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Abstract We obtain new quantitative estimates on Weyl Law remainders
under dynamical assumptions on the geodesic flow. On a smooth compact
Riemannian manifold (M, g) of dimension 7, let [T, denote the kernel of the
spectral projector for the Laplacian, 1 ;2)(—Ag). Assuming only that the set
of near periodic geodesics over W C M has small measure, we prove that as
A — 00

n—1

/W T (x, x)dx = Qm)™" voly,(B) volg (W) A+ 0(log)\)’

where B is the unit ball. One consequence of this result is that the improved
remainder holds on all product manifolds, in particular giving improved esti-
mates for the eigenvalue counting function in the product setup. Our results
also include logarithmic gains on asymptotics for the off-diagonal spectral pro-
jector IT, (x, y) under the assumption that the set of geodesics that pass near
both x and y has small measure, and quantitative improvements for Kuznecov
sums under non-looping type assumptions. The key technique used in our
study of the spectral projector is that of geodesic beams.
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1 Introduction

Let (M, g) be asmooth compact connected Riemannian manifold of dimension
n, A, be the negative definite Laplace-Beltrami operator acting on L?*(M),and
{)% }?‘;O be the eigenvalues of — A, repeated with multiplicity, 0 = )% < A% <
A% < .... In this article we obtain improved asymptotics for both pointwise
and integrated Weyl Laws. That is, we study asymptotics for the Schwartz
kernel of the spectral projector

M, : LA(M, g) > @P ker(—A, — A%),
Aj=a

i.e. I, is the orthogonal projection operator onto functions with frequency
at most A. If {¢;, j}j?‘;l is an orthonormal basis of eigenfunctions, —Ag¢; =

k?qhk i the Schwartz kernel of IT, is

Mx,y) = > ¢, (), (3. (x,y) €M x M.
Aj=h

Asymptotics for the spectral projector play a crucial role in the study of eigen-
values and eigenfunctions for the Laplacian, with applications to the study of
physical phenomena such as wave propagation and quantum evolution. One
of the oldest problems in spectral theory is to understand how eigenvalues
distribute on the real line. Let N (A) := #{j : 1; < A} be the eigenvalue count-
ing function. Motivated by black body radiation, Hilbert conjectured that, as
A — 00,

N() = 2m) " volgn (B) vol, (M)A" + E (1), E(Z) = o(A™).

Here, volr» (B) is the volume of the unit ball B C R", vol, (M) is the Rieman-
nian volume of M, and dv, is the volume measure induced by the Riemannian
metric. The conjecture was proved by Weyl [46] and is known as the Weyl Law.
We refer to E()) as a Weyl remainder. In 1968, Hormander [25], provided a
framework for the study of E()) and generalized the works of Avakumovié [1]
and Levitan [35], who proved E(A) = O (W~ 1); a result that is sharp on the
round sphere and is thought of as the standard remainder.

The article [25] provided a framework for the study of Weyl remain-
ders which led to many advances, including the work of Duistermaat—
Guillemin [17] who showed E(A) = o(\"~!) when the set of periodic
geodesics has measure 0. Recently, [27] verified this dynamical condition
on all product manifolds. A striking application of our main theorem on Weyl
remainders is:
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Weyl remainders: an application 1197

Theorem 1 Let (M;, g;) be smooth compact connected Riemannian manifolds
of dimension n; > 1 fori = 1,2. Then, with M = M| x M», g = g1 D g2,
andn :=ny + ny,

N() = )" volga (B) volg (M)A" + O (A"~ ! /logr), A — o0.

For future reference, we note that N(1) = f o i (x, x) dvg(x) and thus
N (X)) can be studied by understanding the kernel of [T, restricted to the diag-
onal. We study both on and off diagonal Weyl remainders in this article. The
main idea is to adapt the geodesic beam techniques developed by authors
[9,11,22] to study Weyl remainders. These techniques were originally used to
study averages of quasimodes over submanifolds by decomposing the quasi-
modes into geodesic beams and controlling the averages in terms of the L>
norms of these beams. In this work the key point is to study the eigenvalue
counting function by viewing it as a sum of quasimodes averaged over the
diagonal in M x M. We start our exposition in the setting of the on diagonal
estimates.

1.1 On diagonal Weyl remainders

The connection between the spectrum of the Laplacian and the properties of
periodic geodesics on M has been known since at least the works [15,16,45],
with their relation to Weyl remainders first explored in the seminal work [17].
To control E (1) we impose dynamical conditions on the periodicity properties
of the geodesic flow ¢; : T*M \ {0} — T*M\{0}, i.e., the Hamiltonian flow
of (x,&) = |&lgx). Fortyp > 0, T > 0, and R > 0, define the set of near
periodic directions in U C S*M by

P, T) = {peU: U wr(BS*M(p,R))ﬂBS*M(p,R)75@}- (1.1)

to=|t|I<T

Giventwosets U C V C T*M,and R > 0, we write B, (U, R) :=={p e V :
d(U, p) < R}, where d is the distance induced by some fixed metric on 7*M,
B(U,R) = B,,,,(U,R), and B,(p, R) = B,({p}, R). The set Pf(to, T)
represents those points which come R close to being periodic with period
between 79 and T and will be used to give a quantitative measure of how many
near periodic geodesics there are.

We phrase our dynamical conditions in terms of a resolution function T =
T(R). This is a function of the scale, R, at which the manifold is resolved,
which increases as R — 0. We use T to measure the time for which balls of
radius R can be propagated under the geodesic flow while satisfying a given
dynamical assumption, e.g. being non periodic.
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1198 Y. Canzani, J. Galkowski

Definition 1.1 We say a decreasing, continuous function T : (0, 00) —
(0, 00) is a resolution function. In addition, we say a resolution function T
is sub-logarithmic, if it is differentiable and

(loglog R™1Y = —1/RlogR™! <[logT(R)] <0, O0<R<1L
We measure how close T is to being logarithmic through

Q(T) := lim sup T(R)/log R (1.2)
R—07F

Simple examples of sub-logarithmic resolution functions are T(R) =
a(log R~1)P for any « > 0 and 0 < B < 1. For an explanation for our
use of resolution functions, see Remark 1.6.

For improved integrated Weyl remainders, we need a condition on the
geodesic flow. We will use the notation that for U C T*M we write u,, for the
Liouville measure induced on U'.

Definition 1.2 Let T be a resolution function. Then U C S*M is said to be T
non-periodic with constant C  provided there exists 7o > 0 such that

lim sup MS*M<BS*M(P5(tO, T(R)), R)) T(R) < C,,. (1.3)
R—0t

We say U is T non-periodic if there is such €, and W C M is T non-periodic
if S, M is.

Below, for U C T*M, we write dimpox U for the Minkowski box dimension
of U (see e.g. [42, Page 333]). Note that if W C M is open with smooth
boundary then dimpox OW =n — 1.

Theorem 2 Let (M, g) be a smooth compact connected Riemannian manifold
of dimensionn, W C M be an open subset with dimpox dW < n, and Q2o > 0.
There exists C, > 0 such that if T is a sub-logarithmic rate function with
Q(T) < Qo and W is T non-periodic, then there is M,y such that for all
A > X

‘/ I (x, x) dvg (x) — (27) ™" volra (B) volg (W)A"| < Cy A"~ 1/ T(A 7).
w

In particular, if M is T non-periodic, then there is Ao such that for all A > Lg

NG — @) Vol (B) vol, (M)2"| = €3~/ T(7).
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Fig. 1 An example of a perturbation of the sphere with both a non-periodic (green) and a
periodic (orange) physical space set. The perturbed metric coincides with the round metric
outside the strip (a, b). Trajectories which remain in the spherical strip are 27 periodic, while
those which enter the non-periodic set are mostly non-periodic. See Sect. B.2.1 for a precise
description of this example (color figure online)

We illustrate an application of Theorem 2 in Fig. 1. In this example we
construct a surface of revolution with both a periodic and a non-periodic set (see
Definition 1.2). In particular, Theorem 2 applies with W contained in the non-
periodic (green) set. One can obtain little oh improvements for the statement
in Theorem 2, but this requires the more general version given in Theorem 6
instead (see Remark 1.8). See Table 1 in Sect. 1.3 for some additional examples.

The assumptions of Theorem 2 apply to a wide variety of Riemannian mani-
folds. Indeed, in addition to the concrete examples in Sect. 1.3, the authors [12]
use Theorem 2 to give a logarithmic improvement in the remainder for the Weyl
law that works for ‘typical’ metrics on any smooth manifold. This result is the
first quantitative estimate for the remainder in Weyl laws that holds for most
metrics.

We next discuss E)(x), the remainder in the on diagonal pointwise Weyl
law

[T (x, x) = 2m) " volpn (B)A" + E;(x), xeM. (1.4)

The Weyl remainder in [25] comes from the estimate Ej (x) = O(A"~ 1)
for x € M (again, sharp on the round sphere). The connection between
E, (x) and geodesic loops through x is studied in the works of Safarov,
Sogge—Zelditch [38,41] and often appears in estimates for sup-norms of eigen-
functions. To control the pointwise remainder E)(x) we impose dynamical
conditions on the looping properties of geodesics joining x with itself. For
to>0,7T >0,R >0,and x, y € M, define
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cf,y(zo,T):z{p esiM: | ) @(B(p.R) N B(SIM, R);s@}. (1.5)

=|t|<T

Similar to 735 (tg, T), the set Ef’y (to, T') represents those points, p, that are
R close to x and such that the geodesic through p comes R close to passing
through to y in some time between #y and 7. The set will be used to give a
quantitative measure of how many near looping geodesics there are.

Definition 1.3 Let T be a resolution function, tp > 0, C, > 0,and x, y € M.
Then, (x, y) is said to be a (ty, T) non-looping pair with constant C, when

lim sup (:Uvs’fM (Bs’fM(Cf,,v(an T(R)), R))MS*,M (BS’fM(Lﬁ)"(m’ TR, R))T(R)z) =G
R0+ \ 7 * » ’

We say x is (t9, T) non-looping with constant C, if (x, x) is a (fp, T) non-
looping pair with constant C,.

Note that if 79 < inj(M), where inj(M) is the injectivity radius of M, then
for x to be (#p, T) non-looping is the same as being (&, T) non-looping for any
0 < & < 19. In this case, we write x is (0, T) non-looping.

To state our estimates on the pointwise Weyl remainder, we let A > 0, and,
for points x, y € M with d(x, y) < inj M, define

/ ei(expyl(x),f)i' (1.6)
1&gy <A

vV |gy|

Here, the integral is over Ty*M ,exp, : TYM — M is the the exponential map,
and |gy| denotes the determinant of the metric g at y, when g is thought of as
matrix in local coordinates.

EQ(x,y) =T (x,y) — Gy

Theorem 3 Let o, § e N*, 0 < § < % C, > 0, and Qo > 0. There exists
C, > 0 such that the following holds. If T is a sub-logarithmic resolution
Sfunction with Q(T) < Qo, there is Ao > 0 such that if xo € M is (0, T)
non-looping with constant C,, then for all A > Ag

sup  [0%0PED(x, y)| < ¢, A AL /(57T
x,y€B(x0,17%)

See Table 2 in Sect. 1.3 for some examples to which Theorem 3 applies.

Remark 1.4 At first it may not be obvious that (1.6) is the correct remainder to
estimate for off-diagonal Weyl asymptotics. However, one can check that the
term we subtract comes from the singularities corresponding to the shortest
geodesic from x to y and, when there are few additional loops from x to y,
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Weyl remainders: an application 1201

one expects these to give the main contribution. See also the discussion after
Theorem 4.

Theorems 2 and 3 fit in a long history of work on asymptotics of the kernel
of the spectral projector and the eigenvalue counting function. Many authors
considered pointwise Weyl sums [1,21,25,35,36,39], eventually proving the
sharp remainder estimates. The article [25] provided a method which was
used in many later works: [17] showed E(A) = o(\"1y under the assumption
that the set of periodic trajectories has measure 0, [38,41] improved estimates
on E; (x) to o(A"!) under the assumption that the set of looping directions
through x has measure 0 (see also the book of Safarov—Vassiliev [37]). See [ 13,
14] for corresponding estimates that are uniform in a small neighborhood of
the diagonal and Ivrii [28] for the case of manifolds with boundaries.

While o(1) improvements were available under dynamical assumptions,
until now, quantitative improvements in remainders were available in geome-
tries where one has an effective parametrix to logA times e.g. manifolds
without conjugate points [2,4,31] or non-Zoll convex analytic rotation sur-
faces [43,44]. We point out that the closest results to ours are those of
Volovoy [43]. There, quantitative estimates on FE(A) are obtained under
stronger assumptions than those of Theorem 2. In particular, W is required
to be equal to M and the volume in (1.3) is required to be bounded by a
positive power of R, rather than T(R) ™.

The estimates in this article are available without additional geometric
assumptions. This comes from our use of the ’geodesic beam techniques’
developed in the authors’ work [9,11,22] and which in turn draw upon the semi-
classical approach of Koch—Tataru—Zworski [33]. Theorems 2 and 3 can be
thought of as the quantitative analogs of the main resultsin [17] and of [38], [41]
respectively. In fact, these results can be recovered from Theorems 2 and 3 by
allowing T(R) to grow arbitrarily slowly as R — 0T (see [11, Appendix B]).
We also note that our estimates include both C* asymptotics for IT; (x, y)
and uniformity in certain shrinking neighborhoods of the diagonal without
any additional effort and hence include the results from [13,14].

Remark 1.5 To recover the results of [13,14,38,41] one needs uniformity in
o(1) neighborhoods of points of interest. As stated, Theorem 3 does not quite
include this since it works in a A ™% neighborhood of x. However, the full
version of our estimates, Theorem 9, allows for the neighborhood of x to
shrink arbitrarily slowly and thus recovers these earlier results.

Remark 1.6 (Resolution functions) There are several reasons why we state
our theorems in terms of a general resolution function. First, it is necessary to
allow T(R) to grow arbitrarily slowly as R — 0 to recover the o(1) results
of [17,38,41] (see Remark 1.8). Second, while it may appear from Tables 1
and 2, that T(R) is always either c log R~! or the trivial case of inj(M), this is
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1202 Y. Canzani, J. Galkowski

not always true. In fact, one can check that many integrable examples are non-
looping or non-periodic for T(R) >> log R~!. At the moment, the authors are
not aware of concrete examples with T(R) < log R. However, it is likely that
for any sub-logarithmic resolution function T, with T(R) — oo as R — 0,
a modification of the construction from [6] yields a metric on the sphere for
which there is a point x such that x is not (¢p, T) non-looping for any 7y > 0,
but there is a resolution function Ty with T{(R)—>o0cas R — 0T and 7y > 0
such that x is (79, T1) non-looping. Also, note that our non-periodic, non-
looping, and non-recurrent conditions are all monotonic in T in the sense
that if T{(R) < T2(R), and one of these conditions hold with the resolution
function T, then it also holds with T}.

1.2 Off diagonal Weyl remainders

The off diagonal behavior of IT, (x, y) plays a crucial role in understanding
monochromatic random waves (see e.g. [7]) as well as in estimates for L?
norms of Laplace eigenfunctions (see e.g. [40, Section 5.1]). This problem is
more complicated than the on diagonal situation since understanding the far off
diagonal (i.e., d(x, y) > inj(M)) regime typically involves parametrices for
¢ e fort > inj(M), which are difficult to control. Notably, our geodesic
beam techniques allow us to overcome this difficulty when estimating errors.

To control IT; (x, y) off-diagonal, we introduce a dynamical condition on
the non-recurrence properties of the geodesics joining a point x with itself. To
our knowledge, this is the first time non-recurrence is used in understanding
off-diagonal Weyl remainders. For x e M, U C SiM,t) > 0, T > 0, and
R > 0, let

Ry 0, T):= |J @(BW,R)NB, U, R).

fo<=*t<T

Definition 1.7 Let tand T be resolution functions and Ry > 0. Wesay x € M
is (t,T) non-recurrent at scale Ry if for all p € S} M there exists a choice of
=+ such that for all A C B, (p,Ro), e >0,r >0 with T(r) > t(¢), and
0 < R < Ry, !

g (B REC@.T00, 1R)) < e 11y, (B (AL B)).

Heuristically, the way to think about Definition 1.7 is as follows. Recall
that the standard definition of recurrence of a set A C Sy M is that that for
all B C A and u, -almost every p € B, the geodesic through p returns

to B infinitely often. Definition 1.7 is a strengthening of the statement that
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Weyl remainders: an application 1203

no recurrent set exists. Indeed, the set RS. L0, T) consists of those points
in U which return R close to U in times between ty and 7. Thus, a set is
non-recurrent according to Definition 1.7 if every subset A of S} M has the
property that the collection of points which are close to A and almost return
to A in time t(¢) has volume smaller than ¢ times that of the ball of radius R
around A. Thus, in particular, most points eventually do not come close to A
and hence A is also non-recurrent in the traditional sense.

If (x,y) is a (tp, T) non looping pair for some 7o > 0 we measure the
difference between IT (x, y) and its smoothed version which takes into account
propagation up to time 7y. Let p € S(R) with p(0) = 1 on [—1, 1] and
supp o C [-2,2]. For 0 > 0 we define

Po () ::op(o s). (1.7)
Forx,y e M,ty > 0,and 1 > O, let

EY =TI, — p, * Ty, (1.8)

where the convolution is taken in the A variable. The quantity Eio is the appro-
priate one to estimate since, under non-looping type assumptions, one expects
the main contribution to the kernel of the spectral projector to come from short
(fixed) time wave propagation.

Below is our first off diagonal result.

Theorem 4 Leto, B e N', 0 <6 < % C,>0,Ry>0 0 >0¢>0,and
t be a resolution function, there is C, > 0 such that if T is a sub-logarithmic
resolution function with Q(T;) < Qq for j = 1,2 and Tiyax = max(Ty, Ty),
then there is Ao > 0 such the following holds. If xo, yo € M and ty > 0 are
such that xo and yg are respectively (t, T1) and (t, T,) non-recurrent at scale
Ro, and (x¢, yo) is a (to, Tmax) non-looping pair with constant C,, then for
A > Ao

sup sup 0%l BT (e, | < ¢, )»"_H'“'Hﬂ'/‘/Tl(k—l)Tz(/\—l).
x€B(x0,A~%) yeB(yp,A7%)

See Table 2 in Sect. 1.3 for some examples to which Theorem 4 applies.
To compare Theorems 3 and 4, note that for x, y € M withd(x,y) < ¢ <
inj(M),

1 1 dé&
8“8’3(,05 T (x, v) — / R D8 g (x,y, 6) )‘
Ty e @)™ Jigly, <n V18l

< ¢ a2l
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1204 Y. Canzani, J. Galkowski

where g3 (x, y. §)=1 + 2" 'g_1(x, . &) and g_1(x, y. &) = O(d(x, ) (see
e.g. [13, Proof of Proposition 10]). Then, for points x, y with d(x, y) < 278,
modulo terms smaller than our remainder, Eg (x, y) as defined in (1.6) is the
same as Ef (x, y).

For any 79 < o0, it is possible to write an oscillatory integral expression
for pg, * Ty (x, y). However, its precise behavior in A depends heavily on the
geometry of (M, g); in particular, on the structure of the set of geodesics from
x to y. This explains why we state our estimates in terms of Eio.

More generally, our results apply to averages of I, (x, y) with x € H and
y € H,, where Hy, Hp are any two smooth submanifolds of M. This type of
integral is known as a Kuznecov sum [47] and appears in the analytic theory of
automorphic forms [5,23,24,29,34]. All our dynamical assumptions for points
X,y € M above may be defined for the submanifolds Hy, H>» C M instead. In
doing so, the only change needed is to use the sets of unit co-normal directions
SN*Hy and SN*H», instead of S} M and S;‘M. See Definitions 1.12 and 1.13
for a detailed explanation. In what follows doy, and doy, denote the volume
measures induced by the Riemannian metric on H; and H» respectively.

Theorem 5 Let o, € N, 1 < ki < n, 1 < kp < n C; > 0,
Q > 0, e > 0, Rp > 0, and t be a resolution function. There is
Co=Cy(a, B, k1, kz,n, C;,Q,&, Ro,t) > 0 such that if T; is a sub-
logarithmic resolution function with Q(T;) < Qq for j = 1,2 and Tiax =
max(Ty, T2) the following holds. If to > 0, and H; C M are submanifolds
of codimension k;j such that (Hy, H) is a (to, Tmax) non-looping pair with
constant C,, and H; is (t, T ;) non-recurrent at scale Ry for j = 1,2, then

nl’

there is Lo > 0 such that for A > Lo

/ / LI EP T (x, y) doy, (x)doy, (y)‘
Hy JH>

k];kz—1+|Ol|+|/3|/\/T1(A—l)Tz()\’—l).

See Table 2 in Sect. 1.3 for some examples to which Theorem 5 applies.

To our knowledge, Theorem 5 is the first theorem to give improved remain-
ders for Kuznecov sum remainders under dynamical assumptions. Theorems 3,
4, and 5 are consequences of our results for general semiclassical pseudodif-
ferential operators (see Theorems 8 and 9).

<C, A

1.3 Applications

In this section we present some examples to which our theorems apply. For
each of them we give a reference for the detailed proofs that the relevant
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Table 1 This table lists examples with T non-periodic subsets with T(R) = clog R~

M w IExl < 8§
Product manifolds Any % B.1.1
Perturbed spheres In the non-periodic set % B.2.1
Manifolds without conjugate points Any 1)‘(;1 g ;L B.1
Non-Zoll convex analytic surfaces of revolution Any f‘(;l g_ )IL [44]
Compact Lie group rank > 1 with bi-invariant metric Any f‘; g )IL [44]

Theorem 2 holds for all these examples. Here, E) = fW E; (x) dvg with E; (x) asin (1.4)

assumptions are satisfied. Note that Appendix B contains many examples not
listed in Tables 1 and 2, and that the results from [8] can be used to find
additional examples. With the exception of the final three rows of Table 1 with
W = M, all the estimates in Tables 1 and 2 are new.

In Table 1, we list examples where the assumptions of Theorem 2 hold. The
final two examples are due to Volovoy [44].

In Table 2 we list some examples for which Theorems 4 and 5 hold. In each
case there exists 7o > 0 such that (H;, H») is a (tp, max (T, T»)) non-looping
pair. Note that we omit labeling points for which T, = inj(M) since being
inj(M) non-recurrent is an empty statement. In these cases the gain in the
pointwise Weyl law is 1/Tog A instead of log A.

1.4 Further improvements

Many experts believe that, for a Baire generic Riemannian metric on a smooth
compact manifold, there is § > 0 such that E(1) = O(1"~'79%). Presently,
this type of improved remainder is only available when the geodesic flow
has special structure e.g. the flat torus, non-Zoll convex analytic surfaces
of revolution, or compact Lie groups of rank > 1 with bi-invariant met-
ric [44]. Specifically, the geodesic flow must expand only polynomially in
time, ||[do;|lLorsymy < C (t)N for some N > 0. Typically, geodesics will
instead expand exponentially in some places and, because of this, Egorov’s
theorem generally only holds to logarithmic times. In fact, the only ingredient
in our proof which restricts us to logarithmic improvements is Egorov’s theo-
rem. Under the assumption of polynomial expansion one can prove an Egorov
theorem to polynomial times and hence obtain polynomially improved remain-
ders using our methods. We do not pursue this here since the present article
is intended to apply on a general manifold and the polynomial times involved
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Weyl remainders: an application 1207

in such an Egorov theorem are not explicit. We instead plan to address the
integrable case specifically in a future article.

1.5 Weyl laws for general operators

Let W™ (M) denote the class of semiclassical pseudodifferential operators of
order m > 0 and P(h) € W" (M) be self-adjoint, with principal symbol p,
that is positive and classically elliptic in the sense that there is C > 0 such
that

p(x. &) = LIEI", gl =C. (1.9)

Let {E;(h)}; be the eigenvalues of P repeated with multiplicity. For s € R
we work with IT;(s) 1= 1 (_s0o,5)(P(h)), which is the orthogonal projection
operator

My(s): L* (M. g) > €D ker(P(h) — E;(h)).
Ej(h)<s

For x, y € M we write I1;(s; x, y) for its kernel

(s, 3) = D by (B ) (1.10)

Ej(h)<s

where {¢Ei(h)}j is an orthonormal basis for LZ(M) with P(h)qﬁEi(h)
Ej(h)¢ £ (h'). Note that one integrates (1.10) against the Riemannian volume
density dvg(y).

Let ¢, : T*M — T*M denote the Hamiltonian flow for p at time z.
We recall the maximal expansion rate for the flow and the Ehrenfest time at
frequency i~ ! respectively:

. 1

Amax = lim sup —IOg sup lde:(x, &),
|t]— 00 |t| {pela—e,b+e]}
logh~!

T,(h) = A .
max

(1.11)
Note that Amax € [0, 00) and if Apax = 0, we may replace it by an arbitrarily
small constant.

Remark 1.8 (Little oh improvements) When the expansion rate Apax = 0
(see (1.11)) and our dynamical assumptions hold for T(R) > log R,
our theorems can be used to obtain o(1/log ) improvements over standard
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1208 Y. Canzani, J. Galkowski

remainders. In special situations where the geodesic flow has sub-exponential
expansion, we expect similar results with improvements beyond o(1/log A).

Definition 1.9 Let a,b € R witha < b. Let tp > 0 and T be a resolution
function. A set U C T*M is said to be T non-periodic for p in the window
[a, b] provided that for all E € [a, b] Definition 1.2 holds with ¢; being the
Hamiltonian flow for p, and with §*M replaced by p~ ! (E).

The following is our most general version of the Weyl Law. We write 7, :
T*M — M for the natural projection and H,, for the Hamiltonian vector field
for p.

Theorem 6 Let 0 < § < % L e R andV C \Ile(M) a bounded subset,
U C T*M open, to > 0, C,, > 0, and a,b € R with a < b. Suppose
dm,H, # 0on p~Y(a, b)) NU. Then, there is C, > 0 such that the following
holds. Let K > 0, A € V with WFL,(A) C U, A > Anax, T be a sub-
logarithmic resolution function with AQ(T) < 1 — 24, and suppose U is T
non-periodic in the window |a, b] with

limsup sup T(R)u , (B(dU,R)) <C,. (1.12)
R—0 tela,b] reo

Then, there is hg > 0 such that for all0 < h < hg, and E € [a, b + Kh)]

Do (A b))~ (Apy * TR(E))| < Coh' ™"/ TM).  (1.13)
—0o<E;(h)<E

Since the second term in (1.13) involves only short time propagation for the
Schrodinger group e/ P/ its asymptotic expansion in powers of & can in prin-
ciple be obtained. This calculation is routine, but long, so we do not include it
here. For the details when P = —hZA ¢» we refer the reader to [17, Proposition
2.1]. In addition, if U C T*M has smooth boundary which intersects p_1 (E)
transversally for E € [a, b], then (1.12) holds. Although the statement of The-
orem 6 is cumbersome when U with rough boundary is allowed, it is natural to
consider dynamical assumptions on this type of set. Indeed, many dynamical
systems exhibit the so-called ‘chaotic sea’ with ‘integrable islands’ behavior
where the dynamics are aperiodic in the sea; a set which typically has very
rough boundary.

Next, we consider generalized Kuznecov [34] type sums of the form

Al,A
HHII sz (s) := / / ATTp(s)AS (x, y) do’Hl (x)do'H2 (),
’ H JH
where A, Ay € V(M) and Hy, H, C M are two submanifolds of M.
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Let H C M be a smooth submanifold. Fora, b € R, a < b, define

= p~'(a, b)) N N*H. (1.14)
Definition 1.10 We say a submanifold H C M of codimension k is
conormally transverse for p in the window [a, b] if given fi1,..., fir €
CX(M;R) locally defining H, ie. with H = ﬂf;l{f,- = 0} and

{df;} linearly independent on H, we have

T C U{prl # 0}, (1.15)

Here, we interpret f; as a function on the cotangent bundle by pulling it back
through the canonical projection map.

Remark 1.11 If P(h) = —h*A,, then p(x, §) = |s|§(x). Working with a =

b =1, we have EH o = = SN*H. In this setup every submanifold H C M is
conormally transverse for p.

Definition 1.12 Let H;, Hy C M be two smooth submanifolds. Let a, b € R
witha < b.Letty > 0, T aresolution function, and C, > 0. We say (H;, H>)
is a (fp, T) non-looping pair in the window |a, b] with constant C, provided
that Definition 1.3 holds for all E € [a, b] with ¢; being the Hamiltonian flow
for p and with E y changed to

Eﬁl’ﬁlz(to, T):= {,0 exih: U @(B(p, R)) N B(ZH2, R) # @}’

1=<[t|<T

and with SYM and STM replaced with 5‘ and 252 respectively. We say H
is (to, T) non-looping it (H, H) is a (tg, T) non-looping pair.

Definition 1.13 Let H C M be a smooth submanifold. Let a, b € R with
a<b.Letty>0,Ry>0,0<C, <1,andletT be a resolution function.
H is said to be T non-recurrent in the window [a, b] with constants (R, C,,)
provided Definition 1.7 holds for any E € [a, b] with S} M replaced by X gl
and where ¢, is the Hamiltonian flow for p.

To state our main estimate for Kuznecov sums, let p € S(R) with 5(0) = 1
on[—1, 1T and supp p C [—2, 2]. For T > 0 we define

pur® =5 o(1). (1.16)
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1210 Y. Canzani, J. Galkowski

We then introduce the remainder

R sy =T ()

Al,Ap (s)
H{.H Hy.H Ph,T Hy,H: :
1.2 1.2 1-42

E (1.17)

Theorem 7 Let P(h) € V" (M) be a self-adjoint semiclassical pseudodiffer-
ential operator with classically elliptic symbol p. Let t be a resolution function
and e > 0. For j = 1,2, let Hi C M be submanifolds with co-dimension k.
Let a,b € R such that H; is conormally transverse for p in the window
[a,b] for j = 1,2. Let Ry > 0, 19 > 0, and for j = 1,2, let T; be sub-
logarithmic resolution functions and Tyax = max(Ty, T2). Suppose H; is
(t, T;) non-recurrent in the window [a, b] with constant R for each j = 1,2,
and (Hy, Hy) is a (ty, Tmax) non-looping pair in the window |a, b] with con-
stant C,,. Then, for all A1, Ay € W°(M), there exist ho > 0 and C, > 0 such
that for all0 < h < hy, K > 0, ands € [a — Kh,b + Kh]

A1,A _k1+k2
E, e his)| < C ' [T Ta(0h).

Remark 1.14 We omit the precise dependence of the constant C, on various
parameters in Theorem 7. Instead, we refer the reader to our main theorem on
averages, Theorem 8, where we have introduced notation to handle uniformity
in families of submanifolds H; and H>.

1.6 Outline of the paper and ideas from the proof

In Sect. 2 we introduce the notion of good coverings by tubes and various
assumptions on these coverings which allow us to adapt the results of [11] to
our setup. We also state our main averages theorem in its full generality (The-
orem 8). Section 3 studies how the dynamical assumptions in the introduction
relate to the assumptions on coverings by tubes from Sect. 2. In Sect. 4 we
adapt the crucial estimates coming from the geodesic beam techniques [11] so
that they can be applied to the study of Weyl remainders. Next, in Sect. 5, we
estimate the scale (in the energy) at which averages of the spectral projector
behave like Lipschitz functions in the spectral parameter. With this in hand,
we are able to approximate I, using p, ;,, * [1p with T'(h) = /T1(h)T2(h).
Finally, Sect. 6 shows that the p, ., * I, approximation is close to pp ¢ * I,
finishing the proof of our main theorem on averages. Section 7 contains the
proof of our theorems on the Weyl remainder. This section follows the same
strategy as that for averages: an estimate for the Lipschitz scale of the trace
of the spectral projector, followed by relating p, ;,, * I; to Ppr * i In
Appendix A we present an index of notation and in Appendix B we give
examples including those from Table 2 to which our theorems can be applied.
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The main idea of this article is to view the kernel of the spectral projector
1;—s5,.)(P) as a quasimode for P. This allows us to use the geodesic beam
techniques from [11] to control the energy scale at which the projector behaves
like a Lipschitz function and hence to estimate the error when the projector is
smoothed at very small scales. This idea is used a second time when controlling
(o, T(h) — Ph,1y) * Tj, to estimate the contribution from small volumes of the
possibly looping tubes. A simple argument using Egorov’s theorem controls
the remaining non-looping tubes. The crucial insight used to handle the Weyl
law is to view the kernel of the spectral projector as a distribution on M x M,
where it is a quasimode for P := P ® 1, and to study the Weyl Law via
integration of the kernel over the diagonal. By doing this, we are able to reduce
the problem to bounding an average of a quasimode over a submanifold, a
setting in which geodesic beam techniques apply.

Note that Theorems 2 and 6 are proved in Sects. 7.1.4 and 7.1.3 respectively.
Theorem 1 is a corollary of Theorem 2; the necessary dynamical properties are
proved in Appendix B.1.1. Theorems 3, 4, 5, and 7 follow from an application
of Theorem 9 (See Sect. 2.4 for Theorems 3, 4, and 5. Theorem 7 is a direct
corollary of Theorem 9.). The fact that Theorem 9 follows from Theorem 8 is
proved in Sect. 9 and Theorem 8 is proved in Sect. 6.2.
ACKNOWLEDGEMENTS. The authors would like to thank Dmitry Jakobson,
losif Polterovich, John Toth, Dmitri Vassiliev and Steve Zelditch for helpful
comments on the existing literature and Maciej Zworski for suggestions on
how to improve the exposition and presentation, and Leonid Parnovski for
comments on a previous draft. Thanks also to the anonymous referee who’s
comments improved the exposition. The authors are grateful to the National
Science Foundation for partial support under grants DMS-1900434 and DMS-
1502661 (JG) and DMS-1900519 (YC). Y.C. is grateful to the Alfred P. Sloan
Foundation.

2 Results with dynamical assumptions via coverings by tubes

We divide this section in four parts. In Sect. 2.1 we introduce the analogues
of Definitions 1.12 and 1.13 via the use of coverings by bicharacteristic tubes.
Microlocalization to these tubes will eventually be used to generate bichar-
acteristic beams. In Sect. 2.2 we introduce the uniformity assumptions that
allow us to obtain uniform control of the constants in all our results. In Sect.
2.3 we state the most general version of our results, using the definitions via
coverings by tubes, and the uniformity assumptions.
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1212 Y. Canzani, J. Galkowski

2.1 Dynamical assumptions via coverings by tubes

Let H C M be a smooth submanifold that is conormally transverse for p in
the window [a, b]. Let Z C T*M with

i -z 2.1)

la,b]

be a hypersurface that is transverse to the flow, and ¢; continue to denote the
Hamiltonian flow for p at time ¢t. Given A C E[IZIW T > 0,and r > 0, we
define '

A= | @(Bs(Ar)). 2.2)

[t|<t+r

Let 7, > 0 be small enough so that the map
H

(-t T YxZ—>T"'M, (t,q) — ¢:(q), (2.3)

injg° “injy

is injective. Givenr > 0,0 < 7 < 7, , and a collection of points {p;} je 7(r),
we will work with the tubes
T =T;(r) = A;j (r).

A (t,r)-cover for A C T*M is a collection of tubes {7;(r)};cs() Where
J (r) C N for which

AZ(%r) C U Ti(r), and T;(r)N AZ(%r) £, forall j € J(r).
jeg)

Let® > 0. Wesaya (t, r)-coverisa (9, t, r)-good cover, if there is a splitting
J(r) =U2 J;(r) such that forall 1 <i <D and k£¢ € J;(r),

T (Br) N1, (3r) = 0. (2.4)
For E € R and r > 0, we adopt the notation
T (r) = {jej(r); T NZ mB(zg,r);é@}. (2.5)

We are now ready to introduce the definitions via coverings of our dynamical
assumptions. First, for 0 < fy < Ty, we say A C T*M is [ty, Ty] non-self
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looping if

To —1o

Uena=g o [ a@yna=on (2.6)

t=ty t==Tp

Definition 2.1 (non looping pairs via coverings) Letty > 0, g > 0, D > 0,
and T be a resolution function. Let H;, H> be two submanifolds and U; C
N*Hy, Uy C N*H,. We say (Uy, U») is a (tg, T) non-looping pair in the
window |a, b] via ty-coverings with constant C, provided forall 0 < 7 < 19
there exists 9 > 0 such that for 0 < r < rgp, any two (D, t, r)-good covers of
Upn 2H1] and Up N EH2 {T (r)}lejt(,) and {T (r)}jejz(,) respectively,
and every E € [a, b], there is sphttlngs of indices

Ty =BLrHUGLr),  TXr) =Bir)UGi(r),

satisfying
(1) foreachi, k € {1,2},i # k every £ € G.(r),

( U wt(T;m))ﬂ( U Tjk(r)):

to+7<|t|<T(r)—7 JeTE (1)

) r2=D1BL(M 1B (r)|T(r)? < DC,.

We will say (Hy, H») is a (tg, T) non-looping pair in the window [a, b] via
T-coverings if (N*H\, N*H») is. We will also say H is (tg, T) non-looping in
the window |a, b] via T coverings whenever (H, H) is a non-looping pair.

In Definition 2.1, the sets B, and G, should be thought of as respectively
‘bad’ and ‘good’ tubes. The tubes B, are ‘bad’ in the sense that they may
connect 2[H le and E[Hij under the Hamlltoman flow for p in a relatively short
time, while the tubes G, are ‘good’ in the sense that they do not connect these
two sets for some controlled amount of time (see part (1) of the definition).
Part (2) of the definition guarantees that there are not too many bad tubes
connecting ZH lb] and 2H2

In Sect. 3, we prove that non looping in the sense of Definition 1.12 is
equivalent to non looping by coverings in the sense of Definition 2.1.

Definition 2.2 (non-recurrence via coverings) Let tp > 0, ® > 0, and T be
a resolution function. We say H is T non-recurrent in the window |a, b] via
T9-coverings with constant C _provided forall 0 < © < 7 there exists rop > 0
such that for 0 < r < ro, every (®, 7, r)-good cover of E[]: {T;(N}jegm)
and E € [a, b], there exists a finite collection of sets of indices {g PRI L,

@ Springer



1214 Y. Canzani, J. Galkowski

with J, (r) = UZGLE " G, ,(r), and so that for every £ € L, (r) there exist
functions #;(r) > 0 and T;(r) > 0, with O < t,(r) < Ty(r) < T(r), so that

(D Ujeg“(r)Tj(”) is [t¢(r), T¢(r)] non-self looping,

—1

@ r'T Yrer, o (10, (Ol Te) )2 <DEC, T(r) 2

In Definition 2.2, the sets 5, and G, should again be thought of as respec-
tively ‘bad’ and ‘good’ tubes. The tubes 3,. are ‘bad’ in the sense that they may
self intersect under the Hamiltonian flow for p in a relatively short time, while
the tubes G, are ‘good’ in the sense that they do not self intersect these two
sets for some controlled amount of time (see part (1) of the definition). Part
(2) of the definition again guarantees that there are not too many bad tubes.

In Lemma 3.5 below we prove that non recurrence in the sense of Definition
1.13 implies non recurrence by coverings in the sense of Definition 2.2. At
the moment, we are unable to determine whether these two definitions are
equivalent.

2.2 Uniformity assumptions

Let H C M be a smooth submanifold. In practice, we prove estimates on
{Hp}n, where {Hp}j, is a family of submanifolds such that

sp fd(o. 5% ) | pe 5, 1 < RO h>0, 2.7)

where R(h) > 0 and for every multi-index « there is X, > 0 such that for all
h>0

R, |+ 19T, | < K 2.8)

@

Here RH and HH denote the sectional curvature and the second fundamental
h h

form of Hj,. Without loss of generality, we will assume Z is chosen so that
there exist N > 0, C = C(p, a, b, {Ky}jaj<n) > 0, and ro > 0 such that for
all E € [a,b], AC /! and 0 < r < ro,

vol (Bo(A,1)) < Cr'ugn (Bzg (4.7)).

We may do this since dim Z = 2n — 1, dim 25 =n—1,and 25 C Z.
Note that when H = {x¢} is a point, the curvature bounds become trivial,

and so in place of (2.7) we work with d(xo, x;,) < R(h) and may take K,

to be arbitrarily close to 0. In what follows, let r,, : T*M — R be the
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geodesic distance to H, i.e.,r, (x,§) = d(x, H) for (x, &) € T*M, and write
m,, : T*M — M for the natural projection.

Definition 2.3 (regular families) We will say a family of submanifolds { Hy};,
is regular in the window [a, b] if it satisfies (2.8) and there is ¢ > 0 so that
for all 4 > 0, the map (—¢, ¢) x >H M,

la.b]
(t, p) = m,(¢:(p)) 1is adiffeomorphism. (2.9)

Then, define [H,r, | : E[Ia{b] — Rby
IHpry |(p) == th_r)I(l) IHpry, (@i ()] (2.10)

Definition 2.4 (uniformly conormally transverse submanifolds) A family of
submanifolds { Hy};, is said to be uniformly conormally transverse for p in the
window [a, b] provided

(D) I:Ih is conormally transverse for p in the window [a, b] for all & > 0,
(2) there exists J, > 0 so that forall 7 > 0

inf{|Hprﬁh|(p) lpest

} >3, @.11)
When the constants involved in our estimates depend on {H}}p, they will do
so only through finitely many of the K, constants and the constant J,.

Remark 2.5 We note that for p(x, &) = |§|§(x), a=b=1, and E[Zb] =
SN*H, we have |H,r, [(p) = 2 forall p € SN*H. It follows that every family

of submanifolds is uniformly conormally transverse and we may take J, = 2.

2.3 Main results

We now state the main results from which all of our Kuznecov type asymptotics
follow. Throughout the text, the notation C = C(ay, ..., a;) means that the
constant C depends only on ay, ..., a.

Theorem 8 For j = 1,2, letk; € {1,...,n}, Joj >0, A; € V(M). Let
Cnlr > 0, Cn% > 0and C; > 0. There is

C, =C,(n, ki, ka, Ay, Ay, 31, 3

0’0’

cl.ctc)=0

such that the following holds.
Let P(h) € W™ (M) be a self-adjoint semiclassical pseudodifferential oper-
ator, with classically elliptic symbol p. Let 0 < § < %, K >0,a,b e Rwith
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1216 Y. Canzani, J. Galkowski

a < b, and for j = 1,2 let H;C M be a submanifold with co-dimension
kj that is regular and uniformly conormally transverse for p in the window
[a, b] (with constant Joj as in (2.11)). Then, there exists tg > 0 with the
following property. Let A > Amax, and to > 0. For j = 1,2 let T be a
sub-logarithmic resolution function with AQ(T;) < 1 — 28 and such that
the submanifold Hj is T j non-recurrent in the window |a, b] via to-coverings
with constant Cn{ . Suppose (Hy, H») is a (ty, Tmax) non-looping pair in the
window [a, b] via to-coverings with constant C ; where T = max(T, T2).
Leth® < R(h) = o(1) andforj = 1,2 let{I:Ij’h}h be a family of submanifolds
of codimension k; that is regular, uniformly conormally transverse for p in
the window [a, b), and satisfies

sup {d(p, 252’]”) ‘ o€ E[IZ{,J} < R(h).

Then, thereis hg > Osuchthatforall0 < h < hgands € [a—Kh, b+Kh],

ky+k
X 0, h9)| = Con' T2 VTR T2 (R,

Hy poHap
We also have the following corollary involving the definitions of non-

looping (Definition 1.12) and non-recurrence (Definition 1.13).

Theorem 9 Let t be a resolution function, A > Amax, K > 0, & > 0, Ry >
0,0 <§ < % and for j = 1,2 let T; be a sub-logarithmic resolution
function with AQ(T;) < 1 — 28 and let Tax = max(Ty, Ty). Suppose the
same assumptions as Theorem 8, but assume instead that for j = 1,2 the
submanifold H; is (t, T j) non-recurrent in the window [a, b] at scale Ry, and
(Hy, H») is a (ty, Tmax) non-looping pair in the window [a, b] with constant
C,- Then, there exist C, = C,(n, ki, ka2, Ay, Ay, I 32 ¢, C,) and hy > 0

0’>%0”’

such that for all0 < h < hgands € l[a— Kh,b + Kh]

k1+

72 /\/Tl(R(h))Tz(R(h))-

EMN™ (gt e hys)| < Coh'

Hy n-Hy

For the proof of Theorem 8, see Sect. 6.2 and for the proof of Theorem 9
see Sect. 9.

2.4 Application to the Laplacian

In this section we show how to obtain Theorems 3, 4, and 5 from Theorem 9. It
will be convenient here and below to use semiclassical Sobolev spaces defined
for s € R by the norms

||u||§,:d(M) = ((—h* Ay + D1, u) 12y (2.12)
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To pass from Theorem 9 to theorems about the Laplacian, we work with

an operator Q such that o(Q)(x,§) = [§[g(x) near {(x,&) : [§lgn) = 1},
Theorem 9 applies with P = Q, and for A =h~ ' and all N > 0

Lo 1)(Q) = I, (044, * L(—00,51(Q))(D)
= Py ¥+ Oh™) v . (2.13)

Recall that P is defined as in (1.16). To build Q, let Y1, ¥, € C°(RR; [0, 1])
with suppy1 C (—1/4,1/4), suppy, C [—16,16], ¥ = 1 on
[—-1/16,1/16] and , = 1 on [—4, 4]. We claim

0 =1 —Y1(=h*A)Va(—h>Ag)\/—h2A,
—h? A (1 — Yo (—h*Ay)) (2.14)

satisfies the desired properties. Observe that the second term in (2.14) is added
to make Q classically elliptic, and that we use —h%A ¢ rather than ./—h%A,

in order to apply [48, Theorem 14.9] to obtain Q € W2(M). Note also that Q
is self-adjoint and o (Q) = €], on {% < |§lg <2},

p, * T = <ptoﬂh 1 (—oos] (,/—thg))(l),
M =N (y/—h2Ay) (2.15)
1(C00s1(Q) = T(—oos] <‘/—h2Ag), serl 2 (2.16)

and 1(_0051(Q) = L(—oos1(,/—h?>Ag) = 0 for s < 0. Finally, we use the
ellipticity of both Q and —h%A ¢ to obtain that for N > 0

Lcoos1(Q) = Oy (YY) v v n<_oo,s](\/TAg)

=0, ({s)*M),,- .
N(< > )HsclN_)HSJZI

Now, forall N > 0 and L > 1 there is Cy, ; > 0 so that |,0(thﬂ(1 — s))| <

Cy h*NTL(s)™2N=L on|s — 1] > % Therefore
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1218 Y. Canzani, J. Galkowski

[P0 (L01(@) = Loy =h240) | 1)

- A[l/z,zl %Op(%o(l a s)) (1<‘°°’S]<Q) = Lo (\/TAg))ds
s>0
= Oy (VN v (2.17)

Combining (2.15) with (2.16) and (2.17), we obtain (2.13).

Now, every submanifold is conormally transverse for p(x,&) = [&|g(x)
at p‘l(l) with constant J, = 1. Therefore, Theorems 3, 4, and 5 follow
from Theorem 9. To see this, we set P = Q, a = b = 1, and observe that
the Hamiltonian flow for o (Q) near S} M is equal to the geodesic flow. In
particular, the dynamical definitions 1.12 and 1.13 applied to Q at E = 1
are exactly Definitions 1.3 and 1.7 with S} M replaced by SN*H. This is true
because Definitions 1.3 and 1.7 are stated with ¢, being the homogeneous
geodesic flow, i.e., the flow generated by [§4(x). Next, we apply Theorem 5
with A = 2Amax+1, & = A~ !, and work with the resolution functions T, j =
(AQ0)~'(1 —28)T; for j = 1 2.

3 Dynamical assumptions and coverings

In this section we relate the non-looping and non-recurrence concepts intro-
duced in Definitions 1.12 , 1.13, to their analogues via coverings given in
Definitions 2.1, 2.2.

Proposition 3.1 Let H{, H» C M be smooth submanifolds. Let a,b € R
be such that Hy, Hy are conormally transverse for p in the window |a, b],
and 19 > 0. Let t9 > 0, T a resolution function, and suppose (Hy, H3) is a
(10,1 T) non- -looping patr in the window |a, b] with constant C . Then, there
is C C,(p,a,b,n,C,, H, Hy) > 0 such that (Hy, H>) is a (t0+31'0, T)
non-lgopmg pair in the window |a, b] via to-coverings with constant C and
with T(R) = T(4R)—31y.

Before proving the proposition, we record some facts about sub-logarithmic
resolution functions.

Lemma 3.2 Suppose T is a sub-logarithmic resolution function.

(1) ForO<a<b <1,

T(h) < T(@) < 2% 1p).
logb

. log R —
In particular, T(R) < WT(MR)JCWO <u <R L
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(2) Let f(s) := —log(T_l(s)). Then, f extends to a differentiable function
on [0, 00), f(0) =0, and f(a) < §f(b) for0 <a <b.

(3) Let0 < § < % and R(h) > h® with R(h) = o(1). Then for all A > Amax,
& > 0, there is hg > 0 such that for 0 < h < hg

T(R(h)) = (QT)A + )T (h).

Proof Note that

T(a) /’? T'(s) /b 1 loga™!
0<lI =— ds < | ——ds=1 ,
=08 T(b) . T() 5= . slogs—1 =108 (1og b*l)

and hence the first claim holds. For the second claim, observe that since T is
sub-logarithmic, f’(s) > —w = @

To prove the last claim, observe that since R(h) = o(1), forall A > Amax
and ¢ > 0, there is iy > 0 such that for 0 < h < hy,

T(R(h)) < ((T) + A~ logR(h) ™' < (QUT)A + &) To(h).

The second inequality follows from definitions (1.2), (1.11), and R(h) > hé
with0 < § < % O

In the following lemma we explain how to partition a (D, 7, r)-good cover
for Ef‘ into tubes that do not loop through X 512 for times in (t9, T'), and

tubes that are ‘bad’ in the sense that they do loop through X 512. We do this
while controlling the number of ‘bad‘ tubes in terms of the size of the set
LyL, (10, T) for § > 4r.

Lemma 3.3 Let a,b € R, H;, Hy C M be smooth submanifolds such that
Hy, Hy are conormally transverse for p in the window la, b]. Then there is
C, =C,(p,a,b,n, H, Hy) such that the following holds. Let to > 0, r > 0,
and 0 < 1 < 19. Fori = 1,2 let {’Z'j.i(r)}jeji(r) be a (D, t,r)-good cover

of E[Z‘;b]. Letty > 0, T > 0. Then, for all E € |a, b] and S > 4r there is a
splitting jEI (r) = 8115 (ryu Qé (r) such that

(1) for j € GL(r) and k € T2(r)

U o (T} (1)) NTE(r) =0,

fo+2(z+r)<[t|<T—2(z+r)

@) 1BLO| = DCr " 1y (B 4 (£55, 0. ), S) ).
E E
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1220 Y. Canzani, J. Galkowski

Proof For j = 1,21let Z; C T*M be the hypersurface transverse to the flow,

with E[ﬁ {,1 C Zj, used to build the tubes of the cover, as explained in (2.1).
Let E € [a, b] and for S > 0O set

BLor):={jeJ}r) : T'(nNB, (Eisz (to, T), 2r) # @}.
Then, for j € B}E r),
T/ (NN Z1 C By (LyE, (10, 7). 4r).

In particular, there exists C, = C,(p, a, b, n, Hy, Hy) > 0 such that for all
S > 4r

BLO| = Dr! =2 vol (B, (£55, (10, 7)., 4r))

< CO’Drl*"lLEgl (Bzyl (Ei’ﬁ,z (to, T), S))
E

This proves the claim in (2).

To see the claim in (1), let j € G} (r) := J}(r) \ B, (r). Then, T/'(r) =
A;j (r) forsome p; € Z; withd(p;, Zf‘) < 2randd(p;j, Li’fHZ (to, T)) > 3r.
This yields that there is pg € X 51 \ Efl’lEHz (to, T) such that d(po, pj) <
2r. In particular, since | ¢;(B(po, S)) N B(Egz, S) = ¢ and ’le (r) C

0=|t|<T
U @:(B(po, 3r)), this yields
[t|<t4r
U o(T () N BB, 8) =10 G.1)

to+t+r=<[t|<T—(t+r)
for § > 4r. On the other hand, since for all k € 7 Ez (r), we have ’];{2 Nz c
B(Z!2,3r),

2 c | eBE" 3 3.2)

[t|<t+r

In particular, combining (3.1) and (3.2) we have

U 0T} () N B(E=.8) = 0.
to+2(t+r)<|t|<T=2(z+r)

Thus, the claim (1) holds, provided S > 4r. O
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With Lemmas 3.2 and 3.3 in place, we are now ready to prove Proposition
3.1.

Proof of Proposition 3.1 Let C, = C,(p,a,b,n, Hy, Hy) be as in Lemma
3.3. WeapplyLemma33w1thr = R T =T(),S=4R,0 <R < 5

This shows that (H;, Hy) is a [t0+370, T] non-looping pair in the wmdow
[a, b] via T-coverings with constant C = COC O

Lemma 3.4 There is a constant C,, > 0, depending only on n, such that the
following holds. Let tg > 0, to > 0, Hy, Hy C M be smooth submanifolds
such that Hy and Hjp are conormally transverse for p in the window |a, b].
Let T be a resolution function. If (H1, Hy) is a (19, T) non-looping pair in the
window [a, D] via to-coverings with constant C, then (Hy, Hy) is a (to, T)
non-looping pair in the window [a, b] with constant C ,C, and T(R) = T(2R).

Proof LetE € [a, b]and fix i, j € {1,2},i # j.Foreach R > O consider the

non-looping partition J; (R) = G, (R) UB (R) given by Definition (2.1). Let

p € LR/2E(1y, T(R)). Then, there are p; € B(p, R/2) and 1o < [t| < T(R)
it

such that ¢;(p1) € B(ij, R/2). Hence, there is £ € BZ (R) such that p; €
7/ (R) and hence p € 7/ (2R). This implies BEHi (p, R/2) C T/(3R). Thus,
E

B, (L35 . TR, R/2)C | ) T/ GR).
& (eBi(R)
In particular, there exists C,, > 0 such that

iy (B (E5% @0, TR, R/2)) = CiR™BL(R)L.
g EE

Therefore,

CRI2E LRI2E 2
o (Bz (CR2E 1. 1R)), R/Z))uzg2 (B2 (CH /48 0. TR, R/2) ) T(R)

< CIR™2|BL(R)|IB(R)IT(R)* < C}D?C,.

The lemma follows from Definition 1.12 after taking the limit R — 0T and
redefining C,,. a

Proposition 3.5 Let t, T be resolution functions and H C M be a smooth
submanifold. Let a,b € R be such that H is conormally transverse for p in
the window |a, b). Suppose H is (t, T) non-recurrent in the window [a, b] at
scale Ry.
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Then, there exists C, = C (M, p, t, Ro) > O such that for all T > 0, there
is a resolution function T such that the submanifold H is T non-recurrent in

the window [a, b] via ty-coverings witiL constant C . Moreover, there is ¢ > 0
such that if T is sub-logarithmic, then T(R) > c¢T(R) for all R.

The proof of this result hinges on two lemmas. To state the first one, we
introduce a slight adaptation of [8, Definition 3]. Let ¢g > 0, f > 0,
to : [€0, +00) — [1,400), and f : [0,00) — [0, 00). We say a set Ag
is (o, to, I, f) controlled up to time T provided itis (gg, to, F) controlled up
to time 7 in the sense of [8, Definition 3] except that we replace the condition
on r by

O<r< %e_FAT_f(T)ro (3.3)
and replace point (3) by

inf Ry 4 > Te /M inf Ry ;. (3.4)
1

Next, fix E € [a, b]. Since H is (t,T) non-recurrent in the window [a, b]
at scale Ry, forall p € X ? there exists a choice of & such that for all A C
B:g(p’ Ry),0 < R < Rp,e >0,and T > t(¢e)

o <Bzg(Ri;me(t(s), 1), e/ DR) <e oy (B (4. B). (35

with f as in Lemma 3.2. Then, extract a finite cover of 2? by balls Bp =
B(p, Rp/2) and set

A, ={(B,)X,, and A, :=(B,}K,, (3.6)

where B, = B(p, Ro). Note that, again using that H is non-recurrent with
at scale R, we may assume K < C, Ré_” where C,, is a constant depending
only on 7.

Lemma 3.6 Let H, t and T be as in Proposition 3.5 and f(T) :=
—1og(T~X(T)). Then, there exist ¢, > 0 depending only on n and [ > 0
such that for all E € [a, bl and T > 1 every ball in A, is (0, to, I, f) con-
trolled up to time T with to(e) = t(c,€).

Proof Let E € [a, b]. Let Ag := B, for some B,, € A,, &1 > 0, A>Amax,
and0 <7 < %ijH-LetT >1land0 < Ry < %e_rAT for F > 2R0_1 to be
determined later. Let 0 < rg < RO. Suppose A} C Ag and {By,;};_, are balls
centered in Ag with radii Ry ; € [ro, R’O] such that A| C UlNleo,i C Ayp.
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Let R := %inf,- Ry ;. There exist C, > 0, depending only on n, and a

collection of balls { Bo, i}fv 0 | of radius R, such that

No N
Arc|JBoi.  NoR"' <Gy Y RET 3.7)
i=1 i=1

Fix0<r < %e‘FAT—f(T)rO. Next, let {B(gj,r)}jeg C 25 be a cover
of ¥ f by balls of radius r such that there are at most D, balls over each point

in ¥ :’ , where ©,, > 0 depends only on . Assume, without loss of generality,
that (3.5) holds for py with the choice £ = +. Next, set jA] ={jeJ:

B(q;, %e‘f(T)R) N Ri?f:T)R(t(s]), T) # (}. Defining the collection
{Bl,i}l{vzll = {Bzg (CIj, %e_f(T)R) T j € JAI }

we have Y, Bi; C BZH(Rf,jﬁ”R(t(sl),Tx e_f(T)R>. Then, letting
E

Ry = %e‘f(T)R, we have R1; € [0, %Iéo], and using that R < Rp/2
the bound in (3.5) applied to A; yields

N
SR <6, oy (B (Ar. R)). (3.8)

i=1

Next, by (3.7) note that BEH (A1, R) C UlN:O] 21}0,,-, where 250,1‘ denotes the
E

ball with the same center as éo, ; but with radius 2R. Using (3.7) again there
is C,, > 0 such that

No N
o By (A R) =gy (U2B0i) =G YR 39)
EOE F iz i=1

Let ¢ := £1C,,®,. Combining (3.8) and (3.9) yields point (2) of [8, Defi-
nition 3] with ty(¢) = t(e/(C,D;)). By the definition of R, we also note that
point (3), which was replaced by (3.4), also holds.

It remains to check point (1) i.e. there is F > 0 such that AZ\I\UkBLk (r) is
[to(e), T'] non-self looping for 0 < r < %e‘FAT—f(T)R. For this, suppose
P1, P2 € Azl\UkBl,k (r)and t € [ty(e), T] such that ¢;(p1) = p2. Then, there
aresy,s2 € [—t —r, T +rl,q1,q € A1\Ur By i suchthatd(p;, ¢5;(gi)) <.
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In particular, there is C, > 0 depending only on (M, p, a, b, A) such that
(g5, —1—5(92), A1) < (1 4 Cet 2420y,

Finally, let / > 0 be large enough so that %e_FAT < min((l + C,
eMTIH2T+2ry=1 "Ry /2). Note that the choice of /~ does not need to depend
on T. Then, since r < (1 4+ C,eAITIH2t+20)=1,=F(DR " we have ¢q; €
RZZCT)R(’CO(E), T), which is a contradiction since RZ;CT)R(’CO(&‘), T) C
U;B1,;. O

In what follows we fix 1 < By < g, I"and define

logﬂo T

F(T):= Y f(B"T)
k=0

Lemma 3.7 Let B C Ef be a ball of radius 6 > 0. Let 0 < gy < 1, tp :
[eg, +00) — [1,+00), f : [0,00) — [0, 00) increasing with f(e ") €
Ll([O, 00)), To > 0, and [ > 0, such that B can be (&g, to, I, f)-controlled

log To—log to (¢0)

up to time Ty. Let 0 < m < Toz fo

be a positive integer, A > Apax,

Lo (FATOHE(T) 7 (To) g

10 SF

0<§0§min{%e_rATO,i}, 0<r <
- Ny
and By C B withd(By, B€) > Ry. Let 0 < T < 10 and suppose {A;'(m)}j:l1
J
isa(®,t,r) goodcoveronH’p andset £ == {j e{l,..., Ny }: Af)j(rl) N

AIT?()(%]) 7& Q}
Then, there exist C,, , > 0 depending only on (M, p) and sets {G Jieo C
{1,...N}, B, C{l,...Ny}sothat & C B, UU;_oG, , and

° U A;l_ (r1) is [to(so), ﬁO_ZTo] non-self looping for€ € {0, ..., m},

ieg”
(3.10)
o |G, | <C, ,Dei6"'r|™" forevery € €{0,...,m}, (3.11)
o IB,| =C, Deg s r] 7, (3.12)

Proof The proof is the same as that of [8, Lemma 3.2], with a very minor
modification. Namely, we replace Ro by Ro and put rp = ¢ F(T0) R\ instead of
ro = ¢?P2T0 Ry We then obtain the following instead of the leftmost equation
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in [8, (3.21)]

irl:f Ry > }Le_f(TO) inf Ry ;.
l

Which in turn changes the leftmost equation in [8, (3.22)] to

irlgf Rox > e_F(TO)}é() =ry.

This follows from the argument below [8, Remark 8], that yields, since £ < m,

0
1 —j 1 ¢ —j oy~ ~
iI/:f Roy > 47 | | e—f(ﬁojTo)RO — 4_136_ > i=o f(ﬁojTo)Ro > e_F(TO)Ro.
Jj=0

O

With Lemmas 3.6 and 3.7 in place, we are now ready to prove Proposition
3.5.

Proof of Proposition 3.5 Let{T;(R)}je7n) = {AT (R)}jegmybea(®, 1, R)

good covering of E[Hbj Let E € [a,b] and A, := {B,, }szl be the covering

of Zgl as described in (3.6). Let to be as in Lemma 3.6 and fix 0 < g¢ < %
There exists / > 0 such that each ball in A, can be (go, to, F, f) controlled
for time 7" > 1.

We then apply Lemma 3.7 to each ball in A,.. Let §p := Ro/2 be the radius

of the balls in A, and To = To(R) such that Ty > ty(eo) and

R < 10;2e—(ZFATO(R)+F(T0(R))+f(To(R)))‘ (3.13)

Without loss of generality, we may assume [ is large enough so that
fl —F Ao < ° . Then, putting Ry = f— —F ATo in Lemma 3.7, and using
condition (3.13) allows us to set r{ = R in Lemma 3.7 and apply it to each
ball By, in A,. Let B, be the ball with the same center as B, but with a
radius Ry/2 so thatd(l}po, BC )—R0/2 > R’O Lettg > 0,0 < 7 < 10, and set
JP(R) =1{j € T (R): Ar (R)ﬁAt ( R) # @}, there is C,, . > 0 and
sets {G, }i—y C Tp(R), B, C T (R) so that 7/°(R) C B, U UGz o
and (3.10), (3.11), (3.12) hold

Therefore, letting 7, = By ZTo and 1 = to(eg) for 1 < € < m,
and setting Gp4+1 = B, Tny1 = tws1 = 1, yields that there exists
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C.=C (M, p,t) > 0such that

m+1 1/2 n—1 m+1 = 1

n—1 |g€|l() (C @3 )2 Cnr:DZ
R E E _— .
’ ( T, = To(R) (Poco) = To(R)

=0

The existence of C, > 0 is justified since Bpep < 1. Repeating for each ball
B, € A, and using K < C, R(l)_” , proves that H is T¢ non-recurrent in the
window [a, b] via tp-coverings with constant C C), Ré_".

By Lemma 3.2, when T is sub-logarithmic and 0 < a < b we have f(b) >
s f(a). In particular,

F(Tp) =" fQ2 77 To) <Y 277 f(To) < 2f(To).
J

J

Therefore, using f(T) = — log(T_' (T)), there exists ¢ > 0 such that we may
define

To(R) = cf~'(log R) = cT(R).
O

Remark 3.8 We note that our definition of recurrence (Definition 1.13) is
equivalent to the following. There is f/ > O such that forall p € £ f there is
Ro > Osuchthat B(p, Rg) is (&9, to, F, f) controlled with an additional small
modification of the definition of (&g, tg, F, f) controlled (see (3.3) and (3.4)):
One needs to replace (1) by

U ALz ()NALG)=0.

A\UBy &
fo<+r<T

To see these are equivalent, we identify B(p, Rp) with Ag and A with Aj.

One can check that all of the proofs of being (g, to, F, f) controlled in [8]
actually prove this slightly stronger condition with f(7T) = CT for some
C > 0.

4 Basic estimates for averages over submanifolds

Let P(h) € W™ (M) be a self-adjoint semiclassical pseudodifferential oper-
ator, with classically elliptic symbol p. Throughout this section we assume
H C M is a smooth submanifold of co-dimension k&, and a, b € R are such
that H is conormally transverse for p in the window [a, b].
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As explained in Sect. 1.6, we crucially view the kernel of the spectral pro-
jector 1,5 j(P) as a quasimode for P. We are then able to use estimates
from [11] to estimate the error when the projector is smoothed at very small
scales. This section is dedicated to adapting the estimates from [11] to the
current setup.

All our estimates are made in terms of (®, t, R(h))-good covers and §-
partitions associated to them. For the definition of a good cover see (2.4).
Note, in addition, that there is a constant ®,, depending only on n such that we
may work with a (©,,, t, R(h)) good cover [10, Lemma 2.2] [11, Proposition
3.3].

We now define the concept of §-partitions. For 0 < § < %, we write
I ‘ a € C®(T*M) :
S TMY=0 (g2 ace, 6)] = Caph=sta+ibb gym—ipr > 4D

and write W§" (M) for the corresponding semiclassical pseudodifferential oper-
ators. We refer the reader to [11, Appendix A.2], [48, Chapters 4,9], [19
Appendix E] for more detailed accounts of these operators.

Lett >0,0 <6 < %, and R(h) > h’. Let {T},ey(m be a (t, R(h))-cover
for E w1thT AT (R(h)), and for E € [a, b] let T, (h) := J,(R(h)) as
deﬁned 1n (2.5). We say

Xz Yjeg,m C Ss(T*M; [0, 17) 4.2)

is a §-partition for Eg associated to {7;};c7n) provided the families
{Xj}jejE(h) and {h~[P, Xj]}jeJE(h) are bounded in S5(T*M; [0, 1]) and

(I)supp x; C Aj (R(h)), forall j € T, (h),

@ 30 2= lon AL GR()).
JE€T (h)

For the construction of such a partition we refer the reader to [11, Proposition
3.4].

The next lemma controls the average of Au over a submanifold H in terms
of the L? masses of the bicharacteristic beams intersecting the microsupport
of A. Here, u is a quasimode for P and A is a pseudodifferential operator.
When we apply this lemma, u will be the kernel of the spectral projector onto
a small window, and A will either represent a localizer to a family of tubes or
differentiation in one of the coordinates.
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To ease notation, for E € R we write P, = P, (h)
P,:=P—E. (4.3)
In addition, given A € W§°(M), ¥ € Ci°(R; [0, 1)), E € R,h > 0,C > 0,
C, >0,andu € D'(M) we set o := % and
07}/ (C.Cyu) =
Ch 27| (1 = v (22)) P, Au . Coh™ (Il 2y, + 1Pt )-
4.4)

L2(M)

We fix &g > 0and acontinuous family [a—&g, b+¢€9] > E — B, € \I/(‘S)(M)
such that

MSh(B,) C Ar"+£°(3R(h)) and

MSp(I — B,) N At°+8°(2R(h))) = 0. 4.5)

This will serve as a microlocalizer to the region of interest. We recall the
constants Ko, Tinj, J, defined in (2.8), (2.3), and (2.11) respectively.

Lemma 4.1 There exist 1o = t10(M, p, Tinj, J,) > 0 and Ry = Ro(M, p, k,
Ko, Tinj, Jy) > 0, such that the following holds.

LetO <1 <70,0<8 < 4andh® < R(h) < Ro. Forh > 0let {T;}je7n)
bea (®,, t, R(h)) good cover OfE[Hb] LetV C Sg(T*M [0, 1) be bounded.
Let ¢y € Cg°(R; [0, 1]) with ¥ (t) = 1 for |t]| < 4 and Yy (t) = 0 for |t] > 1.
Let 0 € R, W and W be bounded subsets of Vs(M) and \IJE(M ) respectively,
and B, be as in (4.5).

Then there exist Cy = C,(n, k,J,, V, W, W) C >0, andforall K >0
there is hg > 0, such thatforallN > O there exists C,, > 0, with the following
properties. For allu € D'(M), 0 < h < hg, E € [a — Kh,b + Kh], every
8-partition {XT_,- }jejE (y C V associated to {Tj}jejE (h), and every A € W

such that B, %[P, Ale W,

/HAuda)

<CRM'T Y (

JET, () T2

+ 0L 1(C, Cyou). (4.6)

k—
s

10pn (X7 )ull, C
M) -
] | Oph<x7j>PEu||Lz(M))
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Here, T, (h) :={j € J,(h) : T; N MSn(A) N ATEH(R(h)/Z) * 0}, ¥ € SsN
E -
CX(T*M; [0, 1]) is any symbol with supp Yy C (A;H(Zh‘s))c, and for each
E
Jj € J.(h) we let )ZTj be any symbol in Ss(T*M; [0, 1]) N C°(T*M; [0, 1])
such that )ZTj = 1| on supp X, and supp )ZTj C 7j. In addition, if W C
WE(M), then Cy = Cy(n, k, 3y, V, W).

Proof First, we prove the statement for the case A = I. Note that in this case

the sets VW and W play no role. The result for A = [ is a direct combination of
theestimatein[11, (3.16)] and [11, Proposition 3.2]. We recall the estimate [11,
(3.16)] with w = 1 here:

10pr(Bs)ull 1 )

< Cuh TRM'T Y

( 10pn(xpull 5,
J€T, ()

i i +Ch—‘||0ph<x_,»)PEu||L2(M)>
T2|Hpry(pj)|2

4.7)

L2y’

—£_5 N
+Ch 2N Pull gy + Gy el
k=gl

Ho = (D

In(4.7), Cp x > Oisaconstantdependingonlyonn andk,and S5 : T*H — R
is a localizer to near conormal directions defined by Bs(x’, &) = x (h_‘S |&7] H)
where x € C3°(R; [0, 1]) is a smooth cut-off with x (1) = 1 for r < % and
x()=0forr > 1.

Indeed, [11, Proposition 3.2] yields the existence of 79, Rg, g > 0 as
claimed, and the estimate [11, (3.16)] yields the same bound as above, but
with three modifications.

To obtain the desired estimate, observe that the constant C, = C,(n, k, J,) >
0is the constant C,, 4 divided by J, because we absorb the |H,ry (p;)| factors

It

turns out that this estimate is all we need since [11, Proposition 3.2] yields that
for every N > 0 there exists ¢,, > 0 such that for all u € D'(M)

in (4.7). Second, in (4.7) the estimate is given for for ‘ fH Opn(Bs)udoy,

| / (1= Opu(B)udoy,| = exh® (Il 2y + 1Pl yyry ) (48)
H 2

Hscl (M)

The third modification is that in (4.7) the first error term is C h32=0
1 P

P.u| r2ws1 instead of Ch=273||(1 — ¢ (-£)) P, ul| t-20s1 . The oper-

[Pl s 0y GNPl g

ator (1 — W(Z—f)) can be added since the error term is a consequence of

the application of an elliptic parametrix applied to an operator supported

away from P, = 0, in particular of the bound in [11, (3.10)], which is for
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1230 Y. Canzani, J. Galkowski

Opp(x)u where x is supported in {(x, &) : |p,(x,&)| > %h‘s}. One then uses
p
supp x C supp (1 — ¥ (35))-
We note that the desired bound holds for every §-partition { Xr, Yieg,m C
V associated to {7} e Ty (h)> since the constants C, C,,, ho prov1ded by [11,
Proposition 3.5] are umform for x. in bounded subsets of Ss.
J

Given g9 > 0 we note that the statement holds for every E € [a — &g, b+&p]
since the constants C, C,,, ho provided by [11, Proposition 3.5] depend on P,
only through P. Therefore, given K > 0, the statement for A = [ holds for
E € a — Kh, b+ Kh] provided ho depends on K.

We now treat the case A # I. Let V, W, W, and {B:}Ecla—so,b+eo] DE
as in the assumptlons Let E € [a — g9,b + gg]. Let X € Ws(M) with
MShH(I-X)NAZ H(3R(h)) =, MSp(X) C At°+£°(2R(h)) and B[P, X] €

Ws(M). Then, for all N > O thereis C,, > 0 dependlng onV
‘/ (I — X)Audoy,| < Cyh",
H

so we may replace A by XA and assume MSp(A) C ATEOHO(R(h)/Z) from
E

now on. Since the estimate holds when A = I, there exist C, = C,(n, k, J),
C > 0, and for all K > O there is hg > 0 such that for all N > 0 there
exists C,, > 0 with the following properties. For all u € D'(M),0 < h < hy,
E € la — Kh,b + Kh], and every §-partition {XTj }jejE () C V associated
to {7}}je Ty (h)> the bound in (4.6) holds with [ in place of A, and with Au in
place of u:

k—
h 2

Au a’aH‘
H

. 0P G Aul
<CRMWT Y (—1+Ch ||0ph(x7j>PEAu||)

. T2
JeT,(h)

+ QY (C, Cy, Au).

We may sumover j € 7, (h)insteadof j € [J, (h) since MSh(A)ﬂATEH(%R(h))
E

C Yjer,m7;-
Next, we explain how to write u in place of Au in each of the terms of the
sum over j € Z,(h) in (4.6). To replace the term || Opy, (XT)A””Lz(M) with
J
10Pn (X7 )ull 5, We use MSn(Opy(x7,)A) C El(Opy(X7,)) and apply

the elliptic parametrix construction to find F; € Ws(M) with
0Ptz )A = FiOpn(ir,). 4.9)
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L2(M) L2(m)’

Next, to replace the term ||Opy(x..) P, Aul|
J
we decompose

with [|Opn (X7 ) Ppull

Oph(XTj)PEA = Oph(XTj)[PE, Al + Oph(XTj)APE

for each j € Z,.(h), and apply the elliptic parametrix construction and find
Fp € Ws(M) with

W= Opi(xr P Al = F20pi(Xz,)- (4.10)

To do this we used the assumptions: B, is microlocally the identity on
AL 2R (), MSh(A) C AT°+8°(2R(h)), and A is such that B, +[P, A] €

w EC Ws(M). This allows us to apply the parametrix construction to
Opn(Xz,) B [ Pg. Al

Using (4.9) and (4.10), we may modify C,, and having it now also depend
on A, V and W, to obtain the claim. Note thatif A € \I—‘go (M), then %[PE ,A] €
W (M) and so we may apply the elliptic parametrix construction to obtain
(4.10) without the need of introducing the operator B, or the set V. In this
case, we have C, = C,(n, k, 3, V, W) as claimed. O

Definition 4. 2 Low density tubes Let {7} je 7(n) be a cover by tubes of Z[ )

and 0 < § < 3. Let G(h) C J(h) and foreach j € G(h) let1 < t;(E, h) <
T;,(E,h), where h > O0and E € R.

We say {7;}jegn) has {(tj, T})}jegn) density on [a, b] if the following
holds. For all V C S5 bounded, K > O there is 7o > 0 such that for all
0 <h < hy, E € [a— Kh,b+ Kh], every §-partition {Xj}jegE(h) cV

associated to {Tj}jegE ) and all u € D' (M),

4u)? ( )||E||

L2<M> gE (h) L2’

Tj(E.h) _
S noppul?, <
jeG L2 ti(E, h)

where G, (h) = G(h) N T, (h).

The statement of [11, Lemma 4.1] can be reformulated as: if a collection of
families of tubes is non self-looping for different times, then the tubes have a
low density dictated by those times. More precisely, the following lemma is a
restatement of [11, Lemma 4.1].

Lemma 4.3 Let Ry, 10, 6, R(h), T, and {7} jc7(n) be as in Lemma 4.1. Let

0 <a < 1—Ilimsup,_ o+ 210;;()5211) and K > 0. There exists hg > 0 such

that the following holds. Let 0 < h < ho, E € [a — Kh,b + Kh], and
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1232 Y. Canzani, J. Galkowski

G (h) C T (h) withG.(h) = ueeEE(h)g“ (h). For every £ € L, (h) suppose
te(E,h) >0,0<Ty(E,h) <2aT,(h), and

U T; is [te, Ty] non-self looping for every £ € L, (h).
j€Gy ()

Then, {7} jegn) has {(tj, T})} jegn) density on [a, b], where for 0 < h < hy,
Jj € J(h), and E € [a — Kh,b + Kh], we set (tj(E,h),T;(E,h)) :=
(te(E, h), T¢(E, h)) whenever j € G ,(h).

We note that the statement of [11, Lemma 4.1] does not provide the requisite
uniformity for £ € [a — Kh, b + Kh]; however, this follows from the same
argument.

Our next estimate shows that if a family of tubes has low density, then
averages of a quasimode over H can be controlled in terms of the density
times.

Lemma 4.4 Let Ry, 10, 6, R(h), T, {7} je7n), W, W, and r be as in Lemma
4.1. Then, there exist C, = Cy(n, k, p, J,, W) and C > 0, and for all N > 0,
K > 0 there are hy > 0 and C > 0, such that the following holds.

Suppose that for all 0 < h < hgand E € [a — Kh,b + Kh] there
exists G, (h) C Jg(h) with G, (h) = Ugecpm)Gy ,(h), such that for every
t e L, (h) there existty = t¢(E, h) > 0and T, = Ty(E, h) > 0 so that, with
(tj, Tj) := (tg, Ty) for every j € G, ,(h), then

({7} jegny has {(t;, Tj)} jegn) density on [a, b],

@MSW(ANALGRI)Y C | 7).
¢ Jj€G, (h)

Then, for all u € D'(M),0 < h < hy, E € [a— Kh,b+ Kh], and every
AeanhBEh[P Ale W,

k=1
h 2

Au dcrH)
H

n-1 (19, Ie) (19 IteTe)
<CGRIT > ( =z, + Pl o,
el (h) rzT2

+OR(C, Cyou).

In addition, ifﬂ/ CWG° (M), the estimate holds with C, = C(n, k, p,J, W}.

Proof Let V a bounded subset of Ss(7T*M; [0, 1]). By Lemma 4.1 there exist
C, =Cyn,k,3,,V, W), C > 0, and hy > 0, such that for all N > 0 there
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exist C,, > 0, with the following properties. For all u € D'(M), K > 0,

0 <h <ho, E €a—Kh,b+ Kh], and every §-partition {x }jez, i CV
J

associated to {7} je 7, (n)

h% AudsH‘
H
_ 10pn(X ) ull2 ¢
n—1 7, ~
<GRM)T (— + EMOph(xTJ,)PEuan)
JET,(h) T2

A,
+ Q5 (C.Cy ),

where Z.(h) = Ukﬁh - Gy, Note that if A € W3°(M), then the estimate
holds with C, = C,(n., k, p, J,, V, W). Next, note that

> 10puir) Pel < 1T, ( Y. 10puir) Peull?)

JET,(h) ' JeT, (h)

and so, since |7, (h)| < Cp Vol(Eg)R(h)l_" for some C,, > 0, we have, after
adjusting C > 0, thatforall 0 < h < hg

n—1
k=1 R(h) 2 .
n's AudaH) < Co—— Y 10l
" T2 eI, (h)
C A
I Petl s+ Q) (C.Cy ). (4.11)

Since we are working with a (D,, T, R(h))-good cover, we split each G, ,
into ©,, families {G, , , }g" of disjoint tubes. Note that

Dy
Yo M0phGpulla, <D0 D 0P ul,,, . (4.12)

JETL, (h) teLi=1 jeGy ,,

Next, since {7;}jcgn) has {(t;, Tj)} jegn) density on [a, b], after possibly
shrinking & (depending on the S5 bounds for x ; and K > 0), Cauchy-Schwarz
yields that forall 0 < & < hg

101G, 1\ 4
X 0P Gl =20 ) (I, + i, ul?,,,) s 413)

jegE,i,l
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The result follows from combining (4.13) and (4.12), and feeding this to
(4.11). Note that C,, needs to be modified, but only in a way that depends on
nvia®,. O

We also need the following basic estimate for averages over submanifolds
to control averages of u = 1(_x 5)(P) when s is large.

Lemma 4.5 Suppose H C M is a submanifold of codimension k and P €
W (M), with m > 0, is such that there exists C > 0 for which

lo(P)(x,8)| = |§|"/C,  (x,§) e N'H, |§]>C.
Lety € SU(T*M; [0, 1)) withyy = 1lon N*H, andletf € R. Let A € \Ilf(M)

and r > %. Then, there are C;, > 0 and ho > 0 such that for all N > 0
there is C,, > 0 satisfying

k
h?2

f Auda, | = €, (10pu Wl ,, + 10 W) PLully,,, )
H

0 <h < hy.

N
+Cy Yl 4 (-

Proof Let §y € SO(T*M; [0, 1]) with y = 1 on N*H, suppy C {y = 1},
and such that

lo(P)(x, ) = &IEI",  (x,8) esupp¥,  [&] = C.

Then, since WF, () = N*H, for any N > 0 there is C,, > 0 such that

‘/HAOph(l - &)udoy‘ < Cyh™ v (4.14)

Next, by the Sobolev embedding theorem, for any ¢ > 0 there exists C, > 0
such that

~ k ~
| f AOpy(Pyudo, | < Coh™ 1 0pa(Pull ...,
H H (M)

scl

Taking » with rm > % + ¢ and using an elliptic parametrix, for any N > 0
there is C,, > 0 with

k
h2

/ AOph(‘/’)“d%‘ < CollOpn()ull grm an)
H

< Co(l0pnyull s, + 10K (W) Prull 5, )
+ CNhN||u||HS;1N(M). (4.15)
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Indeed, this follows from letting x € SO(T*M: [0, 1]) so that lo(P.)(x,8)| >
%|§|’" in the support of (1 — x), and then using the elliptic parametrix
construction to find Fy, F> € lIIO(M ) such that

(hD)™ Opy(F)(1 = Opn(x)) = FiOpn(¥) P + O(h*) g,
(hD)"™ Opn() Opn(x) = F2Opn () + O (h*)y—=.

Combining with (4.14) and (4.15) completes the proof. O

5 Lipschitz scale for spectral projectors

In this section we estimate the scale at which averages of the spectral projec-
tor behave like Lipschitz functions of the spectral parameter, and use this to
approximate ITj, using o 1 (n) * Ip.

Throughout this section we assume Hy, Hy C M are two smooth subman-
ifolds of co-dimension k; and k; respectively. The goal for this section is to
prove the following proposition.

Proposition 5.1 Supposea, b € Rsuchthat Hy, Hy are uniformly conormally
transverse for p in the window [a, b]. Let 19, Ry be as in Lemma 4.1. Let
O<t<tmand0 <6 < % Fori = 1,2, let T; be sub-logarithmic resolution
functions with Q(T;)A < 1 — 28 and suppose H; is 'T; non-recurrent in the
window [a, b] via T-coverings with constant C nir.

Let A1, Ay e V*°(M), K >0, R(h) > W, and T := ' T1Ty. Then, there
exist hg > 0 and

C, = C,(n, kl,kz,”l,”z Ay, A2, CL C2) > 0,

0
such that for all0 < h < hgpand E € [a — Kh,b + Kh],

Al,Ap
iy, (E) = Po g ¥ 11

o (B)| <

2 1RO,

Remark 5.2 To ease notation, throughout this section we write T;(h) :=
Ti(R(h)), T(h) := T(R(h)), and Tnax (h) := max(T(R(h), T2(R(h)))).

Proof We split the proof into Lemmas 5.3, 5.4, and 5.5 below. Lemmas 5.4
and 5.5 show that there exist C, = C,(n, ki, k2, ”01, ”02, Aq, A, C1 C2) > 0,

C; > 0,and ho > Osuchthat w,(E) := HHi HZZ (E) satisfies the hypotheses of
Lemma 5.3 with I, :=[a — Kh,b+ Kh], pj, := P T (> Oh = Tmax(h)/ h,
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2—kj—ky k1 +ko

Ly:=Coh 3 /T(h) and By :=Ch 2,

and 0 < h < hg. Next, let {Kj}(;'il C R4 be given by the choice of p in

1 1
(1.16). Since (%Y %y < (0,s) forall s € R, Lemma 5.3 yields that
there exists C, > 0 and for all N > 0 there exists C,, > 0 such that

2-k|~ky

Al.As ALty h
HH"H2 (E) = Prran * HH1~H2 (E)‘ = CpCUW

ky+k h N
+CNClh‘71;2( ) ,
Tinax (h)

for all 0 < A < hg. This completes the proof after choosing /¢ small enough.
O

We now present the lemmas used in the proof of Proposition 5.1. The first
shows that if a family of functions {wy};, is Lipstchitz at scale o, ' with (at
most) polynomial growth at infinity, then the family can be well approximated
by its convolution py, * wy, where {pp};, is a family of Schwartz functions

Lemma 5.3 Let {Kj}j‘;o C Ry. Then, there exists C > 0 and for all Ny € R,

N > Othere exists C,, > 0, such that the following holds. Let {pp}n~0 C S(R)
be a family of functions and {op }n~0 C Ry such that forall j > 1 andh > 0,

lpn(s)| < on K (ops)™)  foralls € R.

Let {Lp}n=0 C Ry, {Biln=0 C Ry, {wp : R — R}p=o, In C [—Ko, Kol,
ho > 0 and g9 > 0, be so that for all 0 < h < hg

o |wy(t —s) —wp(t)| < Lp{ops) forallt € I}, and |s| < &,
o |wu(s)| < Br(s)™o forall s € R.

Then, forall0 < h < hgandt € I,
[Con 5 wa) () = wi (0 fR pn(s)ds| = CLy +Cy Buoy Vg™
Proof Forall0 < h < hgandt € I
o) =) [ pnrds| =] [ pno) (wnte =5) = wn0)ds

< L /| _ on©)llons)ds + By f o @1(tr = 0 + (10 )ds

Is|>e0

-2 —(No+2+N

< Lh/ onK3{ops) " “ds + By, Ky 2 nOn(OnS) (No+2+N)
Is|<eo [s|>¢o
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((z _ )Mo +<t>N0)ds.

The existence of C and C,, follows from integrability of each term and the

boundedness of [j,. O
The next lemma shows that the family of functions wy, (t) = Hzl /;2 (1) is

Lipschitz at scales dictated by the non-recurrence times for H; and Hz

Lemma 5.4 Suppose a,b € R, g > 0 are such that Hy, Hy are conormally
transverse for p in the window [a — &g, b+ &g]. Let A1, A, 19, Ro, T, 6, R(h),
and a be as in Proposition 5.1. Let C > and K > 0. Then, there exist ho > 0
and

Cy = Cy(n. k1, k2, 3}, 37, A1, A2, C,) > 0
such that the following holds.
Fori =1, 2, let'T; be a sub-logarithmic resolution function with Q(T;) A <
1 —26. Suppose H; is T; non-recurrent in the window [a, b] via t-coverings
with constant lerf C.. Then for all 0 < h < hy, |s| < €, andt € [a —
Kh,b+ Kh],

2—ky—kp 1 1

h—2 (T1(h)S>z<Tz(h)S>z

«/Tl (WMTr(h)\ h h ’
Proof We first assume the statement for |s| < 2h. Suppose s > 2h. The

case of s < —2h being similar. Define ko := || and # :=t — s + kh for
0<k<kyp—1,andt; :=t for k = kg. Then

HHIHZ()— i H(t—S)

ko—1
Ay,Ap

» AlLA ArA
M, ) =T, (=) = Z I, () = T, (1),

Using |tx+1 — tx| < 2h, and putting t = tx11, S = tx4+1 — tx, we apply the case
|s| < 2h with T} = T, = 1 for each term to obtain

—ko

Al
M2 0 =T 0= 9)] < Cohoh™

0

and this proves the claim provided the statement holds for |s| < 2h.
We proceed to prove the statement for |s| < 2h. First, note that by (1.10)
and Cauchy-Schwarz
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2
< ‘/ Alqukdo;,1 ‘/ Asgy doy, | (5.D)

t—s<Ep<t t— S<E <t

Now, foreachi =1, 2,

L2(M)

> f Aig doy, | = ILy—sn(P) AT S, |2

t— 5<E <t

2
— ‘/A]l, i(Pywdoy, |, (5.2)
nwan(M)

where §,, is the delta distribution at H; and the last equality follows by duality.

We now use the non-recurrence assumption on Hp and H;. Since for each
i = 1,2, the submanifold H; is T; non-recurrent in the window [a, b] via
Tp-coverings, there is iy > 0 small enough depending on R (%), K so that for
all0 < h < hgandt € [E — Kh, E + Kh] there is a pa;tition of indices
J!(h) = ukq(h)g;j (h), and times {7} (h)}EGL;' (ny> and {té(h)}kq(h) as in
Definition 2.2.

Note that we have chosen s small enough so that 7 g (h)isa(t, R(h)) good

covering of EtHf fort € [E — Kh, E + Kh]. In particular, fori = 1, 2 and
tel|E—Kh, E+ Kh]

nt g ,Ih: ¢
R(h) 2 l—l <
tect iy (Ty)* T
n—1 . 21 .1 .1
R " (6 12 (1) < CLT;2. (5.3)
el (h)

The first bound is condition (2) in Deﬁnition 2.2, and the second bound follows
from the first one together with the 7, < T; forall £ € Elh, g Next, for £ € L
let

N i | T; (h)s\—1
2o TR < (B
Ty (k) = else '
y Ay 1 < i(Tis)-l
ty(h) = {1‘5( ) eflsg Z< h ) (5.4)
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.1 . ) .
and note that Z;,-_fi_l |g; Zli < Cnlr TL<%> In particular,
e > i

1

(dhHr TV

e 1

i 15iy2 A ]
467 Irp) e l(T,s>
h

91 7T = 20&(%(%»_%' (5-5)

CeLl () el ()

Then, since for each ¢ € EiE (h) the union of tubes with indices in g; .
is also [fé (h), fg (h)] non-self looping, we may apply Lemma 4.3 with the
sets {G), (MYeers e (T W eeri, - 100} eri, gy 1o see that {T)} jegi
has {(z;, Tj)} density on [a, b] where t; = 7% (h), T; = T} (h). Then, using
Lemma 4.4 with operators A; € W (M), v € Ci°(R; [0, 1]) with ¢ (1) =1
for |t| <  and ¥(r) = O for |t| > 1, and for s € Rletu = Lj,— (P)w,
where w is any function in L>(M) with ||w||L2(M) = 1. Next, by Lemma 4.4,
fori = 1, 2, there exist C(’) = C,(n,k;,J, A;), C > 0, and for all N there is

0°

Cy > OsuchthatforallO < h < hg,s e R,andt € [E — Kh, E + Kh]

k-1

hT / Al (P)wda,
H;
| Lo~ ]
e (g, 1)z o (9! 17 T]H>
SCGRWT Y — s (Pwl,z,,, + QRT3 0 — Pl (P)wll 5,
teLi (h) Thy)> teLi (h)
A,
+ollc.cy 1y (Pw). (5.6)

Note that for all N there is C,, > 0 such that for all ¥ € [a—Kh, b+Kh],
s|] <10and 0 < h < 1

1P Lp—s, (P2 gy = Cylsl lp—s,n(P)ll 22 = 1. (5.7)

In addition, we use the elliptic parametrix construction, together with |s| < 2A
to obtain

(1= ¥ (7)) PeALir—s.n (P 2, gy < Ch™. (5.8)
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We combine these estimates with (5.3) and the definition of T,f into (5.2) to
obtain that for all 0 < h < hg, |s| < 2h,K > 0,andt € [E — Kh, E + Kh],

k-1
h™2 | Lj—s.q(P) A} ‘SH,- L2y
1 /1 Tisws sl /1 Tis\\—2
=aa(S(FE) 5 G 7)) et
0 nr(_[2 Tt h + h Tt l’l + N

In particular, since T < 1, using this estimate in (5.2) we conclude that for
all0 < h < hg, |s| <2h,K >0,andt € [E — Kh, E + Kh]

T | o) = G IO

t 9<E <t

Combining estimates for H; and H» using (5.1), and Cnir < C, completes the
proof. O

The last lemma shows that wy,(s) = 1'[:11’222 (s) has at most polynomial
growth at infinity.

Lemma 5.5 Let £1, ¢y € R. Then, there is Ny > 0 such that for all A €
Wi (M), Ay € W2(M), thereare C, > 0,hg > 0, suchthatforall0 < h < hg
and s € R,

Ap,Ay ka N
| (s

Proof Arguing as in (5.1), and (5.2), it is enough to prove that there is C;, > 0
such that for each i = 1, 2 there is N; > 0 for which

ki .
sup Al (oo (P)wdoy, | < Cih™ 7 (s)Mi.
Il o =1/ Hi ’
Applying Lemma 4.5 with u = 1(_s ) (P)w yields that for any ¢ €
SO(T*M; [0,1]) with ¥ = 1 on N*H and r; > ki ;anz’ there exist C, > 0
and o > O such that for all N > 0O there is C), > 0 satisfying for 0 < h < h
and s € R,

k;
h?

A 1( oos](P)WdUH

N
< Cyh oo st (PYWI = ) (5.9)

+ Cl (10Ph (W)L (—c0,s1 (PYWIl 5, + 10PR (W) P L (—oo s (PYW 5., )-

L2(M)

I fllzoe. O

Finally, the last term is bounded by C,(1 + [s|") since || f(P)|;2 2 <
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6 Smoothed projector with non-looping condition

This section is dedicated to the proof of Theorems 8 and 9. The crucial step,

completed in Sect. 6.1, is to bound (,oh_m) — :Oh,[o) * 1'[21’_222 when the pair

(Hy, H») is (tp, T) non-looping and YN"(h) = lT(R(h)). In Sect. 6.2 we prove
Theorem 8 by combining the estimates from §6.1 with Proposition 5.1. In §6.3
we derive Theorem 9 from Theorem 8.

6.1 Comparing against a short fixed time

Throughout this section we continue to assume H; C M and H, C M are two
submanifolds of co-dimension k| and k» respectively. The goal is to show that,
under the assumption (Hy, H») is a (tp, T) non-looping pair in the window
[a, b], we can control Poy, 7 * [1; by comparing it to Py * Ty For the rest
of the section we write

T(h):=1T(R(),  T(h) := T(R()).

Proposition 6.1 Supposea, b € R are such that Hy, H> are conormally trans-
verse for p inthe window [a, b]. Let 1y, Ro be asinLemma4.1. Let0 < t < 710,
0<d< %, and'T a sub-logarithmic resolution function with Q2 (T)A < 1—26.

Suppose (Hy, Hy) is a (ty, T) non-looping pair in the window [a, b] via
t-coverings with constant C . Let A1, Ay € W (M), hé < R(h) < Ro, and
K > 0. There exist

Cy = Con, ki, ko, 3,37, A1, A2, C,) > 0

0’ O’

and hg > 0 such that for all0 < h < hgandall E € [a — Kh, b + Kh],

Byri = Puag) ¥ Ty (B) < G 27 [T®RGD). (6.1)

We prove the proposition at the end of the section. The proof hinges on four
lemmas. The first one, Lemma 6.3, rewrites the left hand side in (6.1) in terms
of the function

fs,T,h (*) = fs,T(h_l)t),
1 1 .
fa0ri= 1 [ LG -pE)e a6
1 JRT

where §, T are two positive constants with § < T, and p is as in (1.16)
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1242 Y. Canzani, J. Galkowski

Remark 6.2 We note that forall N > 0

fsr O <Cy8)™N,  suppp(F)(1-5(5)) Clr eR: [t] e[S, 2TT). (6.3)

Lemma 6.3 Suppose k > 0 and P € WX(M) is self-adjoint with symbol
satisfying (1.9). Then, for all N > 0,

N
(/Ohj - ph,ro) * I (E) = fto,ih (PE) + O(h )HSEIN—>H;¥1'

Proof First, we prove that if P is self-adjoint £, E> € R, then

E>
/El (ph,f(h) - /0,“0) * asl_lh(s)ds = ff(),T(h),h(PEz) - fto,f(h),h (PEl)'
(6.4)

To ease notation write T for f(h). To prove (6.4) we write

Ey E>
(0,7 = Prg) * 0TI (5)ds = f [
Ey E,

where we use ,6( 5, )—,0((7 ~),6( 5, ) Putting 7 := hw, (6.4) follows.
t h.T 0

Next, let N > O By (6. 4) it suffices to find E; € R such that for all
t>c>0

_w )] —iw(P—s)dwdS,

%, T Tnig

||ft()Th( EI)HH —>HN <C h2N

10, % T (ED N v, gy = OR"). (6.5)

To prove the first claim in (6.5), note that by (6.3) forall N > O thereisC,, > 0
such that

”ngfo,f,h(Pﬂ)Pg “L2—>L2 = CthN-

Next, since P satisfies (1.9), there is a > 0 such that p(x, &) > —a for
all (x, &) € T*M. In particular, for E; < —2a, PE1 is elliptic and we have

PE*II L HS (M) — HETH(M) = 05(1) forall s € R. Then, for Ey < —2a the
first claim in (6.5) follows.

Next, by the sharp Garding inequality, there is C > 0 such that I1;,(s) = 0
fors < —a — Ch. Thus, for E{ < —3a and all N, M > 0 there is CM’N >0

such that
10y, < TED gy = [ oG IMAE = ) s
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The claim follows after choosing M large enough. m|

Let Hy, H», tg, T (h), T, and R(h) be as in Proposition 6.1. Since (H, H>)
is a (fg, T) non-looping pair in the window [a, b] via tg-coverings, fori = 1, 2
and & > 0 we let

{7}i}j€‘7i ny a(®On, T, R(h))-good cover of £ satisfying (1) and (2)

[a,b]

in Definition2.1. (6.6)

We study Ay f, 7, (P,) A3 by understanding the behavior of
FIY™(E. h) =0 A P,) A%0 6.7
o (E h):= Ph(Xle) 1fto,ﬁh( ) AS Ph(XT[g) (6.7)

for j € J'(h) and k € J%(h). Next, we study the case when le does not loop
through ’];(2.
Lemma 6.4 Assume H| and Hj are conormally transverse for p in the window

[a,b]. Fori = 1,2 let {le'}jej,-(,,) as in (6.6) and j € J'(h), £ € T*(h) be
such that

e(THNTE=0. It €ltote, T(h)~l.

Let K > 0 and V be a bounded subset of Ss(T*M; [0, 1]). Then, there exists

ho > 0 and for all N > 0O there exists C,, > 0 such that for all 0 < h < hy,

E € la — Kh, b+ Kh), and every §-partition {XTi }jejé a C V associated
j

to {Tj}jejg(h), i=1,2

A A2 N
”Fj’g (E, h)”H;]N(M)%HJ:‘J](M) < CNh .

Proof By Egorov’s theorem, forall N > 0 there existhg > Oand C,, > Osuch
thatforallO < h < hg, E € [a— Kh,b+ Kh],and |t| € [to+ 7, T(h) — 7]

C hY,

,
7‘1‘75
H OPh(Xle)Ale 1AL OPh(X%z)‘|Hs;1N(M)—>HN oy =

scl

(see e.g. [18, Proposition 3.9]). The claim follows from the definition (6.2)
together with the facts that by (6.3) the support of its integrand has © €
[to, 2T (h)], and T (h) = 1T (h). O
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The next lemma provides an estimate for F ' = (E, h) based on volumes
of tubes.

Lemma 6.5 Assume H| and Hy are conormally transverse for p in the win-
dow [a, b]. Let Ay, Az, 70, Ro, T, 8, and R(h) be as in Proposition 6.1.
Fori = 1,2 let {Tj’}jeji(h) be a (D, t, R(h))-good covering of Z;’bj
Let K > 0 and V a bounded subset of Ss(T*M; [0, 1]). Then, there are
Cy = Cy(n. ki, k2, 3!, 32, A1, A2, V) and hg > 0, and for all N > 0
there exists C,, > 0 such that the following holds. For all 0 < h < ho,
E € [a — Kh, b + Kh), all §-partitions {XT;}jejg(h) CVand1; C J.(h)

fori =1,2, and all ty, T with 0 < o < T

A
‘/ F]i; 2(E h)(x, y)doy, (y)da, (x)
& H2 teT; ]ezz

< Co T RM) T )R 4+ C Y.
Proof The first step in our proof is to define for 0 < #p < T the functions

Mg 1) =1 00, g7 ) = (102) "0

where Ng > 1 will be chosen later. Note that by (6.3) for all L > 0 there is
Cr > 0 such that

1g) ;I = Crinor) ™ (6.8)

Since ft Th( ) = gtloi’h (PE)gi,ih (PE), we may use Cauchy-Schwarz to
bound

A A
[ Y [FEm]wda, oo, o
H H2Z€I]JeIz
< | X sl L (P)AT 0P 00,
iz, L2
H Z 8. Th P)A3 OPh(XTz)(SHz 5
it L2

Next, we use that fori = 1, 2,

| Sien gl 5, (P)AT Opax, 08,

L2(M)
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= SUP|y)=1 ‘fH,- 2 ter; Opn(x ;) Ai gfo’,f’h(PE)w do,, )

Thus, let w € ALZ(M) and fix i € {1,2}. We next apply Lemma 4.4 to the
function u = g’ ”(P )w and operator A = 3~ Opn(x)Ai € W5°(M).
0.7,

Here, we use that MSy(A) C Ujeg; ’Z'j’ and that E[PE, Al € \IJ°°(M) (see the
definition of a §-partition (4.2)). In particular, we may fix W C W§°(M) such
that %[ng A] € W regardless of the choice of cover and §-partition contained

in V. Then, the constant Cé provided by the Lemma depends on A; instead of
W.

Fix ¢ € Cg°(R; [0, 1]) with y(t) = 1for [¢] < Alfand Y(t) = O0for|t| > 1.
By Lemma 4.4 wi;h t1 =19, T1 = ty, and Gy = @ for all £ > 1, we obtain that
there are C(’) = C(’)(n k;, jé, A;) > 0, C > 0, there exist hy > 0 and for all

N > O there is C,, > O such that forall 0 < /& < hg

lg o Foh (PE)deH ’ <QEh(C Cys g (P Jw)

7—1

jEI

+Cl RS |I|2(T g’ ., (Pe)w] ’TfHPEgt"OiJ’(PE)w”LZ(M)).

L2(M)

By the definitions g - i = 1,2 and (6.8) there exists C > 0 such that for all
to, T with ty < T

. h .
Hg:()j’,h(PE)HLZ—)LZ =C, ”PEg,OTh( E)HL2—>L2 = C%* i=12.

In addition, note that for i = 1, 2 there exists C, > 0 such that

||(1 - W(—]g))P Ag ( E)||L2—>L2 = CN()hN()(1_8)+8'

The claim follows from choosing Ny large enough that No(1 —6)+8 > N.O

Lemma 6.6 Assume the same assumptions as in Proposition 6.1. Fori =1, 2
let {Zi}jeji(h) be as in (6.6), V be a bounded subset of Ss(T*M; [0, 1]) and
K > 0. There exists ho > 0, and for all N > 0 there exists C,, > 0 such
that for all 0 < h < ho, E € [a — Kh,b + Kh], and every §-partition
{XT!' }jej;;: () C V associated to {77}1'67,2 ()

J

A1,Ap
HyHlAlfro,ih(PE)AigHz B § Y, Fj,z (E, h)8H2
jGJEI(h),ZEJé(h)

-N N
H Y (Hy)—HZ, (Hi)

< C,hV.
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Proof Let K > 0 and ¢ € C°((—1, 1); [0, 1]) with y(t) = 1 for [t| < 5.
We claim there exists 1o > 0 such that for all N > 0 there is C,, > 0 so that
forO<h <hog,E€la— Kh,b+ Kh].

10 =0 CEN 5 PO o mrany < CehY. (69)

To see this, first note that for ¥ € C2° with supp v Cc{y=1}and L >0,

= PLE( =y (GE)PEF, 5, (P PEPTE(1 = 9 (75)).

Now, since P, is classically elliptic in W (M), for all s € R,

v

—-L —5L
Note that (6.10) also holds with IZ in place of 1. In addition, by (6.3)
2
P 7i(Pe) Py = O, 12y 12 (6.11)

Taking L > max(N/m, N/(2(1 — §))) and combining (6.10) and (6.11) we
obtain (6.9).
Next, fori = 1,2 we define G; :=Id — ZJEJ, (hpph(x ) and note that

MSL(G;) N AT H (R(h)/2) = . Therefore, combining Lemma 4.1 together

with (6.9), there exists o > O such that for all N > 0 there is C,, > 0 so that
forall0 < h < ho, E € [a— Kh, b+ Kh].

||yH1A1G1ftO,7~",h(PE)A Sy ||H N (Hy)— HY (Hy) = Cyh".  (6.12)

In particular, the lemma follows from applying (6.12) and its analogs since

Vi ALf, 7, (Pe)ASS,, = Y vy g (E 3y,

JeJE(WeJE(h)
- y”lAlGlft Th( )A35H2 + VHlAlf[Ojﬁ (PE)G2A§8H2
T Vi A]G]f[ Th( E)GZA;SHZ
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Proof of Proposition 6.1. Since (H, H>) is a (tp, T) non-looping pair in the
window [a, b] via tp-coverings, for i = 1,2 and & > 0 we may work with
{T.’ }jein>asin(6.6) and {X , }jeji (n) @ -partition associated {T‘ } For each

E €la,blandi = 1,2, let J’ = B’ (h) U g’ (h) be a partition of indices
such that property (1) of Deﬁmtlon 2.1 w1th r = R(h). Then, by Lemma 6.4,
for K > 0 there exists 7o > 0 such that the following holds: For all N > 0
there is C, > O so thatforall0 < h < ho, E € [a — Kh,b + Kh], and
i,k=1,2withi #k,

( / f [F} )™ (E.)](x. y)do,, (y)do,, (x)] < Cyh™.
B JH Jk(hwegf )

(6.13)

Therefore, considering the remaining term, and applying Lemma 6.5 we obtain
the following. There is C, = C,(n, k1, k2, 31, 32, Ay, Ay) > Oand for K > 0

0’%0"
there exists g > 0 such that the following holds: For all N > O there is

Cy > OsothatforallO < h < ho, E € [a— Kh,b+ Kh],

> ()5 (E. G, y)doy, (1)doy, ()
H| JHy

eBl (h) eeB2 (h)

“UBL() 2B ()]F + CyhN <

(6.14)

To get the last line we used that our covering satisfies property (2) of Definition
2.1. Combining Lemma 6.6 with (6.6), (6.13), and (6.14), we obtain the claim.

6.2 Proof of Theorem 8

Since for i = 1, 2 the submanifold H; is 7;(h) non-recurrent in the window
[a, b] via tp-coverings with constant C Ifr, we may apply Proposition 5.1 to
obtain the existence of C, = C(n, ki, k2, 301, 302, Al, Ay, Cni, anr) and for all
K > Qobtain iy > OsuchthatforallO < h < hgands € [a— Kh, b+ Kh],

A1.Ap
HH(S) <C,

(6.15)

1.42 (s) — %
Hy,Hy ph.Tmax(h)

1
where T'(h) = (T (h)T>(h))2 and Tmax(h) = max(Ty(h), T»(h)). Note that
we are actually applying the proposition only using that H; is %Ti(h) non-
recurrent.
On the other hand, since (Hy, H>) is a (f, Tmax) non-looping pair in the
window [a, b] via tg coverings, we may apply Proposition 6.1 to obtain that
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1248 Y. Canzani, J. Galkowski

there exist C, = C, (n, k1, k2, 3}, 32, A1, A2, C,;) > Oandforall K > 0 there
ishg >0 suchthatforallO < h < ho andalls € [a— Kh,b+ Kh]

(6.16)

(phvfmax(h) P, ’0) l_IH JHy (S)

The result follows from comblnlng (6.15) with (6.16). We note that H; and
H> may be replaced by H; j, and Ha j since C C ! and C 2 are uniform for

nl?
{Hi n}n and {Ho p}p.

6.3 Proof of Theorem 9

Let 0 < tv< min(t, ¢/3). By Proposition 3.5 there exists ¢ > 0, C, =
C,(M, p,t, Ry) > 0 such that for j = 1,2, the submanifold H; is cT;(R)
non-recurrent in the window [a, b] via T coverings with constant C .

Now, since (H;, H») is a (tg, Tmax) non—loopirg pair in the window [a, b]
with constant C,,. Proposition 3.1 implies thereis C, = C,(p, a, b, n, C,, Hy,
H») suchthat (Hy, Hp) is a (o + -370, T) non-looping pair in the window [a, b]
via tp-coverings with constant C; where T(R) = Tmax(4R) — 370. Since T
are sub-logarithmic, there is ¢; > 0 such that T(R) > ¢ Timax(R). The proof
now follows from a direct application of Theorem 8 with T, replaced by
min(co, ¢1)T; and 79 by 79 + &.

7 The Weyl law

In order to improve remainders in the Weyl law itself, we let A C M x M be
the diagonal, and for Ay, A, € W (M) consider the integral

Sl AT oo (P)A2](x, 2) v ()
=[5 (A1 ® AD oo 1(P)) (x, )0, (x, ),

where do, is the Riemannian volume form induced on A by the product metric
on M x M. To ease notation, we write P, = (P —t) ® 1 = P ® 1 —tId. We
will view A as a hypersurface of codimension n in M x M, and the kernel of
1(;—s..)(P) as a quasimode for P;. In particular, observe that for any operator
B:L*(M)— L*(M)

(7.1)

1P 1,1 (P) B < ISl Lg—s,(P)BI|

L2(M x M) L2(MxM)®

In addition, note that for (x,&,y,n) € T*M x T*M

O'(P;)(X,f, ) 77) = P(x,g) — = p(X,E, Y, 77) — = pl‘(x’g’ Vs 77)
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Therefore, for all ¢ > 0, there is C > 0 such that if ¢|n| < |£] and |£| > C,
then

o) (x, &y, )| = &I, ™.

In particular, since we work near the p flow-out of N*A N {p = ¢} where
t € [a, b], and

N*A = {(X,S,X, _S) : (X,g) € T*M}’

we may work as though P; were elliptic in ¥ (M x M), and apply the results
of the previous sections by accepting O (h*°) errors. We will do this without
further comment.

We next describe the tubes relevant in this section. We will work microlo-
cally near a point pg € N*ANp~'([a, b]). Letm,,m, : T*(MxM) - T*M
denote the projections to the right and left factor, and let Z5 (o) C T*M be
a transversal to the flow for p containing 77, (po). (Such a hypersurface exists
since dp(p) # 0 on p‘1 ([a, b]).) Define a transversal to the flow for p by

Zpy = Zx, (py) X "M,

and let U be a neighborhood of pg in N*A such that U N p_l([a, b)) C Z,,.
We will use the metric d on T*M x M defined by ‘Z<(Pu Pr), (g, qR)) =

max (d(,.4,) Py 4. ) for (o, ). (@, ) € T*M x M. With this
definition, for p = (p,, pz) € N*A N {p; =0},

T, = AL (r) = ]\;L (r) x B(pg, 1)

where A (r) is defined by (2.2) with ¢, the Hamiltonian flow for p and T =
1~\;L (r) denotes a tube with respect to p and the hypersurface Z,,L (po)- In

particular, when we use cutoffs with respect to a tube 7, we will always work
with cutoffs of the form

XT(X’é’ Y, 77) = XT(X,S)XpR(y, 77), Supr,DR C B(pRa r)-

We will refer only to this tube in 7* M, leaving the other implicit and will think
of thekernel of A1, ) (P)A3 asthatof 11, ,)(P) acted onby A4 ®A’2. Before
we start our proof of the improved Weyl remainder, we need a dynamical
lemma.

Lemma 7.1 Let C,, > 0, a < b, and U C T*M satisfying dm,,H, # 0 on
p_1 ([a, b)) NU. Then there are 1y > 0 and 6[1; = (,’";;(p, U, Cnp) such that the
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following holds. If U is (ty, T) non-periodic for p in the window la, b] with
constant C_, then N*AN(U x T*M) is (to+ 379, T(16 R) —310) non-looping

np’
for p via tg-coverings in the window [a, b] with constant Cnp.

Proof Let E € [a, b]. We work with L E (19, T) as defined in Definition 1.12

but with p replaced by p, gotp := exp(t Hp), and E? = N*A N{p = E}. First,
we claim

7, (Bzé(ﬁiiAU(zo,T), R)) B,,(Pf.1). 2R). (7.2)

Here, through a slight abuse of notation, we write £ fl’]E Ay for (1.5) with ST M
and S;‘M replaced by Ay 1= N*AN (U x T*M) and ¢; = exp(tHp). To

A
prove (7.2) suppose pg € Bzé(ﬁgiAU(zo,T), R). Then, there are p; € X7NAy
and p; € T*(M x M) such that

d(po, p) <R, d(p1.p)) <R, and | ¢f(p}) N B(z2, R) # 0.

=|t|<T

Therefore, there is pr € Zﬁ such that d ((ptp (,0{), ,02) < R for some 1y <
[t < T.Let p; = (x',&",y', —n) with (x", &), (', n") € T*M. Then, since
p1 = (x, & x,—€&) and po = (y,n,y,—n) for some (x,&) € T*M and
(y,n) € T*M, we have d(¢;(x', &), (x', &) < 4R and 7, (p}) = (x', &) €
P[‘]‘R(to, T). On the other hand, since d(m, (o), 7, (p})) < 2R we obtain
7, (p0) € By, (PiR(t0.7), 2R). This proves claim (7.2).

Next, note that since 7, : Ay N X ? — {p = E}N U is a diffeomorphism
for E € [a, b], it follows that there exists C = C(p) > 0 such that for all
E € [a, b]

e (BEI%(L‘ziAU(tO,T), R)) < Clhg, <BS*M(7>?/R(;0,T), 2R)>.
Hence, if U is (ty, T) non-periodic for p at energy E, we have
Iy (Bzé(ﬁii,Ay(to’T(4R))’ R)) T(4R)
< Chtgey (Byoy(Pifu0TRY, 4R) ) TUR) = CG,,,

and so Ay is (f9, T(4R)) non-looping for p at energy E. The result follows
from Corollary 3.1. o

In what follows, we write || - ||, for the Hilbert-Schmidt norm.
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Lemma 7.2 Let V C Ss(T*M; [0, 1]) be a bounded subset. Then, there are
C > 0and hg > 0, and for all N > 0 there exists C, > 0, such that for all
tela,bl, x €eV,0<h < hg, and |s| < 2h,

5.1 (PYOPRGONG g < Ch' ™", (supp x N p~" (1)) + Cyh™,

HS —
(7.3)
W2 1P L5 (PYOPRGONG < Ch' ™", (supp x N p~" (1)) + Cyh™.
(7.4)

Proof We follow the proof of [18, Lemma 3.11]. Let ¥ € S(R) with¢(0) = 1
and supp 1/A/ C [—1, 1]. Define ¥¢(s) := ¥ (es). Then, there is g9 > 0 small
enough so that ¥, (s) > % on [—2, 2]. Abusing notation slightly, put ¥y = .
Then, there exists an operator Z, such that 1, ;)(P) = st(%), [Zs, P] =
0, and || Zs|l;2_, ;2 < 3 for |s| < 2h. Therefore, ||1j;—s 1 (P)Opr(})llys <
3 |1//(%) Oph(x)”HS and the Hilbert—Schmidt norm is the L? norm of the

kernel. Next, we recall that after application of a microlocal partition of unity,
we may write

W(%)(X, y=h"" /R A 1/A/(‘E)e;';(‘”(T‘X"’)_O””)_”)a(t, x, ¥, dndt + O(h™),,

for a symbol a ~ Zj hjaj and phase ¢ solving d;¢ = p(x, dy¢) and
©(0, x, n) = (x, n). At this point the proof of (7.3) follows exactly as in [18,
Lemma 3.11].

To obtain (7.4), we write Pilj_s(P) = ZSP,W(%) and note that
%W(%) = (tx//)(%). Hence the same argument applies with 1/ (1) =
—iarng(r) replacing @(r). O

We will also need the following trace bound for 1;_; ;).

Lemma 7.3 Suppose a,b € R, g9 > 0, £1,4, € R, V| C Wi (M), and
Vo C lIJ§2(M) bounded subsets, U C T*M open such that |dmw,H,| >
c > 0on p_l([a — &0, b+ e9]) NU. Let t9,Rg, 8, R(h), and t be as in
Lemma 4.1. Let {7} jc7n) be a (D, T, R(h)) good covering ofp_l([a, b N
N*ANWU x T*M) andY C Ss(T*M x T*M; [0, 1]) bounded. Then, there is
C, > Osuch thatforall{XTj}jej(h) C Vpartitions for {1} je 7y, j € J(h),
A1 € V1, Ay €V, and |s| < g9

N
| [ 0mG AL (Prtada, | < R (7
A

Proof We first note that it suffices to prove the statement for |s| < 2A. Indeed,
this is because we may apply the arguments from Lemma 5.4 and decompose
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Tp—s.1(P) = Y8 L1 (P), with [x1 — x| < 2h. This allows us to
obtain the result for |s| < &g.

Suppose |s| < 2h. Let U D B(U,2R(h)), j € J(h), and A =
Opp (X:,j)(Al ® A»). Note that

[P¢, A] = [Py, Oph(ij)KAl ® Ar)
+0Ph(X7j)[P — 1, A1l ® Ay € W5(M) (7.5)

with seminorms bounded by those of Xz;» A1, and Ap. We next apply
Lemma4.1 with A := OPh(XTj)(Al ® Aj),Pyinplaceof P,k =n, M x M
in place of M, and u := 1j;—s j(P)Opy (Xﬁ)’ where the latter is viewed as
a kernel on M x M. Here, X; € Ss(T*M) with Xy = = 1 on B(U, R(h)),
supp x, C U. Let X'T eV w1th supp )(T c 7 and X’T = 1 on supp X, -

Then, since MSy(A) C 7;,by Lemma 4.1 there existC, > Oand C > 0, such
that

n—1
h 2

OPh(XTj)Alﬂ[tfs,t](P)AZdUA
C -
<C, R(h) <||0Ph(XT Jull 5, + EIIOPh(XTj)PzMIILz(M))-

Note that we omit the analogous error terms appearing in the estimate of
Lemma 4.1 since these error terms can be dealt with by applying the bounds
in (5.7) and (5.8) in combination with (7.1).

Next, since 0ph(XT) = Oph(xT) & Oph(xp]) where Xp and x~ are
bounded in Ss(T*M; [0 1]) by the seminorms in the set )V, we obtain ’

R T R()~IT

OPh(XTj)AI]l[t—s,z](P)AszA
A
= Col0Ph Gy JUOP ol s + CoCh ™ 10PH Ly ) PuOPA )
< Ch 'R()T,

where u is now viewed as an operator. In the last line we used Lemma 7.2 and
the existence of C > 0 such that M,((supp Xpj) N p‘l(t)> < CR(W* .
This finishes the proof when |s| < 2A. O

Lemma 7.4 Let a, b, &y, 19, V1, V2 Ro, T, §, R(h) and o as in Lemma 4.4.
Let N*AN (U x T*M) be T non-looping for p in the window [a, b] via t-
coverings and let C  be the constant C, in Definition 2.1. Then, there is
C, =Cy(n, P,V1,V2,C,,e0) > 0and for all K > 0 there is hg > 0 such

np°
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that forall0 < h < hg, A1 € V1, Ay € Vo with MSy(A2) C U, |s| < 2h, and
te€la—Kh,b+ Kh],

.

h"‘l‘/A]l_ P)Ayd
A 11—, (P)A2 GA T )

N1 (P01t 2,

where 0(h) D B(U,2R(h)), X; € Ss, Xy = lon B(U, R(h)), and supp Xy C
U.

Proof Since N*A N (U x T*M) is T non-looping in the window [a, b] via
t9-coverings, for all t € [a — Kh,b + Kh], there is a partition of indices
J,(h) = G, ,(h) UG, (h) as described in Definition 2.1 (with H = A). Let
fo=to, 11 = 1, To(h) = T(h) and T1(h) = 1. Then, there is Cnp > 0 such
thatforallr € [a — Kh, b+ Kh]

Ty

21: |gtiz (h)|[£ . 1—22n
< 9
~ ~ JTh

1
> o JIG. (WeTe < C, R(h) 2T (h). (7.6)

=0

Next, we argue as in (5.5), and then apply a combination of Lemma 4.3 and
Lemma 4.4 with A := A1 ® A, Py in place of P, 2n in place of n, M x M
in place of M, k = n, and u := ]l[t—s,t](P)Oph(XU)e where u is viewed as a
kernel on M x M. Then, there is C; > 0 so that

Al —sn(P)Ardo,
A

- gﬂhz* G, (W7 T)?
<c, R(h)2 (Z(l (h)[te) lall 2 + Z(I e })ll ¢Te) ||P,u||Lz),
=0 (TTZ) ¢

where 7; and T} are as in (5.4). We have used that, since MS(A) C U x T*M
and the tubes are a covering for p~!([a, b]) N N*AN(U x T*M), then
MShL(A) N A’E[A (R(h)/2) C Ujej,(h) 7;. Also, note that we omit the analo-
gous error terms appearing in the estimate of Lemma 4.4 since these error terms

can be dealt with by applying the bounds in (5.7) and (5.8) in combination
with (7.1).
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The proof follows from applying the bounds in (5.5) in combination with
(7.1). O

Lemma 7.5 Let¢; € R, V; C Wfi (M) bounded fori = 1, 2. Then, there are

No > 0, C > 0, hg > 0 such that for all A1 € Vi and Ay € V>, s € R and
0<h<h

| [ Atca®raado,| < 5 ML (P

Proof Weapply Lemma4.5withH = A, A = A1 @A, andu = 1 (_ 5 (P).
Then, for r > W, there is C > 0 such that for all N > O there is
Cy > 0 such that

h

f A1l (—o0,51(P)A2do,
A
< CUM (=051 (P22 + P L0051 (P)lI 12) + CNA™ [T (—o0 51(P) I 2.

It follows from (7.1) that the last term can be bounded by C(1 + |s|")
11 (—c0.s1(P)lL2- o

7.1 Proofs of Theorems 2 and 6

We claim that for £ € [a — Kh,b + Kh] and A; € V;, and A> € V> with
MSp(Az) C U,

< Co/T(h).
(1.7)

h"‘l‘ /A A1<]l(_oo,E](P) — (o1 * ]1(_00’.](P))(E)>A2dUA

We start by showing under the same assumptions that

-l ‘ /A Al ((p,,,T(h) 51 oo, 1(P))(E) — ]1<,C>O,E](1>))A2d(,A

- T, (7.8)
hn_l‘ fA Aj <(ph,T(h) * ]1(—00, ~](P))(E) o ('Oh»to * 1(_00’ '](P))(E))AzdcIA
< Co/T(h). "

for some #y independent of /. At the end of the section we will derive Theo-
rems 2 and 6 from (7.7).
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7.1.1 Proof of (7.8).

Let U,Uy C T*M with B(Uy,2R(h)) C U C B(Uy,4R(h)) C U.
Then, let Xi> Xug» X e Ss(T*M; [0, 1]) with Xy = 1 on U, supp X; C

U\Ugy
B(Uy, 3R(h)), Xuy = 1 on B(Uy, R(h)), Supp x,, C U, X[/\U(, = 1 on

supp x, (1 — XUo)’ SUPP X1\, c U\ Uy. By Lemma 7.2 and (1.12) there
exists Co > 0 such that for |s| < 2h,

pn—l ”]l[t—s,t](P)Oph(XU\Uo)”315

< Cop _, (p~' )N (U \ Up)) < CoC, /T (h). (7.10)

p~lo

Note that when U = T*M this is an empty statement. Then, for [s| < 2k, by
Lemma 7.4

201 yT(h -1
W (1 P00) (7 () = ol e (P OpL LI

< Cytr =511 (P)Opi(xy,) + Coll =51 (P)Opi (x5, )7 + Cyh™.

0\Uy

Then, applying the quadratic formula with x = tr 1 [;_s ;j(P)Opy (Xuy)» for
|s| < 2h we have

Co <T(h)s> C,Co

N
)ST(h) h 0 +cyh™.

0 <h" e i1 (P)Opa(xy,

Next, for |s| < o, splitting Tj—s;)(P) = Y+ 11y 4,1 (P) as before,
we have by Lemma 7.4 and Lemma 7.5 that there exists No > 0 such that

I T (h):
| [ At Prndoy | < € o (KU, (7.11)

h%(/AAln(,w_ﬂ(mAzdaA\ < COML oo (P)l2 < Ch™2 (1 + Is2MN0), (7.12)

where to get the last inequality, we use Lemma 7.5 with U = M, A| = A =
1d.

In particular, combining (7.11) and (7.12) together with Lemma 5.3
implies (7.8) holds.
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7.1.2 Proof of (7.9).

Using Lemma 6.3, the proof of (7.9) amounts to understanding

Al ((ph T(h) - ph"o) * ]1(_00’ ](P))(E)AZ
= Aty Fann(Pe) A2+ O™ vy,

where fg 1, is given by (6.2), and f”(h) = % In particular, for E €
[a—Kh, b+ Kh], we consider tr Alfto,f,h (PE)AZ. For this, we let {7} jc7(n)
be a (D, 7, R(h))-good covering of p~!([a, b]) N N*A N (U x T*M) and
YV C Ss(T*M x M;[0,1]) a bounded subset. Let {XTj }jeqmy C V bea
partition associated to {7} je Ty (h)-

Lemma 7.6 Let 7 C J,.(h), Vi C vl (M), Vv, C \IJ§2 (M) bounded subsets.

Then, there exist C, > 0 and ho > 0 such that for all Ay € Vi, Ay € V,,
0<h<hy

< C,h' "R T.

| [ 32 000t 415, 1. (P2) A,
Ajer

Proof We first note that fto,;(h),h(PE) = 0n * Osl(—oo,.1(P)(E), where

on(s) = fto,T(h),h(_s)- Then, since fzo,f(h) (0) = 0, we have f]R dson(s)ds =
0. In particular, by the estimates (6.3), Lemma 5.3 applies with o, = A ~!. Note
that by Lemma 7.3, fort € [a — Kh, b+ Kh], and |s| < 1,

‘/ Oph(XTj)Al(]l(—oo,z] — 1 (—00,i—s])A2do,
A

< Chl—"R(h)2"—1<5>.

h
(7.13)
Also, by Lemma 7.5, there exists Ng such that for s € R,
| f 0P (X7 )AL (coo)(P) Azday | < CHT(s)N0. (7.14)
A

The proof follows from Lemma 5.3 using (7.13) and (7.14), and by summing
injel. |

Lemma 7.7 LetV, V> as in Lemma 7.6 and suppose T} is a tube such that T,
its corresponding tube in T*M, satisfies ¢; (’j}) N ’j} =@ for|t| € [ty, T (h)].
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Then for all N > O there is C,, > 0 such that for all Ay € V, and Ay € V>,

< C,h".

‘AOph(XTj)Alfz(),f,h(PE)AszA

Proof Note that the assumption on ’Z~'j implies exp(tHp)(7;) N N*A = §J
for |t| € [tg, T (h)]. Therefore, the same application of Egorov’s theorem as
in Lemma 6.4, completes the proof. O

Since U is T non-periodic in the window [a, b] via t-coverings, for all E €
[a — Kh,b 4+ Kh], there is a splitting J,(h) = B.(h) U G, (h) such that
o(T;) NT; = @ for |t| € [tg, T(h)] for j € G, (h), and |B, (h)|R(h)*"~ <
T~"(h). We write, using MSh(A1 ® A2) N AL, (R(h)/2) € U T

J€TnE £I>

/AAlftoj’h(PE)AzdaA

- 3> / Op(xr) AL, 7 4(P;)Azdo, + O (™).
j€G, WUB, () * A '

Applying Lemma 7.7 to the sum over G, (h) and Lemma 7.6 to the sum over
B, (h), we have

< Ch'™™B, (IR + O(h™) < C/T(h)

[ st i
forany E € [a — Kh, b 4+ Kh]. In particular (7.9) holds.

7.1.3 Completion of the proof of Theorem 6

In order to complete the proof of Theorem 6, we take A} = Id and A; = A’
and apply (7.7) to obtain the theorem. |

7.1.4 Proof of Theorem 2

We assume W C M is T non-periodic and let P = Q as in (2.14). Then
ldmw,H,| > ¢ > 0on [§], > % > 0 so we may apply (7.7) for E > %
Let0 < § < % Let x, € CX°(M) as in [9, (19)] i.e. such that x;, = 1 in
a neighborhood of dW, supp x;, C {d(x, dW) < 2h®)}, [0Y x| < Coh™11,
vol,, (supp x;) < ChO—dimbox IW),
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Let R(h) > h% and T(h) = T(R(h)). Then, put A; = 1 and Ay =
(1 — xp)1w in (7.7) to obtain

< Coh'™" /T (h).

| [A (Lo 1P) = Py # Lcoe, ((PYD ) (1 = 30 1w

Next, since pi.r, * I (—oo,(P)(1)(x, x) = LD 4 O(h="+2) (apply The-
orem 3 with T = 1),

‘/W(l - Xh(x))(l'[h(l,x,x) — 27h)~" volgs (B")) dvg(x)) < Coh™™" /T ().

Also, since IT;,(1, x, x) = (2wh) ™" volgs (B")| = O(h'~") (apply Theorem 3
with T = inj M),

‘ / Xn (x)(l_[h(l, X, x) _ (Zﬂh)_n VOI]R" (Bn)) dvg(x)‘ S Chl—n-F(s(n—dimbox(aW))’
w
where we used vol(supp xp,) < h3—dimbox(@W)) T particular,

‘ / T, (1, x, x) dvg(x) — (2wh) ™" volg: (B") volp (W)
W

S Chl*l’l (T(h)fl + Cha(nfdimbox 3W)>'
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Appendix A: Index of notation

In general we denote points in 7*M by p. When position and momentum need
to be distinguished we write p = (x, &) forx € M and & € T M. The natural
projectionis ir,, : T*M — M. Sets of indices are denoted in calligraphic font
(e.g., J). Next, we list symbols that are used repeatedly in the text along with
the location where they are first defined.
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Do 1.7 E;jll_»HAzz 1.17) Ko (2.8)
EY (1.8) AT(r) (2.2) IHpry,| (2.10)
Amax (1.11) z @.1) % .11
T, (h) (1.11) Tinj (2.3) J (1.16)
S (1.14) Ty (h) (2.5) P, 4.3)

For U Cc V C T*M we write By(U,R) = {p € V : d(U, p) < R}
and B{U,R) = B,,,,(U,R). For A C T*M we write 14 for the Liou-
ville measure induced on A. The injectivity radius of M is denoted by inj M.
For the definitions of the semiclassical objects wi(M), \Ilg (M), SYT*M),
Sf(T*M), WEF;, MSy, HS]XI(M), we refer the reader to [11, Appendix A.2].
See also (2.12) and (4.1) for the definitions of HSJXI(M ) and S5, W; respectively.
For the definition of [¢, T'] non-self looping, see (2.6), that of (9, 7, r) good
covers, see (2.4). Non-periodic, non-looping, and non-recurrent are defined in
Definitions 1.9, 1.12, and 1.13 respectively. For non-looping via coverings
and non-recurrent via coverings, see Definitions 2.1 and 2.2.

Appendix B: Examples

In this section, we verify our dynamical conditions in some concrete examples
(some of which are displayed in Tables 1 and 2). In particular, we verify that
certain subsets of manifolds are non-periodic (see Definition 1.2), that various
pairs of submanifolds (H;, H>) are non-looping (see Definition 1.3), and that
certain submanifolds are non-recurrent either via coverings (see Definition 2.2)
or simply non-recurrent (see Definition 1.7). Recall also that if (Hy, Hy) is a
non-looping pair, then H; is non-looping and hence also non-recurrent. Once
these conditions are verified, one can directly apply the relevant theorems
(Theorem 2, 3, 4, and 5).

B.1 Manifolds without conjugate points and generalizations

Let E denote the collection of maximal unit speed geodesics for (M, g). For
m a positive integer, R > 0, T € R, and x € M define

[l

T’R’T = {y € E: y(0) = x, 3 at least m conjugate points to

xiny(T —R, T+ R},
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where we count conjugate points with multiplicity. Next, for a set W C M
write

CV’V"’R’T = U y(T):y e EmRTY,
xeWw

Note that if T(R) — oo as R — 07, then saying y € Cﬁ_l’R’T(R) for R small
indicates that x behaves like a point that is maximally conjugate to y. Note
that if (M, g) has no conjugate points, then "7 = ¢ for all x € M and
r<|T|.

Lemma B.1.1 Let o > 0, tp > 0 and T(R) = alog R™L. Then there are
C, > Oand ¢ > 0 such that if Hy, Hy C M of co-dimension ki, k, and

d(Hl’CIIc_;Z-i—kz—n—l,R,T(R)) ~ R

forall R < e/ then (Hy, H») is a (to, clog R~ non-looping pair with
constant C, for p(x,&) = |&|(x)-

Proof By [8, Proposition 2.2, Lemma 4.1] there exist t > 0,6 > 0, C, > 0,
C > 0, such that the pair (H;, H») is a (#p, T (h)) non-looping via (t, h®)
coverings with constant C in the window [a, b] for any 0 < a < b, where
T(h) = clogh™! for some ¢ > 0 depending on (M, g, «). Combining this
result with Lemma 3.4 completes the proof. O

Remark B.1.2 We note that [8, Proposition 2.2] was only proved for H; = H.».
However, the same argument works for the general case.

B.1.1 Product manifolds

Let (M;, gi), i = 1,2, be two compact Riemannian manifolds. Let M =
M1 x M» endowed with the product metric g = g1 @ g2. By [11, Lemma 1.1]
we have CF T = gfor0 < r < |T'|. Therefore, by Lemma B.1.1 for every
a,ty > 0 there is C, such that every x € M is (fp, o log R~ non-looping

with constant C,; for |&|g(y). Note that, integrating over M, and using
B @) = [ gy (A0S v,
M X

this also implies M is o log R~! non-periodic. We point out that although
C;’_l’r’T is empty for 0 < r < |T|, M may, and often does, have conjugate
points. For example, this is the case when M = §"! withn; > 2.
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B.1.2 Flow invariance of non-looping condition

In this section, we show that non-looping properties of a pair (H, Hy) are
inherited by their flow-outs H' := 7 (¢,(SN*H)). Note, for example, that a
geodesic sphere is given by H' when H = {x} is a point for some 7 > 0.

Lemma B.1.3 Suppose (Hy, Hz) is a (to, T) non-looping pair. Then, for all
s,t € R there exists C > 0 such that (Hlt, H3) is a (to + |t| + |s|, T) non-
looping pair where rI“(R) = T(CR) — (|t] + |s]).
Proof First, note that SN*Ht = ¢;(SN*H;) U ¢_;(SN*H;) for j = 1,2. Let
T > 0 and suppose p € B(£R ! (to, T), R). Then, there is g1 € ER 1 (to, T)
such that d(g1, p) < R. In pamcular there are g € T*M and tg < < |t1| <T
such that d(q1, q2) < R and d(¢;,(q2), SN*H)) < R.

Now, either ¢p_;(q1) € SN*H| or ¢,(q1) € SN*H;. We consider the case

¢:(q1) € SN*H\, the other begin similar. Then, there exist C;, C; > 0 such
that

d(p:(q1), ¢1(q2)) < C(R, d(‘/’—t+t1j:s o ¢1(q2), SN*HZ) < CsR

In particular, letting C = max(C;, Cy), ¢:(q1) € L‘SIRHZ (to+ 1t| + Is|, T —
(2] + |s1)), and, since d(¢: (), ¢:(q1)) < CR,

¢1(p) € B(LGR (o + 111 +1s. T = (t] + Is), CR).

Repeating this argument when ¢_;(q1) € SN*H|, we obtain

N*Ht(L:Hf q(tO T) R)
C \J @t (Byyugy, (LGSR 10 + 111+ 151, T = (el + Is1)), CR)).
+

In particular, there is C > 0 such that
R,
gyt (B (£, 00,70, B) )
<Y Cligy, ( svern, (CGRA (o + 11+ Is1, T = (It + 1sD)), CR))
+

Therefore, since (Hy, Hy) is a (fy, T) non-looping pair, (H/, Hj) is a (to +
|t| + |s], T) non-looping pair with T(R) = T(CR) — |t| — |s|. O

Now, by Lemma B.1.1, in the case d (y, Cy LR, T(R)) > R, for R < ¢~ 10/
and T(R) = alogR™ I we have (x, y) is a (tp, clog R~Y non-looping pair.
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Hence, by Lemma B.1.3 that the geodesic spheres generated by x and y form a
non-looping pair with resolution function T(R) = C log R~! for some C > 0.

B.2 Surfaces of revolution

Consider M = S? with the metric a (*g where
g(s,0) = ds* + o’ (s)db?, (B.1)

and¢: [-F, FI1xR/2xZ — S2, with (s, 8) = (cos(s) cos(), cos(s) sin(d),
sin(s)). Here, « is a smooth function satisfying o (:i:%) = 0and +a'(+7/2) =
1. This assumption implies g is a smooth Riemannian metric. Furthermore,
we assume —sa’(s) > 0 for s # 0 and a”(0) < 0. Note that the round sphere
is given by a(s) = cos(s).

For a unit speed geodesic, ¢ +— (s(t), 6(¢)) with (s(0),6(0)) = (0,0),
9(0) > 0, s(0) > 0, we have by the Clairaut formula (see e.g. [3, Proposition
4.7))

() +2)@®) =1 and  6(1) = a(spa 2(s(1))

where s4 is the maximal value of s on the geodesic. In particular, putting
t(s4+) for the first time when s(t) = s4, we have s : [0, f(s+)] — [0, s4] is
invertible,

s 1(s+)
Hs) = / a(w) dw,  0(t(s)) = / (Z(S+)
0 Veal(w) —a?(sy) 0 a=(s(1))
and, changing variables to w = s(¢) and using 5(t) = /1 — 264 we have

a?(s(1))’

a(sy) 1

0 = dw.
(t(s4)) /0 2(@) JaPtw) —a2) w

We then define 6 (s4) := 20(¢(s+)). If we instead suppose 6>0ands$ <O,
we can define 0_(s_) analogously where s_ is the minimal s value on the
trajectory. Now, there is a smooth function

s—:[0,7/2] — [—m/2,0]

such thatif s is the maximal s value of a trajectory, then s_ (s ) is the minimal
s value. Moreover, d;, s < 0.
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Finally, note that for a trajectory with maximal s value s, s(0) = 0, s # 0,
if T is the second return time to s(0) = 0, then

Oo(s4) =0(T) = 0(0),  BOo(sy) =04 (s4) +0_(s-(s54)).

Note that apriori, (7)) — 6(0) could depend on the precise geodesic whose
maximal s value is 5. However, the integrable torus, T, , consisting of all
such geodesics has the same 6 (7T) — 6(0) up to sign.

In the next lemmas, we reduce the study of dynamical properties on (M, g)
to the Poincaré section {s(0) = 0,s5(0) > 0} C TM. The function ®¢ :
(0, 7/2] — R is the change in 6 after a return to the Poincaré section. In
particular, T, is a periodic torus (i.e. all its trajectories are periodic) if and
only if for some p, g € Z, q # 0,

S4o

Oo(s+) =27 p/q.
Lemma B.2.1 Suppose there exists b > 0 such that
05, @o(s4) #0, 54 =0b.

Then, there are C,, ¢ > 0 such that every subset U C {s > b} U {s < s_(b)}

is T non-periodic for T(R) = ¢R~'/3 with constant Gy
Proof Suppose p € §*M with s (p) > b, and let t € R be such that

Then, there is [¢;| < R such that d(¢;4+ (p), p) < (1 + C(|t| +|t1]))R. Now,
for some 0 < 1, < ¢, we have s(¢,(p)) = 0 and

d(@i1146(P), o (P)) < (1 + C(Jt[ + |11 + 22))R.

Let s be the maximal s value for the trajectory through p. Then, there are
p.q € Zwith |pl, [g] = C(I +[t]), Ig] = c¢(1 + [¢]) such that

Oo(s4) =27 p/q| < CA+C(t| +|nl+n)R/qg <CR. (B.3)

We have shown that if p € S*M is such that (B.2) holds, then p €
US+GAU) Ty, , where

A() == {s+ € (b, %1: 3p.q € Z. Ipllq| < C(1 + 1), (B.3) holds, }.
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Next, we claim
|A()] < C(1 + |t])°R. (B.4)

Indeed, #{r € [0, 1] : 3p,q € Z, r = p/q. |Ipl.lql = C(A + |t))} <
C(1 + |t])? and hence, the volume of possible values of ®g(s4+) such that
(B.3) holds is bounded by C (1 + |¢ 2R. The claim in (B.4) then follows from
the assumption d;, Oy (s4+) # 0 onsy > b.

Our next goal is to show that the bound in (B.4) translates to a bound on the
set of p with (B.2). To see this, note that T,, = {|&y| = a(s4)}NS*M where
we work in the cotangent bundle with coordinates (s, 6, &, &). Therefore,
when a(sy) < a(sp), the intersection Ty, N S(YO gyM 1s transversal for any 6.
In particular, for any ¢ > 0 and 59 > 0, there exists Cy > 0 such that for any
A C [so+e¢,m/2]

M( U T n S;‘;O,Q)M> < C.|Al

§*
(s0.6)
*0 S+ €A

Moreover, since there is 7 > 0 such that the restriction of the map (¢, g) —
o1 (q)

1. x (U SheMnT) > U T

S+=>s0+¢€ S+ =>80+¢€
0€l0,2r]

is a surjective local diffeomorphism,

oo (U Toy n8*M) < €14 (B.5)

S+€A

In particular, by (B.4), since b > 0, there exists C;, > 0 such that

(U T NS*M) = CplAM] = Co(1 +1D?R.
sLEA()

Hence, for U C {s > b} U {s < s_(b)},
uS*M(BS*M(P{}(to, T(R)), R)) < C(1+|T(R))*R.

So, provided T(R) < R™'B3,UisT(R) non-periodic with constant G, = C/2.
O

@ Springer



Weyl remainders: an application 1265

Lemma B.2.2 Suppose xq is a pole, and x; = (s1, 61) for —m /2 < s1 < /2.
Then, there is C,; > 0 such that (xo, x1) is a T(R) = R! non-looping pair.

Proof Suppose xo is the pole with s = /2. Suppose p € Sy, M and there exists
p1 € Sy, M such that d(p, p1) < R and ¢,(B(p1, R)) N B(S;, M, R) # 0.

Then, there is p» € B(p1, R) such that s; (p2) > /2 — R. Therefore, there
is C > O such that s4(p) > w/2 — CR and (since |s1| < 7/2),

MS%M( U Tun S;M) < CR.
sy>m/2—CR

In particular, for any 79 > 0, T > 0,
gy (BEES (0.0, R)) < CR

and hence (xo, x1) is a T(R) = R~! non-looping pair. |

Lemma B.2.3 Suppose the assumptions of Lemma B.2.1 hold and xy =
(s0, 60) with s € (—m/2,5_(b)) U (b, w/2). Then there is 5 > 0 such that
xo is T(R) = R™% non-looping.

Proof The proof is identical to [11, Lemma 5.1]. |
B.2.1 Perturbed spheres

Next, we construct examples which have large (positive measure) periodic
sets as well as large non-periodic sets. In particular, we find examples where
the assumptions of Lemma B.2.1 hold and such that there is ¢ > 0 with the
property that the flow is periodic on —c < s < c¢. If 59 > 0, we will call
(s0, 6p) aperiodic if

05, ©0(s+) # 0on {sy > s0}.

In the case s9 < 0, we require the same condition on {x(s4) < a(s)}. We
define the aperiodic set to be the set of aperiodic points and Theorem 2 holds

for any U inside this set.
In order to do this, we make a small perturbation of the round metric (x(s) =
cos s). First, we compute

2(e (w))? + a(w)a” (w)

dw
Va2 (w) — a?(sp)ad(w) (@ (w))?

a?(b) — 2a%(s4)

Va2 (b) — a*(sy)a?(b)e (b)

0y, 04 = 20/ (s4) / " [@?(w) — 202(s1)]

— 20/ (s1)
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2y [ ) R
T @) =

Let0 <a <b<m/2and o, = ag+e(fy + f-), with supp f+ C (a, b) and
supp f— C (—m/2,0). We have for s > b,

/ b 202 (w) + 2 (s4)
e, O] _ = —20t5(s) /0 T+ () (ag&) - a§(2+))5/2 ’

Arguing identically for 6_, if o, = a9 + e(f+ + f—) with supp f— C
(s—(b), s—(a)) and supp f+ C (0, /2), then

203 (w) + o3 (s—) "
af(w) — af(s2)32

0
0g05_0_ = —Za(/)(s_)/ f—(w)
€ —b (

=0

To construct an example where the assumptions of Lemma B.2.1 hold, let
ao(s) = cos(s) so that «g induces the standard round metric. Let 0 < a <
b < 7, fy not identically 0 and f; > O with supp fy C (a,b), and let

f— = 0 with supp f_ C (s—(b), s—(a)). Then, we have for s; > b, and O¢ ,
corresponding to the perturbed metric with o,

0.0, (@06 (51)) > 0, 54z b.

In particular, we may choose g9 > 0 small enough such that for 0 < ¢ < g9
and @ = «,, we have —sozg(s) > 0 when s # 0, and

. (®o,g(s+)> >0, s.>b

Moreover, since «g is the round metric on the sphere, the flow is periodic
for trajectories not leaving (s—(a), a). (See Fig. 1)

B.2.2 The spherical pendulum

We now recall the spherical pendulum on S? whose Hamiltonian is given in
the (s, ) coordinates by

q(s. 0, &, &) = E2 + cos (s)E2 + 2sins — E.
This Hamiltonian describes the movement of a pendulum of mass 1 moving

without friction on the surface of a sphere of radius 1. When E > 2, up
to reparametrization of the integral curves, the dynamics for the spherical
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2

pendulum are equivalent to those for the Hamiltonian p = [§]5 p

given by

and g is

g = (E — 2sin(s))ds’> + (E — 2sin(s)) cos”(s)d6>.

Making a further change of variables in the s variable, we can put the metric
in the form (B.1) and, moreover, by [26] for E > %, |05, ©g| > ¢ > 0 for

s+ € (0, w/2]. Note that the failure of this condition at the torus Ty is due to
the fact that this torus is singular, consisting of the two curves {s = 0,6 €
R/277, & =0, |&| = a(0)}. In fact, it is casy to see that [@g(s1)| > s}/
for s4 near 0. This, together with Lemmas B.2.1 and [11, Lemma 5.1] are
enough to obtain the results in Table 2 and that Theorem 2 applies to the

spherical pendulum with U = M.

B.3 Submanifolds of manfiolds with Anosov geodesic flow

We next recall some examples when (M, g) has Anosov geodesic flow. The
geodesic flow is Anosov if there is B > 0 such that for all p € T*M there is
a splitting

T,T*M = E(p) ® E_(p) ® RH,(p)
such that
ldo, (V)| <BeFBlv|,  ve Es(p), t— Foo,

where | - | is the norm induced by a Riemannian metric on 7*M. Here, E (p)
is called the stable space and E_(p), the unstable space.

We also note (see [20,32]) that a manifold with non-positive sectional cur-
vature has no conjugate points and that

negative sectional curvature => Anosov geodesic flow

=> no conjugate points.

Note that these implications are not equivalences. Indeed, there exist manifolds
with Anosov geodesic flow containing sets with strictly positive sectional
curvature as well as manifolds with no conjugate points which do not have
Anosov geodesici flow.

One of the main goals of [8] was to prove that various submanifolds of
manifolds with the Anosov or non-focal property are non-recurrent via cover-
ings. We will review only some of these results here, referring the reader to [8]
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for further examples. In what follows we present several dynamical lemmas
which yield the statements from Table 2.
Define for a submanifold H C M, and for every p € SN*H

m(H, p) := dim(E+(p) N T,SN*H).

Note thatin two dimensions m1 (H, p) # Oisequivalentto H being tangent to,
and having the same curvature as, a stable/unstable horosphere with conormal
p. In fact, in any dimension, a generic H C M satisfies m4(H, p) = 0 for all
p € SN*H.

Lemma B.3.1 Let H C M be a smooth submanifold . Suppose (M, g) is a
manifold with Anosov geodesic flow and for all p € SN*H

my(H,p)+m_(H,p) <n—1 or m_(H,p)m(H, p)=0.

Then there are ¢, 8, T > 0 such that for all 0 < a < b, H is clogh_1
non-recurrent via (t, R(h)) coverings for the symbol p(x, &) = |4 () in the
window |a, b].

Proof The proof of this result is that of [§, Theorem 6], see [8, Section 5.1]. O

Lemma B.3.2 Suppose (M, g) is a manifold with Anosov geodesic flow
and Hy, Hy C M are a smooth submanifolds such that for i = 1,2,
SUP e SN*H; mi(Hi, p) = 0. Then there are c,ty > 0 such that for all
0 <a < b, (Hy, Hy) is a (ty, clog R) non-looping pair for p(x,§) = [§|g(x)
in the window [a, b].

Proof By [8, Proposition 2.2, Lemma 5.1] (in particular, adapting the argu-
ments in [8, “Treatment of D € {D;};c7,”, page 38]) there existt > 0,6 > O,
C, > 0, C > 0, such that the pair (H;, H>) is a (tp, T (h)) non-looping via
(7, h‘s) coverings with constant C | in the window [a, b] for any 0 < a < b,
where T (h) = clogh~! for some ¢ > 0 depending on (M, g, ). Combining
this result with Lemma 3.4 yields the claim. |

Recall that a stable/unstable horosphere is defined by the property that
T,SN*H = E+(p) forall p € SN*H.

Lemma B.3.3 Suppose (M, g) is a manifold with Anosov geodesic flow, Hy C
M is a compact subset of a stable/unstable horosphere and Hy C M is a
submanifold with my(Hp, p) < n — 1 for all p € SN*H,. Then, there are
¢, to > 0 such that for all 0 < a < b, (Hy, Hy) is a (tp, clog R) non-looping
pair for p(x, &) = |&|g(x) in the window [a, b].

For simplicity, we prove only Lemma B.3.3 but point out that the arguments
similar to those in [8, Lemma 5.1] can be used to obtain much more general
statements.
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Proof We consider the case Hy. The other case following identically. By
Lemma 3.4 it suffices to show (H., H>) is a non-looping pair via coverings.
Thus, by [8, Proposition 2.2] and Lemma 3.4 it suffices to show there exists
a > Osuchthatforall (z, p) € [ty, To] x SN*H such that d (¢, (p), SN*H,) <
e~ Ja, there exists w € T,SN*H_. for which the restriction

AV py R x Rw — Ty R

has left inverse L ) with [|L(; o || < cce®!’l. Here, ¢ : R x SN*H; — R+
is given by ¥ (1, p) = F o ¢, (p) and F : T*M — R"*! is a defining function
for SN*H, = F~1(0).

Note that 7,SN*Hy = E(p) and there is D > 0 such dg; : E4f(p) —
E_ (¢:(p)) is invertible with inverse satisfying

I dg) "'l < e Pll/D.

Since H is compact, and m (H», g) < n — 1 for all ¢ € SN*H,, there is
¢ > 0 such that for all ¢ € SN*H, there is u € E (g) with |[u| = 1 such that
|d Fu| > c|u].

Since p +— E(p) is v-Holder continuous for some v > 0 [30, Theorem
19.1.6], there is Cy; > 0 and t € E(g) with

d@i,u) < Cyd(q,q)", |u|=1
Therefore,
|dFii| = (c — Cd(q, q)")|al.

Let ¢ = ¢;(p), so that d(q,§) < e /a and set w = (dg,) "' (@1). The
claim follows provided « > 1 is large enough (depending on D, v, ¢, C). O

Lemma B.3.4 Suppose (M, g) has Anosov geodesic flow and non-positive
curvature. Then if H C M is a totally geodesic submanifold, m+(H, p) = 0.

Proof We need only show that for a totally geodesics submanifoldm  (H, p) =
m_(H, p) = 0. It is easier to work on the tangent space side, so we will do
so0, denoting E ﬁi ( ,oﬁ) for the dual stable and unstable bundles.

Suppose /oti € SN H. Then, arguing as in [8, Proof of Theorem 4.C], and
using that H is totally geodesic, we have forall v € TSN H

—(VanuN, drv) = (0%, Ty (drv, dwv)) = 0.

Here N @ (—¢&,&) — NH is a smooth vectorfield with N(0) = p* and
N’(0) = v, V is the Levi-Civita connection on M, and Iy is the second
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fundamental form to H. On the other hand, by [8, (5.46)], for vy € E_EE (pY),

| — (Varue N, drvs)| = |(p%, Tiw, (d7v, dv))| > 0,

where Wy is a stable/unstable horosphere with normal vector p?. Therefore,

T,,SNHN Ei(pn) = (J and in particular m+(H, p) = 0. O
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