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If we consider locally constant or globally fiber bunched sampling functions,
then the Lyapuonv exponent is positive away from a finite set. Moreover, for
sampling functions in an open and dense subset of the space in question, the
Lyapunov exponent is uniformly positive.Our results can be applied to any sub-
shift of finite type with ergodic measures that are equilibrium states of Hölder
continuous potentials. In particular, we apply our results to Schrödinger opera-
tors defined over expandingmaps on the unit circle, hyperbolic automorphisms
of a finite-dimensional torus, and Markov chains.
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Schrödinger operators with potentials 853

1 Introduction

1.1 Statement of results

In this series of papers,we aremainly concernedwith theAnderson localization
phenomenon for one-dimensional discrete Schrödinger operators Hω in �2(Z)

acting by

[Hωψ](n) = ψ(n + 1) + ψ(n − 1) + Vω(n)ψ(n). (1.1)

Here we assume � to be any compact metric space, T : � → � a homeomor-
phism, and f : � → R be continuous. We consider potentials Vω : Z → R

defined by Vω(n) = f (T nω) for ω ∈ � and n ∈ Z. For general background
on Schrödinger operators in �2(Z) with dynamically generated potentials of
this form, we refer the reader to [19–21].

Spectral properties of the operators Hω can be investigated by studying the
behavior of the solutions to the difference equation

u(n + 1) + u(n − 1) + Vω(n)u(n) = Eu(n), n ∈ Z (1.2)

with E real (or complex, depending on the problem in question). These solu-
tions in turn can be describedwith the help of the Schrödinger cocycle (T, AE )

with the cocycle map AE : � → SL(2, R) (resp., SL(2, C)) being defined as

AE (ω) = A(E− f )(ω) :=
(
E − f (ω) −1

1 0

)
, (1.3)

where we often leave the dependence on f : � → R implicit as it will be
fixed most of the time.

Such cocycles describe the transfer matrices associated with Schrödinger
operators. Specifically, u = u(n) solves (1.2) if and only if

(
u(n)

u(n − 1)

)
= AE

n (ω)

(
u(0)
u(−1)

)
, n ∈ Z, (1.4)

where

An(ω) =
{
A(T n−1ω) . . . A(ω), n ≥ 1;
[A−n(T nω)]−1, n ≤ −1,

(1.5)

and we set A0(ω) to be the identity matrix.
The Lyapunov exponent (LE) of the Schrödinger cocycle plays a key role in

the spectral analysis of the operators. Letμ be a T -ergodic probabilitymeasure
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on �. The Lyapunov exponent is given by

L(AE , μ) = lim
n→∞

1

n

∫
log ‖AE

n (ω)‖ dμ(ω)

= inf
n≥1

1

n

∫
log ‖AE

n (ω)‖ dμ(ω). (1.6)

For simplicity, we write L(E) = L(AE , μ). By Kingman’s subaddive ergodic
theorem, we have

lim
n→∞

1

n
log ‖AE

n (ω)‖ = L(E)

forμ-almost everyω ∈ �. In particular, certain uniform positivity and uniform
large deviation estimates (LDT) for the LE are strong indications of Anderson
localization, which in its spectral formulation states that for μ-almost every
ω ∈ �, the operator Hω has pure point spectrum with exponentially decaying
eigenfunctions.

On the other hand, positivity and LDT estimates for the LE are extensively
studied topics in dynamical systems. In general, the more random the base
dynamics (�, T, μ) is, the more likely it is that one has positivity and LDT
for the LE. For instance, for the well-known Anderson model, where Vω is a
realization of independent identically distributed random variables, one does
have uniform positivity and uniform LDT on any compact set of energies E .
These are classic results that go back to the seminal work of Furstenberg [27].
Combining this with a certain elimination of double resonance argument, these
two properties indeed lead to a localization result for the Anderson model; see,
for example, [16] for recent proofs of all these results mentioned above.

The Anderson model may be put into the context of the present paper as
follows. We consider the Anderson model whose single site measure is an
atomic measure supported on a finite number of points, which is the most
difficult case. LetA = {1, 2, . . . , �} with � ≥ 2 and let μ̃ be a fully supported
probability measure on A. Let � = AZ be the full shift space and consider
the left shift T : � → � defined by (Tω)n = ωn+1 for ω ∈ AZ and n ∈ Z.
Letμ = μ̃Z, which is strongly mixing with respect to T . The Anderson model
may be generated by setting Vω = f (T nω) where f : � → R depends
only on ω0. The potentials generated in this way are the most random among
the potentials studied in this paper. It is natural to ask what can be said if
the potentials, or rather the base dynamics (�, T, μ), are less random. In the
language of mathematical physics, what if the Vω’s are weakly correlated? Or
in the language of dynamical systems, what if (�, T, μ) is a mixing system
such as the Arnold cat map or the doubling map? Or more generally, a subshift
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Schrödinger operators with potentials 855

of finite type with measure of maximal entropy? It turns out that such systems
are much more difficult to analyze.

To further explain what this paper accomplishes, we consider a general
framework of the base dynamics that includes most of the systems mentioned
above as special classes. Let (�, T ) be a subshift of finite type. Let μ be a
T -ergodic measure that is fully supported on �. Moreover, we further assume
that μ admits a local product structure (a detailed definition may be found in
Sect. 2.1.2). Let f : � → R be α-Hölder continuous for some 0 < α ≤ 1 and
non-constant. We define

Z f = {E : L(E) = 0}. (1.7)

In the present paper, we address the following question.

Problem Let �, T , μ, and f be described as above. How large is Z f ? In
particular, when is it discrete, finite, or even empty?

Note that the discreteness of Z f can be taken as a starting point to show
full spectral localization for the corresponding operators; see, for example,
the proof of localization in [16, Proof of Theorem 1.3]. We comment on this
point in more detail in Remark 1.6 below. Earlier partial results along this line
may be found for example in [6,9,12,18,22,35,36,44], where either the base
dynamics or the choice of f are quite restricted, or Z f is still quite large. The
main theorem of this paper is:

Theorem 1.1 Suppose (�, T ) is a subshift of finite type and μ is a fully sup-
ported T -ergodic probability measure that has a local product structure that is
fully supported on �. Suppose T has a fixed point and f is Hölder continuous
and non-constant. Then the set Z f is discrete.

Remark 1.2 Let us mention that the concept of local product structure is
recalled in detail in Sect. 2.1. If μ has a local product structure, then its topo-
logical support suppμ is a subshift of finite type (see, e.g., [7, Lemma 1.2])
and hence the assumption in Theorem 1.1 that μ is fully supported is not a
restriction. If the support is not the whole space, then we can replace (�, T ) by
(suppμ, Tsuppμ). This remark applies whenever we assume in this paper that
μ is fully supported. Conversely, given any subshift of finite type, the unique
equilibrium state associated with a Hölder continuous potential always has a
local product structure, see [14,34] or [8, Section 2.2]. In particular, measures
with maximal entropy do have a local product structure.

It is clear that we can add a coupling constant λ to f in the statement
of Theorem 1.1. This further indicates that such systems do behave like the
Anderson model, as the Anderson model is always localized as long as λ > 0.
If we restrict the choice of f so that it is locally constant or ‖ f ‖∞ is small,
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then we can improve the result as follows. Let Cα(�, R), 0 < α ≤ 1 be the
space of α-Hölder continuous functions.

Theorem 1.3 Let (�, T, μ) be as in Theorem 1.1. Suppose f ∈ Cα(�, R) is
globally bunched or locally constant. Assume further that f is non-constant
and T has a fixed point. Then Z f is finite.

A detailed definition of global bunching may be found at Sect. 5.2. In par-
ticular, f is globally bunched if ‖ f ‖∞ is small. A possible explicit choice of a
smallness condition on ‖ f ‖∞ may be found in (7.7). We can again add a cou-
pling constant λ to f in Theorem 1.3 if f is locally constant. If f is globally
bunched, then as λ becomes large, Zλ f might become a discrete set that is no
longer guaranteed to be finite. This is because we will lose global bunching as
λ becomes large and we have to apply Theorem 1.1 then. In Sect. 7, we shall
show that Theorems 1.1 and 1.3 are sharp in the sense that Z f may indeed
be nonempty for a suitable locally constant f . Thus another natural question
is: when can we remove the discrete or finite set Z f ? We have the following
results.

Theorem 1.4 Suppose (�, T ) is a subshift of finite type and μ is a fully sup-
ported T -ergodic measure that has a local product structure. Then there is a
residual subset G of Cα(�, R) such that for each f ∈ G, Z f is empty.

Again, if we restrict the choice of f so that it is either locally constant or
globally bunched, then we can obtain a uniform lower bound of the L(E) for
a even wider class of choices:

Theorem 1.5 Suppose (�, T ) is a subshift of finite type and μ is a fully sup-
ported T -ergodic measure that has a local product structure. Consider the
subspaces of Cα(�, R) consisting of globally bunched or locally constant
functions. For each of them, there is an open and dense subset G such that for
every f ∈ G, we have inf{L(E) : E ∈ R} > 0.

Applications of Theorems 1.1–1.5 to more concrete base dynamics such
as the doubling map, Arnold’s cat map, and Markov shifts may be found in
Sect. 7.

Remark 1.6 (a) Let us emphasize that from the perspective of a spectral anal-
ysis of the operator family {Hω}ω∈�, and in particular when seeking a
proof of spectral localization for this family, the discreteness of Z f is in
general the appropriate first milestone towards the eventual goal. It then
needs to be combined with control of the Lyapunov exponent away from
Z f (the connected components of Zc

f need to be exhausted by intervals
on which the Lyapunov exponent is uniformly bounded away from zero;

123



Schrödinger operators with potentials 857

this is often established by proving the continuity of L(E) in E when-
ever possible), suitable large deviation estimates, and an argument that
rules out the presence of infinitely many double resonances for almost
every ω. It then follows for μ-almost every ω ∈ � that spectrally almost
every energy in Zc

f admits an exponentially decaying eigenfunction for
Hω. As the discrete set Z f almost surely carries no weight with respect
to the spectral measures of Hω, this then shows that for μ-almost every
ω ∈ �, the operator Hω admits a basis consisting of exponentially decay-
ing eigenfunctions, and the desired spectral localization statement then
follows.

(b) One is nevertheless interested in obtaining stronger results on the size of
the exceptional setZ f , such as finiteness or emptiness, whenever possible,
as this leads to stronger versions of the dynamical version of an Ander-
son localization statement. Here, one is interested in showing that the
solutions of the time-dependent Schrödinger equation i∂tψ = Hωψ are
localized. In other words, one seeks to prove good off-diagonal estimates
for the matrix elements of e−i t Hω relative to the standard basis of �2(Z),
uniformly in the time parameter t . Energies E in Z f present an obsta-
cle for proving this and one generally simply projects away from these
exceptional energies and considers χI (Hω)e−i t Hω with a set I ⊆ Zc

f that
has positive distance from Z f . In fact, it has been shown that dynamical
localization can actually fail, even when spectral localization holds, if one
does not project away fromZ f ; compare, for example, [23,29]. Clearly, it
is then desirable to show that Z f is empty whenever this can be expected
to be true. Of course, as pointed out earlier, this will not always be the
case.

(c) Let us emphasize that the road map to spectral localization described
in part (a) of this remark is applicable in the general setting of ergodic
Schrödinger operators, and it has been implemented for special cases rang-
ing from theAndersonmodel to potentials generated by torus translations,
the standard skew-shift, the doubling map, or the Arnold cat map. While
the literature is vast, let us just mention a few representative papers, [10–
12,16], and refer the reader to [19–21] for more information. Regarding
the base transformations considered in this paper, the absence of a suitable
general and global result showing the discreteness ofZ f was the primary
obstacle in attempting to implement this roadmap. Thus, the present paper
fills precisely this gap and opens the door to a localization proof, which
we intend to work out in detail in the second part of this series [1].
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1.2 Strategy of proofs

One of the main tools we use to prove our results is the so-called invariance
principle as coined in [3]. The first version of the invariance principle goes
back to Ledrappier [33] and it was later generalized in [3]. The version we
adopt in this paper is due to Bonatti et al. [7,39]. A detailed statement of
the invariance principle may be found in Proposition 4.5. It says that if the
Lyapunov exponent L(A, μ) of a cocycle (T, A) is 0 and A depends only
on the future or the past, then any (T, A)-invariant measure m on � × RP

1

admits a disintegration {mω : ω ∈ �} that depends only on the future or the
past, respectively.

Another main tool we use is given by the so-called stable and unstable
holonomies, which are defined along the stable or unstable sets of ω, respec-
tively; see Sect. 2.1.5 for a detailed definition. If L(A, μ) = 0, we can define
a measurable family of stable and unstable holonomies for μ-almost every ω.
Then one can use the stable or unstable holonomies to conjugate the cocycle
(T, A) to one that depends only on the future or the past, respectively.

Combining the two steps above, one can show that the family of invariant
measures {mω} are invariant with respect to the stable and unstable holonomies
as well. We call such a family an su-state.

It turns out that the existence of su-states is a very rare event in the sense
that they can be easily perturbed away by modifying the data of the cocycle
map A at certain periodic points. Roughly speaking, this is how [7,8,39] show
the positivity of the Lyapunov exponent for certain typical Cα-cocycles. More
precisely, [7,8] did it in case the cocycle is fiber bunched or is locally constant
while [39] did it for the general case.

However, to prove Theorems 1.1–1.3, we need to consider Schrödinger
cocycles with fixed sampling functions. They are basically fixed cocycle maps
parametrized by the energy parameter E ∈ R. So we are not allowed to
perturb the cocycle maps to get typicality. Hence, the above strategy is not
sufficient to yield the discreteness or finiteness of Z f as stated in Sect. 1.1. It
turns out that in addition we need to deploy certain tools from spectral theory.
In particular, we will consider the spectra associated with certain periodic
orbits and invoke a result from inverse spectral theory for periodic operators.
Moreover, to make use of the periodic data, among other things, we also
need to show that periodic orbits with small Lyapunov exponent belong to the
topological support of the sets where one can define continuous holonomies.
Finally, to use the periodic data to prove the main results, we have to combine
the conformal barycenter concept due to Douady and Earle [25], Bowen’s
specification property [13], and Kalinin’s theorem regarding approximating
L(E) by the Lyapunov exponent along periodic orbits [30]. In short, the proof
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is based on a fusion of ideas and results from both dynamical systems and
spectral theory.

The structure of the remainder of the paper is as follows. In Sect. 2, we state
some necessary preliminaries and lay out our context. In Sect. 3, we give a
proof of an additive version of a large deviation estimate for Hölder continuous
functions defined on� and for slightlymore restrictedmeasuresμ. These large
deviation estimates may be of independent interest. Moreover, they will play
a key role in the second paper of this series [1]. In Sect. 4, we introduce our
main tools such as the invariance principle and the conformal barycenter, and
we also give detailed proofs of certain lemmas. We prove Theorems 1.1–1.3
in Sect. 5 and Theorems 1.4–1.5 in Sect. 6. In Sect. 7, we apply our general
Theorems 1.1–1.5 to several concretemodels such as the doublingmap,Arnold
cat map, andMarkov chains. In particular, the class of Markov chains includes
general locally constant Schrödinger potentials defined on the full shift space
as a special case, which yields a generalization of the classical Furstenberg
theorem. Many of the results are the first of their kind. We also compute an
explicit choice of λ0 > 0 so that ‖ f ‖∞ ≤ λ0 is sufficient for f to be globally
bunched. Finally, we present an example where we show the finite set Z f
appearing in the statement of Theorem 1.3 may not be removed in general, so
that our results are sharp in a suitable sense.

2 Preliminaries

2.1 The setting

In this sectionwedescribe the settingwewillwork in.Wehave chosen subshifts
of finite type with appropriate ergodic measures as base transformations as
a compromise between concreteness and generality. Other possible choices
would have been concrete classes of smooth hyperbolic transformations and
expanding maps. For background and discussion of the material presented
below, we refer the reader to [7,8,39].

2.1.1 The base space and the base transformation

Let A = {1, 2, . . . , �} with � ≥ 2 be equipped with the discrete topology.
Consider the product space AZ, whose topology is generated by the cylinder
sets, which are the sets of the form

[n; j0, . . . , jk] = {ω ∈ AZ : ωn+i = ji , 0 ≤ i ≤ k}
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860 A. Avila

with n ∈ Z and j0, . . . , jk ∈ A. The topology ismetrizable and for definiteness
we fix the following metric d on AZ. Set d(ω, ω) = 0 for ω ∈ AZ and

d(ω, ω̃) = e−N (ω,ω̃) (2.1)

for ω, ω̃ ∈ AZ with ω 	= ω̃, where

N (ω, ω̃) = max{N ≥ 0 : ωn = ω̃n for all |n| < N }. (2.2)

We consider the left shift T : AZ → AZ defined by (Tω)n = ωn+1 for
ω ∈ AZ and n ∈ Z. Let Orb(ω) = {T nω : n ∈ Z} be the orbit of ω under the
dynamics T .

Definition 2.1 Let Q = (qi j )1≤i, j≤� be an � × � matrix with qi j ∈ {0, 1} and
let � be the subshift of finite type associated to the matrix Q,

� = {(ωn)n∈Z : qωnωn+1 = 1 for all n ∈ Z}.

Consider the topological dynamical system (�, T ).
We say that a finite word j0 j1 . . . jk , where ji ∈ {1, . . . , �} for 0 ≤ i ≤ k,

is admissible if it occurs in some ω ∈ �, that is, there are ω ∈ � and n ∈ Z

such that ωn+i = ji for all 0 ≤ i ≤ k.
The local stable set of a point ω ∈ � is defined by

Ws
loc(ω) = {ω̃ ∈ � : ωn = ω̃n for n ≥ 0} (2.3)

and the local unstable set of ω is defined by

Wu
loc(ω) = {ω̃ ∈ � : ωn = ω̃n for n ≤ 0}. (2.4)

A set is called s-locally saturated (resp., u-locally saturated) if it is a union
of local stable (resp., local unstable) sets of the form above.

For each j ∈ A and each pair of points ω, ω̃ ∈ [0; j], we denote the unique
point in Wu

loc(ω) ∩ Ws
loc(ω̃) by ω ∧ ω̃. Throughout this paper, we fix for each

1 ≤ j ≤ � a choice of ω( j) ∈ [0; j] so that the maps

ω �→ ω(ω0) ∧ ω, ω �→ ω ∧ ω(ω0) (2.5)

are well-defined and continuous on � and are constant on local stable and
unstable sets, respectively.
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2.1.2 Measures with a local product structure

Let the subshift � be equipped with the Borel σ -algebra and let μ be a prob-
ability measure on � that is ergodic with respect to T . We define

�+ = {(ωn)n≥0 : ω ∈ �}, (2.6)

�− = {(ωn)n≤0 : ω ∈ �} (2.7)

to be the spaces of one-sided right and left infinite sequences, respectively,
associated with �. Metrics for �± can be defined in a way similar to the
definition of the metric for AZ in Sect. 2.1.1. Abusing notation slightly, we
still let d denote their metrics. Let π+ be the projection from � to �+ and
μ+ = π+∗ (μ) be the pushforward measure of μ on �+. Similarly, we let π−
be the projection to �− and μ− be the pushforward measure on �−. Let T+
be the left shift operator on �+ and T− be the right shift on �−. For n ≥ 0,
we let [n; j0, . . . , jk]+ denote the cylinder sets in �+; for n ≤ −k, we let
[n; j0, . . . , jk]− denote the cylinder sets in �−. Let ω± denote points in �±,
respectively.

For simplicity, for each 1 ≤ j ≤ �, we set μ j = μ|[0; j]. Similarly, we set
μ±

j = μ±|[0; j]± , respectively.
Note that we do not have � = �− × �+. However, for each 1 ≤ j ≤ � we

have a natural homeomorphism

P : [0; j] → [0; j]− × [0; j]+ where P(ω) = (π−ω, π+ω).

Thus, abusing the notation a bit, we may just write [0; j] = [0; j]− × [0; j]+.
Moreover, we have for all ω ∈ �,

(π+)−1(π+ω) = Ws
loc(ω), (π−)−1(π−ω) = Wu

loc(ω). (2.8)

Definition 2.2 We say μ has a local product structure if there is a ψ : � →
(0, ∞) such that for each 1 ≤ j ≤ �, ψ ∈ L1([0; j], μ−

j × μ+
j ) and

dμ j = ψ · d(μ−
j × μ+

j ). (2.9)

The local product structure ofμ amounts to saying thatμ−
j ×μ+

j is equivalent
to μ j . Indeed, (2.9) clearly implies that μ j is absolutely continuous with
respect to μ−

j × μ+
j . On the other hand, if μ j (E) = 0, then we must have

(μ−
j ×μ+

j )(E) = 0 sinceψ(ω) > 0 for all ω ∈ �. In particular, we may draw
the following conclusion. If E ⊂ [0; j] is u-locally saturated with μ(E) > 0
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and F ⊂ [0; j] is s-locally saturated with μ(F) > 0, we have

(μ−
j × μ+

j )(E ∩ F) = (μ−
j × μ+

j )(π−E × π+F)

= μ−
j (π−E) · μ+

j (π+F)

= μ(E) · μ(F)

> 0,

which implies that

μ(E ∩ F) = μ j (E ∩ F) > 0. (2.10)

Conversely, if μ−
j × μ+

j is equivalent to μ j for each 1 ≤ j ≤ �, then dμ j =
ψ · d(μ−

j × μ+
j ), where ψ ∈ L1([0; j], μ−

j × μ+
j ) is the Radon–Nikodym

derivative of μ j with respect to μ−
j × μ+

j . Note 1/ψ ∈ L1([0; j], μ j ) is the

Radon–Nikodym derivative of μ−
j × μ+

j with respect to μ j . Hence we must
have that ψ(ω) > 0 for all j and for μ j -a.e. ω. We can of course modify ψ

so that it is positive everywhere.

Definition 2.3 A Jacobian of the measure μ+ with respect to T+ on �+ is a
measurable function J+ : �+ → R+ such for each j ∈ {1, . . . , �}, we have

dμ+(T+ω+) = J+(ω+) · d((T+)∗(μ+|[0; j]+))(T+ω+). (2.11)

A Jacobian of μ− with respect to T− can be defined similarly.

One consequence of the local product structure of μ is that μ± admit Jaco-
bians with respect to T± on [0; j]± for each 1 ≤ j ≤ �, respectively. The
following lemma is essentially contained in [8]. While in [8, Lemma 2.2], ψ
is assumed to be continuous, we note that the same proof can be applied to
obtain the following lemma.

Lemma 2.4 The measures μ± admit positive Jacobians J± ∈ L1([0; j]±,

dμ±
j ) with respect to T± on [0; j]±, respectively, for each 1 ≤ j ≤ �.

For l = (l1, . . . , ln) ∈ {1, . . . , �}n , we write the cylinder [0; l1, . . . , ln, j]
as [0; l, j] and set |l| := n. We use a similar notation for spaces of one-sided
sequences. For a cylinder [0; l, j]+ ⊂ �+, we clearly have a Jacobian for

T
|l|
+ : [0; l, j]+ → [0; j]+, which is denoted by J

(l, j)
+ : [0; l1, . . . , ln, j]+ →

(0, ∞) and is given by the formula

J
(l, j)
+ (ω+) =

n−1∏
k=0

J+(T k+ω+).
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By the definition of a Jacobian, we have for any integrable function f : �+ →
R and any [0; l, j]+ ⊂ �+ that

∫
[0; j]+

f (η) dμ+(η) =
∫

[0;l, j]+
f (T

|l|
+ ω+)J

(l, j)
+ (ω+) dμ+(ω+). (2.12)

We first have the following immediate consequence of Lemma 2.4, which
will be used in Sect. 5.

Corollary 2.5 Let D ⊂ �+ be such that μ+(D ∩ [0; j]+) > 0. Then for all
[0; l, j]+ ⊂ �+, we have

μ+(T
−|l|
+ (D) ∩ [0; l, j]+) > 0.

Similarly, if μ−(D ∩ [0; j]−) > 0 for some D ⊂ �−, then for all
[−|l|; j, l]− ⊂ �−, we have

μ−(T
−|l|
− (D) ∩ [−|l|; j, l]−) > 0.

Proof Weonly consider the case for (�+, T+, μ+); the casewith (�−, T−, μ−)

can be handled similarly.
Without loss of generality, we may just consider a Borel set D ⊂ [0; j]+

with positive measure. By (2.12), we have

0 < μ+(D)

=
∫

[0; j]
χD(η)dμ+(η)

=
∫

[0;l, j]
χD(T

|l|
+ ω+)J

(l, j)
+ (ω+)dμ+(ω+)

=
∫

[0;l, j]∩(T
−|l|
+ D)

J
(l, j)
+ (ω+)dμ+(ω+),

which implies that μ+([0; l, j] ∩ (T
−|l|
+ D)

)
> 0. ��

For some results we will need the measure μ to obey a quantitative version
of local product structure, which is defined as follows.

Definition 2.6 We say thatμ satisfies the bounded distortion property if there
is C ≥ 1 such that for all cylinders [n; j0, . . . , jk] ⊂ � and [l; i0, . . . , jm] ⊂
�, where l > n + k and [n; j0, . . . , jk] ∩ [l; , i0, . . . , im] 	= ∅, we have

C−1 ≤ μ ([n; j0, . . . , jk] ∩ [l; i0, . . . , im])
μ ([n; j0, . . . , jk]) · μ ([l; i0, . . . , im]) ≤ C. (2.13)
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Note that by T -invariance of μ and by the definition of μ±, μ has the
bounded distortion property if and only ifμ+ orμ− has the bounded distortion
property. For instance, the bounded distortion property of μ+ means that for
all n ≥ 0, l > n + k, and [n; j0, . . . , jk]+ ∩ [l; i0, . . . , im]+ 	= ∅, we have

C−1 ≤ μ+ ([n; j0, . . . , jk]+ ∩ [l; i1, . . . , im]+)
μ+ ([n; j0, . . . , jk]+

) · μ+ ([l; i1, . . . , im]+) ≤ C. (2.14)

In fact, given any subshift of finite type, the unique equilibrium state asso-
ciated with a Hölder continuous potential always has the bounded distortion
property; see Lemma 3.4.

It is not difficult to see that every measure satisfying the bounded dis-
tortion property has a local product structure. Indeed, for every cylinder
[−k; j−k, . . . , j−1, j0, . . . , jk] ⊂ �, we have by (2.13)

(μ−
j0
×μ+

j0
)
([−k; j−k, . . . , j−1, j0, . . . , jm])

= μ−
j0

([−k; j−k, . . . , j−1, j0]−
) · μ+

j0

([0; j0, . . . , jm]+)
= μ

([−k; j−k, . . . , j−1, j0]
) · μ

([0; j0, . . . , jm])
≤ μ

([−k; j−k, . . . , j−1]
) · μ

([0; j0, . . . , jm])
≤ Cμ

([−k; j−k, . . . , j−1, j0, . . . , jm])
= Cμ j0

([−k; j−k, . . . , j−1, j0, . . . , jm]).
Similarly, we can obtain such estimates for all other cylinders. Since every
Borel set can be approximated by cylinder sets, these estimates clearly imply
that μ−

j × μ+
j is absolutely continuous with respect to μ j . On the other hand,

μ j0

([−k; j−k, . . . , j−1, j0, . . . , jm])
= μ j0

([−k; j−k, . . . , j−1, j0, . . . , jm])
≤ Cμ−

j0

([−k; j−k, . . . , j−1]−
) · μ+

j0

([0; j0, . . . , jm]+)

≤ C2

μ−
j0
([0; j0]−)

μ−
j0

([−k; j−k, . . . , j−1, j0]−
) · μ+

j0

([0; j0, . . . , jm]+)

≤ C̃(μ−
j0

× μ+
j0
)
([−k; j−k, . . . , j−1, j0, . . . , jm]),

where C̃ = max{ C2

μ([0; j0]) : 1 ≤ j ≤ �} is independent of the choice of the
cylinder sets. Note in the fourth line above, we use the bounded distortion
property of μ− as:

μ−
j0

([−k; j−k, . . . , j−1]−
) · μ−

j0
([0; j0]−) ≤ Cμ−

j0

([−k; j−k, . . . , j−1, j0]−
)
.
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It clearly implies that μ j is absolutely continuous with respect to μ−
j × μ+

j
for each 1 ≤ j ≤ �.

2.1.3 SL(2, R)-cocycles and their projectivization

A continuous map A : � → SL(2, R) gives rise to the cocycle (T, A) :
� × R

2 → � × R
2, (ω, v) �→ (Tω, A(ω)v). For n ∈ Z, we let (T, A)n =

(T n, An). In particular, we have

An(ω) =

⎧⎪⎨
⎪⎩
A(T n−1ω) · · · A(ω), n ≥ 1;
I2, n = 0;
[A−n(T nω)]−1, n ≤ −1,

where I2 is the identity matrix. Now let μ be a T -ergodic probability measure
with topological support equal to �. The Lyapunov exponent is given by

L(A, μ) = lim
n→∞

1

n

∫
log ‖An(ω)‖ dμ(ω)

= inf
n≥1

1

n

∫
log ‖An(ω)‖ dμ(ω).

By Kingman’s subaddive ergodic theorem, we have

lim
n→∞

1

n
log ‖An(ω)‖ = L(A, μ)

for μ-a.e. ω. By linearity and invertibility of each A(ω), we can projectivize
the second component and consider (T, A) : � × RP

1 → � × RP
1.

2.1.4 Reduction to a topologically mixing subshift

We need to reduce to the case where T : � → � is topologically mixing and
collect some standard facts. One may find a detailed discussion of the results
stated in this section in [31, Section 1.9].

One says that (�, T ) is topologically mixing if for any pair of nonempty
open sets U, V ⊂ �, there is an N ≥ 1 such that T n(U ) ∩ V 	= ∅ for all
n ≥ N .

Note that a general subshift of finite type (�, T ) might not be topologi-
cally mixing. But any subshift of finite type that has a dense positive semiorbit
has the following decomposition. By the spectral decomposition theorem for
hyperbolic basic sets, we can decompose � as � = ⊔s

l=1 �l for some s ≥ 1
and for closed subsets �l , so that the following holds true: T (�l) = �l+1 for
1 ≤ l < s and T (�s) = (�1), and T s |�l is a topologically mixing subshift
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of finite type for each 1 ≤ l ≤ s. In particular, if (�, T ) has a fully supported
ergodic measure, then (�, T ) has such a decomposition. Moreover, the nor-
malized restriction μl of μ to �l is a T s-invariant ergodic, fully supported
probability measure with local product structure or bounded distortion prop-
erty, provided the same property is true for μ on �. One may also see [17,
Section 3.2] for such facts.

Then for a cocycle map A : � → SL(2, R), we consider As : �l →
SL(2, R) as As(ω), which may be considered a cocycle map defined over the
base dynamics T s : �l → �l . Clearly, L(As, μl) > 0 for some 1 ≤ l ≤ s
implies that L(A, μ) > 0. Since the present paper is only concerned with the
positivity of the Lyapunov exponent, we assume from now on that (�, T ) is
topologically mixing.

Note that supp(μ) = � and ergodicity of μ together already imply that
Orb(ω) = � for μ-almost every ω ∈ �.

Topological mixing has additional consequences, which are needed in the
present paper. First, it implies that the set of periodic orbits is dense in �.
Moreover,we have the followingmore quantitative behavior of periodic points,
which is called the specification property. It concerns shadowing finite pieces
of segments of different orbits by a single orbit, in particular, by a periodic orbit.
It was first introduced by Bowen [13]. The following version for subshifts of
finite type is due to Sigmund [37]. For a < b ∈ Z, we let [a, b] ⊂ Z denote the
indicated interval of integers. In other words, [a, b] = {n ∈ Z : a ≤ n ≤ b}.
Proposition 2.7 Let (�, T ) be a topologically mixing subshift of finite type.
For each ε > 0, there is an integer r = r(ε) > 0 such that for any choice
of points p(i) ∈ � and intervals of integers Ii = [ai , bi ], i = 1, 2, with
a2 − b1 > r and any n > b2 − a1 + r , there exists a periodic point p with
period n such that

d(T j p, T j p(i)) < ε for j ∈ Ii , i = 1, 2.

2.1.5 Stable and unstable holonomies

Given (�, T, μ) as above, consider A : � → SL(2, R) and the projective
cocycle (T, A) : � × RP

1 → � × RP
1. We will denote the fiber {ω} × RP

1

by Eω.

Definition 2.8 A stable holonomy hs for A is a family of homeomorphisms
hs

ω,ω′ : Eω → Eω′ , defined whenever ω and ω′ belong to the same local stable
set, satisfying the following properties:

(i) hs
ω′,ω′′ ◦ hs

ω,ω′ = hs
ω,ω′′ and hsω,ω = id,

(ii) A(ω′) ◦ hs
ω,ω′ = hsTω,Tω′ ◦ A(ω),
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(iii) (ω, ω′) �→ hs
ω,ω′(φ) is continuous when ω, ω′ belong to the same local

stable set, uniformly in φ.

An unstable holonomy hu
ω,ω′ : Eω → Eω′ is defined analogously for pairs of

points in the same unstable set.

By property (i), we have hτ
ω,ω′ = (hτ

ω′,ω)−1 for any ω′ ∈ W τ
loc(ω), where

τ ∈ {s, u}.
These projective holonomies hs

ω,ω′, huω,ω′ typically arise via projectivization
of Hs

ω,ω′, Hu
ω,ω′ ∈ SL(2, R) that are obtained as follows:

Hs
ω,ω′ = lim

n→∞ An(ω
′)−1An(ω),

Hu
ω,ω′ = lim

n→∞ A−n(ω
′)−1A−n(ω) (2.15)

for ω, ω′ in the same stable (resp., unstable) set. Conditions need to be placed
on the cocycle to ensure convergence in (2.15); see, for example, the proof of
Lemma 4.2. The analogues of the properties (i)–(iii) for Hs

ω,ω′, Hu
ω,ω′ follow

directly from the construction and this in turn implies (i)–(iii) for hs
ω,ω′, huω,ω′

by projectivization. Holonomies that arise from (2.15) are called canonical
holonomies of A.

2.1.6 Invariant measures of projective cocycles

Consider a projective cocycle (T, A) : � × RP
1 → � × RP

1 that has stable
and unstable holonomies.

Definition 2.9 Suppose we are given a (T, A)-invariant probability measure
m on � × RP

1 that projects to μ in the first component. A disintegration
of m along the fibers is a measurable family {mω : ω ∈ �} of conditional
probabilities on RP

1 such that m = ∫
mω dμ(ω), that is,

m(D) =
∫

�

mω({z ∈ RP
1 : (ω, z) ∈ D}) dμ(ω) (2.16)

for each measurable set D ⊂ � × RP
1.

ByRokhlin’s disintegration theorem, such a disintegration exists.Moreover,
{m̃ω : ω ∈ �} is another disintegration of m if and only if mω = m̃ω for
μ-almost every ω ∈ �. By a straightforward calculation one checks that
{A(ω)∗mω : ω ∈ �} is a disintegration of (T, A)∗m, where A(ω)∗mω is the
measure on the fiber {Tω} × RP

1. In particular, the (T, A)-invariance of m
implies A(ω)∗mω = mTω for μ-almost every ω ∈ �. Conversely, if {m̃ω :
ω ∈ �} is a family of probability measures where m̃ω is defined on {ω}×RP

1,
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then we may define a measure m̃ on � × RP
1 via the right side of (2.16) by

replacing mω with m̃ω. Then m̃ is (T, A)-invariant if A(ω)∗m̃ω = m̃Tω for
μ-a.e. ω.

We saym is an s-state (resp., a u-state) if it is in addition invariant under the
stable (resp., unstable) holonomies. That is, the disintegration {mω : ω ∈ �}
satisfies that (hs

ω,ω′)∗mω = mω′ for μ-almost every ω ∈ � and for every
ω′ ∈ Ws

loc(ω) (resp., (hu
ω,ω′)∗mω = mω′ for μ-almost every ω ∈ � and for

every ω′ ∈ Wu
loc(ω)). In this case, we say that {mω} is s-invariant (resp. u-

invariant). A measure that is both an s-state and a u-state is called an su-state.

2.1.7 Schrödinger operators and cocycles

In this subsection let us initially assume that � is a compact metric space,
T : � → � is a homeomorphism, and f : � → R is continuous. We
consider potentials Vω : Z → R defined by Vω(n) = f (T nω) for ω ∈ � and
n ∈ Z, and associated Schrödinger operators Hω in �2(Z) acting by

[Hωψ](n) = ψ(n + 1) + ψ(n − 1) + Vω(n)ψ(n).

The spectrum σ(Hω) is defined as

σ(Hω) = {E ∈ C : Hω − E does not have a bounded inverse}.

For a subset S of a metric space (X, d) and δ > 0, the open δ-neighborhood
of S is given by Bδ(S) = {x ∈ X : d(x, s) < δ for some s ∈ S}. In particular,
Bδ(x) denotes the open ball centered at the point x ∈ X .We need the following
uniform estimate that relates the spectrum σ(Hω) with the orbit Orb(ω) =
{T n(ω), n ∈ Z}; see, for example, [43, Theorem 6].

Proposition 2.10 For each ε > 0, there exists a δ > 0, depending on ε only,
so that the following holds true. If the orbit Orb(ω0) of some ω0 ∈ � satisfies

Orb(ω0) ∩ Bδ(ω) 	= ∅

for some ω ∈ �, then

σ(Hω) ⊂ Bε[σ(Hω0)].

Proposition 2.10 implies that if Orb(ω0) is dense in �, then σ(Hω) ⊆
σ(Hω0) for all ω ∈ �. In this case, we set

� = σ(Hω0).
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Let us now return to the main scenario of this paper, where T is a topo-
logically mixing shift operator on a subshift of finite type � with an ergodic
measure μ satisfying supp(μ) = �. Let Per(T ) be the set of periodic points
of T . Recall that Per(T ) = �. Recall we have that Orb(ω) = � for μ-almost
every ω. All these facts together with Proposition 2.10 imply for μ-almost
every ω that

� = σ(Hω) =
⋃

ωp∈Per(T )

σ (Hωp). (2.17)

Spectral properties of the operators Hω can be investigated in terms of the
behavior of the solutions to the difference equation

u(n + 1) + u(n − 1) + Vω(n)u(n) = Eu(n), n ∈ Z, (2.18)

with E real or complex (depending on the problem in question). These solu-
tions in turn can be describedwith the help of the Schrödinger cocycle (T, AE )

with the cocycle map AE : � → SL(2, R) (resp., SL(2, C) when E ∈ C\R)
being defined as

AE (ω) = A(E− f )(ω) :=
(
E − f (ω) −1

1 0

)
,

where we often leave the dependence on f : � → R implicit as it will be
fixed most of the time. Such cocycles describe the transfer matrices associated
with Schrödinger operators with dynamically defined potentials. Specifically,
u solves (2.18) if and only if

(
u(n)

u(n − 1)

)
= AE

n (ω)

(
u(0)
u(−1)

)
, n ∈ Z.

For the Schrödinger cocycle (T, AE ), we set L(E) = L(AE , μ). One of the
main questions in the spectral analysis of the ergodic family of Schrödinger
operators {Hω}ω∈� (with respect to the ergodic measure μ) is for how many
E ∈ � we have L(E) > 0.

2.2 Periodic potentials

A periodic point ω of T gives rise to a periodic potential, that is, if T pω = ω,
then, Vω(n+ p) = Vω(n) for every n ∈ Z. Since much of our work below will
involve the study of periodic points and the associated potentials, let us recall
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some basic properties of Schrödinger operators with periodic potentials; see
[24,38] for proofs of the results stated in this subsection.

Consider a Schrödinger operator

[Hψ](n) = ψ(n + 1) + ψ(n − 1) + V (n)ψ(n).

in �2(Z) with a p-periodic potential, V (n + p) = V (n) for every n ∈ Z.
Define, for E ∈ C, the monodromy matrix

M(E) =
0∏

j=p−1

(
E − V ( j) −1

1 0

)

and the discriminant �(E) = Tr(M(E)), where Tr(B) is the trace of B. The
function �(·) is a monic polynomial of degree p.

Proposition 2.11 The set �−1((−2, 2)) consists of p disjoint open inter-
vals and on each of them, � is strictly monotone. Moreover, σ(H) =
�−1((−2, 2)) = �−1([−2, 2]).

This shows that the spectrum of H consists of a finite union of closed
intervals and, in fact, the number of connected components of the spectrum
is bounded by the period of the potential. This suggests an interesting inverse
problem. Suppose we are given a set that has such a form, that is, it has finitely
many connected components, each being a closed interval. Suppose further
that we know that the set is the spectrum of a periodic Schrödinger operator.
Can we say anything about the period of the potential?1

Proposition 2.12 Suppose V : Z → R is periodic. Denote the spectrum of
the associated Schrödinger operator by σ .

(a) For a probability measure m on σ , consider its potential energy

E(m) =
∫∫

log
(|E − E ′|−1) dm(E) dm(E ′) ∈ R ∪ {∞}. (2.19)

Then there is a unique measure, mσ , which minimizes the potential energy
among all probability measures on σ , and in fact E(mσ ) = 0.

(b) The measure mσ assigns rational weight to each connected component of
σ .

1 The more natural inverse problemwould lead us too far afield. Namely, one should rather ask,
given a finite union of closed intervals, identify within a suitable class of operators those that
have the given set as their spectrum. The theory is classical but one needs to pass to the more
general class of finite-gap Jacobi matrices to study this question in the appropriate setting.
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(c) The potential V is p-periodic if and only if the weight of each connected
component of σ with respect to mσ is an integer multiple of 1

p .

This result shows that the shape of the spectrum of a periodic Schrödinger
operator determines the period of the potential. An immediate consequence
is the fact that the spectrum of a periodic Schrödinger operator is connected
if and only if the period is one, that is, the potential is constant. Another
characterization of constant potentials is the following:

Proposition 2.13 Suppose V : Z → R is periodic. Then the spectrum σ of the
associated Schrödinger operator has Lebesgue measure at most 4. Moreover,
the Lebesgue measure of σ is equal to 4 if and only if V is constant.

Finally, we note the following standard facts. For each E ∈ C such that
�(E) 	= ±2, there are exactly two eigendirections s(E) andu(E) inCP

1 of the
monodromy matrix M(E), which are actually the so-called Weyl–Titchmarsh
m-functions associated with the operator. Moreover, s(E) 	= u(E) are real if
and only if E ∈ R\σ(HV ), and they are the stable and unstable directions of
the real hyperbolic matrix M(E). Here we always set s(E) to be the stable
direction and u(E) to be the unstable direction. If E is in the upper or lower-half
plane or is such that E ∈ R and |�(E)| < 2, then s(E) and u(E) are not real.
In the latter case, we have s(E) = u(E). For�(E) = ±2, we let I ⊆ R be the
connected component of σ(HV ) containing E . If E belongs to the boundary
of I , then M(E) has a unique real invariant direction. We may think of this
case as s(E) = u(E). If E is a point at which a spectral gap is collapsed (or, in
other words, at which two different components of �−1(−2, 2) touch), then
M(E) = ±I2, in which case all directions are invariant.
Based on the description above, we may consider two functions s and u

which are holomorphic on the upper or lower half plane H and C\H, respec-
tively. When restricted to the real line R, they both are continuous functions.
Moreover, they are analytic on each spectral gap or in the interior of each
connected component of σ(HV ). If E0 is on the boundary of some connected
component of I ⊆ σ(HV ), then s and u are locally like g

(√±(E − E0)
)
near

E0 for some choice of g that is real-analytic near E0. Here the choice of g
depends on s or u, and the sign of (E − E0) is determined by whether E0 is
the right or left endpoint of I . Moreover, s(E) and u(E) are real only when√±(E − E0) is real. Thus, we can find an open disk D ⊆ C centered at E0
and a ramified (at E0) double cover π : D̃ → D of D so that s(Ẽ) and u(Ẽ)

are holomorphic in Ẽ ∈ D̃. Moreover, when π(Ẽ) ∈ D ∩ R, s(Ẽ) and u(Ẽ)

are real only when
√

±(π(Ẽ) − E0) is real.
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3 Large deviations

Themain goal of this section is to prove the following large deviation theorem.
Let Cα(�, R), 0 < α ≤ 1, be the space of α-Hölder continuous functions. In
other words, f ∈ Cα(�, R) if there are C > 0 such that

| f (ω) − f (ω′)| < C · d(ω, ω′)α for all ω, ω′ ∈ �.

Note that here C1(�, R) is the space of Lipschitz continuous functions, not
the space of functions with continuous derivatives. Similarly, we can define
the space Cα(�+, R). Throughout this section, μ, or equivalently μ+, will be
assumed to have the bounded distortion property.

Theorem 3.1 Let (�, T ) be a topologically mixing subshift of finite type. Let
μ be a T -ergodic probabilitymeasure that has the bounded distortion property.
Let f ∈ Cα(�, R) for some 0 < α ≤ 1. Then, for each ε > 0, there exist
C, c > 0, depending on f, α, and ε, such that

μ

{
ω ∈ � :

∣∣∣∣1n
n−1∑
k=0

f (T kω) −
∫

�

f dμ

∣∣∣∣ ≥ ε

}
< Ce−cn, ∀n ≥ 1.

Theorem 3.1 will be a consequence of the following version of large devia-
tions. Recall we have the spaces (�±, T±, μ±) of one-sided infinite sequences
with nonnegative/nonpositive indices.

Theorem 3.2 Let (�+, T+, μ+) be a topologically mixing one-sided subshift
of finite type and suppose thatμ+ is T+-ergodic andhas the boundeddistortion
property. Let f ∈ Cα(�+, R) for some 0 < α ≤ 1. Then for each ε > 0, there
exist C, c > 0, depending on f , α, and ε such that

μ+
{
ω+ ∈ �+ :

∣∣∣∣1n
n−1∑
k=0

f (T k+ω+) −
∫

�+
f dμ+

∣∣∣∣ ≥ ε

}
< Ce−cn, ∀n ≥ 1.

(3.1)

We first derive Theorem 3.1 from Theorem 3.2. Let us write Sn f :=∑n−1
k=0 f ◦ T k for the Birkhoff sums. We let ϕ(ω) = ω(ω0) ∧ ω which we

defined in (2.5). Note that ϕ(ω) is continuous on � and constant on local
stable sets.
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Proof of Theorem 3.1 Let f ∈ Cα(�, R). Since f is Hölder continuous and
ϕ(ω) ∈ Ws

loc(ω), a straightforward computation shows that

hs(ω) :=
∞∑
n=0

[
f (T nω) − f (T nϕ(ω))

]

converges uniformly, and hence is continuous. We define

f +(ω) := f (ω) + hs(Tω) − hs(ω).

In particular, we have
∫

�

f dμ =
∫

�

f + dμ and
∥∥Sn f − Sn f

+∥∥∞ < 2‖hs‖∞,

where ‖ · ‖∞ denotes the supremum norm. It is straightforward to see that

f +(ω) = f (ϕ(ω)) +
∞∑
n=0

[
f (T nTϕ(ω)) − f (T nϕ(Tω))

]
,

which implies that f + is constant on Ws
loc(ω) for all ω ∈ �. Moreover, we

claim that f + ∈ C
α
2 (�, R). Indeed, take ω and ω′ ∈ �. Without loss of

generality, we may assume N (ω, ω′) is large and take k = � N
2 �. Then we have

f +(ω) − f +(ω′)

=
k∑

n=0

[
f (T nϕ(ω)) − f (T nϕ(ω′)

]

+
k−1∑
n=0

[
f (T nϕ(Tω′)) − f (T nϕ(Tω))

]

+
∞∑
n=k

[
f (T nTϕ(ω)) − f (T nϕ(Tω))

]

−
∞∑
n=k

[
f (T nTϕ(ω′)) − f (T nϕ(Tω′))

]
,

where the absolute values of the first two terms may be bounded by

C
k∑

i=1

e−α(N−i) ≤ Ce−α N
2 = Cd(ω, ω′)

α
2 ,
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and the absolute values of the last two terms may be bounded by

Ce−αk ≤ Ce−α N
2 = Cd(ω, ω′)

α
2 .

Thus f + ∈ C
α
2 (�, R). Since f + is constant on local stable sets, it descends to a

function inC
α
2 (�+, R). Abusing notation slightly, let f + denote its descended

function as well. Clearly, we have
∫
�

f + dμ = ∫
�+ f + dμ+ and Sn f +(ω) =

Sn f +(π+ω). Fix any ε > 0 and define

B+
n (ε) :=

{
ω+ ∈ �+ :

∣∣∣∣1n Sn f +(ω+) −
∫

�+
f + dμ+

∣∣∣∣ > ε

}
.

By Theorem 3.2, there are C, c > 0, depending on f +, α, and ε, such that

μ+(B+
n ) < Ce−cn, ∀n ≥ 0.

Combining the relations of f and f + above, if we choose N = N (ε) so that
4‖hs‖∞ < Nε, then we have

{
ω ∈ � :

∣∣∣∣1n Sn f (ω) −
∫

�

f dμ

∣∣∣∣ > ε

}
⊆ (π+)−1B+

n (ε/2), ∀n ≥ N .

Changing C, c if necessary, we then have for all n ≥ 1,

μ

{
ω ∈ � :

∣∣∣∣1n Sn f (ω) −
∫

�

f dμ

∣∣∣∣ > ε

}
≤ μ[(π+)−1B+

n (ε/2)]
= μ+(B+

n (ε/2))

< Ce−cn,

as desired. ��
To prove Theorem 3.2, we first need the following lemma. For l =

(l1, . . . , ln) where l1 . . . ln is admissible (in this case we also just say that
l is admissible), we set �+

l := [0; l1, l2, . . . , ln]+, |l| := n, and

μ+
l = 1

μ+(�+
l

)T |l|
∗ μ+∣∣

�+
l
. (3.2)

In other words, μ+
l is the normalized push-forward of μ+ under the injec-

tive map T |l| : �+
l → �+. Note that μ+

l is concentrated on T
|l|
+ (�+

l ). By
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definition, it clearly holds that

∫
�+

f dμl = 1

μ(�+
l )

∫
�+
l

f ◦ T
|l|
+ dμ+.

If we view T
−|l|
+ as a map from T

|l|
+ (�+

l ) to �+
l , we obtain

μ(�+
l )

∫
T

|l|
+ (�+

l )

f ◦ T
−|l|
+ dμ+

l =
∫

�+
l

f dμ+.

Sinceμ+
l is concentrated on T |l|

+ (�+
l ), wemay simplywrite the equation above

as

μ(�+
l )

∫
f ◦ T

−|l|
+ dμ+

l =
∫

�+
l

f dμ+. (3.3)

Recall we also write [n; l]+ = [n; l1, . . . , ln]+.

Lemma 3.3 Consider a topologically mixing one-sided subshift of finite type
(�+, T+, μ+), where μ+ has the bounded distortion property. There exists a
C ≥ 1 so that, uniformly for all admissible l, we have

dμ+
l

dμ+ (ω+) ≤ C for μ-a.e. ω+, (3.4)

where
dμ+

l

dμ+ is the Radon–Nikodym derivative of μ+
l with respect to μ+. In

particular, we have for all positive measurable functions f and all admissible
l,

∫
f dμ+

l ≤ C
∫

f dμ+. (3.5)

Proof Fix an admissible l = (l1, . . . , ln). Clearly, (3.4) is equivalent to the
existence of a C ≥ 1, independent of l, such that for every [n; i]+ =
[n; i1, . . . , im]+ ⊆ �+ (which implies n ≥ 0), we have

μ+
l ([n; i])

μ+([n; i]) ≤ C. (3.6)
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By definition of μ+
l , we have

μ+
l ([n; i])

μ+([n; i]) = μ+([0; l] ∩ [n + |l|; i])
μ+([0; l])μ+([n; i]) .

Hence, (3.6) is equivalent to

μ+([0; l] ∩ [n + |l|; i])
μ+([0; l])μ+([n; i]) ≤ C.

By T+-invariance of μ+, the above estimate is then guaranteed by (2.14).
Indeed, if [0; l]∩[n+|l|+r0; i], then it is trivial. If [0; l]∩[n+|l|+r0; i] 	= ∅,
then it is a consequence of the second inequality of (2.14). ��

Weare now ready to prove Theorem 3.2.We adopt the strategy of [2, Section
6.1].

Proof of Theorem 3.2 We split the proof into two parts. First, we show

μ+
{
ω+ ∈ �+ : 1

n
Sn f (ω

+) −
∫

f dμ+ ≥ ε

}
< Ce−cn, ∀n ≥ 1. (3.7)

For simplicity, we write In(ω+) = 1
n Sn f (ω

+) and γ = ∫
f dμ+. Fix a ε > 0.

By the Birkhoff Ergodic Theorem, In(ω) converges to
∫

f dμ+ pointwise
almost everywhere and in L1. Thus we have

lim
n→∞ μ+{ω+ : |In(ω+) − γ | > ε} = 0.

By (3.5) of Lemma 3.3, we have

lim
n→∞ sup

l
μ+
l {ω+ : |In(ω+) − γ | > ε} = 0, (3.8)

where the supremum is taking over the set of all admissible l. Fix a 0 < ε′ < ε.
Let Bn = {ω+ ∈ �+ : In(ω+) > γ + ε′} and κ = ε−ε′

2 . By (3.8) (replacing ε

by ε′), we have for all admissible l and all large n that

sup
l

∫
(In(ω

+) − γ − ε) dμ+
l = sup

l

(∫
Bn

+
∫
B�
n

)
(In(ω

+) − γ − ε) dμ+
l

≤ C sup
l

μ+
l (Bn) + (ε′ − ε) inf

l
μ+
l (B�

n)

< −κ. (3.9)
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Fix a large N so that (3.9) holds true. For any δ′ > 0, by (3.5) and boundedness
of the integrand below, there clearly exists a C ′ = C ′(δ′, N ) > 0 such that for
all |t | < δ′ and all 1 ≤ n ≤ N , we have

sup
l

∫
etn(In(ω+)−γ−ε) dμ+

l ≤ C ′. (3.10)

Hence φN ,l(t) := ∫
etN (IN (ω+)−γ−ε) dμ+

l are uniformly bounded holomor-
phic functions on {t ∈ C : |t | < δ′} for all l admissible. In particular, {φN ,l(t)}l
is a normal family on the open disk {t ∈ C : |t | < δ′}. Shrinking δ′ if necessary,
we see that {φ′

N ,l(t)}l is a normal family on the open disk {t ∈ C : |t | < δ′}
as well. Note that

φN ,l(0) = 1 and φ′
N ,l(0) =

∫
N (IN (ω+) − γ − ε) dμ+

l .

By (3.9) and shrinking δ′ if necessary, we must have that φ′
N ,l(t) < −Nκ for

all t ∈ (−δ′, δ′) and all admissible l. This implies that

(logφN ,l)
′(t) = φ′

N ,l(t)

φN ,l(t)
< −(C ′)−1Nκ

for all t ∈ (−δ′, δ′) and all admissible l. Since (logφN ,l)(0) = 0, we then
have

sup
l

{
logφN ,l(t)

} ≤ −(C ′)−1Nκt

for all 0 ≤ δ < δ′. Hence, it holds for all 0 ≤ δ < δ′ that

sup
l

∫
eδN (IN (ω+)−γ−ε) dμ+

l < e−(C ′)−1Nδκ . (3.11)

Now we want to extend the estimate above to all n ≥ 1 via the bounded
distortion property of μ+.

Since f ∈ Cα(�+, R) and nIn(ω) = (Sn f )(ω) is the Birkhoff sum, it is
straightforward to see that

|nIn(ω+) − nIn(ω̃
+)| ≤ C

n−1∑
k=0

d(T k+ω+, T k+ω̃+)α ≤ C1, (3.12)
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provided ω+, ω̃+ ∈ �+
l , where |l| = n. Note here that C1 depends only on α

and f . We choose ω+
l,max, ω+

l,min ∈ �+
l so that

In(ω
+
l,max) = max

ω+∈�+
l

{In(ω+)} and In(ω
+
l,min) = min

ω+∈�+
l

{In(ω+)}.

In particular we have

n
(
In(ω

+
l,max) − In(ω

+
l,min)

)
< C1. (3.13)

Since (n + N )In+N (ω+) = N IN (T n+ω+) + nIn(ω+), we have for all n ≥ 1
that
∫
eδ(n+N )(In+N (ω+)−γ−ε) dμ+

=
∫

eδn(In(ω+)−γ−ε)eδN (IN (T n+ω+)−γ−ε) dμ+

=
∑
|l|=n

∫
�+
l

eδn(In(ω+)−γ−ε)eδN (IN (T n+ω+)−γ−ε) dμ+

≤
∑
|l|=n

eδn(In(ω
+
l,max)−γ−ε)

∫
�+
l

eδN (IN (T n+ω+)−γ−ε) dμ+

=
∑
|l|=n

μ+(�+
l )eδn(In(ω

+
l,max)−γ−ε)

∫
eδN (IN (ω+)−γ−ε) dμ+

l

≤
(
sup
l

∫
�+

eδN (IN (ω+)−γ ) dμ+
l

)

·
∑
|l|=n

(
eδn[I (ω+

l,max)−I (ω+
l,min)] ·

∫
�+
l

eδn(In(ω+)−γ−ε) dμ+
)

≤ eC1δ

(
sup
l

∫
�+

eδN (IN (ω+)−γ−ε) dμ+
l

)
·
∫

�+
eδn(In(ω+)−γ−ε) dμ+,

where the third identity follows from (3.3) and the last inequality follows from
(3.13). We choose N large so that (C ′)−1Nκ > 2C1 and set c = 1

2 (C
′)−1δκ .

Then by (3.11) we have for all n ≥ 1,

∫
�+

eδ(n+N )(In+N (ω+)−γ−ε) dμ+ ≤ e−cN
∫

�+
eδn(In(ω+)−γ−ε) dμ+.

(3.14)
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Now, given any n ≥ 1, we may apply the Euclidean division n = kN + r .
Using (3.14) several times, we obtain for all n ≥ 1 that

μ+ {
ω+ : In(ω+) − γ ≥ ε

} ≤
∫

�+
eδn(In(ω+)−γ−ε) dμ+ ≤ Ce−cn.

(3.15)

Note that the estimate for small n is absorbed into the constantC due to (3.10).
This gives one part of the estimates (3.7).

To prove the second part which is

μ+ {
ω+ : γ − In(ω) ≥ ε

} ≤
∫

�+
eδn(γ−In(ω+)−ε) dμ+ ≤ Ce−cn,

(3.16)

we just need to replace In(ω) − γ − ε by γ − In(ω) − ε and rum the same
proof of (3.7) above. The only difference is that in this case we set Bn = {ω+ :
γ − In(ω) > ε′} for some 0 ≤ ε′ < ε. All other steps are exactly the same.

The two estimates (3.7) and (3.16) clearly imply the desired large deviation
estimate as stated in Theorem 3.2. ��

The fact that an equilibrium state of a Hölder continuous potential has local
product structure may be found in [8,14]. Here we show that equilibrium
states of Hölder continuous potentials have the bounded distortion property as
defined in (2.13), which also implies that such aμ has a local product structure.
In particular this shows that Theorem 3.1 holds true for such measures. Equiv-
alently, we may consider (�+, μ+, T+), where μ+ is an equilibrium state of
a Hölder continuous potential and show that such a μ+ has the bounded dis-
tortion property. Indeed, equilibrium states of Hölder continuous potentials
defined over (�, T ) are lifts of equilibrium states of Hölder continuous poten-
tials defined over (�+, T+); see, for example, [8]. According to [8,14], such
a μ+ has a Hölder continuous Jacobian with respect to T+. So it suffices to
prove the following lemma:

Lemma 3.4 Let (�+, T+, μ+) be a one-sided subshift of finite type, where
μ+ is a T+-ergodic measure that has a Hölder continuous Jacobian. Then μ+
satisfies the bounded distortion property as defined in (2.14).

Proof To get (2.14), we fix any [0; l]+ ⊂ �+ and set n = |l|. Choose any
[k; j]+ ⊂ �+ such that k ≥ n and [0; l]+ ∩ [k; j]+ 	= ∅.

Let J+ ∈ Cα(�, R+) be the Jacobian of μ+ with respect to T+. Since it is
positive and continuous on �+, we have infω+∈�+ |J+(ω+)| > c > 0, which
implies that log J+ ∈ Cα(�+, R+). Consider the map T n : [0; l] → �+ and
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let J l+ be its Jacobian. Then we have

J
l
+(ω+) =

n−1∏
i=0

J+(T iω+).

Suppose ω+, ω̃+ ∈ [0; l] for some |l| = n. Then we have

∣∣ log J
l
+(ω+) − log J

l
+(ω̃+)

∣∣ =
n−1∑
i=0

∣∣ log J+(T iω+) − log J+(T i ω̃+)
∣∣

< C · d(T i+ω+, T i+ω̃+)α

< C,

where C is independent of l , ω+, and ω̃+. Thus we have

C−1 <

∣∣∣∣ J
l
+(ω+)

J
l
+(ω̃+)

∣∣∣∣ < C for all ω+, ω̃+ ∈ [0; l]+. (3.17)

Now by the definition of the Jacobian, we have
∫

�+
χ[k−n; j]+(η) dμ+(η) =

∫
[0;l]+

χ[k−n; j]+(T n+ω+)J
l
+(ω+) dμ+(ω+),

which implies that

J
l
+(ω+

l,min) ≤ μ
([k; j]+)

μ+([0; l]+ ∩ [k; j]+)
≤ J

l
+(ω+

l,max).

Here ω+
l,min and ω+

l,max are chosen as in the proof of Theorem 3.2. Using

1 = ∫
�+ 1dμ+ = ∫

[0;l] J
l
+(ω+)dμ+, we obtain

1

J
l
+(ω+

l,max)
≤ μ+([0; l]+) ≤ 1

J
l
+(ω+

l,min)
.

Combining the two estimates above with (3.17), we clearly get

C−1 ≤ μ+([0; l]+) · μ+([k; j]+)
μ+([0; l]+ ∩ [k; j]+) ≤ C,

which is (2.14). ��
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Remark 3.5 There are many early works concerning large deviation estimates
for functions defined on hyperbolic dynamical systems; see, for example, [41].
But we could not find a proof that applies in our framework. In Sect. 4, we shall
show that if μ has the bounded distortion property, then Theorem 3.1 yields
relatively global versions of all the techniques needed. We hope they will be
of independent interest. Most importantly, the results, ideas, and proofs given
in this section will be used in the second paper [1] of this series.

4 Invariance principle and conformal barycenter

In this section, we develop some tools that are needed to prove our main results
in the next two sections. Our main objective is to consider cocycles that have
zero Lyapunov exponent. First, we show that a small Lyapunov exponent gives
rise to a measurable family of holonomies, which will be integrable if μ has
the bounded distortion property. In the case of a zero Lyapunov exponent, we
shall introduce techniques originally developed in [33], and then generalized
in [3,7,39], which are referred to as the invariance principle. We will use the
invariance principle to show the existence of a continuous su-state on suitable
sets. Concretely, in case of a zero Lyapunov exponent and bounded distortion,
we will construct an su-state that is continuous on the support of a certain full
measure set. In case we have only local product structure, we will construct a
local su-state that is continuous on the support of some positive measure set.
Then we show that periodic points with small Lyapunov exponents belong to
the support in question. Finally, we will construct an su-invariant family of
δ-measures by using the conformal barycenter.

4.1 Measurable holonomies resulting from small exponents

For the remainder of this subsection, we fix 0 < α ≤ 1 and consider
the space of α-Hölder continuous cocycles Cα(�,SL(2, R)), that is, A ∈
Cα(�,SL(2, R)) if

‖A(ω) − A(ω̃)‖ < C · d(ω, ω̃)α for all ω, ω′ ∈ �. (4.1)

Thus for every ω, ω̃ ∈ � and n ≥ 0, we have

{
‖A(T nω) − A(T nω̃)‖ ≤ Ce−αn if ω̃ ∈ Ws

loc(ω),

‖A(T−nω) − A(T−nω̃)‖ ≤ Ce−αn if ω̃ ∈ Wu
loc(ω).

(4.2)

Our goal is to show that a small Lyapunov exponent produces stable and
unstable holonomies. Unfortunately, we can not show that these holonomies
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satisfy all properties of Definition 2.8. Therefore we introduce the following
weaker version of Definition 2.8.

Definition 4.1 Ameasurable stable holonomy hs for A is a measurable family
of homeomorphismshs

ω,ω′ : Eω → Eω′ , defined forμ-almost everyω and every
ω′ ∈ Ws

loc(ω), satisfying the following properties:

(i) hs
ω′,ω′′ ◦ hs

ω,ω′ = hs
ω,ω′′ and hsω,ω = id,

(ii) A(ω′) ◦ hs
ω,ω′ = hsTω,Tω′ ◦ A(ω).

A measurable unstable holonomy hu
ω,ω′ : Eω → Eω′ is defined analogously

for μ-almost every ω and every ω′ ∈ Wu
loc(ω).

Using measurable stable and unstable holonomies, we can define the notions
of s-state, u-state, and su-state in the same way as in Sect. 2.1.6 since the
disintegration {mω : ω ∈ �} of the invariant measure m is only measurable
anyway.

In Lemma 4.2 below we will indeed show that small Lyapunov exponents
ensure the existence of measurable stable and unstable holonomies. In fact,
these maps will arise via projectivization from canonical holonomies defined
on suitably defined subsets.

The following subsets will play a key role.We define for N ∈ Z+ and δ > 0,

Ks(N , δ) = {ω : ‖An(ω)‖2 ≤ e(α−δ)n for every n ≥ N }, (4.3)

Ku(N , δ) = {ω : ‖A−n(ω)‖2 ≤ e(α−δ)n for every n ≥ N }. (4.4)

Lemma 4.2 Assume that L(A, μ) and δ > 0 are such that 2L(A, μ) < α−δ.
Then, for each N ∈ Z+, the limit

Hs
ω,ω̃ = lim

n→∞ An(ω̃)−1An(ω)

exists uniformly for each ω ∈ Ks(N , δ) and ω̃ ∈ Ws
loc(ω). Similarly, for each

N ∈ Z+, the limit

Hu
ω,ω̃ = lim

n→∞ A−n(ω̃)−1A−n(ω)

exists uniformly for each ω ∈ Ku(N , δ) and ω̃ ∈ Wu
loc(ω). Moreover, if μ has

bounded distortion, then the following integrability conditions hold:

∫
�

log ‖Hs
ω(ω0)∧ω,ω

‖ dμ(ω) < ∞, (4.5)
∫

�

log ‖Hu
ω∧ω(ω0),ω

‖ dμ(ω) < ∞. (4.6)
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Since each of the sets
⋃

N Ks(N , δ) and
⋃

N Ku(N , δ) has full measure and
is T -invariant, it follows in particular that there are measurable stable and
unstable holonomies in the sense of Definition 4.1.

Proof In this proof, C will denote a positive constant that depends only on
‖A‖∞ and δ. Conditions on it will be placed in several places, which leads to
finitely many adjustments.

Let Hs,n
ω,ω̃

= An(ω̃)−1An(ω) for ω̃ ∈ Ws
loc(ω). Define

δ
s,n
ω,ω̃

=
(
Hs,n

ω,ω̃

)−1 (
Hs,n+1

ω,ω̃
− Hs,n

ω,ω̃

)
, (4.7)

so that

Hs,n
ω,ω̃

(
Id + δ

s,n
ω,ω̃

)
= Hs,n+1

ω,ω̃
.

We first will estimate ‖δs,n
ω,ω̃

‖ as follows. In the case where ‖An(ω)‖2 ≤
e(α−δ)n , we have

δ
s,n
ω,ω̃

= An(ω)−1 (A(T nω̃)−1A(T nω) − Id
)
An(ω)

and therefore

‖δs,n
ω,ω̃

‖ ≤ Ce(α−δ)ne−αn = Ce−δn. (4.8)

The fact lim
n→∞

1
n log ‖An(ω)‖ = L(A, μ) forμ-almost everyω ∈ � implies

that 1
n log ‖An(ω)‖ converges to L(A, μ) in measure. Thus, the sets Ks(N , δ)

defined in (4.3) are compact and increasing in N , and their union over N has
full measure.

For ω ∈ Ks(N , δ), we have the uniform summability statement

∞∑
n=N

‖δs,n
ω,ω̃

‖ ≤ C.

Changing C if necessary, the estimate above in turn implies that

∥∥∥Hs,n
ω,ω̃

∥∥∥ =
∥∥∥∥∥Hs,N

ω,ω̃

n∏
k=N

(Hs,k
ω,ω̃

)−1 · Hs,k+1
ω,ω̃

∥∥∥∥∥
≤ ‖Hs,N

ω,ω̃
‖

n∏
k=N

‖(Hs,k
ω,ω̃

)−1 · Hs,k+1
ω,ω̃

‖
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≤ eCN exp

(
n∑

k=N

log(1 + ‖δs,k
ω,ω̃

‖)
)

≤ eCN exp

(
C

n∑
k=N

‖δs,k
ω,ω̃

‖
)

≤ eCN , (4.9)

which implies for all n ≥ N :

∥∥∥Hs,n
ω,ω̃

− Hs,n+1
ω,ω̃

∥∥∥ =
∥∥∥Hs,n

ω,ω̃
δ
s,n
ω,ω̃

∥∥∥ ≤ CeCNe−δn.

Hence {Hs,n
ω,ω̃

}n≥0 is Cauchy sequence in SL(2, R) and is thus convergent. Let
us define

Hs
ω,ω̃ := lim

n→∞ Hs,n
ω,ω̃

where the convergence is uniform on Ks(N , δ). In particular, Hs
ω,ω̃

depends
continuously on ω ∈ Ks(N , δ) and ω̃ ∈ Ws

loc(ω). Changing C if necessary,
(4.9) implies for the same ω and ω̃ that

‖An(ω̃)−1An(ω)‖ < eCN (4.10)

for all n ≥ 1.
To get the integrability condition (4.5), we define φ(ω) = log ‖A(ω)‖ and

assume without loss of generality that

2
∫

�

φ(ω) dμ < α − δ, (4.11)

because otherwise we may instead consider φ(ω) = 1
k log ‖Ak(ω)‖ for some

large k, which must satisfy the condition above since
∫
�

1
k log ‖Ak(ω)‖ dμ

converges to L(A, μ). It is straightforward to see that φ ∈ Cα(�, R) since A
is α-Hölder continuous and ‖A(ω)‖ ≥ 1 for all ω ∈ �.

We want to estimate for some C > 0 the measure of the following set,

BN = {ω : log ‖Hs
ω,ω̃‖ > CN for some ω̃ ∈ Ws

loc(ω)}.

Recall Snφ(ω) = ∑n−1
j=0 φ(T jω). We define for δ′ = δ

2 ,

Zm =
{
ω : 1

n
Snφ(ω) <

α − δ′

2
for all n ≥ m

}
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If ω ∈ Z1, then 2Snφ(ω) < n(α − δ′) for all n ≥ 0, which clearly implies
that ‖An(ω)‖2 < e(α−δ′)n for all n ≥ 0. Thus by the computation leading to
(4.10), we have for all ω ∈ Z1,

‖An(ω̃)−1An(ω)‖ ≤ C for all ω̃ ∈ Ws
loc(ω) and for all n ≥ 1.

If ω ∈ Zm with m > 1, then we set 0 < k < m to be the largest integer
for which ω /∈ Zk . A direct computation then shows that T kω ∈ Z1, which
implies that for all ω̃ ∈ Ws

loc(T
kω),

‖An(ω̃)−1An(T
kω)‖ ≤ C for all n ≥ 1.

Combining ‖An(ω)‖ < eCm for all 1 ≤ n ≤ m and for all ω, we have for all
ω ∈ Zm and all ω̃ ∈ Ws

loc(ω) that

‖An(ω̃)−1An(ω)‖ ≤ eCm for all n ≥ 1,

which clearly implies that log ‖Hs
ω,ω̃

‖ < Cm. Thus by choosing C appropri-
ately, we have

BN ⊂ �\ZN .

However, by (4.11) it is clear that

�\ZN ⊆
∞⋃

n=N

{
ω :

∣∣∣∣1n Sn f (ω) −
∫

�

φ dμ

∣∣∣∣ >
δ

4

}
.

Suppose that μ has bounded distortion. Note that φ ∈ Cα(�, R). Hence, by
Theorem 3.1, there exist C ′ > 0 and η > 0 such that

μ

{
ω :

∣∣∣∣1n Sn f (ω) −
∫

�

φ dμ

∣∣∣∣ >
δ

4

}
< C ′e−ηn for all n ≥ 1.

Clearly, this implies that μ(BN ) < C ′e−ηN for all N ≥ 1, which in turn
implies the integrability statement (4.5) since

∫
�

log ‖Hs
ω(ω0)∧ω,ω

‖ dμ =
∫

�

log ‖Hs
ω,ω(ω0)∧ω

‖ dμ

=
∞∑
N=1

∫
BN \BN+1

log ‖Hs
ω,ω(ω0)∧ω

‖ dμ
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≤
∞∑
N=1

μ(BN )CN

≤
∞∑
N=1

C ′Ce−ηN N

< ∞.

The case of Ku(N , δ) can be done similarly after replacing An(ω) by
A−n(ω). ��
Definition 4.3 For a periodic point p with period n, we let L(A, p) =
lim 1

n log ‖An(p)‖ be the individual Lyapunov exponent of A at p. We say
p is γ -bunched if 2L(A, p) < γ ≤ α.

Next, we show the following result, which says that α-bunched periodic
points are in the support of Ks(N , δ) for suitable δ > 0 and for large N . We
note that a similar result has appeared in [17].2

Lemma 4.4 Suppose (�, T ) is a subshift of finite type and μ has a local
product structure. Assume that 2L(A, μ) < α. Let p be an α-bunched periodic
point. Then for every 0 < δ0 < min{α−2L(A, μ), α−2L(A, p)}, there exists
N0 ∈ Z+ such that

p ∈ supp
(
μ|Ks(N0,δ0)∩Ku(N0,δ0)

)
. (4.12)

Proof Fix any number δ so that 0 < δ < min{α − 2L(A, μ), α − 2L(A, p)}.
Then we have 2L(A, p) < α − δ and 2L(A, μ) < α − δ. Assume the period
of p is r .

Consider the family Ks(N , δ) as in Proposition 4.2. By (4.10), we have for
all ω ∈ Ks(N , δ), all ω̃ ∈ Ws

loc(ω), and all n ≥ 1,

‖An(ω̃)−1An(ω)‖ < eCN .

Recall (2.8) says (π+)−1(π+ω) = Ws
loc(ω). Thus by definition of Ks(N , δ)

and the estimate above, for each 0 < δ1 < δ, there exists N1 > N such that
for all ω ∈ (π+)−1(π+[Ks(N , δ)]) and all n ≥ N1, we have

‖An(ω)‖2 < e(α−δ1)n. (4.13)

Fix such a choice of δ1 and N1. By choosing N large, we may assume that
μ(Ks(N , δ) ∩ [0; i]) > 0 for each 1 ≤ i ≤ �, which in turn implies that

μ+[π+(Ks(N , δ)) ∩ [0; i]+) = μ(Ks(N , δ) ∩ [0; i]) > 0.

2 We would like to thank Clark Butler for pointing this out to us.
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By Corollary 2.5, for each n ≥ 0, we have

μ+(T−n+ [π+(Ks(N , δ))] ∩ [0; p0, . . . , pn]+) > 0. (4.14)

By the same argument as the one leading to (4.10), 2L(A, p) < α − δ

implies that for each 0 < δ2 < δ, we can find m ∈ Z+ large enough so that
‖Arm(ω)‖2 ≤ e(α−δ2)rm for ω ∈ T−rmWu

loc(T
rm p). By periodicity of p, we

have for each l ≥ 1 and each 1 ≤ k < l,

‖Arm(T krmω)‖2 ≤ e(α−δ2)rm for all ω with T−lrmω ∈ Wu
loc(T

lrm p),

which in turn implies that for each 1 ≤ k ≤ l,

‖Akrm(ω)‖2 <

k−1∏
j=0

‖Arm(T jrm)(ω)‖2 ≤ e(α−δ2)krm . (4.15)

For each l ∈ Z+, we define the following s-locally saturated set,

Dl+ = (π+)−1(T−lrm+ [π+(Ks(N , δ))] ∩ [0; p0, . . . , plrm]+).

By (4.14), we have μ(Dl+) > 0 and Dl+ ⊂ [0; p0, . . . , plrm]. For each 0 <

δ3 < δ2, we can fix a N ′ ∈ Z+ large enough so that the following holds true.
For all l large and for each ω ∈ Dl+, we have for all N ′ ≤ n ≤ lrm + N1 that

‖An(ω)‖2 < ‖Akrm(ω)‖2 · ‖An−krm(T krmω)‖2 < e(α−δ3)n,

where k is so chosen that 0 ≤ n − N1 − krm < rm. On the other hand, if
n > lrm + N1, then we have

‖An(ω)‖2 ≤ ‖Alrm(ω)‖2 · ‖An−lrm(T lrmω)‖2
≤ ‖Alrm(ω ∧ p)−1 · Alrm(ω)‖2 · ‖Alrm(ω ∧ p)‖2

· ‖An−lrm(T lrmω)‖2.

We estimate each factor in the product above. First we consider the last
factor. The fact that ω ∈ Dl+ implies that T krm(ω) ∈ Ws

loc(ω
′) for some

ω′ ∈ Ks(N , δ). Thus by (4.13) and the fact that n − lrm > N1, we have

‖An−lrm(T lrmω)‖2 < e(α−δ1)(n−lrm).
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For the second factor, the fact ω ∈ Dl+ implies that T−lrm(ω ∧ p) ∈
Wu

loc(T
lrm p). Thus by (4.15), we have for each 1 ≤ k ≤ l

‖Akrm(ω ∧ p)‖2 ≤ e(α−δ2)krm .

In particular, the second factor is taken care of by choosing k = l. Combining
the fact ω ∈ Wu

loc(ω ∧ p) with the estimate above and using

Alrm(ω) =
0∏

j=l−1

Arm((T rm) jω),

the same argument getting (4.10) yields

‖Alrm(ω ∧ p)−1 · Alrm(ω)‖2 < C.

Thus by setting δ′ = min{δ1, δ3}, we have for all large l and n ≥ lrm + N1
that

‖An(ω)‖2 < e(α−δ′)n.

Combining the estimates in the case of N ′ ≤ n ≤ lrm + N1, we obtain for all
l large, all ω ∈ Dl+, and all n ≥ N ′ that

‖An(ω)‖2 < e(α−δ′)n,

which implies that Dl+ ⊂ Ks(N ′, δ′) ∩ [0; p0, . . . plrm] for all large l. Note
that 0 < δi < δ, i = 1, 2, 3, are arbitrarily chosen, hence δ′ can be any
number in (0, δ). In particular, we have for all δ0 ∈ (0, δ), there is a N ′ such
that Dl+ ⊂ Ks(N ′, δ0) ∩ [0; p0, . . . plrm] for all large l.

Similarly, for each 0 < δ0 < δ, we can find a N ′′ ∈ Z+ and a sequence
of u-locally saturated Dl− ⊂ Ku(N ′′, δ0)∩ [−lrm; p−lrm, . . . , p−1, p0] with
μ(Dl−) > 0. Taking N0 = max{N ′, N ′′}, we have for all large l,

Dl− ∩ Dl+ ⊂ Ks(N0, δ0) ∩ Ku(N0, δ0),

Dl− ∩ Dl+ ⊂ [−lrm; p−lrm, . . . , plrm],

where the second line implies that Dl− ∩ Dl+ is contained in arbitrarily small
neighborhood of p as l tends to infinity. Finally, combining thatDl+ is s-locally
saturated in [0; p0], Dl− is u-locally saturated in [0; p0], and (2.10), we have
for all l large,

μ(Dl− ∩ Dl+) > 0,
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which then implies that p ∈ supp
(
μ|Ks(N0,δ0)∩Ku(N0,δ0)

)
. This concludes

the proof since the choices of δ0 and δ such that 0 < δ0 < δ < min{α −
2L(A, μ), α − 2L(A, p)} are all arbitrary. ��

4.2 Invariance principle and su-states

Let M be the Borel σ -algebra of the subshift of finite type (�, T, μ), where
μ has a local product structure. Let A : � → SL(2, R) be a measurable map.
Then the following invariance principle is due to Ledrappier [33], see also
[3,39]:

Proposition 4.5 Let B ⊆ M be a σ -algebra such that

(1) T−1B ⊆ B mod 0 and {T nB : n ∈ Z} generatesM mod 0.
(2) the σ -algebra generated by A is contained in B mod 0.

If L(A, μ) = 0, then for any (T, A)-invariant measure m on � × RP
1

that projects to μ in the first component, the disintegration {mω}ω∈� is B-
measurable mod 0.

Definition 4.6 We say that a function defined on� only depends on the future
(resp., past) if it is constant on every local stable (resp., unstable) set.

The following consequence of Proposition 4.5 is due to [7]. We sketch a
proof for the reader’s convenience.

Proposition 4.7 Suppose A only depends on the future and L(A, μ) = 0.
Then for every (T, A)-invariant measure m on � × RP

1 that projects to μ in
the first component, its disintegration only depends on the future for μ-almost
every ω ∈ �.

Proof Let B ⊆ M be the σ -algebra generated by sets {Ws
loc(ω) : ω ∈ �}.

It is clear that the sets Ws
loc(ω) are mutually disjoint. Thus, D ∈ B if and

only if for each ω ∈ �, either Ws
loc(ω) ∩ D = ∅ or Ws

loc(ω) ⊆ D. Since
TB is the σ -algebra generated by {TWs

loc(ω) : ω ∈ �}, it is clear that
B ⊆ TB, or equivalently T−1B ⊆ B. More generally, T nB is generated
by {T nWs

loc(ω) : ω ∈ �}. Now for any cylinder [n; l] ⊂ �, it is clear that it is
T nB-measurable for some large n ∈ Z+. Since M is generated by cylinders,
we then have that {T nB : n ∈ Z} generatesMmod 0. The result then follows
from Proposition 4.5 and the straightforward fact that A is B-measurable if
and only if A depends on the future. ��

An immediate consequence of Proposition 4.7 is that if A is constant along
the local stable set and L(A, μ) = 0, then for every (T, A)-invariant measure
m on � × RP

1 that projects to μ in the first component, its disintegration is
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constant on the local stable setWs
loc(ω) for μ-almost every ω ∈ �. Indeed, we

just need to define ω′ = φ(ω) to be the sequence for which ω′
n = ω−n for all

n ∈ Z and set

�′ := {ω′ = φ(ω) : ω ∈ �}.
Then μ is again an ergodic measure of (�′, T ) which has a local product
structure. Set A′(ω′) = A(φ(ω)) so that A′ depends only on the past. Then it
is a standard result that L(A′, μ) = L(A, μ) = 0 and m is (T, A′)-invariant
if it is (T, A)-invariant. Now the conclusion follows from Proposition 4.7.

We have the following consequence regarding the existence of su-states.

Proposition 4.8 Suppose the cocycle map A is measurable, satisfies the inte-
grability condition

∫
�
log ‖A(ω)‖ dμ < ∞, and admitsmeasurable canonical

stable and unstable holonomies which satisfy the integrability conditions (4.5)
and (4.6). If L(A, μ) = 0, then every (T, A)-invariant measure m on�×RP

1

that projects to μ in the first component has a disintegration that is almost
surely invariant under the stable and unstable holonomies.

Proof First we consider the s-invariance. For simplicity, we define ϕ(ω) =
ω(ω0) ∧ ω, which depends only on the future. We define a new cocycle map as
follows:

Ã(ω) := Hs
Tω,ϕ(Tω) · A(ω) · Hs

ϕ(ω),ω. (4.16)

It is clear that Ã is conjugate to A via the stable holonomy. By the condition
(4.5) and the definition of Ã, we then obtain

∫
�
log ‖ Ã(ω)‖ dμ < ∞ and

L( Ã, μ) = 0. On the other hand, by conditions (i)–(ii) of the definition of
stable holonomy, we have that

Ã(ω) = Hs
Tω,ϕ(Tω) · A(ω) · Hs

ϕ(ω),ω

= Hs
Tω,ϕ(Tω) · Hs

Tϕ(ω),Tω · A(ϕ(ω))

= Hs
Tϕ(ω),ϕ(Tω) · A(ϕ(ω)),

which implies that Ã(ω) depends only on the future. Thus Proposition 4.7
implies that we have for every (T, Ã)-invariant measure m that projects to μ

in the first component, its disintegration only depends on the future.
Now let m be a (T, A)-invariant measure that projects to μ in the first

component. Let {mω : ω ∈ �}be a disintegration ofm. Thus A(ω)∗mω = mTω

for μ-almost every ω. We define

m̃ω = (Hs
ω,ϕ(ω))∗mω, ω ∈ �. (4.17)
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One readily checks that Ã(ω)∗m̃ω = m̃T (ω). Thus the family of conditional
measures {m̃ω : ω ∈ �} is a disintegration of a (T, Ã)-invariant measure m̃.
Thus m̃ω depends only on the future. In other words, for μ-almost every ω,
we have for each ω′ ∈ Ws

loc(ω) that

(Hs
ω,ϕ(ω))∗mω = (Hs

ω′,ϕ(ω′))∗mω′ . (4.18)

Since ϕ(ω) = ϕ(ω′), by condition (i) of the definition of stable holonomy we
have

mω = (Hs
ϕ(ω′),ω · Hs

ω′,ϕ(ω′))∗mω′ = (Hs
ω′,ω)∗mω′ . (4.19)

In other words, {mω : ω ∈ �} is s-invariant μ-almost everywhere, concluding
the proof of the s-invariance.

As for the u-invariance, we just need to conjugate A to a new Ã via the
unstable holonomy so that Ã is constant along the local unstable set Wu

loc(ω)

for μ-almost every ω ∈ �. Then by repeating the same argument above and
using the remark following Proposition 4.7, we obtain that mω is u-invariant
μ-almost everywhere. This completes the proof. ��
Lemma 4.9 Assume that L(A, μ) = 0 andμ has the bounded distortion prop-
erty. Then there exists a full measure set K ⊂ � on which one has measurable
stable and unstable holonomies. Moreover, every (T, A)-invariant measure
m on � × RP

1 that projects to μ in the first component has a continuous,
su-invariant disintegration over supp(μ|K ) ∩ K.

Proof Since L(A, μ) = 0, Lemma 4.2 applies and yields for each δ with
0 < δ < α, the sets Ks(N , δ), Ku(N , δ) along with continuous families of
holonomies satisfying the estimates required to apply Proposition 4.8. Thus,
applying Proposition 4.8, choose a (T, A)-invariantmeasurem on�×RP

1 and
consider its disintegration {mω}, which is invariant almost everywhere with
respect to the stable and unstable holonomies. Recall that both

⋃
N>0 Ks(N , δ)

and
⋃

N>0 Ku(N , δ) have full measure. We let

Kδ =
(⋃
N>0

Ks(N , δ)

)
∩
(⋃
N>0

Ku(N , δ)

)
. (4.20)

As in [7], we can now produce a disintegration {m̃ω} over supp(μ|Kδ )∩Kδ ,
which is holonomy-invariant and continuous. For the reader’s convenience we
give the argument. In the following argument, we will work in the full measure
set Kδ so that the stable and unstable holonomies are defined on the local stable
and unstable set of ω ∈ Kδ , respectively.
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For eachω ∈ Kδ , ifmω′ already exists for someω′ ∈ Ws
loc(ω) from the orig-

inal disintegration of m above, then we may define ms
ω′′ via Hs(ω′, ω′′)∗mω′

for eachω′′ ∈ Ws
loc(ω). Ifmω′ does not exist from the original disintegration of

m for all ω′ ∈ Ws
loc(ω), thenWs

loc(ω) is a μ-zero measure set and we may pick
any probability measure ms

ω and extend via ms
ω′′ = Hs(ω, ω′′)∗ms

ω for each
ω′′ ∈ Ws

loc(ω). Clearly, the new family ms
ω is invariant under the stable holon-

omy at every ω ∈ Kδ . On the other hand, due to the almost sure invariance
of the original disintegration mω of m, the new family ms

ω coincides with mω

for μ-almost every ω in Kδ , and hence it also coincides with mω for μ-almost
every ω. In particular, ms

ω is again a disintegration of m. Similarly, we may
construct another disintegrationmu

ω ofm which is invariant under the unstable
holonomy at every ω ∈ Kδ . Note that the set K̃ = {ω ∈ Kδ : ms

ω = mu
ω} has

full μ-measure.
Clearly, for each 1 ≤ j ≤ �, [0; j] ∩ K̃ has full μ-measure in [0; j]. By

the local product structure of μ, [0; j] ∩ K̃ has full μ− × μ+−measure in
[0; j]. Thus by Fubini’s theorem, for μ−-almost every ω− ∈ [0; j]−, we have
that π+[({ω−} × [0; j]+) ∩ K̃ ] has full μ+-measure in [0; j]+. Note for each
ω ∈ [0; j] with π−(ω) = ω−, we have ω− × [0; j]+ = Wu

loc(ω). Thus for
each 1 ≤ j ≤ �, we may choose an ω( j) ∈ [0; j] ∩ Kδ such that

μ+ (
π+(Wu

loc(ω
( j)) ∩ K̃

)) = μ+([0; j]+).

By the definition of μ+, we then have that

μ

⎛
⎝(π+)−1

[
π+( �⋃

j=1

(
Wu

loc(ω
( j)) ∩ K̃

))]⎞⎠

= μ+
⎛
⎝π+

( �⋃
j=1

(
Wu

loc(ω
( j)) ∩ K̃

))⎞⎠

=
�∑

j=1

μ+([0; j])+ = 1. (4.21)

In other words, forμ-almost everyω ∈ Kδ , we haveω(ω0)∧ω ∈ Wu
loc(ω

(ω0))∩
K̃ . Now for each ω ∈ Kδ , we define

m̃s
ω = Hs

ω(ω0)∧ω,ω
· mu

ω(ω0)∧ω
= Hs

ω(ω0)∧ω,ω
· Hu

ω(ω0),ω(ω0)∧ω
· mu

ω(ω0) .

Recall that by the proof of Lemma 4.7, the stable and unstable holonomies
are continuous on each local stable and unstable set, respectively. Thus the
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equalities in the definition of m̃ω above imply that for each 1 ≤ j ≤ �, we
have that m̃s

ω is continuous in ω at [0; j] ∩ Kδ . Thus m̃s
ω is continuous on Kδ .

Clearly, the construction also implies that m̃s
ω is s-invariant. On the other hand,

by invariance with respect to stable holonomies, we have that for each ω such
that ω(ω0) ∧ ω ∈ Wu

loc(ω
(ω0)) ∩ K̃ω0 , we have

m̃s
ω = Hs

ω(ω0)∧ω,ω
· mu

ω(ω0)∧ω
= Hs

ω(ω0)∧ω,ω
· ms

ω(ω0)∧ω
= ms

ω.

Thus, we have m̃s
ω = ms

ω for μ-almost every ω ∈ Kδ , and we obtain an s-
invariant and continuous disintegration {m̃s

ω} ofm. Producing in an analogous
fashion a u-invariant and continuous disintegration {m̃u

ω}, we find that m̃s
ω =

m̃u
ω in supp(μ|Kδ )∩Kδ by continuity and almost everywhere coincidence. This

produces an su-invariant continuous disintegration {m̃ω} over supp(μ|Kδ )∩Kδ

by setting m̃ω = m̃s
ω. By continuity, we also have invariance under (T, A),

that is, A(ω)∗m̃ω = m̃Tω for every ω ∈ supp(μ|Kδ )∩ Kδ . Clearly, any Kδ can
be chosen to be the desired K . ��

4.3 Application of conformal barycenter

Let H ⊆ C be the upper-half plane, D the open unit disk, and S1 = ∂D

the unit circle. It is a standard result that the Möbius transformation asso-
ciated with an element of the group SU(1, 1) preserves S1 and D. Here

P =
(
a b
b̄ ā

)
∈ SU(1, 1) if |a|2 − |b|2 = 1 and the Möbius transformation

associated with it is P · z = az+b
b̄z+ā

. It is a standard result that SU(1, 1) is

conjugate to SL(2, R) through the SL(2, C)-matrix Q = −1
1+i

(
1 −i
1 i

)
, that is,

Q∗SU(1, 1)Q = SL(2, R). In fact, we have the following commutative dia-
gram:

H

Q·

(Q−1PQ)·
H

Q·

D
P·

D,

(4.22)

where all transformations are Möbius transformations, as well as homeomor-
phisms. Moreover, Q is a homeomorphism between their boundaries, that is,
a homeomorphism from RP

1 = R ∪ {∞} = ∂H to S1 = ∂D. We need the
following proposition from [25, Proposition 1].

Proposition 4.10 For each probability measure ν on the unit circle S1 con-
taining no atom of mass ≥ 1

2 , there is an unique point B(ν) ∈ D, called the
conformal barycenter of ν, so that the map ν → B(ν) is invariant under
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the Möbius transformation of SU(1, 1), that is, B(P∗ν) = P · B(ν) for each
P ∈ SU(1, 1).

Lemma 4.11 Let (�, T, μ), A, and K ⊂ � be as in Lemma 4.9. Then there
exists a family of A-invariant, su-invariant measures m̂ω over supp(μ|K )∩ K
such that for each ω ∈ supp(μ|K )∩ K, m̂ω is supported by at most two points
of CP

1.

Proof We start with the continuous disintegration {m̃ω : ω ∈ �} of m over
ω ∈ supp(μ|K ) ∩ K that we constructed as stated in Lemma 4.9. To produce
the family of measures {m̂ω}, we divide it into three different cases.

If m̃ω has an atom z(ω) ∈ RP
1 ofmass> 1/2, we let m̂ω = δz(ω), that is, the

Dirac measure (mass one) supported in this point z(ω). By invariance of m̃ω

under the holonomies, it is clear that if m̃ω has such a point z(ω), then so does
mω′ for each pointω′ inWs

loc(ω)∪Wu
loc(ω).Moreover, z(ω′) = H∗

ω,ω′(z(ω)) for
∗ ∈ {s, u}, which exactly implies that δz(ω) is invariant under the holonomies.
Similarly, by invariance of m̃ω under A(ω), we have that m̃T nω has such a
point mass for all n ∈ Z and A(ω)∗δz(ω) = δz(Tω).

If m̃ω contains two atoms of mass 1/2 each, we set m̂ω = m̃ω. Similar to
the argument of the case (1) above, we have that mω′ falls into this case for
each point ω′ in Ws

loc(ω) ∪ Wu
loc(ω) ∪ Orb(ω) and m̂ω is invariant under the

holonomies and A(ω).
In all other cases, by Proposition 4.10, we define m̂ω to be theDiracmeasure

supported at

z(ω) := Q−1 · B(Q∗m̃ω) ∈ H, (4.23)

where B(Q∗m̃ω) is the conformal barycenter of the measure Q∗m̃ω of the unit
circle S1. Note again by holonomy invariance, if ω is not in the two cases
above, then neither is mω′ for each point ω′ in Ws

loc(ω) ∪ Wu
loc(ω) ∪ Orb(ω).

Moreover, forω′ ∈ Ws
loc(ω), we have QHs

ω,ω′Q−1 ∈ SU(1, 1)which together
with Proposition 4.10 and the holonomy invariance of m̃ω implies that

Hs
ω,ω′ · z(ω) = Hs

ω,ω′ · (Q−1 · B(Q∗m̃ω)
)

= Q−1(QHs
ω,ω′Q−1) · B(Q∗m̃ω)

= Q−1 · B
(
(QHs

ω,ω′Q−1)∗Q∗m̃ω

)

= Q−1 · B
(
(QHs

ω,ω′Q−1Q)∗m̃ω

)

= Q−1 · B
(
Q∗(Hs

ω,ω′)∗m̃ω

)

= Q−1 · B (Q∗m̃ω′)

= z(ω′),
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which in turn implies that m̂(ω) is invariant under the stable holonomy. By a
similar argument we can establish the invariance under the unstable holonomy
and under A(ω). ��

4.4 Local su-invariance

In this subsection, we drop the assumption that μ has bounded distortion
and assume only that it has a local product structure. Note that to ensure the
existence of the su-state when only assuming that the Lyapunov exponent
is small, we need the bounded distortion property of μ so that we have the
integrability conditions on themeasurable stable and unstable holonomies. But
to prove our main results concerning the positivity of the Lyapunov exponent,
we actually only need a “local su-state” for which a local product structure
suffices.

We adapt the techniques from [39] to produce a certain disintegration of
m that has local su-invariance. Throughout this subsection, we assume A ∈
Cα(�,SL(2, R)) to be such that L(A, μ) = 0 and we fix a δ with α

2 < δ < α.
We start with the following consequence of the proof of Lemma 4.2. Recall

that Ks(N , δ) was defined in (4.3).

Lemma 4.12 Let (�, T, μ), A, and δ be above. Then there exists a C̃ =
C̃(δ, N ) so that the following holds true. For all ω ∈ Ks(N , δ), all ω̃ ∈
Ws

loc(ω), and all j ≥ 0, we have

Hs
T jω,T j ω̃

:= lim
n→∞ Hs,n

T j ω̃,T jω
exists and ‖Hs

T j ω̃,T jω
‖ ≤ C̃ . (4.24)

Proof By (4.9), we have that

‖Hs
ω̃,ω‖ = ‖ lim

n→∞ Hs,n
ω̃,ω

‖ ≤ eCN .

A direct computation shows that

Hs,n
T j ω̃,T jω

= A j (ω̃)Hs,n+ j
ω̃,ω

A j (ω)−1,

which implies the existence of

Hs
T j ω̃,T jω

:= lim
n→∞ Hs,n

T j ω̃,T jω
and

‖Hs
T j ω̃,T jω

‖ ≤ ‖Hs,n
T j ω̃,T jω

‖ · ‖A j (ω)‖ · ‖A j (ω̃)‖.

In particular, for all 0 ≤ j ≤ N , we have

‖Hs
T j ω̃,T jω

‖ ≤ e3CN . (4.25)
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Fix a j > N . Then we have ‖A j (ω)‖2 < e(α−δ) j since ω ∈ Ks(N , δ). Using
(4.8), a direct computation shows that

‖δs,n
T j ω̃,T jω

‖ = ‖A j (ω)δ
s,n+ j
ω̃,ω

A j (ω)−1‖
≤ Ce(α−δ) j e(α−δ)(n+ j)e−α(n+ j)

= Ce(α−2δ) j e−δn

< Ce−δn,

where the last inequality follows from the fact 2δ > α. Combining (4.24) and
the proof of (4.9), we obtain for all j ≥ N

‖Hs
T j ω̃,T jω

‖ ≤ ‖Hs,N
T j ω̃,T jω

‖ · exp
(
C

∞∑
n=N

‖δs,n
ω,ω̃

‖
)

≤ Ce2CN . (4.26)

Combining (4.25) and (4.26), we clearly obtain the latter half of (4.24), where
we may take C̃ = max{e3CN ,Ce2CN }. ��

So we may choose N large so that K (N , δ) = Ks(N , δ)∩Ku(N , δ) (which
were defined in (4.3)) has measure sufficiently close to 1 and μ(K (N , δ) ∩
[0; j]) > 0 for all 1 ≤ j ≤ �. We set K j

τ := Kτ (N , δ) ∩ [0; j] for τ ∈ {s, u}
and K j = K j

s ∩ K j
u .

Lemma 4.13 Let (�, T, μ), A, δ be as in Lemma 4.12 and let K (N , δ) be as
above. Then for every (T, A)-invariant measurem that projects toμ on the first
component, there is a disintegration {mω : ω ∈ �} of m that is su-invariant
for μ-almost every ω ∈ K (N , δ).

Proof We only consider the case of s-invariance, as u-invariance can be estab-
lished in a completely analogous way. We break the argument into three steps.
Step I. As in the proof of Proposition 4.7, the first step is to construct a certain
σ -algebra B to which we can apply the invariance principle as formulated
in Proposition 4.5. By (4.9), Ks(N , δ) is s-saturated. Similarly, Ku(N , δ) is
u-saturated. Fix a ω j ∈ K j and set S = Wu

loc(ω
j ) ∩ K j . For each ω′ ∈ S,

we define r(ω′) = 1 if T (Ws
loc(ω

′)) ∩ Ws
loc(ω

′′) = ∅ for some ω′′ ∈ S;
otherwise, we define 2 ≤ r(ω′) ∈ Z+ ∪ {∞} be the largest number such that
T i (Ws

loc(ω
′)) ∩ Ws

loc(ω
′′) = ∅ for all ω′′ ∈ S and for all 0 < i < r(ω′). Now

we define the σ -algebra B ⊆ M to be the one generated by the family

{T i (Ws
loc(ω

′)) : ω′ ∈ S, 0 ≤ i < r(ω′)}.
By our definition of r(ω′), it is clear that the sets in the family above are
mutually disjoint. Thus, B contains all B ∈ M such that for all ω′ ∈ S and all
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0 ≤ i < r(ω′), either B ∩ T i (Ws
loc(ω

′)) = ∅ or T j (Ws
loc(ω

′)) ⊂ B. First we
claim that B satisfies condition (1) of Proposition 4.5. The proof is analogous
to the one of Proposition 4.7. Indeed, TB is the σ -algebra generated by

{T i+1(Ws
loc(ω

′)) : ω′ ∈ S, 0 ≤ i < r(ω′)},

which is again a family of mutually disjoint sets. Since T r(ω′)(Ws
loc(ω

′)) ⊆
Ws

loc(ω
′′) for some ω′′ ∈ S, one readily checks that B ∈ B implies B ∈

TB. Hence, we have that TB contains B, or equivalently, T−1B ⊆ B. More
generally, for all n ≥ 1, we have that T nB is generated by {T i+n(Ws

loc(ω
′)) :

ω′ ∈ S, 0 ≤ i < r(ω′)}, which implies that T nB, n ≥ 1 generates M mod
0. Indeed, since M is generated by cylinders, we just need to show that all
[k; l] are contained in T nB for some large n. Taking any n ≥ |k|, it is clear
that [k; l] ∈ T nB.
Step II. Similarly to the proof of Proposition 4.8, our second step is to conjugate
A to some Ã, which is measurable with respect to B. We define Ã by

Ã(ω) := Hs
Tω,T i+1ω′ A(ω)Hs

T iω′,ω = A(T iω′) (4.27)

if ω ∈ T i (Ws
loc(ω

′)) for some ω′ ∈ S (so that ω ∈ Ws
loc(T

iω′) ) and 0 ≤ i <

r(ω′); and

Ã(ω) := A(ω) otherwise. (4.28)

Clearly, if we set B(ω) as

B(ω) =
{
Hs

ω,T jω′, ω ∈ T j (Ws
loc(ω

′)), ω′ ∈ S, and 0 ≤ j < r(ω′)
I2, otherwise,

(4.29)

then Ã(ω) = B(Tω)A(ω)B(ω)−1. In other words, Ã is conjugate to A via
B. Combining this with the fact that ω′ ∈ S ⊆ Ks(N , δ) and Lemma 4.12,
we have ‖B(ω)‖ ≤ C̃ for all ω ∈ �. In particular,

∫
log ‖ Ã‖ dμ < ∞ and

L( Ã, μ) = 0. By definition, Ã is constant on T i (Ws
loc(ω

′)) for any ω′ ∈ S and
any 0 ≤ i < r(ω′), which clearly implies that Ã is B-measurable.

Step III. Following the second half of the proof of Proposition 4.8, for any
given disintegration {mω : ω ∈ �} of m, we can set

m̃ω = B(ω)−1∗ mω, ω ∈ �. (4.30)

Then it becomes a disintegration of a (T, Ã)-invariant measure m̃. We can now
apply Proposition 4.5 to (B, Ã, m̃ω) and obtain that {m̃ω} is B-measurable. In
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particular, m̃ω is constant on T i (Ws
loc(ω

′)) for allω′ ∈ S and all 0 ≤ i ≤ r(ω′).
Taking i = 0, then a similar proof to (4.19) yields

(Hs
ω,ω̃)∗mω = mω̃ for all ω, ω̃ ∈ Ws

loc(ω
′) and all ω′ ∈ S. (4.31)

Thus we have obtained s-invariance for all points in

⋃
ω∈S

{Ws
loc(ω) : ω ∈ Wu

loc(ω
j )},

which contains

⋃
ω∈Wu

loc(ω
j )∩K j

{Ws
loc(ω) : ω ∈ Wu

loc(ω
j ) ∩ K j }.

By local product structure of μ and following the proof of (4.21), we have
that the set above is a full measure subset of K j . Since 1 ≤ j ≤ � is arbitrar-
ily chosen, we thus obtain s-invariance of {mω} on a full measure subset of
K (N , δ). ��
Now we can apply the proof of Lemmas 4.9 and 4.11 (replacing Kδ by

K (N , δ)) to obtain the following corollary.

Corollary 4.14 Using the setup of Lemma 4.13, there is a disintegration {m̃ω}
of m so that ω �→ m̃ω is continuous and su-invariant on supp(K (N , δ)) ∩
K (N , δ). Moreover, there is family of measures {m̂ω} that is su-invariant on
supp(K (N , δ)) ∩ K (N , δ) and for each ω, supp(m̂ω) contains at most two
points.

The main goal of the present Sect. 4 is to obtain the following corollary.

Corollary 4.15 Suppose (�, T ) is a subshift of finite type and μ is a T -
ergodic measure that has a local product structure. Let A : � → SL(2, R)

be a cocycle map so that L(A, μ) = 0. Then for every periodic point p (of
period n) such that 2L(A, p) < α

2 , there exists a set Z p ⊆ CP
1, invariant

under complex conjugation and under An(p), and consisting of either one or
two points, with the following property. Let q be another periodic point such
that 2L(A, q) < α

2 . If p0 = q0, then

Hu
q,q∧p(Zq) = Hs

p,q∧p(Z p). (4.32)

Proof Since L(A, μ) = 0 and L(A, p) < α
2 , by Lemma 4.4, we clearly have

that p ∈ supp(μ|K (N ,δ))∩Kδ(N , δ) for some α
2 < δ < α. Thus we may apply
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Corollary 4.14 to obtain the measure m̂ p defined at pwhich is An(p)-invariant
and su-invariant. Hence, if we define

Z p := {z(p), z(p) : z(p) ∈ supp(m̂ p)},
then Z p consists of at most two points. Moreover, it is clear that Z p is su-
invariant, A(p)-invariant, and invariant under complex conjugation.

Since q is also a periodic point such that L(A, q) < α
2 , we can certainly

find α
2 < δ < α so that both p and q belong to supp(μ|K (N ,δ)) ∩ K (N , δ).

Thus Z p and Zq are both defined. By su-invariance of Z p and p0 = q0, we
have

Hu
q,q∧p(Zq) = Hs

p,q∧p(Z p)

as desired. ��

5 Positivity of the Lyapunov exponent I

Throughout this section we assume that � ⊆ AZ is a subshift of finite type
and μ is a T -ergodic probability measure that is fully supported on � and has
a local product structure. We fix a non-constant f ∈ Cα(�, R) and consider
the one-parameter family of Schrödinger cocycles (T, AE ). We shall apply
the techniques from Sect. 4 to study the positivity property of the Lyapunov
exponent.

In Sect. 5.1, we show under a very general condition that the set of energies
with zero Lyapunov exponent is a discrete set. In Sect. 5.2, we apply the same
techniques to the scenario where we have global existence of holonomies and
obtain a stronger result for the corresponding Schrödinger cocycles. Namely,
we show that under the same general condition, the set of energies with zero
Lyapunov exponent is a finite set. Global existence of the holonomies may be
obtained if the ‖ ·‖∞ norm of the sampling function is small or if the sampling
function is locally constant.

5.1 General case: positivity away from a discrete set

Throughout this subsection, we assume that E0 ∈ R is an accumulation point
of

Z f = {E : L(E) = 0}.
Clearly,

E0 ∈ �, (5.1)
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since Z f ⊆ � and � is closed.

Definition 5.1 We say that a periodic point q is γ -bunched at E if

2L(AE , q) < γ ≤ α. (5.2)

We fix p to be a periodic point that is α
2 -bunched at E0. We let n p denote

the period of p.

Lemma 5.2 L(AE0, p) = 0. In particular, E0 ∈ σ(Hp).

Proof Let En → E0, En 	= E0 be a sequence in Z f . Recall from (5.1) that
E0 ∈ �.
Assume that p is hyperbolic for E0 (i.e., the matrix AE0

n p (p), which serves
as the monodromy matrix at energy E0 for the periodic potential associated
with p, is hyperbolic). Then p is still hyperbolic and α

2 -bunched in a small
neighborhood J of E0. Let E0 ∈ σ(Hω′) for someω′ ∈ �. By Proposition 2.10
and by choosing δ > 0 small, we have J ∩ σ(Hω) 	= ∅ for any ω such that
Orb(ω) ∩ Bδ(ω

′) 	= ∅. On the other hand, by Proposition 2.7 there is an
r = r(δ) so that for any I1 = [0, n1] ⊆ Z, there is a periodic orbit q with
period nq = n1 + r + 1 so that d(T jq, T j p) < δ for all 1 ≤ j ≤ n1
and d(T n1+r+1q, ω′) < δ. An immediate consequence is that σ(Hq) ∩ J 	=
∅. Moreover, as n1 goes to infinity, it clearly holds that L(AE , q) tends to
L(AE , p) uniformly for all E ∈ J . In particular, by choosing n1 large, we
have that q is α

2 -bunched for all E ∈ J as well. We fix such a periodic point q.
Clearly, p0 = q0. Thus we may define

HE := Hu,E
q∧p,q · Hs,E

p,q∧p (5.3)

for each E ∈ J . Here Hs,E
p,q∧p and Hu,E

q,q∧p are the holonomies corresponding
to AE , which are well-defined since both p and q are α

2 -bunched through J .
Moreover, they are holomorphic on J since they are limits of uniformly con-
vergent sequences of holomorphic functions Hs,n(E) or Hu,n(E) on J . Thus
we have that E �→ HE is analytic. Let Z p = Z p(En) be as in Corollary 4.15.
By passing to a subsequence, we may assume that

Z p(En) =

⎧⎪⎨
⎪⎩

{s(En)} for all n,

{u(En)} for all n, or

{s(En), u(En)} for all n.

(5.4)

Thus, we may extend the definition of Z p(E) to all E ∈ J so that Z p(E)

consists of one or two functions that are analytic on J . By Corollary 4.15,

Zq(E) := HE · Z p(E) (5.5)
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is invariant under the monodromy matrix of q for infinitely many En . By
analyticity, it follows that Zq(E) is invariant by the monodromy matrix of
q for every E ∈ J . Since Z p(E) is real, so is Zq(E), which implies that
the absolute value of the trace of the monodromy matrix of q cannot become
smaller than 2 anywhere in J . Since J is open and E ∈ σ(Hq) cannot be an
isolated point, we must have J ∩ σ(Hq) = ∅, which contradicts our choice
of q. It follows that p is not hyperbolic for E0. In particular, E0 ∈ σ(Hp). ��

Choose a small open disk D ⊆ C around E0 such that p is α
2 -bunched for

all energies E in the closed disk D̄. Recall that by Proposition 2.11, �(E) =
Tr(AE

np
(p)) is monotonic on each connected component of�−1(−2, 2). Thus

we may also assume that D is small enough so that, through D̄\{E0}, �(E)

is different from −2, 2, 0. According to Sect. 2.2, if E0 /∈ ∂(σ (Hp)), we can
then define two holomorphic functions u, s : D → CP

1, distinct everywhere,
such that u(E) and s(E) are eigendirections of AE

np
(p); otherwise we can

still define holomorphic functions u, s on the ramified (at E0) double cover
of π : D̃ → D, giving (distinct) eigendirections when Ẽ ∈ D̃\{E0}, but
taking as value at E0 the single real eigendirection of AE0

n p (p). Moreover, for

π(Ẽ) ∈ R, s(Ẽ) and u(Ẽ) are real if and only if π(Ẽ) not in the interior of
σ(Hp).

Lemma 5.3 If q is a periodic point that is α
2 -bunched through E ∈ D̄ and

qi = p j for some i, j , then σ(Hp) ∩ D = σ(Hq) ∩ D.

Proof Since σ(Hω) = σ(HTnω) for any ω and for any n, we may assume
that p0 = q0. Then similarly to the proof of Lemma 5.2, we define HE =
Hu,E
q∧p,q · Hs,E

p,q∧p for E ∈ D. Since E0 ∈ σ(Hp), we consider two different
cases.

If E0 /∈ ∂(σ (Hp)), then D ∩ σ(Hp) = D ∩ R by our choice of D, and
Z p(En) is a nonempty subset of {u(En), s(En)}. Following the same argument
that showed that AE0

nq (q) has a real eigendirection in the proof of Lemma 5.2,
we obtain that AE

nq (q) of the present lemma has a non-real eigendirection for
all E ∈ D ∩ R. This implies that D ∩ R ⊆ σ(Hq), and the claim follows in
this case.

If E0 ∈ ∂(σ (Hp)), then by our choice of D we have D ∩ �p is either
[E0, E+) or (E−, E0], where

(E−, E+) = D ∩ R. (5.6)

For simplicity, we will assume that int D∩� = [E0, E+). Recall π : D̃ → D
is the double cover map of D ramified at E0. For each n, choose a preimage
Ẽn ∈ π−1(En). Then Z p(En) is a subset of {u(Ẽn), s(Ẽn)}. As in the proof
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of Lemma 5.2 and up to replacing En by a subsequence, Z p(En) is always of
the form Z̃ p(Ẽn), where

Z̃ p(Ẽ) =

⎧⎪⎨
⎪⎩

{s(Ẽ)} for all Ẽ ∈ D̃,

{u(Ẽ)} for all Ẽ ∈ D̃, or

{s(Ẽ), u(Ẽ)} for all Ẽ ∈ D̃.

(5.7)

Notice that if π(Ẽ) ∈ (E−, E0), then Z̃ p(Ẽ) consists of real directions; if
π(Ẽ) ∈ (E0, E+), then Z̃ p(Ẽ) consists of non-real directions.We again define

Z̃q(Ẽ) := Hπ(Ẽ) · Z̃ p(Ẽ).

Then Z̃ p(Ẽ) is invariant under Aπ(Ẽ)
nq (q) whenever Ẽ = Ẽn . By the fact that

Hπ(·), u, and s are all holomorphic on D̃, it follows that Z̃ p(Ẽ) is invariant

under Aπ(Ẽ)
nq (q) for all Ẽ ∈ D̃. This implies that AE

nq (q) has at least one real
eigendirection for E ∈ (E−, E0) and has at least one non-real eigendirection
for E ∈ (E0, E+). This can only happen when D ∩ σ(Hq) = [E0, E+), and
the claim follows in this case. ��
Lemma 5.4 If q is any periodic point, then σ(Hq) ∩ D = σ(Hp) ∩ D.

Proof Fix an arbitrary periodic point q∗. Let us say that a periodic point q
is (ε, δ)-good, 0 < δ < ε < 1, if it spends at least a 1 − ε proportion of
its iterates within distance δ of p, and at least a ε/2 proportion of its iterates
within distance δ of q∗. By Proposition 2.7 and similar to the argument leading
to the choice of q in the proof of Lemma 5.2, we see that the set of (ε, δ)-good
periodic points is not empty for any choice of 0 < δ < ε < 1. Moreover, if ε

is sufficiently small, then an (ε, δ)-good q is α
2 -bunched for energies E ∈ D̄.

Moreover, since certain iterates of q are close to p, we clearly have qi = p j
for some i, j . By Lemma 5.3, it then holds that σ(Hp) ∩ D = σ(Hq) ∩ D for
all such q’s. We fix such a small ε for the remainder of this proof.

First we show σ(Hq∗) ∩ D ⊆ σ(Hp) ∩ D. If this is not true, then there is
some E0 ∈ (σ (Hq∗) ∩ D)\σ(Hp). In particular, we have

ε := min{d(E0, σ (Hp)), d(E0, ∂D)} > 0.

Then for an (ε, δ)-good periodic point q, we also have that

ε = min{d(E0, σ (Hq)), d(E0, ∂D)} > 0.

By Proposition 2.10 and the fact that Orb(q) ∩ Bδ(q∗) 	= ∅ for (ε, δ)-good
points, we have for sufficiently small δ and an (ε, δ)-good periodic point q
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that

σ(Hq∗) ⊆ B ε
2
(σ (Hq)).

Clearly, this implies that d(E0, σ (Hq)) < ε
2 and we obtain a contradiction. So

the first part follows.
Now we show σ(Hp) ∩ D ⊆ σ(Hq∗) ∩ D. Suppose this is not the case. By

the first part, there is an E0 ∈ (σ (Hp) ∩ D)\σ(Hq∗). In particular, we have

ε̃ := min{d(E0, σ (Hq∗)), d(E0, ∂D)} > 0.

Notice that Orb(q∗) ∩ Bδ(Tmq) 	= ∅ for an (ε, δ)-good periodic point p and
for some m ∈ Z. Thus by Proposition 2.10, and by choosing δ small (the
smallness of which is independent of q or q∗), we have

σ(HTmq) ⊆ B ε̃
2
(σ (Hq∗)).

Since σ(HTmq) = σ(Hq) and E0 ∈ σ(Hp) ∩ D = σ(Hq) ∩ D, we obtain

d(E0, σ (Hq∗)) <
ε̃

2
,

which is a contradiction and the lemma follows. ��
By (2.17), the spectrum � is the closure of the union of the spectra of

periodic points. Thus Lemma 5.4 implies that � ∩ D = σ(Hp) ∩ D. For each
T -ergodic measure ν on �, we let �ν denote the set such that σ(Hω) = �ν

for ν almost every ω; see, for example, [32].

Lemma 5.5 For any T -ergodic measure ν on�, we have�ν ∩ D = σ(Hp)∩
D. Moreover, L(AE ; ν) = 0 for all E ∈ σ(Hp) ∩ D. In particular, L(E) = 0
for all such E’s.

Proof Since we have σ(Hω) ⊆ � for eachω ∈ � and�∩D = σ(Hp)∩D, it
clearly holds that�ν ∩D ⊆ σ(Hp)∩D. On the other hand, if E /∈ �ν , then the
sequence {AE (T nω)}n∈Z is uniformly hyperbolic for ν-almost every ω ∈ �,
which in turn implies that L(AE ; ν) > 0; see, for example, [43, Theorem 3].
Thus L(AE ; ν) = 0 implies that E ∈ �ν . So we only need to prove the second
part of the lemma.

Assume that the statement is false. In other words, we have L(AE ; ν) > 0
for some E ∈ σ(Hp) ∩ D. By [30, Theorem 3], for each ε > 0, there is
a periodic point q ∈ � so that |L(AE ; ν) − L(AE , q)| < ε. Thus there is
periodic point q ∈ � so that L(AE , q) > 0. In particular, E /∈ σ(Hq), which
contradicts Lemma 5.4, concluding the proof. ��
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Lemma 5.6 Let E0 be an accumulation point of Z f = {E : L(E) = 0}.
Assume that there exists a periodic point p that is α

2 -bunched at E0. Then
(1) The connected component I of E0 in the spectrum is isolated,
(2) L(AE ; ν) = 0 for all E ∈ I and all T -ergodic measure ν on �.

Proof By Lemma 5.2, E0 ∈ σ(Hp). Let I be the connected component of
σ(Hp) that contains E0. Notice that p is α

2 -bunched for every E ∈ I since
L(AE , p) = 0 on I . Let S be the set of accumulation points of Z f ∩ I . It is
clearly a closed and non-empty subset of I since E0 ∈ S. Moreover, applying
Lemma 5.5 to any E ∈ S, we see that there is open disk D around E so that
L(E) = 0 on σ(Hp) ∩ D which contains I ∩ D. This implies I ∩ D ⊂ S.
Thus S is open in I as well. Thus we have S = I . Clearly I ⊆ �. Applying
Lemma 5.5 to the boundary points of I , we obtain � ∩ D = σ(Hp) ∩ D for
some disk D around the boundary points. Thus, I is an isolated component of
�. Applying Lemma 5.5 to all E ∈ I again, we obtain that L(AE , ν) = 0 for
all E ∈ I and for all T -ergodic measure ν on �. ��

We have now collected all the tools to prove our main theorem.

Proof of Theorem 1.1 Suppose to the contrary that there are E0 ∈ {E :
L(E) = 0} and En ∈ {E : L(E) = 0}\{E0}, n ∈ Z+, such that En → E0
as n → ∞. Since L(E0) = 0, we can choose a α

2 -bunched periodic point
by [30, Theorem 3]. It now follows from Lemma 5.6 that E0 belongs to a
non-degenerate compact interval I , which is a connected component of �,
as well as of all periodic spectra σ(Hp). In particular, for the fixed point of
T , the unique connected component of its spectrum is an interval of length
4. Since having such a connected component is only possible for constant
periodic potentials by Proposition 2.13, it follows that the potential associated
with each periodic point must be constant. This implies that f itself must be
constant; contradiction. ��

5.2 Special cases: positivity away from a finite set

In this subsection we consider sampling functions f : � → R for which
we have global existence of the holonomies in the sense that the cocycle AE

admits canonical holonomies as defined in Sect. 2.1.5 for all E in a complex
neighborhood of the convex hullU ⊆ C of the spectrum� f . Since AE depends
on E holomorphically, we obtain that the holonomies are holomorphic on U
as well. In this case, we are able to improve the result we obtained in Sect. 5.1.

There are two types of f for which we have such global existence of
holonomies. One is the set of f ∈ Cα(�, R) for which AE is fiber bunched in
the sense of Definition 5.7 below for every E in the convex hull of the spectrum
�. Such an f will be called globally fiber bunched (or just globally bunched).
The other is the set of locally constant f ’s.
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5.2.1 Fiber bunching and existence of holonomies

Definition 5.7 We say that A ∈ Cα(�,SL(2, C)) is fiber bunched if there
exists n0 ≥ 1 such that for every ω ∈ �, we have

‖An0(ω)‖2 < eαn0 . (5.8)

Equivalently, there is θ < α such that ‖An0(ω)‖2 < eθn0 for every ω ∈ �.

Note that fiber bunching is clearly a C0-open condition. A fiber bunched
cocycle has canonical holonomies as defined in Sect. 2.1.5. In fact, we can run
the proof of Lemma 4.2 to show that for ω′ ∈ Wu

loc(ω), Hu,n
ω,ω′ = A−n(ω

′)−1 ·
A−n(ω) converges uniformly on � to the unstable holonomy Hu

ω,ω′ . Similarly

forω′ ∈ Ws
loc(ω), we have that Hs,n

ω,ω′ = An(ω
′)−1An(ω) converges uniformly

on� to the stable holonomy Hs
ω,ω′ . Indeed, to obtain the uniform convergence

to holonomies, the only condition we used in the proof of Lemma 4.2 is the
condition in (4.3), which is exactly the fiber bunching condition (5.8). We
also note the following: If At ∈ Cα(�,SL(2, C)), t in some domain U ⊆
C, is a continuous family such that t �→ At (ω) is holomorphic for every
ω ∈ � and At is fiber bunched for every t , then the stable and unstable
holonomies depend holomorphically on t . Indeed, in this case, the holonomies
are limits of uniformly convergent sequences of holomorphic functions. In
particular, we may consider Schrödinger cocycles AE with sampling function
f ∈ Cα(�, R). If ‖ f ‖∞ is sufficiently small, then AE is fiber bunched in a
complex neighborhood of the convex hull of the spectrum �. To see this, we
first see that

(
E −1
1 0

)
is fiber bunched for all E ∈ [−2, 2] since they are all

elliptic or parabolic. By openness of fiber bunching, we then have that AE is
fiber bunched for all E in a complex neighborhood of [−2, 2] provided ‖ f ‖∞
is sufficiently small. If necessary, we can then choose ‖ f ‖∞ smaller so that
the convex hull of � f is contained in such an open neighborhood. Thus f is
globally bunched.

5.2.2 Locally constant cocycles

The other class for which the canonical holonomies exist for obvious reasons
is defined as follows.

Definition 5.8 We say that A : � → SL(2, R) is locally constant if there
exists a n0 such that for each ω ∈ �, A(ω) depends only on the cylinder set
[−n0; ω−n0, . . . , ωn0].

Evidently, locally constant cocycles are α-Hölder continuous for all α >

0. Locally constant cocycles might not be fiber bunched. However, the
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holonomies exist trivially. Indeed, if A is locally constant, then there is a
n0 ∈ Z+ so that for all ω and all n > n0 we have

H τ,n
ω,ωτ = H τ,n0

ω,ωτ ,

where τ ∈ {s, u} and ωτ ∈ W τ
loc(ω). Thus H τ,n0

ω,ωτ are exactly the holonomies.
Now we consider Schrödinger cocycles AE with potential f : � → R. If
there is a n0 ∈ Z+ such that f (ω) depends only on [−n0; ω−n0, . . . , ωn0],
then AE is locally constant for all E ∈ C. In other words, a locally constant
sampling function induces locally constant Schrödinger cocycle maps.

5.2.3 Energies admitting an su-state

Again, our objective is to study the energies for which L(E) = L(AE , μ) = 0.
We will point out how the desired statements will follow by simple special-
ization of the proofs of the lemmas in Sect. 4.

Assume that A ∈ C0(�,SL(2, R)) has canonical holonomies H τ
ω,ω′ , where

τ ∈ {s, u}. Recall that an su-state for A is a (T, A)-invariant measure m with
a disintegration {mω : ω ∈ �} that is invariant under the cocycle and the
holonomies. In particular, for μ-almost every ω ∈ �, we have

(1) A(ω)∗mω = mTω,
(2) (Hs

ω,ω′)∗mω = mω′ for every ω′ ∈ Ws
loc(ω).

(3) (Hu
ω,ω′)∗mω = mω′ for every ω′ ∈ Wu

loc(ω).

Then we have the following invariance principle:

Proposition 5.9 If L(A, μ) = 0, then there exists an su-state for A.

Proof This follows fromProposition 4.7, noting that the canonical holonomies
exist and are continuous on�, and therefore the conditions (4.5) and (4.6) are
automatically satisfied. ��

One of the main properties of su-states is the following.

Proposition 5.10 If m is an su-state, then it admits a disintegration for which
the conditional measures mω depend continuously on ω and are both s-
invariant and u-invariant.

Proof We take an su-state m. Then we run the proof of Lemma 4.9 where we
constructed the disintegration m̃ which is continuous on supp(Kδ)∩Kδ . In the
present setting, we have Kδ = � since we have canonical holonomies. The
result follows. ��

By continuity and almost everywhere coincidence, all the invariance prop-
erties in the definition of su-states may then hold true for every ω ∈ �. From
now on, we always choose such a disintegration for an su-state m.
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5.2.4 Finiteness of the set of energies admitting su-states

Now we return to the Schrödinger case. Recall that by general principles,
L(E) = 0 implies E ∈ � ⊆ R. Since each of these real energies gives rise to
an su-state for AE , let us consider the following set (whose dependence on μ

and f we leave implicit):

F = {E ∈ � : there is an su-state for AE }. (5.9)

Lemma 5.11 Suppose that 0 < α ≤ 1 and f ∈ Cα(�, R) is globally bunched
or locally constant. Assume that F is infinite. Let p, q ∈ � be two periodic
points of T . Then σ(Hp) = σ(Hq).

Proof First, we consider the case that pi = q j for some i, j ∈ Z. Since
σ(Hω) = σ(HTnω) for any ω and for any n, we may assume that p0 = q0.
Recall in this case there is a unique q ∧ p ∈ Wu

loc(q) ∩ Ws
loc(p). Assume that

n p is the period of p and nq is the one of q. By our choice of f , we may choose
�̃ ⊆ R to be a compact interval containing the spectrum � and U ⊆ C to
be a complex neighborhood of �̃ where AE has canonical holonomies for all
E ∈ U . Recall that under the conditions of the present lemma, the holonomies
are holomorphic functions on U .

By the arguments in the proof of Lemma 4.9, Corollary 4.15, and the exis-
tence of canonical holonomies, we can find for each periodic ω ∈ �, a subset
Zω ⊆ CP

1 consisting of at most two points that is invariant under A(ω) and
the holonomies. In particular, for the periodic point p with period n p, Z p is
invariant under Anp(p) and

Hs
p,q∧p(Z p) = Hu

q,q∧p(Zq) whenever q0 = p0. (5.10)

Note that if Tr(Anp(p)) 	= 0, then Z p must be a subset of the eigendirections of
Anp(p). In particular, for Anp(p) with nonzero trace, Anp(p) is elliptic if and
only if Z p is non-real. We let {s(E), u(E)} denote the pair of eigendirections
of AE

np
(p). Note that both s(E) and u(E) are continuous on �̃ and analytic on

each spectral gap or on the interior of each connected component of σ(Hp).
We define

HE = Hu,E
q∧p,q · Hs,E

p,q∧p, (5.11)

which are holomorphic in E on a complex neighborhood U of �̃.
Let E0 be an accumulation point of F . Then, similarly to the proof of

Lemma 5.2 or 5.3, we can find a sequence {En}n≥1 in F so that En → E0,
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En 	= E0, and

Z p(En) =

⎧⎪⎨
⎪⎩

{s(En)} for all n ≥ 1,

{u(En)} for all n ≥ 1, or

{s(En), u(En)} for all n ≥ 1.

(5.12)

Thus we may extend the domain of Z p(·) from {En, n ≥ 1} to U . Then we
define

Zq(E) := HE (Z p(E)) (5.13)

and we get that Zq(En) is invariant under AEn
nq (q) for all n ≥ 1. By the

continuity and analyticity properties of HE , s(E), and u(E), we obtain the
following conclusions: if E0 is in a spectral gap, then Zq(E) is invariant under

AEn
nq (q) for all E in the closure of that spectral gap; if E0 is the interior of a

connected component of σ(Hp), then Zq(E) is invariant under AEn
nq (q) for all

E in that connected component.
Now by the same arguments as in the proof of Lemma 5.2, if E0 is in a

spectral gap of Hp, then it is away from σ(Hq) with a uniform distance for all
periodic points q. But E0 ∈ � since it is an accumulation point ofF . Thus E0
can be approximated by σ(Hq) for a certain choice of q, a contradiction. We
may conclude that E0 ∈ σ(Hp). So we may let I ⊆ σ(Hp) be the connected
component containing E0. Now we claim that

Zq(E) = HE (Z p(E)) is invariant under AE
nq (q) for all E ∈ �̃. (5.14)

If E0 is in the interior of I , we have already obtained that Z̃q(E) is invariant
under AE

nq (q) for all E ∈ I . If E0 belongs to the boundary of I , then similarly
to the proof of Lemma 5.3, there is an open disk D centered at E0 with ramified
(at E0) double cover π : D̃ → D so that s and u are holomorphic on D̃. Thus
we may assume Z p(E) = Z̃ p(Ẽ) where Ẽ ∈ π−1(E) and

Z̃ p(Ẽ) =

⎧⎪⎨
⎪⎩

{s(Ẽ)} for all Ẽ ∈ D̃,

{u(Ẽ)} for all Ẽ ∈ D̃, or

{s(Ẽ), u(Ẽ)} for all Ẽ ∈ D̃.

(5.15)

Then we define

Z̃q(Ẽ) := Hπ(Ẽ)(Z̃ p(Ẽ)), (5.16)
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so that Z̃ p(Ẽ) is invariant under Aπ(Ẽ)
nq (q) for infinitely many Ẽn ∈ D̃. By

the fact that Hπ(·), s, and u are holomorphic on D̃, we obtain that Z̃q(Ẽ) is

invariant under Aπ(Ẽ)
nq (q) for all Ẽ ∈ D̃. Descending to D, we obtain that

Zq(E) := HE (Z p(E)) (5.17)

is invariant under AE
nq (q) for all E ∈ D. In particular, Zq(E) is invariant under

AE
nq (q) for all E ∈ (E0 − ρ, E0 + ρ), where ρ > 0 is the radius of D.
By the analysis above, we obtain that no matter whether E0 belongs to the

boundary or to the interior of I , after a finite number of continuations, we get
that Zq(E) is invariant under AE

nq (q) for all E ∈ �̃, as claimed. As in the

proof of Lemma 5.3, and by the fact that HE is real for E real, we obtain that
Z p(E) and Zq(E) are simultaneously real or non-real for all E ∈ �̃ ⊇ �.
This clearly implies that

σ(Hp) = σ(Hq) whenever p0 = q0. (5.18)

Now we remove the condition pi = q j for some i, j ∈ Z. As in the proof
of Lemma 5.4, we can find a periodic point p′ with some iterates very close
to p and some very close to q. In particular, p′

i = p j for some i, j ∈ Z and
p′
k = qm for some k,m ∈ Z. Thus by the first case we consider above, we

have

σ(Hp) = σ(Hp′) = σ(Hq). (5.19)

This concludes the proof. ��

5.2.5 Proof of Theorem 1.3

Theorem 1.3 is an immediate consequence of the following theorem.

Theorem 5.12 Suppose 0 < α ≤ 1 and let f ∈ Cα(�, R) be globally
bunched or locally constant. If the periodic spectra associated with periodic
points of T in � are not all identical, then {E : L(E) = 0} is finite.
Proof As {E : L(E) = 0} ⊆ F , the statement follows from Lemma 5.11. ��
Remark 5.13 Theorem 5.12 is particularly easy to apply when T has a fixed
point, as the latter property ensures the presence of a constant potential and all
one needs to do in order to show that not all periodic spectra are the same is
to use the non-constancy of the sampling function to produce a non-constant
periodic potential. However, there are certainly cases of interest where the
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base dynamics given by T is fixed-point-free. In this case Theorem 5.12 still
provides a direct tool for proving that {E : L(E) = 0} is finite for many
globally bunched or locally constant f ∈ Cα(�, R), one just needs to take a
closer look at the resulting periodic spectra.

Remark 5.14 Consider (�+, T+, μ+) and assume that we can lift μ+ to an
ergodic measure μ on (�, T ) that has a local product structure. Then all
our main results of this section, in particular Theorem 1.1 and Theorem 1.3,
can be applied to f ∈ Cα(�+, R). Indeed, such an f can be lifted to an
f̄ ∈ Cα(�, R) that depends only on the future. Then all our results follow
since L(μ, A(E− f̄ )) = L(μ+, A(E− f )).

6 Positivity of the Lyapunov exponent II

We first show that in the scenario of Sect. 5.2, we may remove the finite
exceptional set for an open and dense subset of sampling functions. Then we
apply similar arguments to the general case discussed in Sect. 5.1 and obtain
that for a residual set of sampling functions, the discrete exceptional set can be
removed. Throughout this section, we again assume that (�, T ) is a subshift
of finite type with a fully supported ergodic measureμ that has a local product
structure. Note that for 0 < α ≤ 1, the space Cα(�,SL(2, R)) is a Banach
space with the Cα norm defined by

‖A‖0,α = ‖A‖∞ + sup
ω 	=ω′

‖A(ω) − A(ω′)‖
d(ω, ω′)α

, (6.1)

where ‖A‖∞ is the standard C0 norm ‖A‖∞ = supω∈� ‖A(ω)‖. Similarly,
the space Cα(�, R) is a Banach space with a Cα norm that can be defined
analogously.We say that a subset ofCα(�,SL(2, R)) has codimension infinity
if it is locally contained in finite unions of closed submanifolds with arbitrary
codimension. The same notion can be defined when we consider a subspace
or an open subset of Cα(�,SL(2, R)).

6.1 Special cases: uniform positivity in a dense open set

In this subsection, we assume that A ∈ Cα(�,SL(2, R)) is fiber bunched
or locally constant, and hence admits canonical holonomies by our earlier
discussion.

We first introduce the follow notion of typical cocycles.

Definition 6.1 We say A is typical if there are two periodic points p and q
with periods n p and nq such that p0 = q0 and the following properties hold:
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(1) Anp(p) 	= I2 and Tr(Anp(p)) 	= 0.
(2) Let {s(p), u(p)} ⊆ CP

1 be the set of eigendirections of Anp(p). Then
there is no Z p ⊆ {s(p), u(p)} so that Hu

q∧p,q · Hs
p,q∧p · Z p is invariant

under Anq (q).

Since the definition involves two periodic points p and q, we may more
precisely say that A is typical with respect to (p, q). Note that A might be
typical with respect to many other pairs of periodic points as well. Clearly,
the defining conditions of a typical cocycle are open in the C0 topology. Thus
they are open in the Cα topology as well.

The notion of a typical cocycle in the present scenario was first introduced
in [7,8]. Our version is slightly different from theirs. It is adapted for the proof
of Theorem 1.5 below. In particular, employing the arguments from [7,8], one
can show the following result. We only sketch the proof for the convenience
of the reader.

Proposition 6.2 The set of typical cocycles as defined above forms a Cα-open
and dense subset in the set of fiber bunched (resp., locally constant) cocycles.
Moreover, the complement of the set of typical cocycles has codimension infin-
ity.

Proof Following the arguments from [7,8], for each fixed pair of periodic
points p and q with p0 = q0, the complement of the set cocycles satisfying
conditions (1) and (2), denoted by Bp,q , is seen to be contained in the union
of a finite number of sets of the form

{A : H(A) = 0},
where each A �→ H(A) is a C1 submersion when restricted to suitable sets of
Cα(�,SL(2, R)). Thus for each fixed pair (p, q), one can show that Bp,q is
a submanifold of Cα(�,SL(2, R)) with positive codimension. Note that the
complement of the set of typical cocycles is

⋂
p,q∈Per(T ): p0=q0

Bp,q .

Since there are infinitely many such pairs (p, q), the set above is contained in a
subset of Cα(�,SL(2, R)) with codimension infinity. Thus, the complement
of the set of typical cocycles has codimension infinity and the set of typical
cocycles is open and dense. ��
Remark 6.3 Let us mention that one can have the following type of perturba-
tion from [7,8]: for each fixed pair of periodic points p and q with p0 = q0,
one can modify the values of A at other points without changing its values at
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p and q as well as without changing its holonomies on the local stable and
unstable sets of these two points.

We first note the following consequence of our proof of Lemma 5.11, which
also recovers one of the results in [7]:

Lemma 6.4 Assume that the fiber bunched or locally constant A ∈ Cα(�,

SL(2, R)) is typical. Then L(A, μ) > 0. In particular, there is an open and
dense subsetG of fiber bunched or locally constant cocycleswhose complement
has codimension infinity and L(A, μ) > 0 for all A ∈ G.

Proof Assume that L(A, μ) = 0. Let p and q be two periodic points satisfy-
ing the conditions in the definition of typical cocycles. Then by the proof of
Lemma 5.11, we know that there is a set Z p ⊆ CP

1 consisting of at most two
points with the following properties:

(1) Z p is invariant under Anp(p),
(2) Hu

q∧p,q · Hs
p,q∧p · Z p is invariant under Anq (q).

Since p and q satisfy the conditions stated in the definition of typical cocycles,
we have that Anp(p) 	= I2 and Tr(Anp(p)) 	= 0. Thus property (1) implies
that Z p is a subset of {s(p), u(p)}. As a consequence, property (2) contradicts
condition (2) of the definition of typical cocycles, concluding the proof. ��
Remark 6.5 Although Proposition 6.2 and Lemma 6.4 are stated for the space
of general cocycles, Cα(�,SL(2, R)), they hold true if one restricts to the
subspace of Schrödinger cocycles, that is, cocycles taking the form

A(ω) =
(
f (ω) −1
1 0

)
.

Note that this subspace is equivalent to the space Cα(�, R). Indeed, it is not
difficult to see that the perturbation argument used in the proof of Proposi-
tion 6.2 works equally well when considering Schrödinger coccyles.

We note the following consequence of [4, Theorem 2.8].

Proposition 6.6 Suppose (�, T ) is a subshift of finite type andμ is T -ergodic
with a local product structure. Let f ∈ Cα(�, R) be globally fiber bunched
or locally constant. Then E �→ L(E) is continuous on R.

Indeed, [4, Theorem 2.8] implies that the Lyapunov exponent is continu-
ous on the subspace of Cα(�,SL(2, R)) of globally fiber bunched or locally
constant cocycles. If f ∈ Cα(�, R) is globally fiber bunched or locally con-
stant, then there is a connected compact interval �̂ that contains the spectrum
� = � f so that AE is fiber bunched or locally constant for all E ∈ �̂. Thus
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L(E) is continuous on �̂. On the other hand, L(E) is smooth outside of the
spectrum as (T, AE ) is uniformly hyperbolic for E /∈ � and the Lyapunov
exponent is pluriharmonic on the set of uniformly hyperbolic cocycles. Thus
L(E) is continuous on R.

Proof of Theorem 1.5 We focus on the case where f is globally fiber bunched
as the proof in the locally constant case is completely analogous.

Fix an f ∈ Cα(�, R) that is non-constant and globally fiber bunched.
Thus we may find a compact connected interval �̂ whose interior contains the
spectrum � f so that A(E− f ) is fiber bunched for each E ∈ �̂. Note that fiber
bunching is a C0 open condition and

∀E : ‖A(E− f1) − A(E− f2)‖∞ = ‖ f1 − f2‖∞. (6.2)

Thus, for any open neighborhood U f ⊆ Cα(�, R) of f that is sufficiently
small, we have for each g ∈ U f that �g ⊆ �̂ and A(E−g) is fiber bunched
for all E ∈ �̂. In the remaining part of the proof, we fix such a U f and work
inside it.

If σ(Hp, f ) = σ(Hq, f ) for all periodic points p and q, then by total dis-
connectedness of �, we can modify the value of f at q without changing
its value along the orbit of p. On the other hand, if we choose E on the
boundary of the spectrum of σ(Hq, f ), we can certainly perturb f to g so that
L(A(E−g), q) > 0. Thus we may perturb f to a g that is arbitrarily close to
f with the property σ(Hp,g) 	= σ(Hq,g). Then we can instead work with g.
Moreover, when perturbing f to g, we can certainly choose p and q so that
p0 = q0.
Thus, we may assume without loss of generality that f is such that

σ(Hp, f ) 	= σ(Hq, f ) for suitably chosen periodic points p and q such that
p0 = q0. As described in Sect. 2.2, we again let {s(E), u(E)}E∈� be the
pair of functions associated with the eigendirections of A(E− f )

n p (p). Define

HE = Hu,E
q∧p,q · Hs,E

p,q∧p. Then by the proof of Lemma 5.11, if we define
Z p(E) to be

Z p(E) =

⎧⎪⎨
⎪⎩

{s(E)} for all E ∈ �̂,

{u(E)} for all E ∈ �̂, or

{s(E), u(E)} for all E ∈ �̂,

(6.3)

then the set

{
E ∈ �̂ : A(E− f )

nq (q) · HE · Z p(E) = HE · Z p(E)
}

(6.4)
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is finite. On the other hand, the set

{
E ∈ �̂ : A(E− f )

n p (p) = ±I2 or Tr(A
(E− f )
n p (p)) = 0

}
(6.5)

is finite as well. Combining the facts above, we then have that

B f :=
{
E ∈ �̂ : A(E− f ) is not typical

}
(6.6)

is finite. Note that for all E /∈ B f , A(E− f ) is typical with respect to (p, q). By
Remark 6.3 we can modify the values of A(E− f ) at different points and keep
its values at p and q, as well as their holonomies. In particular, by Remark 6.5,
after a finite number of perturbations, we can perturb f to g with the following
properties. There is a pair of periodic points (p′, q ′) with p′

0 = q ′
0 and A(E−g)

is typical with respect to (p, q) for all E /∈ B f and typical with respect to
(p′, q ′) for all E ∈ B f . Thus we have that A(E−g) is typical for all E ∈ �̂.
By the fact that the defining properties of typical cocycles are open conditions
with respect to the C0 topology, property (6.2), and the compactness of �̂, we
obtain a neighborhood Ug ⊆ U f of g so that for each h ∈ Ug, we have

L(A(E−h), μ) > 0 for all E ∈ �̂.

By Proposition 6.6, L(A(E−h)) is continuous on R. On the other hand, it
is well known that (T, A(E−h)) is uniformly hyperbolic outside of � and
L(A(E−h), μ) tends to ∞ as |E | tends to ∞. Combining all these statements,
we find that for each h ∈ Ug, we have

inf
E∈R

L(A(E−h), μ) > 0.

This concludes the proof. ��

6.2 General case: full positivity for generic sampling functions

In this subsection, we return to the general setting of Theorem 1.1. Note that
in this case we have neither the canonical holonomies, nor global existence of
holonomies. Moreover, the discrete set can in principle be infinite. To remove
the discrete exceptional set, the price we need to pay is that we can only do it
for Cα-generic sampling functions. For the remaining part of the section, we
fix 0 < α ≤ 1 and consider the space Cα(�,SL(2, R)).

We start with a new definition of typical cocycles that is adapted for the
purpose of this section.
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Definition 6.7 We say A ∈ Cα(�,SL(2, R)) is typical if there are two peri-
odic points p and q with periods n p and nq , respectively, such that p0 = q0
and the following properties hold:

(1) p and q are α
2 -bunched, that is, 2L(A, p) < α

2 and 2L(A, q) < α
2 .

(2) Anp(p) 	= I2 and Tr(Anp(p)) 	= 0.
(3) Let {s(p), u(p)} ⊆ CP

1 be the set of eigendirections of Anp(p). Then
there is no Z p ⊆ {s(p), u(p)} so that Hu

q∧p,q · Hs
p,q∧p · Z p is invariant

under Anq (q).

Note that the existence of the holomomies of p and q in condition (3) is
guaranteed by condition (1). As in the previous subsection, we may also say
that A is typical with respect to (p, q), as the definition involves p and q.

Define

Tα := {
A ∈ Cα(�,SL(2, R)) : A is a typical cocycle

}
. (6.7)

It is a standard fact that A �→ L(A, μ) is upper-semicontinuous on
Cα(�,SL(2, R)). In particular, the set

Lα =
{
A ∈ Cα(�,SL(2, R)) : 2L(A, μ) <

α

2

}
(6.8)

is open in Cα(�,SL(2, R)). Again by [30, Theorem 3], if 2L(A, μ) < α
2 ,

there exists a periodic point p such that 2L(A, p) < α
2 , that is, p is

α
2 -bunched.

Then, as in the proof of Lemma 5.2, we may use the specification property
to produce infinitely many pairs of α

2 -bunched periodic points (p, q) so that
p0 = q0. In particular, similarly to Proposition 6.2, we have the following:

Proposition 6.8 Suppose (�, T ) is a subshift of finite type and μ is a T -
ergodic measure that has a local product structure. Consider the space
Cα(�,SL(2, R)) for α > 0 and let Tα and Lα be defined as above. Tα ∩ Lα

forms an open and dense subset of Lα . Moreover, Lα\Tα has codimension
infinity in Lα .

Similarly to Lemma 6.4, Proposition 6.8 has the following consequence,
which has appeared in [39]. For simplicity, we define

Pα = {
A ∈ Cα(�,SL(2, R)) : L(A, μ) > 0

}
. (6.9)

Lemma 6.9 We have Tα ⊆ Pα . In other words, L(A, μ) > 0 for each A
that is typical. Moreover, the set Pα contains an open and dense subset of
Cα(�,SL(2, R)) and the complement of Pα has codimension infinity.
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Proof If A /∈ Lα , then L(A, μ) ≥ α
4 > 0. If A ∈ Lα is typical, then we may

apply the proof of Lemma 6.4 to get L(A, μ) > 0. However, here we have to
use the full strength of Sect. 5.1. Specifically, α

2 -bunching of p and q and the
proof of Lemma 4.2 guarantee the existence of the holonomies associated with
p and q. Then Lemmas 4.4 and 4.9 andCorollary 4.15 can be used to guarantee
the existence and holonomy-invariance of Z p and Zq . Once we have all these
tools, the proof of L(A, μ) > 0 is then identical to the proof of Lemma 6.4.

Next, we want to show that the set Pα contains an open and dense set. To
this end, we fix any A ∈ Cα(�,SL(2, R)). If there is an open neighborhood
UA of A such that for each B ∈ UA, L(B, μ) ≥ α

4 , then there is nothing
we need to say. Otherwise, in any open neighborhood U of A, we can find a
B ∈ Lα . Then by Proposition 6.8 and the proof above, we can find an open
set V ⊆ U ∩ Tα , which implies that L(B, μ) > 0 for each B ∈ V .

Finally, it is clear that the complement of Pα is contained in Lα\Tα , which
has codimension infinity inLα. Hence, the complement ofPα has codimension
infinity in Cα(�,SL(2, R)) as well. ��

Note that this is an improved version of Lemma 6.4, as here we remove the
assumption of global bunching or local constancy of f .

Now we are ready to generically remove the discrete set that appeared in
Theorem 1.1.

Proof of Theorem 1.4 By Remark 6.5 and via the arguments from the proof
of Lemma 6.9 we can show that the set

Zα := { f ∈ Cα(�, R) : L(A( f ), μ) = 0} (6.10)

has codimension infinity in Cα(�, R). In other words,Zα is locally contained
in finite unions of closed submanifolds with arbitrary codimension. More pre-
cisely, for each k ∈ Z+ and each f ∈ Zα , we can find an open neighborhood
U f of f and submanifoldsM j , 1 ≤ j ≤ m, each with codimension k, so that

(
Zα ∩ U f

) ⊆
m⋃
j=1

M j . (6.11)

On the other hand, if we define the set Bα to be

Bα := {g ∈ Cα(�, R) : E − g ∈ Zα for some E ∈ R}, (6.12)

then for each g ∈ Bα , we can find f ∈ Zα and E ∈ R so that g = E − f .
Thus Bα is locally contained in finite unions of submanifolds of arbitrary
codimension as well. Indeed, for the g and f above, we may just assume that
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f is the one in (6.11). Thus for a fixed k ∈ Z+, for eachM j in (6.11), the set

N j := {h ∈ Cα(�, R) : h − E ∈ M j for some E ∈ R}

may be viewed as a submanifold of Cα(�, R) with codimension k − 1 whose
local charts can be obtained from those of M j and E ∈ R. In particular, it
is nowhere dense if k ≥ 2. On the other hand, (6.11) clearly implies that the
open neighborhood

Ug = U f + E := {h ∈ Cα(�, R) : h − E ∈ U f }

of g satisfies

(Bα ∩ Ug) ⊆
m⋃
j=1

N j .

Since g ∈ Bα and k ∈ Z+ can be arbitrarily chosen, we obtain that Bα is
nowhere dense. Equivalently, we may say that the complement Bc

α of Bα is
residual in Cα(�, R). By definition of Bα , we have for each f ∈ Bc

α that

L(A(E− f ), μ) > 0 for all E ∈ R,

concluding the proof. ��
Remark 6.10 Similarly to Remark 5.14, all the main results in this section can
be applied to Hölder continuous sampling functions defined on (�+, T+, μ+),
where the lift μ of μ+ has a local product structure. Indeed, in this case,
Cα(�+, R) can be considered as a closed subspace of Cα(�, R) whose ele-
ments depend only on the future. All the perturbations can then be performed
within this subspace.

7 Applications

All of the results of this paper may be applied to Hölder continuous cocycles
defined over any transitive Anosov diffeomorphism (or transitive, uniformly
expanding differentiable map), where μ is taken to be the equilibrium state
of a Hölder continuous potential. By a standard technique one can reduce the
cocycles in question toHölder continuous cocycles over a subshift of finite type
via aMarkov partition; see, for example, [14,31]. Although the applicability is
much wider, we will focus on a particular case as follows. It is standard result
that if an invariant measure μ of a C2 transitive Anosov diffeomorphism (or a
C2 transitive, uniformly expandingmap) is absolutely continuous with respect
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to the volume measure, then it is an equilibrium state of a Hölder continuous
potential; see, for example, [14].

To illustrate this, we choose three differential models that have been widely
studied in both the dynamical systems andmathematical physics communities.
The first type of model is given by linear expanding maps of the circle,

T : R/Z → R/Z, T x = kx, k ≥ 2, (7.1)

and the measure is taken to be the Lebesgue measurem on R/Z. One may find
some existing results for this case in [6,9,12,18,22,36,40,42,44]. In particular,
the case k = 2 corresponds to the doubling map, which is the most difficult
map to study within this family of maps, as it is the least mixing among them.
The second type is given by hyperbolic automorphisms of R

d/Z
d , where μ is

taken to be the Lebesgue measure m on R
d/Z

d . The most intensively studied
case is the famous Arnold cat map, where

T : R
2/Z

2 → R
2/Z

2, T =
(
2 1
1 1

)
(7.2)

and μ is taken to be the Lebesgue measure m on R
2/Z

2. One may find earlier
results for this case in [12,18,36,42]. It is clear that both linear expanding
maps of the circle and hyperbolic toral automorphisms meet all the conditions
necessary to apply our main theorems in Sects. 5 and 6. In particular, they all
have a fixed point.

Our theorems then yield the following results. To unify the statements, we
let (�, T, μ) be any of the following: (R/Z, Tk,m), where Tkx = kx and
k ≥ 2 is an integer; (Rd/Z

d , TA,m) where d ≥ 2 and TA is the hyperbolic
toral automorphism generated by some hyperbolic A ∈ SL(d, Z). Recall that
for a sampling function f , we set L(E) = L(A(E− f ), μ) and define

Z f := {E : L(E) = 0} ⊆ R. (7.3)

For 0 < α ≤ 1 and λ > 0, we Cα
λ (�, R) = { f ∈ Cα(�, R) : ‖ f ‖∞ < λ}.

Theorem 7.1 Let (�, T, μ) be as above and let 0 < α ≤ 1. For all non-
constant f ∈ Cα(�, R), Z f is a discrete set. Moreover, Z f = ∅ for f ’s in a
residual subset of Cα(�, R). There is λ0 = λ0(α) > 0 such that Z f is a finite
set for all non-constant f ∈ Cα

λ0
(�, R). Finally, there is an open and dense

subset Oα of Cα
λ0

(�, R) such that for all f ∈ Oα , infE∈R L(E) > 0.

Ifwe introduce a coupling constantλ , thenwe have the following immediate
consequence of Theorem 7.1.

123



Schrödinger operators with potentials 919

Corollary 7.2 Let (�, T, μ) and α be as in Theorem 7.1. Fix a non-constant
f ∈ Cα(�, R). Then Zλ f is a discrete set for all λ > 0. Moreover, there is a
λ0 = λ0(‖ f ‖∞, α) > 0 such that Zλ f is finite for all 0 < λ < λ0.

Remark 7.3 To the best of our knowledge, if we take T to be the doubling map
for d = 1 or the Arnold cat map for d ≥ 2, then the results we stated in Theo-
rem7.1 andCorollary 7.2 are the first global results that do awaywith smallness
or largeness assumptions for the coupling constant. In the large coupling
regime, Herman’s subharmonicity trick [28] can be applied (for trigonometric
polynomials), and in the (perturbatively!) small coupling regime, the perturba-
tive analysis of Chulaevsky–Spencer [18] and Sadel–Schulz–Baldes [35,36]
can be applied. Other methods get around changing the coupling constant by
changing the base dynamics instead, specifically to increase its hyperbolicity;
compare Bourgain–Bourgain–Chang [9] and Bjerklöv [6].

Remark 7.4 Taking the doubling map as an example, we give two sample
computations. First, we show how to reduce a Hölder continuous cocycle on
R/Z × R

2 to one on � × R
2, where � is the full shift, which is in particular a

subshift of finite type. Let �+ = {0, 1}N and (�+, T+, μ+) be the one-sided
Bernoulli shift. Here we choose μ+ = μ̃N where μ̃(0) = μ̃(1) = 1

2 . Then it
is well know that the map

π : �+ → R/Z, ω+ �→
∞∑
n=0

ω+
n

2n+1

codes the dynamics of doubling map (R/Z, T2,m) to that of (�+, T+, μ+)

since T2 ◦ π = π ◦ T+ and π∗μ+ = m. In particular, for any cocy-
cle map A : R/Z → SL(2, R), we set A+ : �+ → SL(2, R) where
A+ = A ◦ π , and we then have by construction L(A,m) = L(A+, μ+).
Now we consider the full shift space (�, T, μ) whose one-sided shift is
(�+, T+, μ+), as described above. By setting Ā(ω) = A+(π+ω), we clearly
have L(T, Ā) = L(T+, A+). It is clear that Ā is α-Hölder continuous as long
as A+ is, since d(π+ω, π+ω̃) ≤ d(ω, ω̃). So we just need to show that the
Hölder continuity can be carried over from A to A+. This in turn follows from
the following straightforward estimate:

|πω+ − πω̃+| ≤ d(ω+, ω̃+)log 2.

In particular, α-Hölder continuity of A implies (α log 2)-Hölder continuity of
A+ since

‖A+(ω+) − A+(ω̃+)‖ = ‖A(πω+) − A(πω̃+)‖
≤ C |πω+ − πω̃+|α
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≤ Cd(ω+, ω̃+)α log 2.

Next, we compute some explicit choices for the value of λ0 appearing in
Theorem 7.1 and Corollary 7.2, when the base dynamics in question are given
by the doubling map. Clearly, the above process still works if we replace A :
R/Z → SL(2, R) by f : R/Z → R. Given f ∈ Cα(R/Z, R), wemay instead
consider the corresponding f̄ ∈ Cα log 2(�, R). In particular, ‖ f ‖∞ = ‖ f̄ ‖∞.
We want to find a λ0 so that f is globally bunched if ‖ f ‖∞ < λ0. In other
words,

AE (ω) =
(
E − f̄ (ω) −1

1 0

)

is fiber bunched for all E ∈ [−2 − ‖ f ‖∞, 2 + ‖ f ‖∞]. To simplify the com-
putation, we ensure that fiber bunching is satisfied with n0 = 1. That it, we
want for all E ∈ [−2 − ‖ f̄ ‖∞, 2 + ‖ f̄ ‖∞] that

‖AE (·)‖∞ < e
log 2
2 α = 2

α
2 .

Recall the fiber bunching condition is only assumed to ensure the existence of
stable and unstable holonomies. Thus, by the construction of the holonomies
from the proof of Lemma 4.2, it is clear that we may reduce the condition
above to the following condition. For each E ∈ [−2 − ‖ f̄ ‖∞, 2 + ‖ f̄ ‖∞],
there is a P(E) ∈ SL(2, R) so that

‖P(E)−1AE (·)P(E)‖∞ < 2
α
2 . (7.4)

First, we take care of the E’s that are away from ±2. For each E ∈ (−2, 2), a
direct computation shows that

P(E)−1
(
E −1
1 0

)
P(E) ∈ SO(2, R)

which has norm one and where

P(E) =
⎛
⎜⎝

√
2

(4−E2)
1
4

0

E√
2(4−E2)

1
4

(4−E2)
1
4√

2

⎞
⎟⎠ .

If we choose λ0 so that for all E ∈ [−2 + λ0, 2 − λ0] and all |λ| < λ0, we
have ∥∥∥∥P(E)−1

(
λ 0
0 0

)
P(E)

∥∥∥∥ < 2
α
2 − 1,
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thenwe have (7.4) for any ‖ f̄ ‖∞ = ‖ f ‖∞ < λ0 and all E ∈ [−2+λ0, 2−λ0].
It is straightforward to see that

P(E)−1
(

λ 0
0 0

)
P(E) =

(
λ 0

− Eλ√
4−E2 0

)
.

Thus we have fiber bunching for all E ∈ [−2+ λ0, 2− λ0] if for all such E’s
and for all |λ| < λ0, we have

|λ| +
∣∣∣∣ Eλ√

4 − E2

∣∣∣∣ < 2
α
2 − 1.

Since the supremum of the left hand is attained at λ = λ0 and E = 2 − λ0,
one can check that it suffices to have

λ0 + λ0√
λ0 − λ20

< 2
α
2 − 1,

which in turn can be guaranteed, for example, by the condition 3
√

λ0 ≤ 2
α
2 −1.

In particular, if we choose any

0 < λ0 ≤ (2
α
2 − 1)2

9
, (7.5)

then we have fiber bunching for all E ∈ [−2+λ0, 2−λ0] and for all ‖ f ‖∞ <

λ0.
Nowwe take care of the energies E ∈ [−2−λ0, −2+λ0]∪[2−λ0, 2+λ0].

Take E = 2 for example. Then we have

G−1
a

(
2 −1
1 0

)
Ga =

(
1 −a
0 1

)
,

where a > 0 and

Ga =
(

1√
a

−√
a

1√
a

0

)
.

It is easy to see that we have

∥∥∥∥
(
1 a
0 1

)∥∥∥∥ ≤ 1 + |a|.
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On the other hand, we can see via a straightforward computation that

G−1
a

(
λ 0
0 0

)
Ga =

(
0 0

−λ
a λ

)
.

Thus it suffices to choose a > 0 and λ0 > 0 so that for all |λ| ≤ λ0, we have

1 + a + |λ|
a

+ |λ| < 2
α
2 ,

which may be guaranteed by

a + λ0

a
+ λ0 < 2

α
2 − 1.

Clearly, we may choose a = 1
2 (2

α
2 −1). It is then easy to see that if we choose

any λ0 such that

0 < λ0 ≤ (2
α
2 − 1)2

8
, (7.6)

then we have fiber bunching for all E ∈ [2 − λ0, 2 + λ0] and for all f with
‖ f ‖∞ < λ0. A similar computation shows that the λ0 in (7.6) works for
E ∈ [−2 − λ0, −2 + λ0] as well. Combining (7.5) and (7.6), we see that in
the statement of Theorem 7.1 and Corollary 7.2 for the doubling map, we may
choose

λ0 = (2
α
2 − 1)2

9
.

Remark 7.5 The computation of λ0 in Remark 7.4 actually works for AE

defined on any subshift of finite type (�, T, μ). Moreover, since we do not
have the coding process as in Remark 7.4, we have that f ∈ Cα(�, R) is
globally bunched if

‖ f ‖∞ ≤ λ0 = (e
α
2 − 1)2

9
. (7.7)

In particular, this value of λ0 works for Theorem 7.6 below.

Let us now apply our results to Markov chains. We consider the full shift
(AZ, T ), whereA = {1, . . . , �}. Let P = (Pi j )1≤i, j≤� be a stochastic matrix,
in other words, Pi j ≥ 0 and

∑�
j=1 Pi j = 1. Assume that P is irreducible, that

is, for all i, j ∈ A, there is n ∈ Z+ such that the (i, j)-entry of Pn is positive.
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Then there is a unique probability vector p = (p1, . . . p�) (i.e., pi > 0 and∑�
i=1 pi = 1) such that

∑�
i=1 pi Pi j = p j . Now we define the measure μ on

AZ via

μ([0; k0, . . . , kn]) = pk0

n−1∏
i=0

Pki ki+1 . (7.8)

Such a measure μ is called a Markov measure. By a standard result, the topo-
logical support of μ is a subshift of finite type � with the adjacency matrix
A = (ai j ) such that ai j = 1 whenever pi j > 0 and ai j = 0 otherwise. Thus
we may instead consider the space (�, T, μ). Moreover,μ is T -ergodic if and
only if P is irreducible. Consider its associated one-sided space (�+, T+, μ+).
It is a standard result that μ+ is the unique equilibrium state of the potential
φ(ω+) = − log Pω+

0 ω+
1
, which is locally constant; see, for example, [41].

Thus by Lemma 3.4, μ has the bounded distortion property, and hence a local
product structure as well.

Theorem 7.6 Let (�, T, μ) be a Markov chain as described above. Fix 0 <

α ≤ 1. Then we have the following statements:

(a) There is a residual set Gα ⊆ Cα(�, R) such thatZ f = ∅ for all f ∈ Gα .
(b) There are λ0 = λ0(α) > 0 and an open dense subset Oα ⊆ Cα

λ0
(�, R)

such that for each f ∈ Oα , we have infE∈R L(E) > 0.
If in addition (�, T ) has a fixed point (which happens if and only if Pii > 0
for some 1 ≤ i ≤ �), the following stronger statements hold true:

(c) Z f is a discrete set for all non-constant f ∈ Cα(�, R) and it is a finite
set for all non-constant f ∈ Cα

λ0
(�, R) or for all non-constant f that are

locally constant.
(d) In particular,Zλ f is discrete for all λ > 0 and finite for all 0 < λ < λ0 for

all non-constant f ∈ Cα(�, R). If f is locally constant and non-constant,
then Zλ f is a finite set for all λ > 0.

Remark 7.7 Reiterating what we said in Remark 5.13, even if (�, T ) does not
have a fixed point (i.e., when Pii = 0 for every 1 ≤ i ≤ �), we can work with
periodic spectra of higher periods and test for non-coincidence of two of them.
In concrete cases this procedure is easy to implement and will in many cases
lead to the desired result. For instance, we can apply it to the last example we
present in the end of this section.

Note that the Anderson model is a special case of the Markov chains
described above, provided that the single-site measure is supported on a finite
set. Indeed, such models may be generated as follows. Let μ be a probability
measure on the full shift space AZ that is generated by a single site mea-
sure μ̄{i} = pi where p = (p1, . . . p�) is a probability vector. It is clearly a
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Markov chain with the same probability vector and with the stochastic matrix
pi j = p j . Thus, we have the following corollary of Theorem 7.6.

Corollary 7.8 Consider the full shift space (AZ, T, μ), where μ = μ̃Z and
μ̃ is a probability measure on A = {1, . . . �} that has full support. Then all
the conclusions that we stated in Theorem 7.6 hold true. In particular, if f is
locally constant and non-constant, then Zλ f is a finite set for all λ > 0.

In particular, the Anderson model is generated by a sampling function
f : AZ → R that depends only the 0th position. Note that such a function is in
particular locally constant. Corollary 7.8 implies the finiteness of Zλ f for all
such f ’s that are non-constant. Of course, in this case, the celebrated Fursten-
berg’s Theorem yields uniform positivity of the Lyapuonv exponent. However,
the finiteness ofZ f for all non-constant locally constant f : AZ → R already
may not be directly obtained from Furstenberg’s Theorem. Moreover, our
result is basically sharp. Indeed, there are plenty of examples where Z f is not
empty for locally constant and non-constant f : AZ → R, see [15]. Neverthe-
less, the finiteness of Z f can already be a starting point to prove full spectral
localization.

For the reader’s convenience, we provide an example with the property
Z f 	= ∅, where f is a non-constant locally constant function defined over
a Markov chain. To give such an example, let us show that the well-known
random dimer model (cf., e.g., [5,26]) is covered by our framework. The
random dimer model arises from the standard Bernoulli–Anderson model by
doubling up the sites. That is, with {ωn}n∈Z i.i.d. random variables taking
two different values, say 0 and λ with probability 0 < p < 1 and 1 − p,
the potentials are given by Vω(2n) = Vω(2n + 1) = ωn . To realize these
potentials in our framework, consider the subshift of finite type � over the
alphabet {1, 2, 3, 4} with the adjacency matrix

A =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 1 0 0
1 1 0 0

⎞
⎟⎟⎠ . (7.9)

The measure μ is the Markov measure generated by the following probability
vector and the stochastic matrix

p =
(
p

2
,
1 − p

2
,
p

2
,
1 − p

2

)
, P =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
p 1 − p 0 0
p 1 − p 0 0

⎞
⎟⎟⎠ . (7.10)
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The sampling function f : � → R is generated by f̄ : {1, 2, 3, 4} �→ {0, λ},
f̄ (1) = f̄ (3) = 0, f̄ (2) = f̄ (4) = λ via f (ω) = f̄ (ω0) which is locally
constant. It is readily checked that the resulting model is indeed the random
dimer model. It is well known, and in fact easy to see, that for −2 < λ <

2, A(E− f )
n (ω) is bounded for all n at energies 0 and λ. Thus {0, λ} ⊆ Z f .

Although this system has no fixed point, we do have that f is constant on
the orbit of ω ∈ � where ω2n = 1, ω2n+1 = 3. Note that in statement of
Theorems 1.1 and 5.12 , the fixed point is only there to produce a constant
potential Vω(n). Thus, Theorem 7.6 can still be applied to obtain the finiteness
of Z f . However, for this model, we can provide more information. It actually
follows from Furstenberg’s Theorem that the Lyapunov exponent is positive
away from these two energies {0, λ}. This shows that in this particular case
Z f = {0, λ}.
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