du)‖L1(Br )
= o(ε,Br) (6.36)

up to not relabelled subsequences. Next, observe that (2.6) gives

|h(x, y)| ≤ |h(x,0)| + Lf (x)|y|α ≤ |h(x,0)| + L[f (x)]n/α + |y|nα/(n−α) (6.37)

for every x ∈ �, y ∈ R. This, and (6.32), easily imply the (nonuniform in ε) estimate

|h̃ε(x, y)| + |hε(x, y)| ≤ cε(|y|α + 1) ≤ cε(|y| + 1) . (6.38)

Again by (6.28) and (6.32), given any x ∈ Br and y1, y2 ∈ R, we have

|hε(x, y1) − hε(x, y2)| + |h̃ε(x, y1) − h̃ε(x, y2)|
≤ 2fε(x)|y1 − y2|α ≤ 2‖fε‖L∞(Br )|y1 − y2|α . (6.39)

By (6.35)2, we now have that

‖hε(·, ũε) − h(·, u)‖L1(Br )
= ‖h̃ε(·, ũε) − h(·, u)‖L1(Br )

= o(ε,Br) . (6.40)

The proof of this fact involves a commutator type estimate on mollifiers, and it is
postponed to Lemma 6.2 below. We next consider the functional

W 1,q (Br) 
 w �→ Gε,δ(w,Br) :=
∫

Br

[Fε,δ(x,w,Dw) + hε(x,w)]dx (6.41)

and note that, using (6.30),(6.34),(6.36) and (6.40), we have

Gε,δ(ũε,Br) = G(u,Br) + o(ε,Br) + oε(δ,Br) . (6.42)

It is at this stage worth remarking that the original assumptions (2.4)-(2.5) from The-
orem 1 imply that Fε,δ(·) satisfies the following version of (5.3):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σε[Hμδ (z)]q/2 + ν̃[Hμδ (z)]p/2

≤ Fε,δ(z) ≤ L̃[Hμδ(z)]q/2 + L̃[Hμδ (z)]p/2

ν0(ε)[Hμδ (z)](q−2)/2|ξ |2 + ν̃[Hμδ(z)](p−2)/2|ξ |2
≤ ∂zzFε,δ(z)ξ · ξ

|∂zzFε,δ(z)| ≤ L̃[Hμδ (z)](q−2)/2 + L̃[Hμδ(z)](p−2)/2

(6.43)
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for new constants 0 < ν̃ ≤ L̃ as in Sect. 2.1, depending on data, that are indepen-
dent of ε, δ; note that μδ = μ + δ > 0. On the contrary, ν0(ε) = q min{q − 1,1}σ(ε)

depends on ε. These properties can be checked using (6.29) and (6.31) in conjunction
with assumptions (2.4); see for instance [20, Sect. 4.5] for more details. Similarly, by
(2.5) the function gδ(·) satisfies (5.4) with μ ≡ μδ ∈ (0,2], and a suitable L̃, as it
happens in (6.43) (eventually we enlarge L̃ to fit both (5.3) and (5.4)). Finally, hε(·)
satisfies a version of (5.5) thanks to (6.38)-(6.39), with f (·) replaced by 2fε(·). We
conclude that the functional in (6.41) is of the type considered in Sect. 5.1 and Propo-
sitions 5.1-5.2, as assumptions (5.3)-(5.5) are satisfied for a suitable choice of the
parameters. In particular, the integrand z �→ Fε,δ(·, z) is convex with q-polynomial
growth; keeping also in mind (6.38), we conclude we can apply Direct Methods
(lower semicontinuity ⊕ coercivity) to define uε,δ ∈ ũε + W

1,q

0 (Br) as a solution
to

uε,δ �→ min
w∈ũε+W

1,q
0 (Br )

Gε,δ(w,Br) . (6.44)

Indeed, standard coercivity estimates - see for instance [3, Pages 986-987] or directly
(6.45) below - give that

‖Dw‖q

Lq(Br )
� Gε,δ(w,Br) + ‖fε‖q/(q−α)

Ln/α(Br )
+ ‖Dũε‖q

Lq(Br )
+ ‖hε(·, ũε)‖L1(Br )

holds for every w ∈ ũε + W
1,q

0 (Br), where the involved constants also depend on
ε. On the other hand, keeping (6.38) in mind, W 1,q -weak lower semicontinuity of
Gε,δ(·) follows for instance as in [34, Theorem 4.5] and [34, Remark 4.1]. Alterna-
tively, see [34, Theorem 4.6] and the subsequent discussion on Dirichlet data for the
applications of the Direct Methods in the present situation. To proceed, using the
minimality of uε,δ , Sobolev and Young’s inequalities, we find

ν̃‖Duε,δ‖p

Lp(Br )
+ σε‖Duε,δ‖q

Lq(Br )

(6.43)1≤
∫

Br

Fε,δ(x,uε,δ,Duε,δ)dx

≤ Gε,δ(uε,δ,Br) + ‖hε(·, uε,δ)‖L1(Br )

≤ Gε,δ(ũε,Br) + ‖h(·, u)‖L1(Br )

+ ‖hε(·, ũε) − h(·, u)‖L1(Br )
+ ‖hε(·, ũε) − hε(·, uε,δ)‖L1(Br )

(6.39),(6.40),(6.42)≤ G(u,Br) + o(ε,Br) + oε(δ,Br) + ‖h(·, u)‖L1(Br )

+ c‖fε‖Ln/α(Br )

[
‖Dũε‖α

Lp(Br )
+ ‖Duε,δ‖α

Lp(Br )

]

(2.4)2,(6.35)1≤ ν̃

2
‖Duε,δ‖p

Lp(Br )
+ cG(u,Br) + c ‖h(·, u)‖L1(Br )

+ c ‖f + 1‖p/(p−α)

Ln/α(B(1+ε)r )
+ o(ε,Br) + oε(δ,Br) . (6.45)
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Recalling the notation fixed in (6.27), we therefore conclude with

‖Duε,δ‖p

Lp(Br )
+ σε‖Duε,δ‖q

Lq(Br )

≤ cGε(u,Br) + o(ε,Br) + oε(δ,Br) (6.46)

where c ≡ c(data). In (6.46) we have used the embedding ‖f ‖Ln/α(B(1+ε)r )
�

‖f ‖n/α,l;B(1+ε)r
, since l< n/α (recall (4.4)2,3 and (2.23)).

Remark 9 In the proof of (6.36) we have used a standard argument that it is better
to recall. By Jensen’s inequality we find F(Dũε) ≤ F(Du) ∗ φε on Br , therefore, as
F(Du) ∈ L1(Br), a well-known variant of Lebesgue dominated convergence gives
that F(Dũε) → F(Du) in L1(Br). In view of the proof of Theorem 3 it is then
useful to observe that the same happens when considering the integrand from (1.9).
In this case the very same argument gives that c(·, ũε)F (Dũε) → c(·, u)F (Du) and
this follows from the upper bound on c(·) and its continuity.

Remark 10 By (6.43) and the subsequent discussion, and in particular the part con-
cerning gδ(·), it follows that the integrand z �→ Fε,δ(x, y, z) satisfies (6.43) uniformly
with respect to (x, y).

6.3 Proof of (2.8) and (2.25), and proof of Theorem 5 concluded

We start by (2.25); from now on, and until the end of Sect. 6.3, τ denotes a free
parameter such that 0 < t ≤ τ < r , while t is the one fixed in (2.25). By (6.43) and the
subsequent discussion, we are in the setting of Sects. 5.1 and 6.1. Applying estimate
(6.18) to uε,δ , and using it in conjunction to (6.46), and yet letting s → r , we find, for
any τ as above

‖Duε,δ‖L∞(Bτ ) ≤ c

(r − τ)χ1
[Gε(u,Br)]

χ2 + o(ε,Br) + oε(δ,Br)

(r − τ)χ1
(6.47)

for a new constant c ≡ c(data), new exponents χ1, χ2 ≡ χ1, χ2(datae), and new
quantities o(ε,Br), oε(δ,Br). All in all, we have proved that for every τ < r , and for
every ε, there exists a constant M(τ, ε) such that

sup
δ

‖Duε,δ‖L∞(Bτ ) ≤ M(τ, ε) . (6.48)

By (6.33) we conclude that

‖Fδ(·, uε,δ,Duε,δ) − F(·, uε,δ,Duε,δ)‖L1(Bτ ) = oε(δ,Bτ ) (6.49)

holds for every ε. By (6.46) and (6.48), up to passing to not relabelled subsequences,
we find that for every ε there exists uε ∈ ũε + W

1,q

0 (Br) ∩ W 1,∞(Bt ) such that, as
δ → 0, it holds that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uε,δ ⇀ uε in W 1,q (Br)

uε,δ ⇀∗ uε in W 1,∞(Bt )

uε,δ → uε strongly in Ln/(n−1)(Br) and a.e.

hε(·, uε,δ) → hε(·, uε) strongly in L1(Br) .

(6.50)
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Note that (6.50)4 follows from (6.50)3, a well-known variant of Lebesgue dominated
convergence and (6.38). By convexity and non-negativity of z �→ F(·, z), we can use
standard weak lower semicontinuity theorems (see [34, Theorem 4.5]) to deduce that

∫
Bτ

F(x,uε,Duε)dx ≤ lim inf
δ

∫
Bτ

F(x,uε,δ,Duε,δ)dx (6.51)

holds whenever 0 < t ≤ τ < r (actually this holds in the limiting case τ = r too).
Next, letting δ → 0 in (6.46) and (6.47) allows to get uniform bounds (with respect
to ε) on ‖Duε‖Lp(Br ) and on ‖Duε‖L∞(Bt ), respectively. Again up to not relabelled

subsequences we can assume that there exists v ∈ u + W
1,p

0 (Br) ∩ W 1,∞(Bt ) such
that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uε ⇀ v in W 1,p(Br)

uε ⇀∗ v in W 1,∞(Bt )

uε → v strongly in Lγ (Br) for some γ > n/(n − 1), and a.e.

h(·, uε) → h(·, v) strongly in L1(Br).

(6.52)

Note that (6.52)4 follows from (6.37) and (6.52)3 via Lebesgue domination. More-
over, we have

‖h̃ε(·, uε) − h(·, uε)‖L1(Br )
= o(ε,Br) , (6.53)

the proof of which is again postponed to Lemma 6.2 below. Then observe that

lim inf
δ

Gε,δ(uε,δ,Br)

≥ lim inf
δ

∫
Br

Fδ(x,uε,δ,Duε,δ)dx + lim
δ

∫
Br

hε(x,uε,δ)dx

(6.50)4≥ lim inf
δ

∫
Bτ

Fδ(x,uε,δ,Duε,δ)dx +
∫

Br

hε(x,uε)dx

(6.53)= lim inf
δ

∫
Bτ

Fδ(x,uε,δ,Duε,δ)dx

+
∫

Br

[h(x,uε) + |ũε − uε|α]dx + o(ε,Br)

(6.49),(6.51)≥
∫

Bτ

F(x,uε,Duε)dx

+
∫

Br

[h(x,uε) + |ũε − uε|α]dx + o(ε,Br) (6.54)

= G(uε,Bτ ) +
∫

Br\Bτ

h(x,uε)dx +
∫

Br

|ũε − uε|α dx + o(ε,Br) .
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Letting τ → r in the above display gives

G(uε,Br) +
∫

Br

|ũε − uε|α dx ≤ lim inf
δ

Gε,δ(uε,δ,Br) + o(ε,Br) . (6.55)

Using, in order: (6.52) and lower semicontinuity, (6.55), the minimality of uε,δ , (6.42)
and the minimality of u, we obtain

G(v,Br) +
∫

Br

|u − v|α dx ≤ lim inf
ε

G(uε,Br) + lim
ε

∫
Br

|ũε − uε|α dx

≤ lim inf
ε

lim inf
δ

Gε,δ(uε,δ,Br)

≤ lim
ε

lim
δ
Gε,δ(ũε,Br)

= G(u,Br) ≤ G(v,Br) . (6.56)

We deduce u = v. Letting first δ → 0, and then ε → 0 in (6.47) used with τ = t ,
leads to (2.25), that implies, via a standard covering argument, the local Lipschitz
continuity of u. This concludes the proof of Theorem 5. Finally, we observe that the
same arguments developed here, and in the preceding Sect. 6.2, apply verbatim to the
setting of Theorem 1, and in this case one replaces ‖f ‖n/α,l;Br

by ‖f ‖n/α,1/2;Br
in

(2.25). The outcome is estimate (2.14), and the local Lipschitz continuity assertion of
Theorem 1. The proof of Theorem 1 will be indeed completed in Sect. 6.4, devoted
to gradient local Hölder continuity under reinforced assumptions of f .

Lemma 6.2 Let v ∈ Lγ (Br) and let {vε} ⊂ Lγ (Br) be a sequence such that vε → v ∈
Lγ (Br), where γ > n/(n − 1). Then, as ε → 0

{
‖h̃ε(·, vε) − h(·, vε)‖L1(Br )

→ 0

‖h̃ε(·, vε) − h(·, v)‖L1(Br )
→ 0 .

(6.57)

Proof Using (6.32) and (6.37), it follows that

|h̃ε(x, y)| � h0,ε(x) + [fε(x)]n/α + |y|nα/(n−α)

holds for every x ∈ Br and y ∈ R. By this, (6.37) and the equintegrability of the
sequences {|vε|n/(n−1)}, {h0,ε(x)} and {[fε(x)]n/α}, it is sufficient to prove that (6.57)
holds with Br replaced by any concentric ball B� � Br and considering the range
ε < (r − �)/10. Let us first show that

lim
ε

‖h̃ε(·, v) − h(·, v)‖L1(B�) = 0 . (6.58)

For this we estimate

‖h̃ε(·, v) − h(·, v)‖L1(B�)

≤ ‖h̃ε(·, v) − [h(·, v)] ∗ φε‖L1(B�) + ‖[h(·, v)] ∗ φε − h(·, v)‖L1(B�) . (6.59)
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The last term in (6.59) goes to zero, as ε → 0, by basic properties of convolutions
(note that (6.37) guarantees that h(·, v) ∈ L1(Br)). For the first one, for every k ∈ N

and x ∈ B� we have

|h̃ε(x, v(x)) − [[h(·, v)] ∗ φε](x)| ≤
∫
B1

f (x + ελ)|v(x + ελ) − v(x)|αφ(λ)dλ

≤ 1

k

∫
B1

[f (x + ελ)]n/αφ(λ)dλ + c(k)

∫
B1

|v(x + ελ) − v(x)| nα
n−α φ(λ)dλ .

Integrating the previous inequality over B� and using Fubini, we obtain

‖h̃ε(·, v) − [h(·, v)] ∗ φε‖L1(B�) ≤ c

k
‖f ‖n/α

Ln/α(Br )
+ c(k)o(ε,B�) .

Using this in (6.59), letting first ε → 0 and then k → ∞ yields (6.58). For (6.57)1 we
estimate

‖h̃ε(·, vε) − h(·, vε)‖L1(B�) ≤ ‖h̃ε(·, vε) − h̃ε(·, v)‖L1(B�)

+ ‖h̃ε(·, v) − h(·, v)‖L1(B�)

+ ‖h(·, v) − h(·, vε)‖L1(B�) . (6.60)

Then, using (6.39), Fubini and finally Hölder’s inequality (recall that γ > nα/(n −
α)), we get

‖h̃ε(·, vε) − h̃ε(·, v)‖L1(B�) ≤ c‖f + 1‖Ln/α(Br )
‖vε − v‖α

Lγ (Br )
→ 0 ,

as ε → 0, and (2.6) gives

‖h(·, v) − h(·, vε)‖L1(B�) ≤ c‖f ‖Ln/α(Br )
‖vε − v‖α

Lγ (Br )
→ 0 . (6.61)

Using the content of the last two displays and (6.58) in (6.60) yields (6.57)1. As for
(6.57)2, this follows via (6.57)1 and (6.61) via triangle inequality. �

6.4 Gradient Hölder continuity and proof of Theorem 1 concluded

Here we assume that f ∈ Lq and q > n/α and prove that Du is locally Hölder con-
tinuous. This completes the proof of Theorem 1. Once we know that the gradient of
minimizers is locally bounded, we can use more standard perturbation methods to
prove its local Hölder continuity. Still we have to be careful at several points, since
the boundedness of the gradient cannot be directly used, but must be transferred with
an explicit control on the L∞-norm. For this, we reconsider some of the arguments
explained in Sects. 5.3.2-5.3.4 and use the same approximation described in Sect. 6.2.
First of all, as we are going to prove a local result, there is no loss of generality in
assuming that G(u,�) < ∞, h(·, u) ∈ L1(�) and f ∈ Lq(�). Fix an open subset
�0 � �, set r := min{dist(�0, ∂�)/4,1}; choose Br ≡ Br(xc) with xc ∈ �0 (that
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implies that Br � �) and use (6.47) to obtain, for any concentric ball Bτ ⊂ Br with
τ ≤ r/2

‖Duε,δ‖L∞(Bτ ) ≤ cr−χ1
[
G(u,�) + ‖h(·, u)‖L1(�) + ‖f ‖Lq(�) + 1

]χ2

+ cr−χ1 [o(ε,Br) + oε(δ,Br)]
=: M + cr−χ1 [o(ε,Br) + oε(δ,Br)]
=: MBr (ε, δ) ≥ 1 , (6.62)

where c ≡ c(data, |�|). Note that the constant M does not depend on the ball cho-
sen Br , but only on the radius r , that is, on dist(�0, ∂�). Recalling the meaning of
o(ε,Br) and oε(δ,Br) introduced at the beginning of Sect. 6.2, letting first δ → 0
(keeping ε fixed), and then ε → 0, we get that MBr (ε, δ) → M in the sense that

MBr (ε, δ)
δ→0→ M + cr−χ1o(ε,Br)

ε→0→ M . (6.63)

We define v ∈ uε,δ + W
1,q

0 (Bτ ) as the solution to

v �→ min
w∈uε,δ+W

1,q
0 (Bτ )

∫
Bτ

F0(Dw)dx , F0(z) := Fε,δ(xc, (uε,δ)Bτ , z) (6.64)

so that, by (6.29) and (6.31) it turns out that Fε,δ(xc, (uε,δ)Bτ , z) = Fε,δ(z) +
gδ(xc, (uε,δ)Bτ , z). Recalling Remark 10, observe that Fε,δ(·) satisfies (6.43), and
that gδ(·) satisfies (5.4) with μ ≡ μδ > 0 (see the discussion after (6.43)). Then,
three implied features of (6.64) are:

• The integrand F0(·) is exactly of the form considered in (5.33) (without scaling,
therefore � = 1) and we can use some of the estimates developed in Sect. 5.3.2.

• Applying Lemma 5.3, estimate (5.25), and then the minimality of v exactly as in
(5.40)-(5.41), and finally recalling (6.62), we gain an analog of (5.42), i.e.,

‖Dv‖L∞(Bτ/2) ≤ c̃[MBr (ε, δ)]s , c̃ ≡ c̃(n,p, q, ν,L) . (6.65)

• Let us fix a constant M≥ 1. The integrand F0(·) is C2-regular and satisfies

⎧⎪⎨
⎪⎩

ν̃[Hμδ(z)]p/2 ≤ F0(z) ≤ cMq−p[Hμδ(z)]p/2

ν̃[Hμδ(z)](p−2)/2|ξ |2 ≤ ∂zzF0(z)ξ · ξ
|∂zzF0(z)| ≤ cMq−p[Hμδ(z)](p−2)/2

(6.66)

whenever z, ξ ∈R
n with |z| ≤ M, where c ≡ c(n,p, q, L̃) ≡ c(n,p, q,L).

We are now in position to apply Lemma 6.3 below to v in the ball Bτ/2, with M ≡
c̃[MBr (ε, δ)]s, as appearing in (6.65). We conclude with

∫
−
B�

|Dv − (Dv)B� |p dx ≤ cε,δ

(�

τ

)pβε,δ

(6.67)
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that holds whenever B� ⊂ Bτ/2 are concentric balls. Here
{

cε,δ ≡ cε,δ(n,p, q, ν,L,MBr (ε, δ)) := ch(M) ≥ 1

βε,δ ≡ βε,δ(n,p, q, ν,L,MBr (ε, δ)) := βh(M) ∈ (0,1)

are non-decreasing and non-increasing functions of their last argument, respectively.
This follows by the monotonicity properties of the functions ch(·) and βh(·) asserted
in Lemma 6.3. By (6.63), we get, up to not relabelled subsequences

⎧⎨
⎩

cε,δ
δ→0→ cε

ε→0→ cl ≡ cl(data,M) < ∞
βε,δ

δ→0→ βε
ε→0→ βl ≡ βl(data,M) > 0

(6.68)

in the same sense of (6.63). From now on we continue to denote by cε,δ a double se-
quence of constants, depending in the most general case on data, q and MBr (ε, δ),
such that (6.68) takes place. The exact value of cε,δ might change on different occur-
rences, but still keeping the property in (6.68), as it will be clear by the way they will
be determined, starting from (6.63) and (6.68). To proceed, we argue as for the proof
of (5.67); there replace 8|h|β0 ≡ τ and f� by fε and � by 1, in order to adapt it to
the present setting. In particular the original (5.4)-(5.5) must be used instead of the
rescaled ones (5.30)-(5.31). This said, we find

∫
−
Bτ

|Vμδ (Duε,δ) − Vμδ (Dv)|2 dx ≤ cτα[MBr (ε, δ)]α+γ q/p

+ cτα[MBr (ε, δ)]α
∫
−
Bτ

fε dx

≤ cε,δτ
α + cε,δτ

α−n/q‖f + 1‖Lq(Br )

≤ cε,δτ
α−n/q . (6.69)

Setting σ := min{1,p/2}(α−n/q) > 0, by (3.13) and Hölder’s inequality, we further
obtain∫

−
Bτ

|Duε,δ − Dv|p dx ≤ cε,δτ
α−n/q + cε,δ1p[MBr (ε, δ)]p(2−p)/2τp(α−n/q)/2

≤ cε,δτ
σ . (6.70)

Estimates (6.67) and (6.70) are the two basic ingredients needed to apply a variant of
the comparison argument implying local Hölder continuity. For this see for instance
[62, pp. 43-45] and [1, Proof of Theorem 2.2]. Specifically, we first find

∫
−
B�

|Duε,δ − (Duε,δ)B� |p dx ≤ cε,δ

(�

τ

)pβε,δ + cε,δ

(
τ

�

)n

τσ ,

and this holds whenever � ≤ τ/2. By taking � = (τ/2)1+σ/(n+pβε,δ) we arrive at
∫
−
B�

|Duε,δ − (Duε,δ)B� |p dx ≤ cε,δ�

pσβε,δ
n+σ+pβε,δ , ∀ � ≤ (r/4)1+σ/(n+pβε,δ) .
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Letting first δ → 0 and then ε → 0 in the above display, and recalling (6.50),(6.52)
and (6.68), we finally conclude with

∫
−
B�

|Du − (Du)B� |p dx ≤ c�
pσβl

n+σ+pβl , ∀ � ≤ (r/4)1+σ/(n+pβl) , (6.71)

where c ≡ c(data,M) and the exponent βl ≡ βl(data,M) ∈ (0,1) is defined in
(6.68). Summarizing, we have proved that (6.71) holds whenever B� is centred in �0,
and where r = min{dist(�0, ∂�)/4,1}. Since �0 is arbitrary, the Campanato-Meyers
integral characterization of Hölder continuity yields that for every open subset �0 �
� it holds that

[Du]0,α∗;�0 ≤ c , α∗ := σβl

n + σ + pβl
, (6.72)

where c ≡ c(data,G(u,�),‖h(·, u)‖L1(�),‖f ‖Lq(�), dist(�0, ∂�)). The proof of
Theorem 1 is finally complete.

Lemma 6.3 (Theorem 2 from [62], revisited) Let v ∈ W 1,q (B), for some ball B ⊂ R
n,

be a weak solution to div ∂zF0(Dv) = 0 in B , such that ‖Dv‖L∞(B) ≤ M, where
M ≥ 1 is a fixed constant and F0(·) is defined in (6.64). There exist two constants
ch(M) ≥ 1 and βh(M) ∈ (0,1], depending on n, p, q , ν, L and M, but otherwise
independent of μ, ε, δ, ν0 and the integrand considered F0(·), such that

osc (Dv, sB) ≤ ch(M)sβh(M) (6.73)

holds whenever s ∈ (0,1]. Moreover, the functions M �→ ch(M) and M �→ βh(M)

are non-decreasing and non-increasing, respectively.

Proof There are essentially two crucial remarks here. The first is that, when apply-
ing the methods for [62, Theorem 2] to div∂zF0(Dv) = 0, we only see z ≡ Dv as
arguments of ∂zF0(z) and ∂zzF0(z). See also the methods in [22, Sect. 5.10], gen-
erating essentially the same outcomes. Therefore we can argue as conditions (6.66)
hold for every z ∈ R

n when dealing with weak solutions as in [62]. At this point
(6.73) follows, with the dependence of ch(M), βh(M) described in the statement, by
tracking the constants in [62]. Specifically, the ratio γ1/γ0 appearing in [62] is in this
setting replaced by cMq−p , where c ≡ c(n,p, q, ν,L). The second remark is that
here we cannot easily use an approximation procedure, as in [62], since we have to
keep the condition ‖Dv‖L∞(B) ≤ M. Such an approximation is used in [62] to deal
with C2-solutions; such higher regularity allows for certain computations. It is not
difficult to see that essentially the only point where this enters is the derivation and
the testing of the differentiated equation div (∂zzF0(Dv)DDsv) = 0, s ∈ {1, . . . , n}.
On the other hand, in order to carry out the computation of [62], it is sufficient to
have Dv ∈ W

1,2
loc (B,Rn) ∩ L∞

loc(B,Rn). As for Dv ∈ L∞, this is assumed in Lemma

6.3. Finally, Dv ∈ W
1,2
loc comes as in Lemma 5.1, whose application is allowed as

μ ≡ μδ > 0 in the present situation. This allows to avoid the approximation in [62],
that was in fact implemented to reduce to the case μ > 0 (denoted by ε in [62]). Note
that, again, we come to the same conclusions if, instead of using the methods in [62],
we use those in [22, Sect. 5.10]. �



Nonuniformly elliptic Schauder theory 1177

7 Theorems 2, 4 and Corollary 3

Proposition 7.1 Let u ∈ W 1,q (Br) be a minimizer of the functional Fx(·,Br) in
(2.15), where Br � � and r ≤ 1, under assumptions (5.78) and

q

p
< 1 + k

α2

n2 , where k :=
{

4/9 if p ≥ 2

8/33 if 1 < p < 2 .
(7.1)

Then

‖Du‖L∞(Bt ) ≤ c

(s − t)χ1

[‖Du‖Lp(Bs) + 1
]χ2 (7.2)

holds whenever Bt � Bs � Br are concentric balls, with c ≡ c(data) and χ1, χ2 ≡
χ1, χ2(datae).

The setting of Proposition 7.1 is the one of Section 5.5. We shall use the following
fact (keep Remark 6 in mind):

q

p
< 1 + α2

(C + 1/4)n2 =⇒ s< 1 + α

Cn
, (7.3)

that holds whenever C ≥ 1 is a fixed number, where s is defined in (5.2); keep Remark
6 in mind.

Remark 11 The standard regularity theory for nonlinear elliptic equations [62] gives
that, under the assumptions of Proposition 5.5 (except (5.94)), any W 1,q -solution u to
(5.91) satisfies (5.7). The same applies to the minimizers u considered in Proposition
7.1, as they are energy solutions to the Euler-Lagrange equation of the functional
Fx; see comments after (5.78). Such equations are of the type in (5.91) considered in
Proposition 5.5, by assumptions (5.78). Therefore in proving Proposition 7.1 we can
assume that Du is locally bounded in Br .

7.1 Proposition 7.1, case p ≥ 2

We first discuss the case α < 1; at the end we give the modifications for the case α =
1. We take balls Bt � Bs as in the statement of Proposition 7.1; we can assume that
‖Du‖L∞(Bt ) ≥ 1. Next, we consider further concentric balls Bt � Bτ1 � Bτ2 � Bs ,
and a generic point x0 ∈ Bτ1 . By (5.80), with M ≡ ‖Du‖L∞(Bτ2 ), we apply Lemma
4.2 on Br0(x0) ≡ B(τ1−τ1)/8(x0) with h ≡ 1, κ0 ≡ 0, v ≡ Eμ(Du), f1 ≡ |Du| + 1,
M0 ≡ Ms(q−p)/2, M1 ≡ M(sq+p−b)/2, t ≡ 2, δ1 ≡ α, m1 ≡ 2q − 2p + b, θ1 ≡ 1. We
obtain

Eμ(Du(x0)) ≤ c‖Du‖
s(q−p)χ
2(χ−1)

L∞(Bτ2 )

(∫
−
Br0 (x0)

[Eμ(Du)]2 dx

)1/2

+ c‖Du‖
s(q−p)
2(χ−1)

+ sq+p−b
2

L∞(Bτ2 ) P2q−2p+b,1
2,α (|Du| + 1;x0, (τ2 − τ1)/4) , (7.4)
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where χ ≡ χ(β) = n/(n − 2β) for every β < α/(1 + α), b ∈ (0,p] and c ≡
c(data, β). Using (6.6), after a few manipulations we conclude with

‖Du‖L∞(Bτ1 ) ≤ c

(τ1 − τ2)
n

2p

‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ 1
2

L∞(Bτ2 )

(∫
Bs

(|Du| + 1)p dx

) 1
2p

+ c‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s+1
2 − b

2p

L∞(Bτ2 )

· ‖P2q−2p+b,1
2,α (|Du| + 1; ·, (τ2 − τ1)/4)‖1/p

L∞(Bτ1 )
+ c . (7.5)

The highest power of ‖Du‖L∞(Bτ2 ) appears in the second line of the above display;
this follows by b ≤ p and s ≥ 1. We now want to show that there exist β < α/(1 +α)

and b ≡ b(β) ∈ (0,p] such that
(

q

p
− 1

)
sχ

2(χ − 1)
+ s+ 1

2
− b

2p
=
(

q

p
− 1

)
sn

4β
+ s+ 1

2
− b

2p
< 1 (7.6)

and the L∞-norm of P2q−2p+b,1
2,α appearing in (7.5) can be estimated by the Lp-norm

of Du. In terms of q/p, condition (7.6) translates into

q

p
< 1 +

(
1 − s+ b

p

)
2β

sn
. (7.7)

For the P2q−2p+b,1
2,α -term, we start checking that condition (4.7) is satisfied, that is

nθ

tδ
≡ n

2α
> 1 . (7.8)

This is the point where we use that α < 1, as the above quantity turns out to be equal
to one when α = 1 and n = 2. As mentioned above, the case α = 1 will be treated
later. Now we get an L∞-bound for P2q−2p+b,1. First, thanks to (7.8), we apply (4.8)
to get

‖P2q−2p+b,1
2,α (|Du| + 1; ·, (τ2 − τ1)/4)‖L∞(Bτ1 ) ≤ c‖|Du| + 1‖q−p+b/2

Lp(Bs)
(7.9)

where c ≡ c(n,p, q,α,b), and provided

mnθ

tδ
≡ n(2q − 2p + b)

2α
< p ⇐⇒ q

p
< 1 + α

n
− b

2p
. (7.10)

This provides a second condition on (p, q), the one in (7.7) being the first. As speci-
fied in the statement of Proposition 5.4, (7.5) and (7.9) remain valid for any choice of
b ∈ (0,p] satisfying (7.10). We optimize b matching both (7.7) and (7.10); this leads
to equalize the two right-hand sides in such inequalities and therefore to the choice

b ≡ b(β) = 2p[sα + 2β(s− 1)]
sn + 4β

> 0 . (7.11)
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Notice that

b <
2pα

n
⇐⇒ s< 1 + 2α

n
. (7.12)

By (7.3), that we use with C = 2, we find

(7.1) =⇒ q

p
< 1 + 4α2

9n2
=⇒ s< 1 + α

2n
≤ 5

4
(7.13)

so that (7.12) is satisfied, in turn implying b ≤ p; the above conditions are indepen-
dent of β although b is not (indeed β �→ b(β) is a decreasing function provided the
last inequality in (7.12) holds). Therefore b in (7.11) is an admissible value in (5.80)
and (7.5), for any β < α/(1 + α), and the (equal) right-hand sides of (7.7) and (7.10)
are larger than one. Plugging b from (7.11) in (7.10) yields

q

p
< 1 + 2β

n

[
2α − n(s− 1)

sn + 4β

]
(7.14)

and the right-hand side is an increasing function of β by (7.13). Formally taking the
limiting value β = α/(1 + α) in (7.14), we come up with

q

p
< 1 + 2α

(1 + α)n

[
2α − n(s− 1)

sn + 4α/(1 + α)

]
=: 1 +R1(n,p, q,α)

α2

n2
. (7.15)

By (7.13) it turns out that R1(n,p, q,α) > 2/3 > 4/9 = k, so that (7.15) is again
implied by (7.1). In conclusion, assuming (7.1) leads to find β < α/(1 + α), close
enough to α/(1+α), such that (7.14) and therefore both (7.6) and (7.10) hold with the
specific choice of b made in (7.11). As a consequence, (7.9) holds too and inserting
this one in (7.5), and applying Young’s inequality thanks to (7.6), we arrive at

‖Du‖L∞(Bτ1 ) ≤ 1

2
‖Du‖L∞(Bτ2 ) + c

(τ2 − τ1)χ1

[‖Du‖Lp(Bs) + 1
]χ2 ,

with c ≡ c(data) and χ1, χ2 ≡ χ1, χ2(n,p, q,α). Using Lemma 3.2 with h(τ) ≡
‖Du‖L∞(Bτ ) (for this recall that Du is locally bounded in Br by Remark 11) leads
to (7.2), which is now proved when α < 1. It remains to fix the case α = 1, which in
view of (7.8) is not covered only when n = 2 (otherwise the same proof above works).
Observe that (5.80) still holds replacing �2α , by �2α̃ for any α̃ < 1. In particular, we
take α̃ < 1 such that q/p < 1 + kα̃2/n2. We can now argue as in the case α < 1 and
the proof of Proposition 7.1 is complete when p ≥ 2.

7.2 Proposition 7.1, case p < 2

The proof is similar to that for the case p ≥ 2, but we are going to use (5.81)
instead of (5.80). With M ≡ ‖Du‖L∞(Bτ2 ), we apply Lemma 4.2 on Br0(x0) ≡
B(τ1−τ1)/8(x0) with h ≡ 1, κ0 ≡ 0, v ≡ Eμ(Du), f1 ≡ |Du| + 1, M0 ≡ Ms(q−p)/2,
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M1 ≡ M [(s+1)q−b/p]/2, t ≡ 2, δ1 ≡ α/2, m1 ≡ q − p + b and θ1 ≡ 1/p. As in the
case p ≥ 2, we obtain

‖Du‖L∞(Bτ1 ) ≤ c

(τ1 − τ2)
n

2p

‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ 1
2

L∞(Bτ2 )

(∫
Bs

(|Du| + 1)p dx

) 1
2p

+ c‖Du‖
(

q
p
−1
)

sχ
2(χ−1)

+ s
2 + q−b/p

2p

L∞(Bτ2 )

· ‖Pq−p+b,1/p

2,α/2 (|Du| + 1; ·, (τ2 − τ1)/4)‖1/p

L∞(Bτ1 ) + c. (7.16)

Reabsorbing the ‖Du‖L∞ -terms and estimating the Pq−p+b,1/p

2,α/2 -ones in (7.16) (via
(4.8)), leads to impose the conditions

(
q

p
− 1

)
sn

4β
+ s

2
+ q − b/p

2p
< 1 and

n(q − p + b)

pα
< p (7.17)

for some b ∈ (0,p] to be chosen. These parallel (7.7) and (7.10), respectively, from
the case p ≥ 2. The potential Pq−p+b,1/p

2,α/2 can be used here as we have nθ/(tδ) =
n/(pα) > 1 as now p < 2, so that Lemma 4.1 applies and yields

‖Pq−p+b,1/p

2,α/2 (|Du| + 1; ·, (τ2 − τ1)/4)‖L∞(Bτ1 ) ≤ c‖Du‖
q−p+b

2p

Lp(Bs)
+ c . (7.18)

Arguing as for the case p ≥ 2 in Sect. 7.1, relations in (7.17) translate into

q

p
< 1 +

(
1 − s+ b

p2

)
2β

sn + 2β
and

q

p
< 1 + αp

n
− b

p
(7.19)

and this leads to consider

b ≡ b(β) = p2

n

[
pα(sn + 2β) + 2βn(s− 1)

p(sn + 2β) + 2β

]
> 0 . (7.20)

By (7.3), now used with C = 3, we have

(7.1) =⇒ q

p
< 1 + 4α2

13n2
=⇒ s < 1 + α

3n
≤ 7

6
. (7.21)

This time the last inequality implies b ≤ αp2/n ≤ p (as p ≤ 2), which is in fact
equivalent to s < 1 + α/n, so that the choice in (7.20) is admissible. This works
whenever β < α/(2 + α). Using b from (7.20) in (7.19), and formally taking β =
α/(2 + α), we find

q

p
< 1 + 2αp

n(2 + α)

[
α − n(s− 1)

snp + 2α(p + 1)/(2 + α)

]
=: 1 +R2(n,p, q,α)

α2

n2
.

Using (7.21) yields R2(n,p, q,α) > 8/33 = k, and we can conclude as in the case
p ≥ 2.
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7.3 Proof of Theorem 4

Once (7.2) is secured, we can modify the arguments of Sects. 6.2-6.3 to get (2.20). In
Sect. 6.2, replace the ball Br by �; by the definition in (2.18) and the q-growth of the
integrand F(·), we find a sequence {ũε} ⊂ W 1,∞(�) such that uε ⇀ u in W 1,p(�)

and Fx(ũε,�) = Fx(u,�) + o(ε,�). The sequence {ũε} will play the role of the
similarly denoted one defined in (6.28). We can proceed as in Sect. 6.2, where now it
is F(x, y, z) ≡ F(x, z). All the terms involving f (·) and h(·), including hε(·) defined
in (6.32), are absent. This time we define

⎧⎪⎪⎨
⎪⎪⎩

Fε,δ(x, z) := (F(x, ·) ∗ φδ)(z) + σε[Hμδ(z)]q/2

σε := (1 + ε−1 + ‖Dũε‖2q

Lq(�))
−1

Fx,ε,δ(w,�) :=
∫

�

Fε,δ(x,Dw)dx

and uε,δ as the unique minimizer of w �→ Fx,ε,δ(w,�) in the Dirichlet class
ũε + W

1,q

0 (�). We note that the integrand z �→ Fε,δ(x, z)(≡ Fε,δ(z)) satisfies (6.43),
uniformly with respect to x ∈ �, for a suitable choice of the parameters ν̃, L̃ as
in Sect. 2.1. We can now repeat the arguments of Sects. 6.2-6.3 with the follow-
ing replacements. Instead of (6.42) we have Fx,ε,δ(ũε,�) = Fx(u,�) + o(ε,�) +
oε(δ,�), and (6.46) becomes

‖Duε,δ‖p

Lp(�) + σε‖Duε,δ‖q

Lq(�) ≤ cFx(u,�) + o(ε,�) + oε(δ,�) . (7.22)

With �0 � � being an open subset as in (2.20), we fix an increasing family of in-
vading open subset {�τ }τ>0, such that �τ → � as τ → ∞ and �0 ⊂ �τ � � for
every τ . Using (7.22) in combination with (7.2), and a covering argument, we find
the analog of (6.47)

‖Duε,δ‖L∞(�τ )

≤ c(data)

[dist(�τ , ∂�)]χ1

[
Fx(u,�) + 1

]χ2 + o(ε,�) + oε(δ,�)

[dist(�τ , ∂�)]χ1
, (7.23)

that holds for every �τ � �. In comparison to (6.47), here we use � in place of
Br and with �τ in place of Bτ . We proceed as in Sect. 6.3, with uε,δ ⇀ uε ∈
ũε + W

1,q

0 (�) weakly in W 1,q(�) and weakly∗ in W 1,∞(�0); then uε ⇀ v ∈
u + W

1,p

0 (�) weakly in W 1,p(�) and weakly∗ in W 1,∞(�0). As in (6.54) we get
Fx(uε,�τ ) ≤ lim infδ Fx,ε,δ(uε,δ,�). Letting τ → ∞ in this last inequality yields
Fx(uε,�) ≤ lim infδ Fx,ε,δ(uε,δ,�) ≤ lim infδ Fx,ε,δ(ũε,�) = Fx(u,�) + o(ε,�).
Then by the definition in (2.18) we have Fx(v,�) ≤ lim infε Fx(uε,�) ≤ Fx(u,�)

and therefore Fx(u,�) = Fx(v,�) by minimality of u. The equality u ≡ v is then
implied by the strict convexity of w �→ Fx(w,�), see [24, pp. 47-50]. This settles
the local boundedness of Du as (2.20) follows taking τ = 0, and letting first δ → 0
and then ε → 0 in (7.23). For its local Hölder continuity, we revisit the arguments of
Sect. 6.4. Using estimate (7.2) instead of (6.18), we derive a suitable analog of (6.62),
where the constant M in (6.62) is now of the form M = cr−χ1 [Fx(u,�) + 1]χ2 ,
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where r := min{dist(�0, ∂�)/4,1}. The integrand F0(·) and v are again defined via
(6.64) with the current definition of Fε,δ(·), so that the properties in (6.66)-(6.67) are
still in force. Finally, proceeding as in the proof of (5.86) and (5.88), we find

∫
−
Bτ

|Vμδ (Duε,δ) − Vμδ (Dv)|2 dx

≤ cτ 2α[MBr (ε, δ)]2q−p + c1pτα[MBr (ε, δ)]q+q/p−1 ≤ cε,δτ
α ,

that in fact replaces (6.69) in the present setting. After this, the rest of the proof
proceeds as in Sect. 6.3 almost unchanged and leads to (6.72) for a different Hölder
exponent α∗.

7.4 Proof of Corollary 3

By the discussion before Corollary 3 and (2.21), u is a minimizer of the functional
w �→Fx(w,Br) for every ball Br � �. Therefore Corollary 3 follows from Theorem
4 applied with � ≡ Br and then a standard covering argument. In particular, estimate
(2.22) follows directly from (2.20) by taking Bt � Br as �′ � � in Theorem 4, and
recalling that LFx(u,Br) = 0 means that Fx(u,Br) = Fx(u,Br).

7.5 Proof of Theorem 2

The integrand c(x)F (z) is of the type considered in Theorem 4. Indeed, by Lemma
3.4, the convexity of F(·) and (2.4)2 imply

|∂zF (z)| ≤ c(n,L)[Hμ(z)](q−1)/2 + c(n,L)[Hμ(z)](p−1)/2 ,

so that assumption (2.16)2 is verified. At this stage, it is sufficient to prove that
LSx(u,B) = 0 holds whenever B � � is a ball, and Theorem 2 would follow from
Corollary 3. For this, observe that the sequence {ũε} considered in (6.28), is such that
c(·)F (Dũε) → c(·)F (Du) in L1(B) by the convolution argument explained in Re-
mark 9. This implies that Sx(u,B) ≤ Sx(u,B) so that LSx(u,B) = 0 and the proof
is complete.

8 Theorem 3

Proposition 8.1 Let u ∈ W 1,q(Br) be a minimizer of the functional S(·,Br) in (1.9),
where Br � � and r ≤ 1, under assumptions (2.13), (5.68) and p > n. Then

‖Du‖L∞(Bt ) ≤ c

(s − t)χ1

[‖Du‖Lp(Bs) + ‖f ‖n/α,1/2;Bs
+ 1
]χ2 (8.1)

holds whenever Bt � Bs � Br are concentric balls, where c ≡ c(data), χ1, χ2 ≡
χ1, χ2(datae).
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Proof Here the setting is the one of Sect. 5.4. By the discussion after (5.6), this time
with F̃ (x, y, z) ≡ c(x, y)F (z), and the assumptions considered in Proposition 8.1, u

satisfies (5.7). This allows us to use that Du is bounded in Bs . As in Proposition 7.1,
we can assume that ‖Du‖L∞(Bt ) ≥ 1 and consider further concentric balls Bt � Bτ1 �
Bτ2 � Bs , x0 ∈ Bτ1 . By (5.69) with M ≡ ‖Du‖L∞(Bτ2 ), we apply Lemma 4.2 on
Br0(x0) ≡ B(τ1−τ1)/8(x0) with h ≡ 2, κ0 ≡ 0, v ≡ Eμ(Du), f1 ≡ |Du| + 1, f2 ≡ f ,
M0 ≡ Ms(q−p)/2, M1 ≡ M(sq+p+α−b)/2, M2 ≡ M(sq+α)/2, t ≡ 2, δ1 = δ2 ≡ α/2,
m1 ≡ q − p + b, m2 ≡ 1, θ1 = θ2 ≡ 1. Proceeding as for (7.4)-(7.5) leads to

‖Du‖L∞(Bτ1 ) ≤ c

(τ1 − τ2)
n

2p

‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ 1
2

L∞(Bτ2 )

(∫
Bs

(|Du| + 1)p dx

) 1
2p

+ c‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s+1
2 + α−b

2p

L∞(Bτ2 ) ‖Pq−p+b,1
2,α/2 (|Du| + 1; ·, (τ2 − τ1)/4)‖1/p

L∞(Bτ1 )

+ c‖Du‖
(

q
p

−1
)

sχ
2(χ−1)

+ s
2 + α

2p

L∞(Bτ2 ) ‖P1,1
2,α/2(f ; ·, (τ2 − τ1)/4)‖1/p

L∞(Bτ1 ) + c , (8.2)

where c ≡ c(data, β). Note that the highest power of ‖Du‖L∞(Bτ2 ) appears in the
second line of the above display since it is b ≤ p and s ≥ 1. As in Proposition 7.1,
recalling also condition (4.7) to apply Lemma 4.1 and estimate the terms involving
the potentials in (8.2) (observe that (4.7) is automatically satisfied since n ≥ 2), this
time we impose

(
q

p
− 1

)
sn

4β
+ s+ 1

2
+ α − b

2p
< 1 and

n(q − p + b)

α
< p , (8.3)

that is

q

p
< 1 +

(
1 − s+ b − α

p

)
2β

sn
and

q

p
< 1 + α

n
− b

p
, (8.4)

respectively. Equalizing the right-hand sides leads to consider

b ≡ b(β) = p(2β + α)(s− 1) + α(2β + p)

sn + 2β
. (8.5)

Now, note that

α

n
− b

p
= α

n
− 2β + α

sn + 2β
(s−1)− α(2β + p)

p(sn + 2β)
= 2αβ(1 − n/p)

n(sn + 2β)
− 2β(s− 1)

sn + 2β
. (8.6)

On the other hand, observe that

2β(s− 1)

sn + 2β
<

αβ(1 − n/p)

n(sn + 2β)
⇐⇒ s− 1 <

α(1 − n/p)

2n

(5.2)⇐⇒ q

p
< 1 + 2α(1 − n/p)

n[2(n + 2) + α(1 − n/p)] (8.7)

⇐= (2.13) .
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Using the first inequality in (8.7) in (8.6) yields

α

n
− b

p
>

αβ(1 − n/p)

n(sn + 2β)
> 0 (8.8)

that is b < pα/n < p, so that b in (8.5) is admissible in (5.69) and in (8.2), inde-
pendently of the value of β < α/(2 + α). Taking (8.4) and (8.8) into account, we
conclude that, in order to check that (8.4) holds for some β < α/(2 + α), it suffices
to verify

q

p
< 1 + αβ(1 − n/p)

n(sn + 2β)
. (8.9)

Note that the right-hand side of the above inequality is an increasing function of β .
By formally taking the limiting value β = α/(2 + α) here, we come to

q

p
< 1 + 1 − n/p

[s+ 2α/(n(2 + α))](2 + α)

α2

n2
=: 1 +R3(n,p, q,α)

(
1 − n

p

)
α2

n2
.

(8.10)
Noting that it is s < 5/4 by the second inequality in display (8.7), we infer the lower
bound R3(n,p, q,α) > 4/19 > 1/5, so that (8.10) is again implied by (2.13). We
deduce that we can find β < α/(2 + α) such that (8.9) and therefore (8.4) and (8.3)
are satisfied. Finally, thanks to the second inequality in (8.3) we can use (4.8), that
yields

‖Pq−p+b,1
2,α/2 (|Du| + 1; ·, (τ2 − τ1)/4)‖L∞(Bτ1 ) ≤ c‖|Du| + 1‖

q−p+b
2

Lp(Bs)
.

Using this last inequality and (6.7) in (8.2), we can now conclude as for Proposition
7.1. �

Once the a priori estimate of Proposition 8.1 is available, we can proceed as for the
proof of the Theorems 1 and 5. Specifically, the proof of (2.14) is totally analogous
to the one of (2.8), via the approximation arguments of Sects. 6.2-6.3 applied with
the new definition

Fε,δ(x, y, z) := c(x, y)
[
(F ∗ φδ)(z) + σε[Hμδ(z)]q/2

]
(6.31)2= c(x, y)Fε,δ(z) .

This guarantees that the approximating integrands still preserve the product structure
used in Proposition 5.3 and fit the assumptions considered there. In particular, Fε,δ(·)
satisfies (6.43) and therefore conditions (5.68) are satisfied too. The convergence in
(6.42) still takes place by Remark 9. As for the local Hölder continuity of Du, we
proceed exactly as in Sect. 6.4, with (6.64) used with the current definition of Fε,δ(·).
In this case the analogs of (6.69)-(6.70) can be obtained estimating as in (5.77).

9 Theorem 6

Proposition 9.1 Let u ∈ W 1,q(Br) be a weak solution to (5.91), under assumptions
(2.26) with 0 < μ ≤ 2 and ν, L replaced by ν̃, L̃ (as in Sect. 2.1), and assume also
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(5.92). If (2.28) is in force, then (7.2) holds whenever Bt � Bs � Br are concentric
balls, where c ≡ c(data), χ1, χ2 ≡ χ1, χ2(datae).

Proof The setting of Proposition 9.1 is the one of Sect. 5.6 and by Remark 11 we
have that Du is locally bounded in Br ; in particular, the number t has been defined
in (5.95). Note that (2.28) implies (5.94) and therefore Proposition 5.5 can be used.
The proof closely follows the one of Proposition 7.1. We therefore confine ourselves
to give a sketch of it. First, we note that

q

p
≤ 1 + p − 1

p

α

2Cn
⇐⇒ q − 1

p − 1
≤ 1 + α

2Cn

whenever C ≥ 1. Using this, and the definition of t in (5.95), it is not difficult to see
that (keep Remark 6 in mind)

q

p
≤ 1 + p − 1

p

α2

4Cn2
=⇒ q

p
< 1 + α2

2Cn(n + 1)
=⇒ t < 1 + α

Cn
. (9.1)

Case p ≥ 2. We take C = 1 when p ≥ 2, so that the right-hand side inequality in
(9.1) is implied by (2.28). Proceeding as in Sect. 7.1 for the case p ≥ 2, but using
(5.96) instead of (5.80), we arrive at the following analog of (7.5):

‖Du‖L∞(Bτ1 ) ≤ c

(τ1 − τ2)
n

2p

‖Du‖
(

q
p

−1
)

tχ
χ−1 + 1

2

L∞(Bτ2 )

(∫
Bs

(|Du| + 1)p dx

) 1
2p

+ c‖Du‖
(

q
p

−1
)

tχ
χ−1 + t+1

2 − b
2p

L∞(Bτ2 )

· ‖P2q−2p+b,1
2,α (|Du| + 1; ·, (τ2 − τ1)/4)‖1/p

L∞(Bτ1 ) + c ,

valid for every b ∈ (0,p], and this leads to consider the conditions

q

p
< 1 +

(
1 − t+ b

p

)
β

tn
and

q

p
< 1 + α

n
− b

2p
. (9.2)

As done in Proposition 7.1, we can restrict to the case α < 1. We choose

b ≡ b(β) = 2p[tα + β(t− 1)]
tn + 2β

,

which is admissible by (9.1) (with C = 1) for every β < α/(1 + α) (note that b <

2pα/n iff t< 1+2α/n, which is in turn implied by (9.1)). Using such b in (9.2), and
formally taking β = α/(1 + α), we get

q

p
< 1 + α

(1 + α)n

[
2α − n(t− 1)

tn + 2α/(1 + α)

]
=: 1 +R4(n,p, q,α)

α2

n2
. (9.3)

By (9.1) it is R4(n,p, q,α) > 1/4, so that (9.3) is implied by (2.28). We can now
conclude as in Proposition 7.1, after (7.15).



1186 C. De Filippis, G. Mingione

Case 1 < p < 2. We use (9.1) with C = 2, and (5.97) gives this time

‖Du‖L∞(Bτ1 ) ≤ c

(τ1 − τ2)
n

2p

‖Du‖
(

q
p

−1
)

tχ
χ−1 + 1

2

L∞(Bτ2 )

(∫
Bs

(|Du| + 1)p dx

) 1
2p

+ c‖Du‖
(

q
p

−1
)

tχ
χ−1 + t

2 + q−b/p
2p

L∞(Bτ2 )

· ‖Pp(q−p)/(p−1)+b,1/p

2,α/2 (|Du| + 1; ·, (τ2 − τ1)/4)‖1/p

L∞(Bτ1 )
+ c ,

as an analog of (7.16). Therefore we consider the conditions
(

q

p
− 1

)
tn

2β
+ t

2
+ q − b/p

2p
< 1 and

n

pα

[
p(q − 1)

p − 1
− p + b

]
< p ,

that are equivalent to
⎧⎪⎪⎨
⎪⎪⎩

q

p
< 1 +

(
1 − t+ b

p2

)
β

tn + β
q − 1

p − 1
< 1 + αp

n
− b

p
⇐⇒ q

p
< 1 +

(
pα

n
− b

p

)
p − 1

p
,

(9.4)

respectively. Note that we can apply Lemma 4.1 as nθ/(tδ) = n/(pα) > 1 as now
it is p < 2. We take b = 14p2α/(15n) ≤ p; using this value in (9.4), and (9.1) with
C = 2, makes the two inequalities in (9.4) implied by (2.28) provided we take β close
enough to α/(2 + α), and we conclude again as in Proposition 7.1. �

Proposition 9.2 Let u ∈ W 1,q(Br) be a weak solution to (5.91), under assumptions
(2.26) with 0 < μ ≤ 2 and ν, L replaced by ν̃, L̃ (as in Sect. 2.1), and assume also
(5.92). Then

[Du]α̃,p;Bt
≤ c

(s − t)χ1

[‖Du‖Lq(Bs) + 1
]χ2 (9.5)

holds whenever Bt � Bs � Br are concentric balls and α̃ < min{1/p,1/2}α, where
c ≡ c(data) and χ1, χ2 ≡ χ1, χ2(datae).

Proof In the case of minimizers, (9.5) is hidden in [24, Proof of Theorem 4]. The
arguments in [24] rely on the use of the Euler-Lagrange equation and they work in
the case of the general equations considered here. Indeed, from [24, (51)] we have
that ∫

Bt

|τhVμ(Du)|2 dx ≤ c|h|α
(s − t)θ

∫
Bs

(|Du| + 1)q dx (9.6)

holds whenever Bt � Bs � Br are concentric balls and h ∈ R
n such that |h| ≤ (s −

t)/4, with c ≡ c(data) and θ ≡ θ(datae). Using (9.6) with (3.13), we obtain
∫

Bt

|τhDu|p dx ≤ c

∫
Bt

|τhVμ(Du)|2 dx + c1p

∫
Bt

|τhVμ(Du)|p(|Du| + 1)p(2−p)/2 dx
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≤ c

∫
Bt

|τhVμ(Du)|2 dx

+ c1p

(∫
Bt

|τhVμ(Du)|2 dx

) p
2
(∫

Bt

(|Du| + 1)p dx

) 2−p
2

≤ c|h|min{1,p/2}α

(s − t)θ

∫
Bs

(|Du| + 1)q dx

for new constants c ≡ c(data), θ ≡ θ(datae). The information in the last display
and Lemma 3.1 now imply (9.5). Note that (9.5) does not require any upper bound
on q/p as on the right-hand side there appears the Lq -norm of Du. �

We now complete the proof of Theorem 6. With the same notation on sequences
{ε} and mollifiers {φs}0<s≤1 of Sect. 6.2 (defined after (6.27)), we set

Aε(x, z) := (A(x, ·) ∗ φε) (z) + ε[Hμε(z)](q−2)/2z , (x, z) ∈ � ×R
n , (9.7)

compare with (6.29). We then have

Lemma 9.1 Under assumptions (2.26), let M ≥ 1; for any (x, z) ∈ � ×R
n

{
|Aε(x, z) − A(x, z)| ≤ cεmin{1,p−1} holds when |z| ≤ M

|Aε(x, z)| ≤ c[H1(z)](q−1)/2 ,
(9.8)

where c is again independent of ε.

Proof We have, using the very definition in (9.7) and (2.26)1,

|Aε(x, z) − A(x, z)| ≤ cε

∫
B1

∫ 1

0
|∂zA(x, z + tελ)|dt φ(λ)dλ + cεMq−1

≤ cε

∫
B1

∫ 1

0
[Hμ(z + tελ)] q−2

2 dt φ(λ)dλ

+cε

∫
B1

∫ 1

0
[Hμ(z + tελ)] p−2

2 dt φ(λ)dλ + cεMq−1

(3.17)≤ cε

∫
B1

(|z + ελ|2 + |z|2 + μ2)
q−2

2 φ(λ)dλ

+cε

∫
B1

(|z + ελ|2 + |z|2 + μ2)
p−2

2 φ(λ)dλ + cεMq−1

=: cεIq(z) + cεIp(z) + cεMq−1

≤ cεmin{1,p−1}c(M) .

It remains to justify the estimate in the last line. We treat εIq(z), the estimate for
εIp(z) being completely similar. When q ≥ 2, we find εIq(z) ≤ cε[Hμε(z)](q−2)/2 ≤
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cεMq−2 ≤ εc(M). When q < 2, instead we further distinguish two cases. The first is
when |z| ≥ ε; in this case it is εIq(z) ≤ cε|z|q−2 ≤ cεq−1 ≤ cεp−1. Finally, if q < 2
and |z| ≤ ε, then we have, by changing variables

εIq(z) ≤ cε

∫
B1

|z + ελ|q−2 dλ ≤ cε1−n

∫
B2ε

|λ|q−2 dλ ≤ cεq−1 ≤ cεp−1 .

We have proved (9.8)1, while (9.8)2 trivially follows from (2.26)1. �

To proceed with the proof of Theorem 6, we define uε as the (unique) solution
to divAε(x,Duε) = 0 in � such that uε ∈ u0 + W

1,q

0 (�). For every ε, the vector
field Aε(·) satisfies the assumptions required on A(·) in Proposition 5.5. In particular,
(2.26) are satisfied with μ replaced by με := μ + ε > 0, and for new constants 0 <

ν̃ ≤ L̃ as in Sect. 2.1, replacing ν, L, and independent of ε. This can be easily proved
using the arguments of [20, Sect. 4.5]. Testing divAε(x,Duε) = 0 by uε − u0, and
using (5.93), yields the uniform bound

‖Duε‖Lp(�) ≤ c‖|Du0| + 1‖(q−1)/(p−1)

Lp(q−1)/(p−1)(�)
(9.9)

where c ≡ c(data); note that p(q − 1)/(p − 1) ≥ q and this allows for testing.
Combining this with (7.2), we get the local estimate

‖Duε‖L∞(B/2) ≤ c

|B|χ1

(∫
�

(|Du0| + 1)
p(q−1)
p−1 dx + 1

)χ2

. (9.10)

This holds whenever B � � is a ball, where c ≡ c(data) ≥ 1, χ1, χ2 ≡ χ1,
χ2(datae) ≥ 1 are suitable constants otherwise independent of ε (as usual, these are
not necessarily the same appearing in (7.2)). By (9.9) and (9.10), up to not relabelled
subsequences and a covering argument we can assume that uε ⇀ u in W 1,p(�), for
some u ∈ u0 +W

1,p

0 (�), and that {Duε} is bounded in L∞
loc(�,Rn). This and Propo-

sition 9.2 yield a uniform bound on {Duε} in W
α̃,p

loc (�,Rn). With �0 � � being
an arbitrary open subset, again up to not relabelled subsequences, we can use the
compact embedding properties of Wα̃,p to assume that Duε → Du in Lγ (�0,R

n)

for some γ < np/(n − pα̃), and a.e. Using this and the uniform bound of {Duε}
in L∞

loc, by interpolation it then follows that Duε → Du in Lγ (�0,R
n) for every

γ < ∞. This and the fact that �0 is arbitrary imply that u is a distributional solu-
tion to (2.27)1 by Lemma 9.1 and dominated convergence. Letting ε → 0 in (9.10)
leads to (2.29) via coverings. Finally, the local Hölder continuity of Du follows by
the methods employed in Sect. 6.4. Note that in defining the comparison functions v

in (6.64), now we take v as the solution to divAε(xc,Dv) = 0 such that v ≡ uε on
Bτ . We remark that the analog of (6.62) is obtained via (9.10), and the one of (6.65)
follows as in (5.99). Finally, the analog of (6.69) follows estimating as for (5.86) and
(5.101).
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10 Corollaries 1, 2 and 5

10.1 Proof of Corollary 1

Under the assumptions of Corollary 1, once Du is known to be locally Hölder contin-
uous, its Hölder exponent can be upgraded up to the maximal one via a combination
of a few classical regularity arguments and estimates for nonuniformly elliptic prob-
lems. Here we give the details. Since the result is local in nature, we can assume
that

‖Du‖L∞(�) + [Du]0,β;� =: M < ∞ (10.1)

and that M ≥ 1; here β is the Hölder exponent of Du provided by Theorem 2.
We can also assume that β < α, otherwise there is nothing to prove. In the fol-
lowing, the constants denoted by c will depend on data; additional dependen-
cies will be emphasized in parentheses. We take a ball Br ≡ Br(xc) � � such that
r ≤ 1, denote A(x, z) = c(x)∂zF (z) and Ar(z) := A(xc, z) + rα[Hμ(z)](q−2)/2z.

Since Ar(·) is q-monotone, we can take v ∈ u + W
1,q

0 (Br) such that divAr(Dv) = 0
in Br . Note that this is the same that requiring that v minimizes the functional
w �→ ∫

Br
Fr(xc,Dw)dx in the Dirichlet class u + W

1,q

0 (Br), where Fr(x, z) :=
c(x)F (z) + rα[Hμ(z)]q/2/q . As in the proof of (5.86) in Proposition 5.4, we find

∫
−
Br

|Vμ(Du) − Vμ(Dv)|2 dx ≤ cM2q−pr2α . (10.2)

Using (3.12) in the above inequality, and recalling that p ≥ 2 and μ > 0, yields
∫
−
Br

|Du − Dv|2 dx ≤ cμ2−pM2q−pr2α . (10.3)

This last inequality and (10.1) gives
∫
−
Br

|Dv − (Du)Br |2 dx ≤ c(μ,M)r2β . (10.4)

By μ > 0, standard regularity theory (see also Lemmas 5.1 and 5.3) give Dv ∈
L∞

loc(Br) ∩ W
1,2
loc (Br). Note that (10.1) and (10.2) imply ‖Dv‖p

Lp(Br )
≤ c(M)rn. This

and (5.24) give

‖Dv‖L∞(Br/2) ≤ c(M) . (10.5)

Moreover, every component v ≡ Dsv, s ∈ {1, . . . , n} is an energy solution to the
linear elliptic equation

div (A(x)Dv) = 0, [A(x)]ij := ∂zj
Ai

r (xc,Dv(x)) = ∂zizj
Fr(xc,Dv(x)) .

Again by μ > 0 and thanks to (10.5), we find λ ≡ λ(data,μ,M) > 0, independent
of r , such that λId ≤ A(x) ≤ (1/λ)Id holds for a.e. x ∈ Br/2. This allows to apply
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De Giorgi-Nash-Moser theory, that yields β0 ≡ β0(data,μ,M) ∈ (0,1), and c ≡
c(data,μ,M) ≥ 1, such that

r2−n‖DDsv‖2
L2(Br/4)

+ r2β0 [Dsv]2
0,β0;Br/4

≤ c

∫
−
Br/2

|Dsv − a|2 dx (10.6)

holds for every a ∈ R and s ∈ {1, . . . , n}. Note that we have also incorporated in
(10.6) the standard Caccioppoli inequality for linear elliptic equations with measur-
able coefficients [34, Theorem 6.5]. As there is no loss of generality in assuming that
β0 ≤ β , choosing a ≡ (Dsu)Br and using (10.4) in (10.6), yields [Dv]0,β0;Br/4 ≤ c∗ ≡
c∗(data,μ,M). We now denote by ω(·) the modulus of continuity of ∂zAr(xc, ·) on
BM . This is independent of r and of the point xc. Recalling the definition of A(·), we
therefore have

|A(x1) −A(x2)| ≤ ω(c∗|x1 − x2|β0) =: ω̃(|x1 − x2|)
whenever x1, x2 ∈ Br/4, so that the entries A(·) are continuous, with a modulus of
continuity that depends in a quantitative way on data, μ and M . The above argu-
ments apply for every s ∈ {1, . . . , n}, therefore Campanato’s perturbation theory and
(10.6), now imply

∫
B�

|D2v|2 dx ≤ c

r2

[(�

r

)n + [ω̃(r)]2
]∫

Br

|Dv − (Du)Br |2 dx

holds whenever � ≤ r/4, where c ≡ c(data,μ,M); here we have also used [34,
(10.42)]. Poincaré inequality now gives, this time whenever � ≤ r

∫
B�

|Dv − (Dv)B� |2 dx

≤ c

[(�

r

)n+2 +
(�

r

)2 [ω̃(r)]2
]∫

Br

|Dv − (Du)Br |2 dx . (10.7)

Using (10.7) in combination with (10.3), and a standard comparison argument, we
conclude with
∫

B�

|Du − (Du)B� |2 dx ≤ c

[(�

r

)n+2 + [ω̃(r)]2
]∫

Br

|Du − (Du)Br |2 dx + crn+2α

again for every � ≤ r , where c ≡ c(data,μ,M). Since

h(�) := ‖Du − (Du)B�‖2
L2(B�)

is non-decreasing, we are in position to use Lemma 3.3. It follows that there exists r0
depending on data, μ, M and on the local modulus of continuity of ∂zzF (·), such
that

∫
B�

|Du − (Du)B� |2 dx ≤ c�n+2α
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holds provided � ≤ r0, where c depends on data, μ, M and the modulus of continu-
ity of ∂zzF (·). At this stage, the local C1,α continuity of Du follows from Campanato-
Meyers integral characterization of Hölder continuity. This completes the proof of
Corollary 1.

10.2 Proof of Corollary 2

The proof is a modification of the one for Corollary 1, and we keep the nota-
tion used there. Without loss of generality we can assume that ‖f ‖L∞(�) ≤ 1

and β < α/2. This time we define v ∈ u + W
1,q

0 (Br) as the unique minimizer
of w �→ ∫

Br
Fr(Dw)dx in its Dirichlet class, where Fr(z) := c(xc, u(xc))F (z) +

rα[Hμ(z)]q/2. We proceed as for (5.73)-(5.77) (with 8|h|β0 ≡ r and � ≡ 1), getting
∫

Br

|Vμ(Du) − Vμ(Dv)|2 dx ≤ c

∫
Br

[Fr(Du) − Fr(Dv)] dx

≤ c

∫
Br

c(xc, u(xc))[F(Du) − F(Dv)]dx + crα

∫
Br

[Hμ(Du)]q/2 dx

≤ c

∫
Br

c(xc, u(xc))[F(Du) − F(Dv)]dx + cMqrn+α

≤ cMq+αrn+α + cMqrn+α ≤ c(M)rn+α .

In turn, via (3.12) this implies
∫

Br

|Du − Dv|2 dx ≤ c(μ,M)rn+α .

These estimates are the counterparts of (10.2) and (10.3) and from this point on the
proof develops as in Corollary 1, replacing α by α/2 everywhere.

10.3 Proof of Corollary 5

Let u be a distributional solution to divA(x,Du) = 0, satisfying (10.1), and under
the assumptions of Corollary 5. It is easy to see that the proof of Corollary 1 applies
verbatim to this situation, as it does not use the minimality of u beyond the fact that
u solves the Euler-Lagrange equation. Indeed, up to passing to inner domains of �,
we can assume that ∂zA(·) is uniformly continuous on � × BM , so that we can find
a modulus of continuity of z �→ ∂zA(xc, z), which is independent of the chosen point
xc. We conclude that Corollary 5 follows from Theorem 6 (used to get (10.1) up to
passing to smaller open subsets).

Remark 12 When p < 2 it is still possible to get a quantitative information on the gra-
dient Hölder exponent of minima and solutions. For this, we shall confine ourselves
to the case of Corollary 1, where, assuming this time that p < 2, we can still prove
that Du ∈ C

0,α/2
loc . Quantitative results in the remaining cases can be obtained in a

similar way. We give the necessary modifications to the proof of Corollary 1, from
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which we keep the notation. Proceeding this time as in the proof of (5.88), we have
the analog of (10.2), i.e.,

∫
−
Br

|Vμ(Du) − Vμ(Dv)|2 dx ≤ cMq(1+1/p)−1rα . (10.8)

Using Lemma 5.3 and (5.25), exactly as in the derivation of (5.42), we find
‖Dv‖L∞(Br/2) ≤ cMs where c ≡ c̃(n,p, q, ν,L). Using (3.12), we get

∫
−
Br/2

|Du − Dv|2 dx ≤ c

∫
−
Br/2

(|Du|2 + |Dv|2 + 1)(2−p)/2|Vμ(Du) − Vμ(Dv)|2 dx

≤ cM(2−p)s

∫
−
Br/2

|Vμ(Du) − Vμ(Dv)|2 dx .

Connecting this last inequality with (10.8) finally yields the analog of (10.3), i.e.,
∫
−
Br/2

|Du − Dv|2 dx ≤ cM(2−p)s+q(1+1/p)−1rα ≡ c(M)rα

where c(M) also depends on data. The crucial difference with (10.3) is that α has
been replaced by α/2. With this last inequality we finally come also to the analog of
(10.4), that is

‖Dv − (Du)Br/2‖2
L2(Br/2)

≤ crn+β

with c ≡ c(data,M). From this point on one can proceed exactly as in the case
p ≥ 2.
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