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Abstract
The celebrated Pólya’s conjecture (1954) in spectral geometry states that the eigen-
value counting functions of the Dirichlet and Neumann Laplacian on a bounded Eu-
clidean domain can be estimated from above and below, respectively, by the leading
term of Weyl’s asymptotics. Pólya’s conjecture is known to be true for domains which
tile Euclidean space, and, in addition, for some special domains in higher dimensions.
In this paper, we prove Pólya’s conjecture for the disk, making it the first non-tiling
planar domain for which the conjecture is verified. We also confirm Pólya’s conjec-
ture for arbitrary planar sectors, and, in the Dirichlet case, for balls of any dimension.
Along the way, we develop the known links between the spectral problems in the disk
and certain lattice counting problems. A key novel ingredient is the observation, made
in recent work of the last named author, that the corresponding eigenvalue and lattice
counting functions are related not only asymptotically, but in fact satisfy certain uni-
form bounds. Our proofs are purely analytic, except for a rigorous computer-assisted
argument needed to cover the short interval of values of the spectral parameter in the
case of the Neumann problem in the disk.
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1 Weyl’s law and Pólya’s conjecture

Let � ⊂ R
d be a bounded domain. Consider the Dirichlet eigenvalue problem for the

Laplacian

−� := −
d∑

j=1

∂2

∂x2
j

in �:

−�u = λu in �,

u = 0 on ∂�.
(1.1)

It is well known that the spectrum of (1.1) is discrete and consists of isolated eigen-
values of finite multiplicity accumulating to +∞,

0 < λ1(�) ≤ λ2(�) ≤ · · · ≤ λn(�) ≤ . . . ,

which we enumerate with account of multiplicities.
Similarly, assuming additionally that ∂� is Lipschitz, consider the Neumann

eigenvalue problem

−�u = μu in �,

∂nu = 0 on ∂�,
(1.2)

where ∂nu = 〈∇u,n〉|∂� denotes the normal derivative of u with respect to the exte-
rior unit normal n on the boundary. The spectrum of (1.2) again consists of isolated
eigenvalues of finite multiplicity accumulating to +∞,

0 = μ1(�) ≤ μ2(�) ≤ · · · ≤ μn(�) ≤ . . . ,

enumerated with account of multiplicities.
Let, for λ ∈ R,

N D
� (λ) := #

{
n : λn(�) ≤ λ2

}
and N N

� (λ) := #
{
n : μn(�) ≤ λ2

}
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denote the counting functions1 of the Dirichlet and Neumann eigenvalue problems on
�.2 It follows from the variational principles for (1.1) and (1.2) that

N D
� (λ) ≤ N N

� (λ)

for any λ ≥ 0.3

Under the assumptions stated above, the leading term asymptotics of the counting
functions is given by Weyl’s law [41],

N�(λ) = Cd |�|dλd + R(λ), (1.3)

where N�(λ) denotes either N D
� (λ) or N N

� (λ), | · |d denotes the d-dimensional
volume, R(λ) = o

(
λd

)
as λ → +∞, and

Cd := 1

(4π)
d
2 �

(
d
2 + 1

)

is the so-called Weyl constant. We refer to [38] for a historical review, as well as
numerous generalisations and improvements.

H. Weyl himself conjectured [42] a sharper version of (1.3) taking into account
the boundary conditions: for � ⊂ R

d with a piecewise smooth boundary,

N�(λ) = Cd |�|dλd ± Cb,d |∂�|d−1λ
d−1 + o

(
λd−1

)
as λ → +∞, (1.4)

where the minus sign is taken for the Dirichlet boundary conditions and the plus sign
for the Neumann ones, and

Cb,d := 1

2d+1π
d−1

2 �
(

d+1
2

) .

We note that for planar domains (1.4) takes the particularly simple form

N�(λ) = Area(�)

4π
λ2 ± Length(∂�)

4π
λ + o (λ) . (1.5)

The two-term Weyl’s law (1.4) remains open in full generality. It has been proved
by V. Ivrii [20] under the condition that the set of periodic billiard trajectories in �

has measure zero. While this condition is conjectured to be satisfied for all Euclidean
domains, it has been verified only for a few classes, such as convex analytic domains
and polygons, see [38] and references therein. Specifically for a disk, it was proved
by N. Kuznetsov and B. Fedosov in [24].

1Strictly speaking, we are counting the number of eigenvalues less than or equal to a given λ2, but such
normalisation will be convenient to us throughout.
2One can also define the counting functions using strict inequalities; this does not affect any of the results
below.
3This in fact can be improved to N D

� (λ) + 1 ≤ N N
� (λ), see [10] and [4].
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Assuming that the two-term Weyl’s asymptotics (1.4) holds for a domain � ⊂ R
d ,

we immediately obtain that for λ above some sufficiently large but unspecified value
�1 we have

N D
� (λ) ≤ Cd |�|dλd ≤ N N

� (λ). (1.6)

We refer also to [34] for results of the same kind in the Riemannian setting.
In 1954, G. Pólya [36] conjectured that the inequalities (1.6) hold for all λ ≥ 0.4

He later proved this conjecture in [37] for tiling domains �: that is, domains such
that Rd can be covered, up to a set of measure zero, by a disjoint union of copies of
�. In fact, in the Neumann case, some additional assumptions were imposed in [37]
that have been removed in [21]. It has been also shown that Pólya’s conjecture in the
Dirichlet case holds for a Cartesian product � = �1 × �2 ⊂ R

d1+d2 if it holds for
�1 ⊂ R

d1 with d1 ≥ 2, and �2 ⊂ R
d2 is bounded, see [26, Theorem 2.8]. For general

domains, somewhat weakened versions of (1.6) are known to hold as a consequence
of the so-called Berezin–Li–Yau inequalities: we have

(
d

d + 2

)d/2

N D
� (λ) ≤ Cd |�|dλd ≤ d + 2

2
N N

� (λ)

for all λ ≥ 0, see [31], [23], and [26]. We refer also to [32], [25], [9], and [8] for some
recent results on Pólya’s conjecture and further interesting links to other problems in
spectral geometry.

Remark 1.1 Pólya’s conjecture (1.6) can be equivalently restated as the inequalities
for the eigenvalues (instead of the counting functions),

μn+1(�) ≤ (Cd |�|d)−
2
d n

2
d ≤ λn(�) (1.7)

for all n ≥ 1. It is known that inequalities (1.7) hold for any domain in any dimension
for n = 1,2. In particular, for n = 1 this follows from the celebrated Faber–Krahn and
Szegő–Weinberger inequalities, and for n = 2 in the Dirichlet case from the Krahn–
Szego inequality, see [17]. For n = 2 in the Neumann case, we refer to [11], [1].
These are the only eigenvalues for which it is known in full generality. We refer also
to [7] for further results on the validity of the Dirichlet Pólya’s conjecture for low
eigenvalues in higher dimensions. �

Remarkably, since balls do not tile the space, Pólya’s conjecture has so far re-
mained open for Euclidean balls, including planar disks.5 Although all the eigenval-
ues of the Dirichlet and Neumann Laplacians on the unit disk are explicitly known in
terms of zeros of the Bessel functions or their derivatives, see §2 below, in each case
the spectrum is given by a two-parametric family, and rearranging it into a single
monotone sequence appears to be an unfeasible task.

4In fact, Pólya’s original conjecture was only for planar domains, and in a slightly different form.
5As stated in [27, p. 638]: “Remarkably this conjecture still remains open even for such a simple domain
as the disc, where the eigenvalues of the Dirichlet Laplacians could be calculated via the roots of Bessel
functions.” See also [6, p. 1366] and [28, p. 66].
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Let Bd ⊂ R
d be the d-dimensional unit ball. Then |Bd |d = πd/2

�
(

d
2 +1

) . Therefore the

leading Weyl’s term in (1.3) for Bd becomes

Wd(λ) := Cd |Bd |dλd = wdλd, wd = 1

2d
(
�
(

d
2 + 1

))2
, (1.8)

in particular

W2(λ) = λ2

4
and W3(λ) = 2λ3

9π
.

The main results of this paper address the validity of Pólya’s conjecture for disks
and balls. Namely, we prove the following results.

Theorem 1.2 The Dirichlet Pólya’s conjecture for the unit ball holds in any dimen-
sion d ≥ 2, that is we have

N D
Bd (λ) < Wd(λ)

for all λ > 0.

Our results in the Neumann case are restricted to the case d = 2. Higher-
dimensional Neumann problems are harder, and we intend to treat them in a sub-
sequent paper.

We first state

Lemma 1.3 The Neumann Pólya’s conjecture for D = B
2 is valid for all λ ∈ [0,�0],

where

�0 := 2
√

3.

Proof Taking the span of {1, x, y} as a test space in the Rayleigh quotient for the
Neumann Laplacian on D gives μ3(D) ≤ 4. Therefore,

N N
D

(λ) ≥
{

1, λ ∈ [0,2),

3, λ ≥ 2,
≥ λ2

4
for λ ∈ [0,�0]. �

We then prove

Theorem 1.4 The Neumann Pólya’s conjecture for the unit disk holds for all

λ ≥ �1 := 6π

3π − 8
. (1.9)

We note that �0 > 3 and �1 < 14, so we already have the validity of the Neumann
Pólya’s conjecture for the disk for all λ outside the interval (3,14).



134 N. Filonov et al.

Theorem 1.5 The Neumann Pólya’s conjecture for the unit disk holds for all λ ∈
[3,14].

The proof of Theorem 1.5 is rigorous but computer-assisted. More specifically, it
is based on a realisation of an algorithm which satisfies two fundamental principles.

Principle 1. The algorithm should complete in a finite number of steps.
Principle 2. The algorithm should operate only with integer or rational numbers,

thus avoiding any use of floating-point arithmetic and any rounding errors.

The combination of Lemma 1.3 and Theorems 1.4 and 1.5 ensures that the Neu-
mann Pólya conjecture for the disk is valid for all λ > 0, that is we have

Corollary 1.6 N N
D

(λ) > λ2

4 for all λ > 0.

Remark 1.7 Since Pólya’s conjecture is scale-invariant, its validity for a unit ball im-
mediately implies that it is valid for any ball of the same dimension. �

We additionally have the following generalisation of Pólya’s result for tiling do-
mains: we show that Pólya’s conjecture holds not only for domains which tile Eu-
clidean space, but also for domains which tile another domain for which it is known
to be true.

Theorem 1.8 Let � ⊂ R
d be a domain for which either the Dirichlet or the Neu-

mann Pólya’s conjecture holds, and let �′ be a domain which tiles �. Then the same
Pólya’s conjecture also holds for �′.

Proof Assume that � can be tiled by 	 ≥ 2 congruent copies of �′, so that |�|d =
	|�′|d . We have, by bracketing and since the eigenvalues of all the congruent copies
coincide with those of �′,

	N D
�′ (λ) ≤ N D

� (λ) < N N
� (λ) ≤ 	N N

�′ (λ).

Assuming now (1.6) for all λ ≥ 0, we get

	N D
�′ (λ) ≤ Cd |�|dλd = Cd	|�′|dλd ≤ 	N N

�′ (λ),

and the result follows by cancelling 	. �

Remark 1.9 If the inequalities in Pólya’s conjecture (1.6) for � are strict, they are
also strict for �′. �

Theorem 1.8 immediately implies the following

Corollary 1.10 Let �̃ ⊂ S
d−1 be a spherical domain which tiles S

d−1. Then the
Dirichlet Pólya’s conjecture holds for the spherical cone in R

d with the base �̃ and
the vertex at the origin.
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In the planar case we get

Corollary 1.11 Pólya’s conjecture holds for any circular sector Sα with an aperture
α = 2π

	
, where 	 ∈ {2,3, . . . }.

We refer also to [8] for an alternative proof of Corollary 1.11 for sufficiently large
(but unspecified) 	.

We can in fact extend the result of Corollary 1.11 to arbitrary sectors.

Theorem 1.12 Pólya’s conjecture holds for any circular sector Sα with an aperture
α ∈ (0,2π], that is

N D
Sα

(λ) <
αλ2

8π
< N N

Sα
(λ)

for all λ > 0.

Remark 1.13 The result of Theorem 1.12 in the case α = 2π (the disk with the radial
slit) follows immediately from Theorems 1.2 (d = 2) and 1.4 by Dirichlet–Neumann
bracketing. �

Plan of the paper

In the next section we describe two lattice counting problems (2.6) and (2.7), variants
of which were originally introduced by N. Kuznetsov and B. Fedosov in [24], and
which are closely linked to the Dirichlet and Neumann eigenvalue counting problems
in the ball. The key novel tool is Theorem 2.3, originally obtained in part in [39],
which gives a uniform bound between the eigenvalue and the lattice counting func-
tions, as opposed to asymptotic relations that were previously known. We provide an
independent proof of this result in §3. In §4 we state the results on the lattice counting
functions which are sufficient for proving Pólya’s conjecture for balls. The bulk of
the paper, §§5–8, is devoted to the proofs of these results. Theorem 1.12 is proved in
§9.

2 Dirichlet and Neumann eigenvalues of the ball and lattice counting
problems

Throughout this paper, with ν ≥ 0, and k ∈ N, let Jν(z) be the Bessel functions of
order ν, let jν,k be the kth positive zero of Jν , and let j ′

ν,k be the kth positive zero of
its derivative J ′

ν , with the exception of J ′
0 for which j ′

0,1 = 0.
It is well known that the eigenvalues of the Dirichlet Laplacian in the unit ball

are given by the squares of the zeros of the cylindrical Bessel functions. Namely,
considering the Dirichlet Laplacian in B

d , we have the simple eigenvalues

λd,0,k = (
jd/2−1,k

)2
, k ∈ N,
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that is of multiplicity

κd,0 := 1,

and the eigenvalues

λd,m,k = (
jm+d/2−1,k

)2
, m, k ∈N,

of multiplicity

κd,m :=
(

m + d − 1

d − 1

)
−

(
m + d − 3

d − 1

)
.

Remark 2.1 We note that the numbers κd,m, d ≥ 2, m ∈ N0 = N ∪ {0}, coincide with
the multiplicity of the eigenvalue m(m + d − 2) of the Laplace–Beltrami operator on
the unit sphere Sd−1, or alternatively with the dimension of the space of homogeneous
harmonic polynomials of degree m in R

d . In the planar case we have

κ2,m = 2 for m ∈N.

�

We therefore have

N D
Bd (λ) =

∞∑

m=0

κd,m#
{
k ∈N : jm+d/2−1,k ≤ λ

}
. (2.1)

Remark 2.2 The sum in (2.1) is in fact finite: we have6

N D
Bd (λ) =

�λ−d/2+1�∑

m=0

κd,m#
{
k ∈N : jm+d/2−1,k ≤ λ

}
, (2.2)

This is due to the fact that jν,1 > ν [35, Eq. 10.21.3]. Note that in (2.2) and further
on, any sum in which the lower limit exceeds the upper limit is assumed to be zero,
which immediately gives N D

Bd (λ) = 0 for λ < d
2 − 1. �

In the planar case the expression (2.1) simplifies to

N D
D

(λ) = #
{
k ∈N : j0,k ≤ λ

}+ 2
�λ−d/2+1�∑

m=1

#
{
(m, k) ∈N

2 : jm,k ≤ λ
}

.

Similarly, the eigenvalues of the Neumann Laplacian in the unit disk D are given
by the squares of the zeros of the derivatives of Bessel functions. We have the simple
eigenvalues

μ0,k = (
j ′

0,k

)2
, k ∈ N,

6Here and further on, �x� = max{k ∈ Z : k ≤ x} denotes the integer part of x ∈ R, and �x� = min{k ∈ Z :
k ≥ x} denotes its ceiling.
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Fig. 1 The Dirichlet eigenvalue counting function N D
D

(λ) (blue), the Neumann eigenvalue counting func-

tion N N
D

(λ) (red), and the leading Weyl’s term Wd(λ) = λ2

4 (black) in dimension d = 2. The plot is pro-
duced using the floating-point evaluation of zeros of the Bessel functions and their derivatives. If we were
to assume (contrary to the philosophy of this paper) the validity of floating-point arithmetic, this plot would
have presented a numerically assisted (as opposed to computer-assisted) “proof” of Pólya’s conjecture for
the disk for λ � 15

and the double eigenvalues

μm,k = (
j ′
m,k

)2
, m, k ∈N.

We therefore have

N N
D

(λ) = #
{
k ∈N : j ′

0,k ≤ λ
}+ 2

�λ−d/2+1�∑

m=1

#
{
(m, k) ∈N

2 : j ′
m,k ≤ λ

}
, (2.3)

where the sum is again finite since j ′
ν,1 ≥ ν [35, Eq. 10.21.3].

For illustrative purposes only, we show the graphs of the Dirichlet and Neumann
eigenvalue counting functions for the disk in Fig. 1.

We will be comparing the counting functions N D
Bd (λ) and N N

D
(λ) with some

weighted lattice counting functions. Let

h(x) := 1

π

(√
1 − x2 − x arccosx

)
, x ∈ [0,1],

and let P be a planar region under the graph of h(x),

P := {(x, y) : x ∈ [0,1], y ∈ [0, h(x)]} .

Let, for λ > 0,

Gλ(z) := λh
( z

λ

)
= 1

π

(√
λ2 − z2 − z arccos

z

λ

)
, z ∈ [0, λ], (2.4)
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Fig. 2 The region Pλ, and the sets of shifted lattice points QD
d

(λ) (blue disks) and QN
d

(λ) (red diamonds),
shown here for d = 2 and λ = 23

and let Pλ be a dilation of P with coefficient λ with respect to the origin,

Pλ = {(z, y) : 0 ≤ z ≤ λ,0 ≤ y ≤ Gλ(z)} , (2.5)

that is, the region under the graph of Gλ(z).
Let

QD
d (λ) :=

{
(m, k) +

(
d

2
− 1,−1

4

)
∈ Pλ : (m, k) ∈ N0 ×N

}

and

QN
2 (λ) :=

{
(m, k) +

(
0,−3

4

)
∈ Pλ : (m, k) ∈ N0 ×N

}

be the sets of shifted integer lattice points which lie in Pλ, see Fig. 2. The defini-
tions of the two sets for d = 2 differ by a vertical shift. The reason for choosing this
particular notation will become evident later.

We now introduce the weighted lattice point counting functions

PD
d (λ) :=

∑
(
m+ d

2 −1,k− 1
4

)
∈QD

d (λ)

κd,m (2.6)

and

PN
2 (λ) :=

∑
(
m,k− 3

4

)
∈QN

2 (λ)

κ2,m. (2.7)
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It is immediately seen from the definitions (2.5)–(2.7) that with ℵ ∈ {D,N} we have

Pℵ
d (λ) =

�λ−d/2+1�∑

m=0

κd,m

⌊
Gλ

(
m + d

2
− 1

)
+ sℵ

⌋
, (2.8)

where

sD := 1

4
, sN := 3

4
. (2.9)

It is well known that as λ → +∞, the asymptotics of the lattice point counting
function PD

d (λ) is intricately linked to the asymptotics of the eigenvalue count-
ing function N D

Bd (λ). This was first shown in the planar case in [24] and later re-
discovered in [2], see also [12]. Namely, in some appropriate sense,

N D
Bd (λ) ∼ PD

d (λ) as λ → +∞.

This observation, together with asymptotic bounds on the difference between the two
functions, has been used to great effect to estimate the remainder in Weyl’s law for
the unit ball. In particular, for the Dirichlet problem in the disk the two-term Weyl
asymptotics (1.5) holds with an improved remainder estimate

O
(
λ131/208(logλ)18627/8320

)
,

see [15] (the remainder estimate O
(
λ2/3

)
was already obtained in [24], [2]). Sim-

ilar improved remainder estimates are also known in the Dirichlet case for higher-
dimensional balls [13] and in the planar Neumann case [14].

As has been recently found in [39] in the Dirichlet case, there is a further simple
non-asymptotic relation between the lattice point and the eigenvalue counting func-
tions, which lies at the cornerstone of our proofs of Theorems 1.2 and 1.4.

Theorem 2.3 For any d ≥ 2 and any λ ≥ 0, we have

N D
Bd (λ) ≤ PD

d (λ).

We also have, for any λ ≥ 0,

PN
2 (λ) ≤ N N

D
(λ).

3 Proof of Theorem 2.3

We start by introducing some additional notation. Set, for ν ≥ 0, λ ≥ 0, and ℵ ∈
{D,N},

Aℵ
ν (λ) :=

{
Gλ(ν) + sℵ, if λ ≥ ν,

sℵ, if 0 ≤ λ < ν,
(3.1)
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where Gλ is defined by (2.4) and sℵ is defined by (2.9). Some typical graphs of the
functions Aℵ

ν (λ) are shown in Fig. 3.
The crucial step in the proof of Theorem 2.3 comes from the following bounds on

the number of zeros of Bessel functions and their derivatives below a given number.

Proposition 3.1 Let ν ≥ 0 and λ ≥ 0. Then

#
{
k ∈ N : jν,k ≤ λ

} ≤
⌊
AD

ν (λ)
⌋

(3.2)

and

#
{
k ∈N : j ′

ν,k ≤ λ
} ≥

⌊
AN

ν (λ)
⌋

. (3.3)

Remark 3.2 For λ ∈ [0, ν], the inequalities (3.2) and (3.3) become the trivial identities
0 = ⌊

sℵ⌋ = 0. �

Remark 3.3 For ν = 0, the inequality (3.2) is equivalent to j0,k ≥ π
(
k − 1

4

)
, which

was proved in [18]. �

Proof of Proposition 3.1 We recall the representations of the Bessel functions of the
first and second kind, Jν and Yν , and their derivatives in terms of the so-called mod-
ulus functions Mν and Nν and the phase functions θν and φν ,

Jν(x) = Mν(x) cos θν(x), Yν(x) = Mν(x) sin θν(x),

J ′
ν(x) = Nν(x) cosφν(x), Y ′

ν(x) = Nν(x) sinφν(x)

(see [35, Eqs. 10.18.4–5]). We will be using various properties of the phase functions
below; for a review of these properties see [19]. We will be only considering the cases
ν ≥ 0 and x ≥ 0 for which the moduli Mν(x) and Nν(x) are both positive.

Let us concentrate first on (3.2). We have Jν(x0) = 0 if and only if cos θν(x0) = 0,
and so if and only if

1

π
θν(x0) + 1

2
∈ Z. (3.4)

Note that the phase function θν(x) satisfies θν(x) → −π
2 as x → +0 [35, Eq.

10.18.3], and that it is monotone increasing for x ∈ (0,+∞) [19, Theorem 1], there-
fore (3.4) can be replaced by

BD
ν (x0) ∈ N,

where

BD
ν (x) := 1

π
θν(x) + 1

2
, (3.5)

and therefore

#
{
k ∈ N : jν,k ≤ λ

} =
⌊
BD

ν (λ)
⌋

. (3.6)
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We have

Gλ(ν) = λ

π
− ν

2
+ O

(
1

λ

)
as λ → +∞. (3.7)

Using the asymptotics7 [19, Eq. (21)], [35, Eq. 10.18.18],

θν(λ) = λ − π

2

(
ν + 1

2

)
+ O

(
1

λ

)
as λ → +∞,

and (3.5), (3.7), we obtain

BD
ν (λ) − AD

ν (λ) → 0 as λ → +∞.

Further,

dBD
ν (λ)

dλ
= 1

π
θ ′
ν(λ) >

√
λ2 − ν2

πλ
= dAD

ν (λ)

dλ

for λ ≥ ν by [19, Eq. (56)]. As we additionally have

dBD
ν (λ)

dλ
> 0 = dAD

ν (λ)

dλ

for λ ∈ (0, ν], the function BD
ν (λ) − AD

ν (λ) is monotone increasing on (0,+∞) and
tends to zero at infinity. Thus, we have proved that

BD
ν (λ) < AD

ν (λ) for λ ∈ [0,+∞). (3.8)

Combining (3.6) and (3.8) proves (3.2).
We now prove (3.3). In the same manner we have J ′

ν(x0) = 0 if and only if

1

π
φν(x0) + 1

2
∈ Z. (3.9)

We note that the phase function φν satisfies φν(x) → π
2 as x → +0 [35, Eq. 10.18.3].

Also, φν(x) is monotone increasing for x ∈ (ν,+∞) and monotone decreasing for
x ∈ (0, ν) [19, Theorem 1], with φν(ν) > −π

2 [19, formula (60)]. Thus, the condition
(3.9) can be replaced by

BN
ν (x0) ∈ N,

where

BN
ν (x) := 1

π
φν(x) + 1

2
, (3.10)

and therefore

#
{
k ∈ N : j ′

ν,k ≤ λ
} =

⌊
BN

ν (λ)
⌋

. (3.11)

7See also [16] for all the coefficients of the full asymptotic expansion and some useful remarks.
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Fig. 3 An illustration of inequalities (3.8) and (3.12). The plots of BD
ν (λ) and BN

ν (λ) are drawn using the
recipe from [19]. We remark that BN

ν (λ) has a minimum at λ = ν

Using the asymptotics [19, Eq. (22)], [35, Eq. 10.18.21],

φν(λ) = λ − π

2

(
ν − 1

2

)
+ O

(
1

λ

)
as λ → +∞,

and (3.10), (3.7), we get

BN
ν (λ) − AN

ν (λ) → 0 as λ → +∞.

Also,

dBN
ν (λ)

dλ
= 1

π
φ′

ν(λ) <

√
λ2 − ν2

πλ
= dAN

ν (λ)

dλ

for λ ≥ ν by [19, formula following Eq. (58)]. As we additionally have

dBN
ν (λ)

dλ
< 0 = dAN

ν (λ)

dλ

for λ ∈ (0, ν], the function BN
ν (λ) − AN

ν (λ) is monotone decreasing on (0,+∞) and
tends to zero at infinity. Thus, we have proved that

BN
ν (λ) > AN

ν (λ) for λ ∈ [0,+∞). (3.12)

Combining (3.11) and (3.12) proves (3.3). �

We illustrate inequalities (3.8) and (3.12) in Fig. 3.
The bound (3.2) can be also proved without relying on the properties of the Bessel

phase function. Instead, one uses the known asymptotics of the Bessel zeros and
the Sturm comparison theorem. We present this alternative argument below for an
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interested reader. The bound (3.3) can be proved in the same manner; we omit the
details.

Let ν ≥ 0, and let us consider the function

sin
(
πAD

ν (x)
)

.

Let aν,k be its kth zero in [ν,+∞), ordered increasingly. Obviously,

#
{
k ∈ N : aν,k ≤ λ

} =
⌊
AD

ν (λ)
⌋

. (3.13)

We will prove

Lemma 3.4 aν,k ≤ jν,k for all k ∈N.

Together with (3.13), Lemma 3.4 immediately implies (3.2).

Proof of Lemma 3.4 The function Uν(x) := √
xJν(x) satisfies the differential equa-

tion

U ′′
ν (x) +

(
1 − ν2 − 1/4

x2

)
Uν(x) = 0. (3.14)

Consider the function

Vν(x) :=
√

x

(x2 − ν2)1/4
sin

(
πAD

ν (x) + b
)

with some b ∈ [
0, π

4

)
. Then

V ′
ν(x) = − ν2

2
√

x
(
x2 − ν2

)5/4
sin

(
πAD

ν (x) + b
)

+
(
x2 − ν2

)1/4

√
x

cos
(
πAD

ν (x) + b
)

,

V ′′
ν (x) =

(
6ν2x2 − ν4

4x3/2(x2 − ν2)9/4 − (x2 − ν2)3/4

x3/2

)
sin

(
πAD

ν (x) + b
)

.

Therefore,

V ′′
ν (x) +

(
1 − ν2

x2
− ν2(6x2 − ν2)

4x2(x2 − ν2)2

)
Vν(x) = 0 for x ∈ (ν,+∞). (3.15)

Denote by vν,k = vν,k(b) the kth zero of the function Vν . By the definitions of Vν and
AD

ν ,
√

v2
ν,k − ν2 − ν arccos

ν

vν,k

+ π

4
+ b = πk.

As
√

v2
ν,k − ν2 = vν,k + O

(
v−1
ν,k

)
and arccos

ν

vν,k

= π

2
+ O

(
v−1
ν,k

)
as k → ∞,



144 N. Filonov et al.

we have

vν,k(b) = π

(
k + ν

2
− 1

4

)
− b + O

(
k−1

)
as k → ∞.

On the other hand the asymptotics

jν,k = π

(
k + ν

2
− 1

4

)
+ O

(
k−1

)
as k → ∞,

is well known, see for example [35, Eq. 10.21.19].
Suppose that b > 0. Then there exists K ∈N such that

jν,k > vν,k(b) for k ≥ K. (3.16)

The coefficient in front of Uν in (3.14) is greater than the coefficient in front of Vν

in (3.15):

1 − ν2 − 1/4

x2
> 1 − ν2

x2
> 1 − ν2

x2
− ν2(6x2 − ν2)

4x2(x2 − ν2)2
for all x ∈ [ν,+∞).

By the Sturm comparison theorem there is a zero of Uν between vν,k(b) and
vν,k+1(b). So, if jν,k0 ≤ vν,k0(b) for some number k0, then jν,k0+1 ≤ vν,k0+1(b), and
by induction jν,k ≤ vν,k(b) for all k ≥ k0 which contradicts (3.16). Therefore, (3.16)
holds for all natural k.

Finally, each function vν,k(b) is continuous in b. Thus,

jν,k ≥ vν,k(0) = aν,k. �

Returning now to the proof of Theorem 2.3, we rewrite (2.8) as

Pℵ
d (λ) =

�λ−d/2+1�∑

m=0

κd,m

⌊
Aℵ

m+d/2−1(λ)
⌋

. (3.17)

Theorem 2.3 now immediately follows from Proposition 3.1 with account of (3.17),
(2.2), and (2.3).

4 From the weighted lattice point count towards Pólya’s conjecture

By Theorem 2.3, the Dirichlet Pólya’s conjecture for Bd would follow immediately
if we can prove that

PD
d (λ) < Wd(λ) (4.1)

for all λ ∈ (0,+∞), where Wd(λ) is defined by (1.8).
Similarly, the Neumann Pólya’s conjecture for D would follow immediately if we

can prove that

PN
2 (λ) > W2(λ) (4.2)
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Fig. 4 A numerical experiment: the computed PN
2 (λ)/W2(λ) − 1 as a function of λ

for all λ ∈ (�0,+∞); we note that we have already dealt with λ ≤ �0 by Lemma
1.3.

We establish (4.1) in the following cases, which will be dealt with separately.

Theorem 4.1 The inequality

PD
2 (λ) < W2(λ) = λ2

4
(4.3)

holds for all λ > 0.

Theorem 4.1 will be proved in §5. Together with Theorem 2.3, it implies Theorem
1.2 in the planar case.

Theorem 4.2 The inequalities (4.1) hold for all d ≥ 3 and λ > 0.

Theorem 4.2 will be proved in §7. Together with Theorem 2.3, it implies Theorem
1.2 for higher-dimensional balls.

In the Neumann case, the situation is more delicate, as we cannot expect (4.2) to
hold for all values of λ ∈ (0,+∞) since PN

2 (λ) is identically zero for λ < π
4 , see

Fig. 4.
We prove the following results.

Theorem 4.3 The inequality

PN
2 (λ) > W2(λ) = λ2

4

holds for all λ ≥ �1, where �1 is given by (1.9).

Theorem 4.3 will be proved in §6. Together with Theorem 2.3, it implies Theorem
1.4.

We are further able to eliminate the remaining gap in the Neumann case.
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Theorem 4.4 The inequality (4.2) holds for any λ ∈ (�0,�1).

The proof of this result, presented in §8, is computer-assisted. Theorem 4.4 implies
Theorem 1.5.

In all cases, we deal with estimating a (weighted) count of (shifted) lattice points
under the graph of a particular function Gλ. Such problems have been extensively
studied in number theory, going back to the Gauss circle problem. Important contri-
butions in the general case can be traced through the works of van der Corput [40] and
Krätzel [22] to some very recent results of Laugesen and Liu [29, 33]. In particular,
[30, Proposition 15] is directly applicable (with account of the fact that Laugesen and
Liu do not count the points on the vertical axis and do not double-count the points
inside) to our shifted lattice point count PD

2 (λ), yielding the bound

PD
2 (λ) ≤ λ2

4
+

(
2

3
+ 1

π
−

√
3

2π

)
λ ≈ λ2

4
+ 0.7093λ.

Unfortunately, since the coefficient in front of λ in this formula is positive, this bound
is weaker than our required bound (4.3). We need therefore to obtain sharper lattice
point count bounds than those available generally, and to do so we additionally use
some properties of the derivative of the function Gλ in addition to the properties of
the function itself, see Theorems 5.1 and 6.1, and also Remarks 5.2 and 6.3 for an
informal explanation.

For future use, we summarise below some elementary properties of the function
Gλ.

The first lemma is checked by a direct calculation.

Lemma 4.5 The function Gλ : [0, λ] → [
0, λ

π

]
defined by (2.4) is a strictly monotone

decreasing convex C1 function with

Gλ(0) = λ

π
, Gλ(λ) = 0,

G′
λ(z) = − 1

π
arccos

z

λ
, G′

λ(0) = −1

2
, G′

λ(λ) = 0,

G′′
λ(z) = 1

π
√

λ2 − z2
.

We can therefore define the inverse function G−1
λ : [0, λ

π

] → [0, λ] which is also
monotone decreasing and convex. Sometimes, it will be also convenient for us to
consider Gλ on the interval [0, �λ�] by extending it by zero to (λ, �λ�]: the resulting
function, which we for simplicity denote by the same symbol, remains monotone
decreasing, convex, and C1.

Lemma 4.6 Let β ≥ 0. Then

∫ λ

0
zβGλ(z)dz =

�
(

β+1
2

)
λβ+2

4
√

π (β + 2)�
(

β+4
2

) .
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In particular,

∫ λ

0
Gλ(z)dz = λ2

8
. (4.4)

Proof In fact, the identity can be checked using computer algebra software, but we
include a proof for the sake of completeness. After a change of variables z = λ cos τ ,
we obtain

∫ λ

0
zβGλ(z)dz = λβ+2

π

∫ π/2

0
(cos τ)β(sin τ − τ cos τ) sin τ dτ. (4.5)

By [35, Eqs. 5.12.1–2],

∫ π/2

0
(cos τ)ρ(sin τ)σ dτ =

�
(

ρ+1
2

)
�
(

σ+1
2

)

2�
(

ρ+σ+2
2

)

for any ρ,σ ≥ 0. Therefore,

∫ π/2

0
(cos τ)β(sin τ)2dτ =

√
π�

(
β+1

2

)

4�
(

β+4
2

) ,

∫ π/2

0
τ(cos τ)β+1 sin τdτ = − τ(cos τ)β+2

β + 2

∣∣∣∣
π/2

0
+ 1

β + 2

∫ π/2

0
(cos τ)β+2dτ

=
√

π �
(

β+3
2

)

2 (β + 2)�
(

β+4
2

) ,

and so

∫ π/2

0
(cos τ)β(sin τ − τ cos τ) sin τ dτ =

√
π�

(
β+1

2

)

4(β + 2)�
(

β+4
2

) .

Substituting this into (4.5) we get the result. �

Corollary 4.7 Let d ∈N, d ≥ 2. Then

2

(d − 2)!
∫ λ

0
zd−2Gλ(z)dz = Wd(λ) = wdλd.

Proof Applying Lemma 4.6 with β = d − 2 we get

2

(d − 2)!
∫ λ

0
zd−2Gλ(z)dz =

�
(

d−1
2

)
λd

2d
√

π (d − 2)!�
(

d+2
2

) .
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The duplication formula [35, Eq. 5.5.5]

√
π(d − 2)! = √

π�(d − 1) = 2d−2�

(
d − 1

2

)
�

(
d

2

)

implies

�
(

d−1
2

)
λd

2d
√

π(d − 2)!�
(

d+2
2

) = λd

2d−1 d �
(

d
2

)
�
(

d+2
2

) = λd

2d
(
�
(

d+2
2

))2 = Wd(λ). �

An important role in our study in the Neumann case will be played by the inverse

function value G−1
λ

(
1
4

)
(defined for all λ ≥ π

4 ). We will use the following bounds.

Lemma 4.8 We have

G−1
λ

(
1

4

)
< λ − 1 (4.6)

for all λ ≥ 2. Additionally, for any σ ∈ (
0, π

2

]
we have

G−1
λ

(
1

4

)
≥ λ cosσ (4.7)

whenever

λ ≥ r1(σ ) := π

4(sinσ − σ cosσ)
. (4.8)

Proof Since Gλ is monotone decreasing, the claim (4.6) is equivalent to

Gλ(λ − 1) <
1

4
. (4.9)

We have G2(1) − 1
4 =

√
3

π
− 7

12 < 0, and additionally

d

dλ
(Gλ(λ − 1)) = 1

π

(
1

λ

√
2λ − 1 − arccos

(
1 − 1

λ

))
< 0

as

cos

(
1

λ

√
2λ − 1

)
> 1 − 2λ − 1

2λ2
> 1 − 1

λ
,

thus implying (4.9) for λ ≥ 2.
Similarly, the claim (4.7) is equivalent to

Gλ(λ cosσ) = λ(sinσ − σ cosσ)

π
≥ 1

4
,

given (4.8). �
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5 Proof of Theorem 4.1

We first state the following

Theorem 5.1 Let b > 0, and let g be a non-negative decreasing convex function on
[0, b] such that g(b) = 0 and

|g(z) − g(w)| ≤ 1

2
|z − w| (5.1)

for all z,w ∈ [0, b]. Then

⌊
g(0) + 1

4

⌋
+ 2

�b�∑

m=1

⌊
g(m) + 1

4

⌋
≤ 2

∫ b

0
g(z)dz. (5.2)

The equality is possible only if g is identically zero on [0, b].
Remark 5.2 We explain here, very informally, the ideas behind the proof of Theorem
5.1. The area under the graph of the function g on the interval [m,m + 1] is approxi-
mately equal to the area under the straight line passing through the points (m,g(m))

and (m + 1, g(m + 1)), so

∫ m+1

m

g(z)dz ≈ 1

2
(g(m) + g(m + 1)) .

Summing up these equalities over m we obtain

2
∫ b

0
g(z)dz ≈ g(0) + 2

�b�∑

m=1

g(m).

If a number x is chosen randomly then �x� ≈ x − 1
2 on average. Thus,

⌊
g(m) + 1

4

⌋
≈

g(m) − 1
4 , and these extra contributions of − 1

4 ensure the sign of the inequality in
(5.2). In order to prove Theorem 5.1 rigorously we divide the graph by horizontal
lines y = n, with n = 0,1, . . . , �g(0)�, and we consider what happens in the intervals
where n + 1 ≥ g(z) ≥ n. The values of �g(m) + 1/4� there are either n or n + 1.
The point m is “bad” if g(m) ≥ n + 3

4 and thus �g(m) + 1/4� = n + 1: these “bad”
points contribute more to the sum than we expect “on average”. The convexity of the
function g and condition (5.1) ensure that the number of such “bad” points is not
greater than half of the total number of integer points in an interval, and this yields
the required estimate in the interval we are considering. �

In order to prove Theorem 5.1 we require the following

Lemma 5.3 Let i, j ∈ Z, i < j . Let g be a decreasing convex function on [i, j + 1]
satisfying (5.1) for all z,w ∈ [i, j + 1]. Assume additionally that

n + 1 ≥ g(i + 1) ≥ · · · ≥ g(j) ≥ n ≥ g(j + 1) (5.3)
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for some n ∈ Z. Then

1

2

⌊
g(i) + 1

4

⌋
+

j−1∑

m=i+1

⌊
g(m) + 1

4

⌋
+ 1

2

⌊
g(j) + 1

4

⌋
≤

∫ j

i

g(z)dz. (5.4)

Proof of Lemma 5.3 The validity of the claim does not change if we add a constant
integer number to the function g. So, without loss of generality we can assume n = 0,
so that (5.3) becomes

1 ≥ g(i + 1) ≥ · · · ≥ g(j) ≥ 0 ≥ g(j + 1). (5.5)

Additionally, (5.1) implies that g(i) ≤ g(i + 1) + 1
2 ≤ 3

2 .
Set

K = #

{
m ∈ {i, . . . , j} : 3

4
≤ g(m)

}
,

and consider four cases.

Case K = 0. The left-hand side of (5.4) is zero, and the right-hand side is non-
negative by (5.5).

Case K = 1. Here

5

4
> g(i) ≥ 3

4
> g(i + 1) ≥ · · · ≥ g(j) ≥ 0,

and the left-hand side of (5.4) is equal to 1
2 . The assumption (5.1) yields g

(
i + 1

2

)
≥

1
2 , therefore by non-negativity and convexity of g on [i, j ],

∫ j

i

g(z)dz ≥
∫ i+1

i

g(z)dz ≥ g

(
i + 1

2

)
≥ 1

2
.

Case K = 2. Here

3

2
≥ g(i) ≥ g(i + 1) ≥ 3

4
> g(i + 2) ≥ · · · ≥ g(j) ≥ 0 ≥ g(j + 1),

and the left-hand side of (5.4) equals 3
2 . By (5.1) we have j ≥ i + 2, and therefore

by non-negativity and convexity of g,

∫ j

i

g(z)dz ≥
∫ i+2

i

g(z)dz ≥ 2g(i + 1) ≥ 3

2
.

Case K ≥ 3. Here

3

2
≥ g(i) ≥ g(i + 1) ≥ · · · ≥ g(i + K − 1) ≥ 3

4
> g(i + K) ≥ · · · ≥ g(j)

≥ 0 ≥ g(j + 1).
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The left-hand side of (5.4) is equal to K − 1
2 . By convexity of g,

(K − 1)g(i + 1) + (K − 2)g(i + 2K − 2) ≥ (2K − 3)g(i + K − 1),

and therefore

g(i + 2K − 2) ≥ 2K − 5

4(K − 2)
> 0.

Thus, j ≥ i + 2K − 2. Next,

∫ j

i

g(z)dz ≥
∫ i+2K−2

i

g(z)dz ≥ (2K − 2)g(i + K − 1) ≥ 3K − 3

2
≥ K − 1

2

as K ≥ 3. �

Remark 5.4 One can easily see from the proof that the equality in (5.4) is attained in
the following three cases only:

• g(z) ≡ n on [i, j ] (if K = 0);
• j = i + 1 and g(z) = n + i−z

2 + 3
4 on [i, i + 1] (if K = 1);

• j = i + 2 and g(z) = n + s(i + 1 − z) + 3
4 on [i, i + 2] with s ∈

[
3
8 , 1

2

]
(if K = 2).

�

We can now proceed to the proof of Theorem 5.1 proper.

Proof of Theorem 5.1 Let

N = �g(0)� .

If N = 0, then applying Lemma 5.3 with i = 0, j = �b�, and g(z) extended by zero
for z ∈ (b, �b� + 1], gives

⌊
g(0) + 1

4

⌋
+ 2

�b�∑

m=1

⌊
g(m) + 1

4

⌋
≤ 2

∫ b

0
g(z)dz,

and therefore (5.2).
Assume now N ≥ 1. For k = 0,1, . . . ,N , let

Lk := max {m ∈ {0, . . . , �b�} : g(m) ≥ k} , (5.6)

see Fig. 5. Therefore, we have

0 ≤ LN < LN−1 < · · · < L0 = �b� ,

where the strict inequalities Lk < Lk−1, k = 1, . . . ,N , follow from (5.1).
We will consider two cases depending on whether LN = 0.
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Fig. 5 The numbers Lk , see (5.6) and also Remark 5.5

Case LN = 0. We write

⌊
g(0) + 1

4

⌋
+ 2

�b�∑

m=1

⌊
g(m) + 1

4

⌋

= 2
N−1∑

k=0

⎛

⎝1

2

⌊
g(Lk+1) + 1

4

⌋
+

Lk−1∑

m=Lk+1+1

⌊
g(m) + 1

4

⌋
+ 1

2

⌊
g(Lk) + 1

4

⌋⎞

⎠ .

(5.7)

For each k ∈ {0, . . . ,N − 1} we have

k + 1 > g (Lk+1 + 1) · · · ≥ g (Lk) ≥ k ≥ g (Lk + 1) ,

and applying Lemma 5.3 with i = Lk+1, j = Lk , and n = k yields

1

2

⌊
g(Lk+1) + 1

4

⌋
+

Lk−1∑

m=Lk+1+1

⌊
g(m) + 1

4

⌋
+ 1

2

⌊
g(Lk) + 1

4

⌋
≤

∫ Lk

Lk+1

g(z)dz.

(5.8)
Substituting (5.8) into (5.7) gives

�g(0)� + 2
�b�∑

m=1

⌊
g(m) + 1

4

⌋
≤ 2

∫ �b�

0
g(z)dz ≤ 2

∫ b

0
g(z)dz, (5.9)

as required, where in the last inequality we used non-negativity of g.



Pólya’s conjecture for Euclidean balls 153

Case LN > 0. We write

⌊
g(0) + 1

4

⌋
+ 2

�b�∑

m=1

⌊
g(m) + 1

4

⌋

= 2

⎛

⎝1

2

⌊
g(0) + 1

4

⌋
+

LN−1∑

m=1

⌊
g(m) + 1

4

⌋
+ 1

2

⌊
g(LN) + 1

4

⌋⎞

⎠

+ 2
N−1∑

k=0

⎛

⎝1

2

⌊
g(Lk+1) + 1

4

⌋
+

Lk−1∑

m=Lk+1+1

⌊
g(m) + 1

4

⌋
+ 1

2

⌊
g(Lk) + 1

4

⌋⎞

⎠ .

(5.10)

We have

N + 1 > g(0) ≥ · · · ≥ g (LN − 1) ≥ g (LN) ≥ N > g (LN + 1) ,

therefore applying Lemma 5.3 with i = 0, j = LN , and n = N , we get

2

⎛

⎝1

2

⌊
g(0) + 1

4

⌋
+

LN−1∑

m=1

⌊
g(m) + 1

4

⌋
+ 1

2

⌊
g(LN) + 1

4

⌋⎞

⎠ ≤ 2
∫ LN

0
g(z)dz.

(5.11)
Substituting (5.11) and (5.8) into (5.10) gives (5.9).

Finally, assume that we have the equality in (5.2). Due to Remark 5.4, the func-
tion g is linear on each interval [Lk+1,Lk], and either dist(g(Lk),Z) ≥ 1

4 or g ≡ 0
on [Lk+1,Lk]. The situation when dist(g(Lk),Z) ≥ 1

4 and g ≡ 0 on [Lk,Lk−1] is
impossible due to continuity of g. If dist(g(Lk),Z) ≥ 1

4 for all k, then in particular
g(L0) = g(�B�) ≥ 1

4 , and the last inequality in (5.9) is strict. Therefore, the equality
in (5.2) requires g ≡ 0 on the whole interval [0, b]. �

Remark 5.5 If g is strictly monotone on [0, b], then the inverse function g−1 is well-
defined on [0, g(0)], and the definitions (5.6) may be equivalently rewritten as

Lk =
⌊
g−1(k)

⌋
, k = 0, . . . , �g(0)� .

�

We finally use Theorem 5.1 to prove Theorem 4.1.

Proof of Theorem 4.1 We apply (5.2) with b = λ and g = Gλ (which we can do since
Lemma 4.5 ensures that (5.1) holds in this case), and use (4.4), giving the bound
(4.3) and therefore confirming the validity of the Dirichlet Pólya’s conjecture for the
disk. �
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6 Proof of Theorem 4.3

We start by stating

Theorem 6.1 Let b > 0, and let g be a non-negative decreasing convex function on
[0, b] such that g(0) ≥ 1

4 , g(b) = 0, and (5.1) holds for all z,w ∈ [0, b]. Let

M0 = Mg,0 := 1 + max

{
m ∈ {0, . . . , �b�} : g(m) ≥ 1

4

}
,

and assume that M0 ≤ b. Then

�b�∑

m=0

⌊
g(m) + 3

4

⌋
≥

∫ b

0
g(z)dz − b − 3M0

8
. (6.1)

Remark 6.2 If g is strictly monotone on [0, b], then the inverse function g−1 is well-
defined on [0, g(0)], and

M0 =
⌊
g−1

(
1

4

)⌋
+ 1, (6.2)

cf. Remark 5.5. �

Remark 6.3 Once more, we first outline a very informal plan of proving Theorem

6.1. As we have argued in Remark 5.2, we have
⌊
g(m) + 3

4

⌋
≈ g(m) + 1

4 , which

should in principle ensure the correct inequality sign in (6.1). “Bad” points are now
the points with n ≤ g(m) ≤ n + 1

4 . So, we divide the graph of g by the horizontal

lines at y = n + 1
4 , where n = 0,1, . . . ,

⌊
g(0) + 3

4

⌋
. Again, this guarantees that the

number of “bad” points in each resulting interval is less than half the total number of
points there. This still leaves an unresolved issue of points m lying under the tail of
the graph of g, where 0 ≤ g(m) < 1

4 . Such points make no contribution to the left-
hand side of (6.1), but the tail does contribute to the integral: consider, for example,
a toy case of a function g(z) = 10−z

80 on the interval [0,10]. To account for that, we
subtract an additional term in the right-hand side of (6.1). �

Before proceeding to the proof of Theorem 6.1, we require

Lemma 6.4 Let i, j ∈ Z, i < j . Let g be a decreasing convex function on [i, j ]. As-
sume that

n + 1

4
> g(i) ≥ · · · ≥ g(j − 1) ≥ n − 3

4
> g(j)

for some n ∈ Z. Then

1

2

⌊
g(i) + 3

4

⌋
+

j−1∑

m=i+1

⌊
g(m) + 3

4

⌋
+ 1

2

⌊
g(j) + 3

4

⌋
≥

∫ j

i

g(z)dz + j − i

4
− 1

2
.

(6.3)
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Proof of Lemma 6.4 The left-hand side of (6.3) is equal to (j − i)n− 1
2 . By convexity

of g,

∫ j

i

g(z)dz ≤ j − i

2
(g(j) + g(i)) ≤ (j − i)

(
n − 1

4

)
. �

Proof of Theorem 6.1 As g(0) ≥ 1
4 , we have

N :=
⌊
g(0) + 3

4

⌋
≥ 1. (6.4)

For k = 1, . . . ,N − 1, denote

Mk = Mg,k := 1 + max

{
m ∈ {0, . . . , �b�} : g(m) ≥ k + 1

4

}
.

We also denote MN = Mg,N := 0. The assumption (5.1) yields Mk > Mk+1 for all
k = 0, . . . ,N − 1. Therefore, by Lemma 6.4,

1

2

⌊
g(0) + 3

4

⌋
+

�b�∑

m=1

⌊
g(m) + 3

4

⌋

=
N−1∑

n=0

⎛

⎝1

2

⌊
g (Mn+1) + 3

4

⌋
+

Mn−1∑

m=Mn+1+1

⌊
g(m) + 3

4

⌋
+ 1

2

⌊
g (Mn) + 3

4

⌋⎞

⎠

≥
N−1∑

n=0

(∫ Mn

Mn+1

g(z)dz + Mn − Mn+1

4
− 1

2

)
=

∫ M0

0
g(z)dz + M0

4
− N

2
.

Due to (6.4) we get

�b�∑

m=0

⌊
g(m) + 3

4

⌋
≥

∫ M0

0
g(z)dz + M0

4
.

By convexity of g,

∫ b

M0

g(z)dz ≤ 1

2
g(M0)(b − M0) ≤ b − M0

8
,

and we get (6.1). �

We can now proceed to the proof of Theorem 4.3. We start with

Proposition 6.5 Let λ ≥ 2. Then

PN
2 (λ) >

λ2

4
+ 1

4
R2(λ), (6.5)
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where

R2(λ) := 3G−1
λ

(
1

4

)
− λ

(
1 + 4

π

)
− 3.

Proof We have, with account of Gλ(0) = λ
π

,

PN
2 (λ) =

⌊
Gλ(0) + 3

4

⌋
+ 2

�λ�∑

m=1

⌊
Gλ(m) + 3

4

⌋

= −
⌊

λ

π
+ 3

4

⌋
+ 2

�λ�∑

m=0

⌊
Gλ(m) + 3

4

⌋
.

We apply Theorem 6.1 to the sum in the right-hand side, with g = Gλ, b = λ, and

MGλ,0 =
⌊
G−1

λ

(
1

4

)⌋
+ 1

(see Remark 6.2). Given that λ ≥ 2, we take into account the bound (4.6) (which
ensures that MGλ,0 ≤ λ), and the value of the integral from Lemma 4.6, leading to

PN
2 (λ) − λ2

4
≥

3
⌊
G−1

λ

(
1
4

)⌋
+ 3 − λ − 4

⌊
λ
π

+ 3
4

⌋

4
.

Finally, we use

x − 1 < �x� ≤ x

to obtain (6.5). �

We now have

Proposition 6.6 Let λ ≥ �1, where �1 is given by (1.9). Then R2(λ) ≥ 0.

Proof of Proposition 6.6 Let σ = arccos 5
6 ∈ (

0, π
2

]
, and let

λ ≥ r1(σ ) = 3π/2√
11 − 5 arccos 5

6

,

see (4.8). Then by Lemma 4.8, the bound (4.7) holds. Therefore,

R2(λ) ≥ λ

(
3 cosσ − 1 − 4

π

)
− 3 = λ

3π − 8

2π
− 3,

and is non-negative if

λ ≥ 6π

3π − 8
= �1 > 0.
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As �1 > r1(σ ) (with the inequality easy to prove rigorously using the method of
verified rational approximations discussed in §8), the result follows. �

Theorem 4.3 now immediately follows from Propositions 6.6 and 6.5.

7 Proof of Theorem 4.2

We have the following “dimension reduction” formula.

Theorem 7.1 Let d ≥ 3. Then

PD
d (λ) =

⌊
λ− d

2 +1
⌋

∑

n=0

(
n + d − 3

d − 3

)
P̃D

n+ d
2 −1

(λ) , (7.1)

where for r ∈ [0, λ] we denote by

P̃D
r (λ) :=

⌊
G̃λ,r (0) + 1

4

⌋
+ 2

�λ−r�∑

j=1

⌊
G̃λ,r (j) + 1

4

⌋

=
⌊
Gλ(r) + 1

4

⌋
+ 2

�λ−r�∑

j=1

⌊
Gλ(j + r) + 1

4

⌋
(7.2)

the “standard” two-dimensional weighted shifted lattice point count under the graph
of the function G̃λ,r (t) := Gλ(t + r), t ∈ [0, λ − r].

We remark that in comparison to our original definition

PD
d (λ) =

⌊
λ− d

2 +1
⌋

∑

m=0

κd,m

⌊
Gλ

(
m + d

2
− 1

)
+ 1

4

⌋
,

see (2.8), where the weights κd,m are attached at each individual abscissa m, the
formula in the right-hand side of (7.1) attaches weights

(
n+d−3
d−3

)
to the whole counts

P̃D
n+ d

2 −1
(λ), which we will later estimate using the previously proven Theorem 5.1.

Note also that for λ < d
2 − 1, the equation (7.1) becomes the trivial identity 0 = 0 by

our notational convention for sums, see Remark 2.2.

Proof of Theorem 7.1 With account of (7.2), the right-hand side of (7.1) reads

⌊
λ− d

2 +1
⌋

∑

n=0

(
n + d − 3

d − 3

)
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×

⎛

⎜⎜⎝

⌊
Gλ

(
n + d

2
− 1

)
+ 1

4

⌋
+ 2

⌊
λ−n− d

2 +1
⌋

∑

j=1

⌊
Gλ

(
j + n + d

2
− 1

)
+ 1

4

⌋
⎞

⎟⎟⎠ .

For a fixed m ∈ {0}∪N, the contribution of
⌊
Gλ

(
m + d

2 − 1
)+ 1

4

⌋
in this expression

appears with the factor

(
m + d − 3

d − 3

)
+ 2

m−1∑

j=0

(
j + d − 3

d − 3

)
=

m∑

j=0

(
j + d − 3

d − 3

)
+

m−1∑

j=0

(
j + d − 3

d − 3

)

=
m+d−3∑

i=d−3

(
i

d − 3

)
+

m−d−4∑

i=d−3

(
i

d − 3

)

=
(

m + d − 2

d − 2

)
+

(
m + d − 3

d − 2

)

=
(

m + d − 1

d − 1

)
−

(
m + d − 3

d − 1

)
= κd,m,

where we have used the standard identity [35, Eq. 26.3.7]

r∑

i=l

(
i

l

)
=

(
r + 1

l + 1

)
, r ≥ l, (7.3)

and another identity [35, Eq. 26.3.5],

(
k

l

)
=

(
k + 1

l + 1

)
−

(
k

l + 1

)
, k ≥ l.

Thus, the contributions of
⌊
Gλ

(
m + d

2 − 1
)+ 1

4

⌋
in both sides of (7.1) coincide. �

Before proceeding to the proof of Theorem 4.2 we will introduce some additional
notation and state some auxiliary facts which will be required later. Let, for x ≥ 0,

�n(x) :=
n∏

j=1

(x + j) = (x + 1) · · · (x + n) for n ∈N, �0(x) := 1.

The function �n(x) is closely related to Pochhammer’s symbol, or the rising factorial
(x)n := x · · · (x +n−1) (for which numerous other notation is also used) in the sense
that �n(x) = (x + 1)n. We also have

(
i + j

i

)
= (i + 1) · · · (i + j)

j ! = �j(i)

j ! = �i(j)

i! .
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Let us introduce, for d ≥ 3, a piecewise-constant function

fd(t) :=
{

0, if t < d
2 − 1,

�d−2(m)

(d−2)! = (
m+d−2

d−2

)
, if

⌊
t − d

2 + 1
⌋ = m ≥ 0,

(7.4)

and let

Fd(z) :=
∫ z

0
fd(t)dt.

In what follows we will require an upper polynomial bound on Fd(z). If z < d
2 −1,

then Fd(z) = 0. Let z ≥ d
2 − 1 and m = ⌊

z − d
2 + 1

⌋ ≥ 0. Then

Fd(z) =
∫ z

0
fd(t)dt =

(
m−1∑

k=0

∫ k+d/2

k+d/2−1
fd(t)dt

)
+

∫ z

m+d/2−1
fd(t)dt

=
(

m−1∑

k=0

(
k + d − 2

d − 2

))
+

(
z − m − d

2
+ 1

)(
m + d − 2

d − 2

)

=
(

m + d − 2

d − 1

)
+

(
z − m − d

2
+ 1

)(
m + d − 2

d − 2

)

= �d−2(m)

(d − 1)!
(

(d − 1)z − (d − 2)m − (d − 1)(d − 2)

2

)
,

(7.5)

where we used (7.3) to evaluate the sum of binomial coefficients.
To establish a bound on Fd(z), we apply the AM-GM inequality

l (β1 · · ·β	)
1/l ≤ β1 + · · · + βl, l ∈N, β1, . . . , βl ≥ 0,

with l = d − 1 and

βj =
{

(m + j)�d−1(m) if j ≤ d − 2,

zd−1 if j = d − 1,

yielding

(d − 1)z�d−2(m) ≤ �d−2(m) ((m + 1) + · · · + (m + d − 2)) + zd−1

=
(

(d − 2)m + (d − 2)(d − 1)

2

)
�d−2(m) + zd−1.

Collecting together the terms with �d−2(m) and substituting the resulting bound into
the right-hand side of (7.5), we deduce that

Fd(z) ≤ F̃d(z) := zd−1

(d − 1)! for all z ≥ 0. (7.6)

We will require an auxiliary
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Lemma 7.2 Let f be a locally integrable function on [0,+∞), and let F̃ ∈
C1[0,+∞) with F̃ (0) = 0 be such that

F(z) :=
∫ z

0
f (t)dt ≤ F̃ (z) for all z ≥ 0.

Let b > 0, and let g ∈ C1[0, b] be a decreasing function such that g(b) = 0. Then

∫ b

0
f (z)g(z)dz ≤

∫ b

0
F̃ ′(z)g(z)dz. (7.7)

Proof Integrating by parts, we get

∫ b

0
F̃ ′(z)g(z)dz −

∫ b

0
f (z)g(z)dz

=
∫ b

0

(
F̃ ′(z) − F ′(z)

)
g(z)dz

=
(
F̃ (z) − F(z)

)
g(z)

∣∣∣
b

0
−

∫ b

0

(
F̃ (z) − F(z)

)
g′(z)dz ≥ 0,

since F̃ (0) = F(0) = g(b) = 0 and
(
F̃ (z) − F(z)

)
g′(z) ≤ 0, thus proving (7.7). �

We now proceed to the proof of Theorem 4.2 proper.

Proof of Theorem 4.2 First of all, note that for λ < d
2 − 1 there is nothing to prove

as in this case PD
d (λ) = 0. For λ ≥ d

2 − 1, we apply Theorem 5.1 with g = G̃λ,r ,
r = n + d

2 − 1, and b = λ − r = λ − n − d
2 + 1 to the right-hand side of (7.2), giving

P̃D
n+ d

2 −1
(λ) < 2

∫ λ−n− d
2 +1

0
Gλ

(
t + n + d

2
− 1

)
dt = 2

∫ λ

n+ d
2 −1

Gλ(z)dz

for n = 0, . . . ,
⌊
λ − d

2 + 1
⌋

. We now substitute the results into (7.1), yielding, with
account of (7.3), the bound

PD
d (λ) < 2

⌊
λ− d

2 +1
⌋

∑

n=0

(
n + d − 3

d − 3

)∫ λ

n+ d
2 −1

Gλ(z)dz

= 2
∫ λ

d
2 −1

⎛

⎜⎜⎝

⌊
z− d

2 +1
⌋

∑

n=0

(
n + d − 3

d − 3

)
⎞

⎟⎟⎠Gλ(z)dz

= 2
∫ λ

d
2 −1

(⌊
z − d

2 + 1
⌋+ d − 2

d − 2

)
Gλ(z)dz.

(7.8)
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Using notation (7.4), we rewrite (7.8) as

PD
d (λ) < 2

∫ λ

0
fd(z)Gλ(z)dz. (7.9)

We now apply Lemma 7.2 to the right-hand side of (7.9), taking f = fd , g = Gλ, and

F̃ (z) = F̃d(z) = zd−1

(d−1)! by (7.6), which gives

PD
d (λ) < 2

∫ λ

0
F̃ ′

d(z)Gλ(z)dz = 2

(d − 2)!
∫ λ

0
zd−2Gλ(z)dz.

Finally, applying Corollary 4.7 gives

PD
d (λ) < Wd(λ)

as required. �

8 Closing the gap: the proof of Theorem 4.4

We describe the algorithm (based on the two Principles stated in §1) of verifying the
statement

PN
2 (λ) >

λ2

4
for all λ ∈ [3,14], (8.1)

with the lattice point counts given explicitly by

PN
2 (λ) =

�λ�∑

m=0

κ2,m

⌊
Gλ (m) + 3

4

⌋
.

The first Principle is realised with the help of the following simple lemma, which
ensures that our algorithm described below requires only a finite number of steps.

Lemma 8.1 If the inequality (8.1) holds for a particular λ0, that is, we have

e(λ0) := PN
2 (λ0) − λ2

0

4
> 0,

this inequality also holds for all λ ∈ (λ0, λ0 + δ(λ0)) =
(

λ0,

√
λ2

0 + 4e(λ0)

)
, where

δ(λ0) :=
√

λ2
0 + 4e(λ0) − λ0.

Proof The result immediately follows from the facts that PN
2 (λ) is non-decreasing in

λ and that � = λ0 + δ(λ0) is the positive root of the equation �2

4 = λ2
0

4 + e(λ0). �
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To implement the second Principle, we work with rational numbers only. Let, for
x ∈ R, x ≤ x ≤ x, where x, x ∈ Q are some lower and upper rational approximations
of x. The function Gλ(z) does not as a rule take rational values even for rational λ

and z, so to overcome this we work instead with

PN
2 (λ) =

�λ�∑

m=0

κ2,m

⌊
Gλ (m) + 3

4

⌋
, λ ∈Q,

where

Gλ(z) = 1

π

(√
λ2 − z2 − z arccos

z

λ

)
, z ∈Q∩ [0, λ].

Of course, Gλ(z) ≤ Gλ(z) and therefore PN
2 (λ) ≤ PN

2 (λ), for λ, z ∈ Q. Obvi-
ously, taking integer parts of rational numbers, as well as other arithmetic operations
on them is exact and does not introduce any numerical errors. We now describe how
to construct verified rational approximations of the square roots

√· and arccosines
arccos(·). For the former, any guess (say, obtained from numerics) can be directly
verified by taking squares and comparing rationals, which is rigorous. To verify our
approximations of arccosines (taken at rational points) one may proceed as follows.
Define the functions cos, cos :Q∩ (

0, π
2

] → Q as

cosx := T12[cos](x), cosx := T14[cos](x),

where Tt [cos](x) is the Taylor polynomial of cosx at x = 0 of degree t , so that
cosx < cosx < cosx, see, for example, [3, Problem 15].8 Then

cos
(
β
)
< x < cos

(
β
)

implies β := arccosx < β = arccosx < arccosx =: β,

and the verification is again reduced to elementary operations on rationals. In the
same manner,

π = 3 arccos
1

2
and π = 3 arccos

1

2

provide verified rational approximations for π .
To finish describing our process, we need also to rationalise the square root ap-

pearing in the definition of δ(λ): we effectively replace e(λ) by a smaller number

e(λ) := PN
2 (λ) − λ2

4
, (8.2)

and also replace δ(λ) by a smaller number

δ(λ) :=
√

λ2 + 4e(λ) − λ, (8.3)

where a verification is again by taking squares.

8We thank the referee for pointing out this reference.
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Fig. 6 The basic algorithm
The algorithm for proving (8.1)

λ ← �0
stepnumber ← 0
while λ ≤ �1 do

stepnumber ← stepnumber + 1
p ← PN

2 (λ)

e ← p − λ2

4
if e > 0 then

λ ← √
λ2 + 4e

else
print “Proof failed �”; exit

end if
end while
print “Success in”, stepnumber, “steps�”

Remark 8.2 In practice, we use the following process to find lower and upper rational
approximations of a number x ∈ R (which may be a square root, or an arccosine).
Throughout, we fix a relatively small number ε (say, ε = 10−3) as an accuracy pa-
rameter. We find numerically some approximation x0 of x (which may be above or
below x) with some better accuracy. Then, we define x as the rational number in the
interval [x0 − 3ε, x0 − ε] with the smallest possible denominator, and x as the ratio-
nal number in the interval [x0 + ε, x0 + 3ε] with the smallest possible denominator,
using a modification of a fast algorithm for traversing the Stern–Brocot tree [5]. As
we always verify the resulting approximations using the procedures described above,
we do not in fact depend on the quality of an original numerical “guess” x0 as long
as |x0 − x| < ε. �

Thus, our main algorithms work as follows. In order to prove (8.1) for λ ∈
[�0,�1], we move upwards: set λ = �0, compute the margin e(λ) from (8.2), set
λnew = λ + δ (λ) using (8.3), and continue the process. If the margins are positive on
each step, the process will stop successfully if after a finite number of steps we reach
λ > �1, see Fig. 6.

The algorithm works extremely fast (when implemented in Mathematica, see
the footnote on the title page), thus proving Theorem 4.4: in principle, with enough
patience the whole implementation can be done by hand. We summarise its outcomes
in Table 1.

9 Proof of Theorem 1.12

Let Sα be a circular sector of aperture 0 < α ≤ 2π . The eigenvalues of the Dirichlet
and Neumann Laplacians on Sα are easily found by separation of variables. They are
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Table 1 Detailed output of the
computer-assisted algorithm Step λ e(λ) δ(λ)

1 3 < �0
3
4

6
13

2 45
13

1355
676

223
221

3 76
17

868
289

584
493

4 164
29

3368
841

995
783

5 187
27

11687
2916

29
27

6 8 3 43
60

7 523
60

57671
14400

227
260

8 374
39

6098
1521

719
897

9 239
23

10591
2116

339
368

10 181
16

4103
1024

11
16

11 12 6 24
25

12 324
25

2506
625

241
400

13 217
16

7183
1024

271
272

14 495
34 > �1

all simple, and are given by

λm,k =
(
jmπ

α
,k

)2
m ∈N, k ∈N,

and

μm,k =
(
j ′

mπ
α

,k

)2
, m ∈ N∪ {0}, k ∈N,

respectively. Therefore, the corresponding eigenvalue counting functions are

N D
Sα

(λ) =

⌊
αλ
π

⌋

∑

m=1

#
{
k ∈ N : jmπ

α
,k ≤ λ

}
and N N

Sα
(λ) =

⌊
αλ
π

⌋

∑

m=0

#
{
k ∈N : j ′

mπ
α

,k
≤ λ

}
,

where the both sums are finite since jν,1 > j ′
ν,1 ≥ ν.

Assume for the moment that the sector Sα contains a half-disk, that is α ∈ [π,2π].
By Proposition 3.1 with account of (3.1), (2.4) and (2.9), we have

N D
Sα

(λ) ≤

⌊
αλ
π

⌋

∑

m=1

⌊
Gλ

(mπ

α

)
+ 1

4

⌋
. (9.1)

Set

gλ,α(t) := Gλ

(
πt

α

)
, t ∈ [0, b] ,
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where

b := αλ

π
.

Then gλ,α is a monotone decreasing convex function on [0, b] with g(b) = 0; more-
over,

g′
λ,α(t) = π

α
G′

λ

(
πt

α

)
∈
[
− π

2α
,0

]
⊂

[
−1

2
,0

]

due to our assumption α ≥ π . With this notation, the right-hand side of (9.1) becomes

�b�∑

m=1

⌊
gλ,α(m) + 1

4

⌋
,

and we can estimate it from above directly by Theorem 5.1 with g = gλ,α , giving

�b�∑

m=1

⌊
gλ,α(m) + 1

4

⌋
<

∫ αλ/π

0
gλ,α(t)dt = α

π

∫ λ

0
Gλ(z)dz = αλ2

8π
.

Substituting this into (9.1) proves the Dirichlet Pólya’s conjecture for sectors con-
taining a half-disk.

We now turn to the Neumann problem in Sα , still assuming that α ∈ [π,2π]. Fol-
lowing the same argument as in Lemma 1.3, we conclude that the Neumann Pólya’s

conjecture for Sα holds for λ ≤ 2
√

6π
α

. We therefore may assume that

λ > 2

√
6π

α
≥ 2

√
3 (9.2)

from now on.
Using once more Proposition 3.1 yields

N N
Sα

(λ) ≥

⌊
αλ
π

⌋

∑

m=0

⌊
Gλ

(mπ

α

)
+ 3

4

⌋
=

�b�∑

m=0

⌊
gλ,α(m) + 3

4

⌋
, (9.3)

with the same function gλ,α and parameter b as above.
We are now going to use Theorem 6.1 with g = gλ,α to estimate the right-hand

side of (9.3) from below. Note that gλ,α(0) = λ
π

> 1
4 by (9.2). Also, by (6.2)

M0 = Mgλ,α,0 =
⌊
g−1

λ,α

(
1

4

)⌋
+ 1 =

⌊
α

π
G−1

λ

(
1

4

)⌋
+ 1,

and in order to apply Theorem 6.1 we need to ensure that M0 ≤ b = αλ
π

. But this is
true since, with account of α ≥ π ,

M0 − b ≤ α

π
G−1

λ

(
1

4

)
+ 1 − αλ

π
≤ α

π

(
G−1

λ

(
1

4

)
+ 1 − λ

)
< 0
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by (4.6). Then, (6.1) implies

�b�∑

m=0

⌊
gλ,α(m) + 3

4

⌋
≥ αλ2

8π
− b − 3M0

8
. (9.4)

We now reason as in the proof of Theorem 4.3: if we can show that b − 3M0 < 0 for
all λ ≥ 2

√
3, this would prove, via the combination of (9.3) and (9.4), that N N

Sα
(λ) >

αλ2

8π
. We have

b − 3M0 = αλ

π
− 3

⌊
α

π
G−1

λ

(
1

4

)⌋
− 3

≤ α

π

(
λ − 3G−1

λ

(
1

4

))
<

α

π

(
λ − 2G−1

λ

(
1

4

))
.

We now apply the second statement of Lemma 4.8 with σ = π
3 which guarantees that

b − 3M0 < 0 for

λ > r1

(π

3

)
= 3π

6
√

3 − 2π
.

As 3π

6
√

3−2π
< 2

√
3, this finishes the proof of Theorem 1.12 for sectors Sα of aperture

α ∈ [π,2π].
To complete the proof of Theorem 1.12 we now need to consider the case α ∈

(0,π). Set

	 :=
⌊

2π

α

⌋
≥ 2.

Then α̃ = 	α ∈ [π,2π], Pólya’s conjecture holds for Sα̃ , and Sα tiles Sα̃ . By Theorem
1.8, Pólya’s conjecture holds for Sα .
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